数学人教版六年级下册《鸽巢问题教学设计》
《鸽巢问题》优秀教学设计
《鸽巢问题》优秀教学设计《鸽巢问题》优秀教学设计作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,借助教学设计可以让教学工作更加有效地进行。
那么优秀的教学设计是什么样的呢?以下是小编帮大家整理的《鸽巢问题》优秀教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《鸽巢问题》优秀教学设计1教学内容审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。
设计理念《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
人教版数学六年级下册鸽巢问题教案3篇2024
人教版数学六年级下册鸽巢问题教案3篇2024〖人教版数学六年级下册鸽巢问题教案第【1】篇〗鸽巢问题教案教学目标:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义;经历“鸽巢原理”的学习过程,体验观察,猜测,实验,推理等活动的学习方法,渗透数形结合的思想;通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
重点:整合教材,由浅入深,逐层深入引导学生把具体问题转化成鸽巢问题,最终达到深入浅出解决问题。
难点:找出鸽巢问题解决的窍门进行反复推理。
并对一些简单的实际问题加以“模型化”。
教学准备:课件、扑克牌。
学生准备:小棒、杯子。
教学过程:一、情境导入:由游戏“抢凳子”引入课题并板书课题“鸽巢问题”二、探究新知1.动手操作,动画演示(1)(摆一摆)4只鸽子飞进3个鸽巢,会怎么飞呢?请同学们用小棒当鸽子,杯子做鸽巢,试试看!并把各种结果用你喜欢的方法记录下来。
(2)(议一议)教师引导学生分析各种情况,得出结论,不管怎么飞,总有一个鸽巢里至少飞进了2只鸽子。
(3)(飞一飞):4只鸽子飞进3个鸽巢,要使每个鸽巢里鸽子最少,该怎么飞?你能发现什么?通过引导让学生说出平均分的'方法。
2.以此类推,发现规律(1)6只鸽子飞进了5个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?你是怎么想的?(2)100只鸽子飞进了99个鸽巢,总有一个鸽巢至少飞进了()只鸽子?3.由浅入深,逐层深入(1)(飞一飞)5只鸽子飞进了3个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?是怎么飞的?通过演示鸽子飞的过程,引导学生理解平均分后,剩下的鸽子数不能超过鸽巢数,把剩下的鸽子再平均分,才能保证总有一个鸽巢里至少有的鸽子数。
(2)(说一说)7本书放进3个抽屉,总有一个抽屉里至少放进了()本书?你是怎么想的?4.动画演示,掌握规律14只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了4只鸽子。
为什么?5.学以致用,总结规律(1)10支铅笔放进3个笔筒中,总有一个笔筒里至少有4支铅笔,为什么?(2)28本书放进5个抽屉,总有一个抽屉里至少放进了几本书?为什么?(3)33只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了9只鸽子?为什么?(4)思考:你能发现什么规律吗?引导学生总结出计算方法,列出算式,最终得出至少数=商+1。
人教版数学六年级下册鸽巢问题教案3篇
人教版数学六年级下册鸽巢问题教案3篇〖人教版数学六年级下册鸽巢问题教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
人教版数学六年级下册鸽巢问题教案模板(推荐3篇)
人教版数学六年级下册鸽巢问题教案模板(推荐3篇)人教版数学六年级下册鸽巢问题教案模板【第1篇】第2课时教学内容教科书P69例2,完成教科书P71“练习十三”中第2、3、6题。
教学目标1.经历“鸽巢原理”的探究过程,进一步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
2.经历从直观到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力,渗透模型思想。
3.在探究过程中,经历将具体数学问题数学化的过程,培养学生的模型思维。
教学重点掌握“鸽巢原理”的一般形式,会运用除法算式来解决实际问题。
教学难点对“把多于kn(k是正整数)个物体任意分放入n个空抽屉,总有一个抽屉里至少有(k+1)个物体”形成一般性理解。
教学准备课件。
教学过程一、复习导入,揭示课题课件出示教科书P69“做一做”第2题。
【学情预设】预设1:我们把4把椅子看成4个“鸽巢”,把5个人放进4个“鸽巢”中,总有1个“鸽巢”里至少有2个人,即总有一把椅子上至少坐2人。
预设2:我用算式表示:5÷4=1……1,1+1=2,所以总有一把椅子上至少坐2人。
师:同学们研究了物体数比盛放物体的工具数多1的情况,得出了总有一个盛放物体的工具里至少放有两个物体。
“鸽巢原理”真是这样吗今天我们继续来研究相关问题。
【设计意图】通过复习,帮助学生回忆例1学习的有关知识,并直接揭示课题,为新课学习作准备。
二、自主探究,建立模型1.课件出示教科书P69例2。
师:请你试着证明这个结论。
(学生用自己的方式证明。
)【学情预设】预设1:我随便放放看,一个抽屉1本,一个抽屉2本,一个抽屉4本。
可以证明总有一个抽屉里至少放进3本书。
预设2:我用假设法来思考,如果每个抽屉最多放2本,那么3个抽屉最多放6本,最后的1本书一定会放到3个抽屉中的任何一个,可以证明总有一个抽屉里至少放进3本书。
预设3:我用算式来证明:7÷3=2……1,2+1=3。
师:你能理解这道算式表示的意思吗?(板书算式:7÷3=2……1,2+1=3)【学情预设】指导学生规范表达:把7本书平均放进3个抽屉,每个抽屉里放2本,还剩一本。
人教版六年级数学下册鸽巢问题优秀教学设计
人教版六年级数学下册鸽巢问题优秀教学设计【教学内容】教科书第67页例1、做一做及相关练习题。
【教学目标】1.采用枚举法及假设法探究“鸽巢问题”,理解并掌握“鸽巢原理”。
2.会运用“鸽巢原理”解决简单的实际问题或解释相关的现象。
3.体会逻辑推理思想和模型思想,提高学习数学的兴趣。
【教学重点】经历“鸽巢原理”的探究过程,理解“总有”、“至少”的含义。
【教学难点】会用“鸽巢原理”解决简单的实际问题或解释相关的现象。
【教学方法】教法:猜测法、引导法、讨论法、探究法、讲授法学法:动手操作、自主探索、合作交流【教具准备】多媒体课件、铅笔、纸杯。
【教学过程】一、游戏激趣,导入新知。
1.组织学生做“抢凳子游戏”。
游戏规则:4个人围着凳子转,老师喊“停”,4人必须都坐到凳子上。
师:我不用看,就能猜到,总有一个凳子上至少做了两个同学。
2.揭示课题:知道老师为什么不看就能猜出来吗?因为老师知道这里面蕴含着有趣的数学原理。
这节课就让我们用数学的眼光探究“鸽巢问题”。
(板书课题:鸽巢问题)二、检查预习,发现困惑。
1.课前通过预习,你知道了什么?(学生回答)2.你的困惑是什么?预设学生的困惑:1.什么是“鸽巢问题”?2.“鸽巢原理”的基本形式是什么?3.如何运用“抽屉原理”解决相关的实际问题或解释相关的现象。
下面就让我们带着这些问题开启我们的新课之旅吧!三、呈现问题,引出探究。
1、课件出示例题1:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有支铅笔。
(1)理解“总有”、“至少”的含义师:“总有”和“至少”是什么意思?你能举例说明吗?生:“总有”就是一定有,“至少”就是最少,不少于。
比如,至少有2支铅笔就是最少有2支,比2支多也行,3支4支也符合要求。
(2)猜测:师:大家猜一猜例1的结果?生:2支。
师:大家的猜测对不对呢?我们需要用实验来进行验证,请大家结合试验要求在小组内快速进行实验验证。
可以用摆一摆、画一画、写一写等方法把自己的想法表示出来。
人教版数学六年级下册第27课鸽巢问题说课稿(推荐3篇)
人教版数学六年级下册第27课鸽巢问题说课稿(推荐3篇) 人教版数学六年级下册第27课鸽巢问题说课稿【第1篇】《鸽巢问题》说课稿尊敬的各位评委老师,大家好!我是()号考生。
今天我说课的内容是《鸽巢问题》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《鸽巢问题》是人教版小学数学六年级下册第68页的内容,,是数与代数领域的重要知识点。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:经历“鸽巢问题”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
②能力目标:通过画图发展学生的类推能力,形成比较抽象的数学思维。
③情感目标:通过“鸽巢问题”的灵活应用感受数学的魅力。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:经历“鸽巢问题”的探究过程,初步了解“抽屉原理”。
难点是:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”二、说教法学法有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。
可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。
因此,这节课我采用的教法:引导法、观察法、讨论法;学法是:动手操作法,合作交流法。
三、说教学准备在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”本着这个教学理念,我设计了如下教学环节。
环节一、情境导入我给大家表演一个魔术。
一副牌,取出大小王,还剩52张牌,你们5人每人随意抽出一张,我知道至少有2张牌是同花色的。
问问同学是否相信?并做几组实验,验证这一猜想。
借助同学的疑问和兴趣,此时,我会点明:告知这个故事里蕴含着一个重要的数学原理,即抽屉原理,从而引出新知。
通过情境设置,从学生熟悉的生活情境和已有的知识基础出发,找准了新知识的起点,激发起学生对的比例的学习兴趣和求知欲。
2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
2024年人教版数学六年级下册鸽巢问题教案范文3篇
人教版数学六年级下册鸽巢问题创新教案3篇〖人教版数学六年级下册鸽巢问题创新教案第【1】篇〗《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
人教版数学六年级下册鸽巢问题教案(推荐3篇)
人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题》教学设计【教学内容】人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。
【教学目标】1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。
2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。
3.使学生感受数学的魅力,培养学习的兴趣。
【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。
【教学难点】理解抽屉原理,并对一些简单的实际问题加以模型化。
【教学过程】一、开门见山,引入课题。
承接课前谈话内容,直接揭示课题。
二、经历过程,构建模型。
(一)研究“4个小球任意放进3个抽屉”存在的现象。
1.出示结论:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。
让学生说说对这句话的理解。
2.验证结论的正确性。
让学生用长方形代替抽屉,用圆代替小球画一画,看有几种不同的放法。
3.全班交流。
学生汇报后,教师引导观察每种放法,通过横向、纵向比较,找到每种放法中放得最多的抽屉,然后从最多数里找最少数,发现不管哪种放法,都能从里面找到这样的一个抽屉,里面至少有2个小球。
从而理解并证明了“不管怎么放,总有一个抽屉里至少放2个小球”这个结论是正确的。
(二)研究“5个小球任意放进4个抽屉”存在的现象,找到求至少数的简便方法。
1.猜测:根据刚才的研究经验猜一猜:把5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放几个小球?2.验证。
学生以小组为单位共同研究:先画出不同的放法。
然后观察分析每种放法,看看哪种猜测是正确的。
3.全班交流。
小组汇报研究结果。
教师追问:通过验证,我们发现5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放2个小球。
那“总有一个抽屉至少放3个小球”为什么不对?学生通过观察各种放法来说明原因。
人教版数学六年级下册《鸽巢问题》教案
人教版数学六年级下册《鸽巢问题》教案一、教学目标1.了解鸽巢问题的背景和意义。
2.学习用分析思维解决问题的方法。
3.培养学生的逻辑思维能力和数学解题能力。
二、教学重点1.理解鸽巢问题的提出背景。
2.掌握解决鸽巢问题的基本方法。
三、教学难点1.运用分析思维解决问题。
2.能够正确利用数学知识解决实际问题。
四、教学准备1.教材《数学》六年级下册。
2.黑板、彩色粉笔。
3.学生课前阅读教材相关知识,做好预习。
4.预先准备示范解题的案例。
五、教学过程1. 导入介绍鸽巢问题的背景,引发学生对问题本身的思考和兴趣。
2. 学习和讨论1.展示一个简单的鸽巢问题,并让学生表述对问题的理解。
2.引导学生进行讨论,探究解决问题的策略和方法。
3.让学生自行尝试解决问题,并相互交流讨论。
4.结合教材内容,讲解解决鸽巢问题的基本思路和方法。
3. 实例讲解1.通过一个具体的案例进行讲解,详细展示解题的过程和方法。
2.引导学生分析案例,总结解题的关键点和技巧。
4. 练习与巩固1.布置相关练习题,让学生进行独立练习。
2.就学生在练习中遇到的问题进行讲解和指导。
3.鼓励学生相互交流讨论,加深理解和巩固知识。
5. 拓展与应用1.提出一些拓展问题,让学生进行探究和应用。
2.鼓励学生运用所学知识解决实际生活中的问题。
六、课堂小结总结本节课学习的重点和难点,强调解决问题的方法和策略。
七、作业布置布置练习题和拓展问题作为课后作业,以巩固和拓展学生的学习成果。
以上是本节课的教学内容,希望同学们能够认真对待,通过学习鸽巢问题的解决方法,提升自己的数学思维能力和解题水平。
人教版六年级下册《鸽巢问题》教学设计含反思
人教版六年级下册《鸽巢问题》教学设计含反思教学内容:人教版六年级下册第68、69页,例1、例2。
教学目标:1.知识与能力:使学生经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题;通过操作、观察、比较、推理等数学活动,建立数学模型,发现规律;渗透“模型”思想。
2.过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.情感、态度与价值观:通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教具、学具准备:课件、扑克牌、每个小组都准备有相应数量的笔筒、铅笔、课堂体验单。
教学过程:(一)游戏导入:1.老师和大家玩一个扑克牌的游戏。
需要5名同学配合,谁愿意?向同学介绍:这是一幅扑克牌,取出大、小王,还剩几张?请你们任意抽1张。
我判断,这5张牌中至少有2张是同花色的。
请亮牌,几张同花色的?(二)动手操作,感知模型1.出示:丁丁说:“把4支铅笔放入3个杯子中,不管怎么放,总有一个杯子里至少有2支铅笔”,他说得对吗?请说明理由。
2.引导学生找出关键词“总有”、“至少”“一个”。
3.引导学生理解“总有”、“至少”的意思。
4. 分小组探究,介绍活动要求:5.全班交流,小组展示交流自己的研究结果。
(1)方法1:摆学具的方法。
(2)方法2:画图法。
(3)方法3:数的分解。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)(4)师:像这样,把所有的摆法都一一列举出来,最后得出结论,这种方法叫枚举法。
(5)引导学生用假设法解决。
(6)引导学生列式:4÷3=1(支)……1(支)至少数1+1=2(支)师:①先在每个杯子里放一支,也就是平均分,这种方法叫假设法。
六年级下册数学教学设计《鸽巢问题》人教版
六年级下册数学教学设计《鸽巢问题》人教版一. 教材分析《鸽巢问题》是人教版六年级下册数学教材中的一单元,主要让学生理解和掌握鸽巢原理,培养学生的逻辑思维能力和解决问题的能力。
本节课的内容是在学生掌握了基本的数学运算和逻辑推理的基础上进行教学的。
教材通过生动的例子和实际问题,引导学生探究和发现鸽巢原理,让学生体会数学与实际生活的紧密联系。
二. 学情分析六年级的学生已经具备了一定的数学基础和逻辑思维能力,他们能够理解和掌握基本的数学运算和逻辑推理。
但是,对于鸽巢问题这样的抽象问题,他们可能还有一定的困难。
因此,在教学过程中,需要教师通过生动的例子和实际问题,引导学生理解和掌握鸽巢原理。
三. 教学目标1.让学生理解和掌握鸽巢原理。
2.培养学生的逻辑思维能力和解决问题的能力。
3.引导学生发现数学与实际生活的联系。
四. 教学重难点1.鸽巢原理的理解和应用。
2.解决实际问题时,如何运用鸽巢原理。
五. 教学方法1.情境教学法:通过生动的例子和实际问题,引导学生理解和掌握鸽巢原理。
2.问题驱动法:通过提问和引导学生思考,激发学生的学习兴趣和解决问题的能力。
3.小组合作法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.PPT课件:包括鸽巢问题的例子和实际问题。
2.练习题:用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用PPT课件,展示一个生活中的实际问题:某小区有10个鸽巢,现有12只鸽子,至少有一个鸽巢有2只或2只以上的鸽子。
引导学生思考,引出本节课的主题——鸽巢问题。
2.呈现(15分钟)通过PPT课件,呈现几个鸽巢问题的例子,让学生观察和分析,引导学生发现和总结鸽巢原理。
同时,引导学生用数学语言表达鸽巢原理。
3.操练(15分钟)让学生分组讨论,每组设计一个鸽巢问题,并解决。
然后,各组汇报成果,全班交流,共同总结解决鸽巢问题的方法。
4.巩固(10分钟)让学生独立完成一些练习题,巩固对鸽巢原理的理解和应用。
《鸽巢问题》教学设计
审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。
《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进 2 支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2 支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特殊是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析《鸽巢问题》这是一类与“存在性”有关的问题,如任意13 名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体(或者某个人)的存在就可以了,并不需要指出是哪个物体(或者哪个人),也不需要说明通过什么方式把这个存在的物体(或者人)找出来。
这种问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进 2 个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进 2 支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
二是假设法,用平均分的方法直接考虑“至少”的情况。
通过前一个例题的两个层次的探索,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。
人教版小学数学六年级下册5.《鸽巢问题》教学设计
《鸽巢问题》教学设计教学目标:1.学生通过操作、观察、比较、推理等活动,初步了解“鸽巢原理”,学会简单的“鸽巢原理”分析方法,运用“鸽巢原理”的知识解决简单的实际问题。
2.学生在“鸽巢原理”的探究过程中,逐步理解和掌握“鸽巢原理”,经历将具体问题数学化的过程,培养模型思想。
3.学生通过对“鸽巢原理”的灵活运用,感受数学的魅力,体会数学的价值,提高解决问题的能力和兴趣。
教学重点:学生理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:找出“鸽巢问题”解决的窍门进行反复推理。
教学准备:多媒体课件教学过程:一、知识链接、确立目标1、同学们!今天老师给你们展现隐藏了六年的绝学,你们有没有兴趣了解一下。
一会儿老师背对着你们,你们随意站起来13名同学老师可以猜到你们这13名同学中总有至少2名同学在同一个月出生,你们相信吗?(现场检验)2、想知道这是为什么吗?通过今天的学习你们就能找到答案,那么就让我们一起走进今天的新课《鸽巢问题》吧!3、首先让我们看一看本节课要完成哪些学习目标呢?(课件出示学习目标)现在就让我们带着学习目标走进例1。
二、自主学习、展示交流(鸽巢原理一)1、课件呈现自主学习还有小组合作要求。
2、学生汇报展示交流3、小结:刚才我们通过画图、数的分解、枚举、假设等方法,列举出了所有可能出现的情况验证了结论,真的非常棒。
不知道你们能不能从这些种方法中找到一种更为直接的方法,快速的找到“至少数”呢?4、学生操作演示,并语言是描述:把四支铅笔平均放在三个笔筒里那个笔筒放一只余下的一只无论放在哪个笔筒那么那个笔筒句有2支笔所以说总有一个笔筒至少放进了2支笔。
5、引导学生发现:(1)这种分法的实质就是先怎么分呢?(板书:平均分)(2)为什么要一开始就平均分?(均匀的分,使每个笔筒的笔,尽可能少,这样方便找到至少数,余下的一只怎么放?放在哪个笔筒都可以)(3)怎样用算式表示这种方法呢(我认为既然是平均分,就可以运用除法运算啊,4除以3=1……1)那么这两个“1”什么意思?他的“至少数”是多少啊?7、加深感悟刚才同学们,通过不同的方法验证了:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔这一说法是正确的。
小学六年级下册数学《数学广角鸽巢问题》教案优秀4篇
小学六年级下册数学《数学广角鸽巢问题》教案优秀4篇小学六年级下册数学《数学广角──鸽巢问题》教案篇一教学目标:通过复习练习,进一步掌握分数、百分数、小数的互化的方法。
进一步掌握分数、小数等有关性质。
教学重点、难点:分数、百分数、小数的互化的方法。
分数、小数等有关性质。
教学设计:一、复习小数、分数、百分数、成数、折扣等互化表格出示:给出其中一种,要求转化成另外几种数。
学生独立完成后,指名交流,说明转化方法。
0.35 1/4 140% 六成五八折二、分数、小数有关性质及其关系出示:12÷( )=3/4=( ):36=( )/12=( )%学生独立填写。
交流:你是怎样填写的?填写时从哪开始思考?运用了哪些知识?三、巩固练习1、第86页第12题独立完成,说明填写方法。
引导学生发现:第1小题:后面的数总比前面大,越来越接近1.第2小题:后面的数总比前面小,越来越接近02、第86页第一叁、14题读题理解要求。
再按要求完成。
四、补充练习填空题1. 有一个小数,由8个自然数单位,5个十分之一和22个千分之一组成,这个数写作( ),读作( ),它的计数单位是( )。
2. 六亿零六十万零六十写作( ),改写成用“万”作单位是( ),省略万后面的尾数是( ),精确到亿位是( )。
3. 两个相邻的自然数,它们的差是( )。
一个自然数既不是质数又不是合数,与它相邻的两个自然数是( )和( )。
4.如果a+1=b,那么它们的最小公倍数是( ),最大公因数是( )。
5. 把0.625的小数点向左移动两位是( ),它缩小了( )倍。
6、如果一个小数的小数点向右移动一位后比原来大了32.4,那么原来这个小数是( )7. 五个连续自然数的和是200,这五个自然数分别是( )、( )、( )、( )、( )。
8.最大的一位纯小数比最大的两位纯小数小( );最小的两位纯小数比最小的三位纯小数大( )。
9.两个数的积是70,一个因数扩大100倍,另一个因数缩小10倍,积是( )。
人教版数学六年级下册《鸽巢问题》教案
人教版数学六年级下册《鸽巢问题》教案一. 教材分析人教版数学六年级下册《鸽巢问题》是本册教材中一个重要的数学问题,主要让学生了解和掌握鸽巢问题的解题思想和方法。
通过本节课的学习,使学生能够运用所学的知识解决实际问题,提高学生的数学应用能力。
本节课的内容包括鸽巢问题的定义、解题方法及应用。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,对于生活中的实际问题能够进行简单的分析。
但是,对于鸽巢问题的解题思想和方法还需要通过本节课的学习来培养和提高。
在导入环节,可以利用学生已知的知识,如数学科普知识,激发学生的学习兴趣。
三. 教学目标1.知识与技能:使学生了解和掌握鸽巢问题的解题思想和方法,能够运用所学的知识解决实际问题。
2.过程与方法:通过探究、合作、交流的方式,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.教学重点:使学生掌握鸽巢问题的解题方法。
2.教学难点:如何引导学生运用所学的知识解决实际问题。
五. 教学方法1.情境教学法:通过生活情境的创设,引导学生了解和掌握鸽巢问题的解题方法。
2.启发式教学法:引导学生主动思考、探究,提高学生解决问题的能力。
3.小组合作学习:鼓励学生进行小组讨论、交流,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作与教学内容相关的课件,帮助学生直观地理解鸽巢问题。
2.教学素材:准备一些与鸽巢问题相关的实际案例,用于引导学生解决实际问题。
七. 教学过程1.导入(5分钟)利用数学科普知识,如“鸡兔同笼”问题,引导学生思考和讨论,从而引出本节课的主题——鸽巢问题。
2.呈现(10分钟)通过课件展示鸽巢问题的定义和解题方法,让学生初步了解和掌握鸽巢问题的解题思路。
3.操练(10分钟)让学生分组讨论,每组选取一个实际案例,运用所学的鸽巢问题解题方法进行解决。
教师巡回指导,解答学生的疑问。
《鸽巢问题》(教案)六年级下册数学人教版
《鸽巢问题》(教案)六年级下册数学人教版鸽巢问题(教案)一、教学内容本节课的教学内容选自人教版六年级下册数学教材,主要涉及“总复习”章节中的“鸽巢问题”。
具体内容包括鸽巢原理的基本概念、应用及解决方法。
二、教学目标通过本节课的学习,使学生了解并掌握鸽巢问题的基本概念及解决方法,能够运用鸽巢原理解决实际问题,培养学生的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点重点:掌握鸽巢问题的基本概念和解决方法。
难点:如何引导学生运用鸽巢原理解决实际问题。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:笔记本、练习本、文具。
五、教学过程1. 实践情景引入通过一个实际问题引入本节课的学习:“某小区有10栋楼,现有15户居民要入住,请问至少有一栋楼里有3户居民的情况出现吗?”2. 例题讲解(1)讲解鸽巢问题的基本概念:将问题中的“楼”比作“鸽巢”,将问题中的“居民”比作“鸽子”,通过这个比喻引导学生理解鸽巢问题的本质。
(2)引导学生运用鸽巢原理解决问题:通过画图、讨论等方式,引导学生得出结论:至少有一栋楼里有3户居民。
3. 随堂练习(1)请学生独立解决引入问题。
4. 讲解解答过程5. 板书设计鸽巢问题:n个鸽巢,m个鸽子,总有至少一个鸽巢里有k个鸽子(k为整数)。
六、作业设计(1)某小区有5栋楼,现有8户居民要入住,请问至少有一栋楼里有3户居民的情况出现吗?(2)某班级有40名学生,现有30个座位,请问至少有5名学生无法坐在座位上的情况出现吗?2. 答案:(1)至少有一栋楼里有3户居民。
(2)至少有5名学生无法坐在座位上。
七、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解并掌握了鸽巢问题的基本概念和解决方法。
在教学过程中,注重引导学生运用鸽巢原理解决实际问题,培养了学生的逻辑思维能力和解决实际问题的能力。
2. 拓展延伸:引导学生思考鸽巢问题在现实生活中的应用,如安排活动场地、分配资源等,进一步拓展学生的知识视野。
2024年人教版数学六年级下册鸽巢问题优秀教案3篇
人教版数学六年级下册鸽巢问题优秀教案3篇〖人教版数学六年级下册鸽巢问题优秀教案第【1】篇〗一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。
二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。
请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。
2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。
再提问:这句话对吗?组织小组活动,进行验证。
总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。
两种方法都能验证这句话是正确的。
在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。
活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
提问:这句话对吗?为什么?组织小组活动,进行探究。
总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。
追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。
学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。
引出鸽巢问题又叫抽屉问题。
3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。
5.布置作业课后习题1、2题,将今天学到的整理成数学日记〖人教版数学六年级下册鸽巢问题优秀教案第【2】篇〗《鸽巢问题》教学设计教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
人教版数学六年级下册《鸽巢问题》教学设计
人教版数学六年级下册《鸽巢问题》教学设计一. 教材分析《鸽巢问题》是人教版数学六年级下册的教学内容,主要让学生了解和掌握鸽巢问题的基本概念和解决方法。
通过本节课的学习,学生能够理解鸽巢问题的实质,学会用数形结合的方法解决问题,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于问题的解决有一定的方法论。
但在解决实际问题时,还需要引导学生将理论知识与实际问题相结合,提高解决问题的能力。
同时,学生对于新知识的学习兴趣较高,教师应充分利用这一点,激发学生的学习积极性。
三. 教学目标1.知识与技能目标:让学生了解和掌握鸽巢问题的基本概念和解决方法,能够运用数形结合的方法解决实际问题。
2.过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力和团队协作精神。
3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.教学重点:让学生理解鸽巢问题的实质,学会用数形结合的方法解决问题。
2.教学难点:如何引导学生将理论知识与实际问题相结合,提高解决问题的能力。
五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,激发学生的学习兴趣。
2.数形结合法:引导学生运用数形结合的方法解决问题。
3.自主探究法:鼓励学生自主探究,培养学生的解决问题的能力。
4.合作交流法:学生进行小组讨论,培养学生的团队协作精神。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示。
2.练习题:准备一定数量的练习题,巩固所学知识。
3.教学用具:如黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用生活实例引入鸽巢问题,激发学生的学习兴趣。
如:一个篮子能放几个羽毛球?引导学生思考和讨论。
2.呈现(10分钟)讲解鸽巢问题的基本概念和解决方法,引导学生理解鸽巢问题的实质。
如:什么是鸽巢问题?如何用数形结合的方法解决鸽巢问题?3.操练(10分钟)让学生进行自主探究,尝试解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《鸽巢问题》教学设计
郝杰
教学内容:(人教版)数学六年级下册第68页例1
教学目标
(一)知识与技能
通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法
结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动增强对逻辑推理、模型思想的体验。
(三)情感态度和价值观
在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
二、教学重难点
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
【重难点分析:第一,要有意识地培养学生的模型思想。
因为“抽屉原理”在生活中的变式是多样的,在解决这些问题的过程中,教师要引导学生明确什么是抽屉原理中的“物体”,什么是“抽屉”,让学生把这些具体问题模型化成一个“抽屉问题”。
】
教学过程:
一、情境导思(任务驱动、生成问题)
游戏:
一副牌,取出大小王,还剩52张牌,找5名学生,你们每人随意抽一张,我知道至少有2张牌是同花色的,是这样吗?为什么呢?其实这是一个非常重要的数学问题,这节课我们就来研究一下。
二、问题探究(自主学习、合作探究)
第一种:枚举法
分组动手演示:
多媒体出示例1:4枝铅笔,3个杯子。
师:把4枝笔放在3个杯子中,会有几种方法呢?
(1)出示探究任务,指名读要求
1、动手摆一摆:组内同学合作,把摆的结果用你喜欢的方法记录出来。
2、动脑想一想:还有其他的摆法吗?
3、组内说一说:观察杯子中笔的数量你发现了什么?
(2)学生分组活动,记录收获
(3)学生汇报展示,教师板书:总有一个杯子里至少有2枝铅笔。
(4)齐读:总有一个笔筒里至少放进2枝铅笔
这种把所有情况都一一列举出来,我们就叫做:枚举法。
(教师板书)
【设计意图】通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。
三、交流点拨(交流充分、点拨精准)
第二种:假设法。
这种方法明晰、直观,不过有一些麻烦,费时,你能只摆了一种或没有摆放就能解释我们刚才得出的结论吗?
小组分分试试。
指名汇报。
引导学生在交流中明确:可以假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔。
还剩下1枝,放入任意一个文具盒,那么这个文具盒中就有2枝铅笔了。
也就是先平均分,每个文具盒中放1枝,余下1枝,不管放在哪个盒子里,一定会出现总有一个文具盒里至少有2枝铅笔。
【设计意图】从另一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。
请学生继续思考:
如果把5枝铅笔放进4个文具盒,结果是否一样呢?怎样解释这一现象?这种假设法其实就是在怎么分?
第三种:平均分
第二种方法其实就是在平均分
你可以列个算式吗?根据学生的回答板书:5÷4=1……1 1+1=2
【设计意图】让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。
4、比较优化。
请学生继续思考:
把7枝铅笔放进6个文具盒里呢?
把10枝铅笔放进9个文具盒里呢?
把100枝铅笔放进99个文具盒里呢?
你发现了什么?
引导学生发现:只要放的铅笔数比文具盒的数量多1,不论怎么放,总有一个文具盒里至少放进2枝铅笔。
5. 请学生继续思考:如果要放的铅笔数比文具盒的数量多2呢?多3呢?多4呢?
出示: 6枝笔放在4个文具盒里会有什么结果呢?小组讨论。
得出结论(预设:6÷4=1 (2)
1+2=3 ?)
理解:余下的2枝笔,可以一个铅笔盒里放一枝,所以3不少最少的。
8个苹果果放在5个抽屉里,至少有几个苹果被放到同一个抽屉里呢?
9个苹果放入5个抽屉中,至少有几个苹果被放到同一个抽屉里呢?
你发现了什么?不管余数是几,都用商+1
6、总结方法。
出示计算绝招:
物体数÷抽屉数=商……余数
至少数=商数+1
7、了解鸽巢原理:最先发现这些规律的人是谁呢?他就是德国数学家“狄里克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”,还把它叫做“抽屉原理”。
四、巩固拓展(夯实基础、分层提高)
在生活中有时不会直接出现鸽巢、抽屉,需要我们自己头脑中构造抽屉。
1、智慧城堡。
想:把什么当作抽屉,把什么当作要分的物体?
大家玩过石头.剪刀.布的游戏吗?如果请一位同学任意划四次,肯定至少有2次划出的手势是一样的。
2、继续挑战
(1)我校六年级男生有14人,至少有()名男生的生日是在同一个月。
(2)随意找13个老师,他们中至少有()人的属相相同。
(3)袋子里有黑、红、蓝三种颜色,大小相同的球,摸出4个球,至少有()个球是相同颜色的。
摸出5个呢?
【设计意图】一步一步引导学生合作交流、自主探索,让学生亲身经历问题解决的全过程,增强学习的积极性和主动性。
3、课前所做的扑克牌游戏你明白了吗?拿出扑克牌,问:对于扑克牌,你有哪些了解?
【设计意图】回到课开头提出的问题,揭示悬念,满足学生的好奇心,让学生认识到数学的应用价值。
4、出示解题思路:
用抽屉原理解题的步骤:
(1)分析题意:找好“抽屉”与“苹果”。
(2)设计抽屉原理。
(有时需要构造抽屉)
(3)运用原理,得出“抽屉”中分放“苹果”的个数。
5、拓展
(1)二桃杀三士:晏子让齐景公准备两个桃子分给三个战功显赫的勇士,
三人不愿受两人同分一个桃子的侮辱,也不愿有损兄弟义气,结果自杀身亡。
(2)匈牙利全国中学生数学竞赛:“证明:任何六个人中,一定可以找到三个互相认识的人,或者三个互相不认识的人。
”
五、评价反馈(评价多元、及时有效)
这节课你学到了什么?。