专题十一概率与统计第三十六讲二项分布及其应用、正态分布 十年高考数学(理科)真题题型分类汇编
概率论中的二项分布与正态分布的关系
概率论是数学中一个非常重要的分支,研究的是随机事件发生的概率和规律。
而二项分布和正态分布是概率论中两个重要的概率分布,它们之间有着密切的关系。
首先,让我们来看一下二项分布。
二项分布是一种离散型概率分布,描述的是在一系列独立的伯努利试验中成功次数的概率分布。
在每次试验中,我们都有两种可能的结果,通常分别称为成功和失败。
成功的概率记为p,失败的概率记为q,且p+q=1。
而在进行n次独立的伯努利试验后,成功的次数的概率分布就是二项分布。
二项分布的概率质量函数为f(x) = C(n,x) * p^x * q^(n-x),其中C(n,x)是组合数,表示从n次试验中选择x次成功的组合数。
二项分布的期望值为E(x) = n * p,方差为Var(x) = n * p * q。
从这个公式我们可以看出,二项分布的期望值和方差与试验次数n以及成功的概率p有关。
接下来,我们来看一下正态分布。
正态分布是一种连续型概率分布,也被称为高斯分布。
正态分布在自然界中非常常见,例如身高、体重等连续型随机变量就可以用正态分布来描述。
正态分布的概率密度函数为f(x) = (1 / (sqrt(2*pi)sigma)) * exp(-(x-mu)^2 / (2sigma^2)),其中mu是均值,sigma是标准差。
正态分布的均值和方差分别就是mu和sigma的值。
正态分布具有对称性,曲线呈钟形,均值处的概率最高。
那么,二项分布和正态分布之间有何种关系呢?事实上,当试验次数n很大时,二项分布在逼近正态分布。
这是由于中心极限定理。
中心极限定理是概率论中一个非常重要的定理,它表明在一定条件下,独立随机变量之和的分布在试验次数足够大的情况下逼近于正态分布。
具体来说,对于n次独立的伯努利试验,成功的次数之和x满足二项分布B(n,p),当n足够大时,x的分布近似于参数为μ=np,标准差为σ=sqrt(npq)的正态分布N(μ,σ^2)。
这个关系可以通过计算来进行验证。
新高考数学总复习专题十一二项分布与正态分布课件
3)利用全概率公式计算P(B),即P(B)= P(Ai )P(B | Ai ) . i 1
例1 (1)(202X长春二模)已知5道试题中有3道代数题和2道几何题,每次从
中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽
到几何题的概率为 ( )
A. 1 B. 2 C. 1 D. 3
4.n重伯努利实验与二项散布
1)n重伯努利实验
①定义:将一个伯努利实验独立地重复进行n次所组成的随机实验称为n
重伯努利实验.
②用Ai(i=1,2,…,n)表示第i次实验结果,则P(A1A2…An)=P(A1)·P(A2)·…·P(An).
2)二项散布
一般地,在n重伯努利实验中,设每次实验中事件A产生的概率为p(0<p<1),
A.208 B.206 C.204 D.202
解析 设参赛学生的成绩为X,∵X~N(80,100),∴μ=80,σ=10,则P(X≥90)=
P(X≤70)= 1 [1-P(70<X<90)]
2
= 1 [1-P(μ-σ<X<μ+σ)]≈ 1×(1-0.683)=0.158 5,32÷0.158 5≈202(人).
3.正态散布的均值和方差
若X~N(μ,σ2),则E(X)=μ,D(X)=σ2.
4.正态曲线的特点 1)曲线位于x轴上方且与x轴不相交; 2)曲线是单峰的,它关于直线x=μ对称;
3)曲线在x=μ处到达峰值 1 ; 2 σ
4)当|x|无限增大时,曲线无限接近x轴; 5)曲线与x轴之间区域的面积为1; 6)当σ一定时,曲线随着μ的变化而沿x轴移动; 7)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”;σ越大,曲线越 “矮胖”. 5.3σ原则 1)正态总体在三个特殊区间内取值的概率
二项分布与正态分布
二项分布与正态分布二项分布与正态分布是概率统计学中两个重要的分布模型。
它们在实际应用中发挥着重要的作用,对于描述随机事件和现象的分布规律具有重要意义。
本文将分别介绍二项分布和正态分布的基本概念和性质,并对它们之间的关系进行探讨。
一、二项分布二项分布是概率统计学中最基本的离散型概率分布之一。
它描述了在n次独立重复试验中成功次数的概率分布。
其中,每次试验成功的概率为p,失败的概率为1-p。
试验次数n和成功次数X(取值范围为0到n)是二项分布的两个重要参数。
二项分布的概率质量函数可以表示为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,C(n, k)表示从n个物体中取出k个的组合数。
二项分布具有以下性质:1. 期望和方差:二项分布的期望为E(X) = np,方差为Var(X) = np(1-p)。
2. 归一性:二项分布的概率之和为1,即∑P(X=k) = 1,其中k的取值范围为0到n。
二、正态分布正态分布是概率统计学中最重要的连续型概率分布之一。
它以钟形曲线的形式描述了大量随机变量分布的特征。
正态分布由两个参数决定,即均值μ和标准差σ。
正态分布的概率密度函数可以表示为:f(x) = (1 / (σ * sqrt(2π))) * exp(-(x-μ)^2 / (2σ^2))其中,exp表示自然指数函数,sqrt表示开方。
正态分布具有以下性质:1. 对称性:正态分布呈现出关于均值对称的特点,即其左右两侧的曲线是镜像关系。
2. 均值和方差:正态分布的均值即为μ,方差即为σ^2。
3. 中心极限定理:当样本容量较大时,多个独立随机变量的均值近似服从正态分布。
三、二项分布与正态分布的关系在一些情况下,二项分布可以近似看作正态分布。
当试验次数n较大,成功概率p较接近0.5时,二项分布的概率分布形状逐渐接近于正态分布。
根据中心极限定理,当n足够大时,二项分布的均值和方差趋近于正态分布的均值和方差,因此可以用正态分布来近似描述二项分布的概率分布。
二项分布及其应用、正态分布
二项分布及其应用、正态分布作者:余树宝来源:《数学金刊·高考版》2015年第02期二项分布与正态分布是常见的随机变量概率分布模型,也是高考理科数学的必考内容之一. 纵观历年的高考试题,有关二项分布与正态分布的问题,尤其是二项分布的问题经常在解答题中出现,因此重视此类问题的解决非常重要.重点难点重点:理解n次独立重复试验模型及二项分布,并能解决一些简单的实际问题;了解正态分布曲线的特点及曲线所表示的意义.难点:正确判断随机变量的概率分布模型;正确应用二项分布、正态分布等有关知识解决生产、生活中的实际问题.方法突破1. 判断随机变量的概率分布是否为二项分布模型,首先要判断随机试验是否为独立重复试验,此时就要看每次试验的条件是否相同,如果不同,那么某事件发生的次数X不会服从二项分布.因此,二项分布只有事件满足以下条件时才能适用:(1)每次试验的结果只有一种并且是相互对立的,如正面或反面,活着或死亡等.(2)如果某一事件发生的概率为p,那么其对立事件发生的概率为1-p. 在实际计算中,p 是从大量观察中获得的比较稳定的数值.(3)在相同的条件下进行n次试验,并且每次试验的结果是相互独立的,即每次试验的结果是不会受到其他试验结果影响的,就像要求疾病无家族性、无传染性等.2. 二项分布B(n,p)中有两个参数,一个是独立重复试验的总次数n,另一个是每次试验中某事件A发生的概率p. 正确解决二项分布问题首先要准确地确定好这两个量.3. 若随机变量X∽B(n,p),则P(X=k)=Cknpk(1-p)n-k(k=0,1,2,…,n),它恰好是(q+p)n的二项展开式中的第k+1项(其中q=1-p),故名二项分布. 其分布列为:其数学期望与方差可直接由E(X)=np,D(X)=np(1-p)来进行计算,这样可以大大减少运算量,提高解题速度.4. 正态分布由参数μ,σ唯一确定,如果随机变量ξ∽N(μ,σ2),那么根据定义有:μ=E(ξ),σ=D(ξ). 正态曲线具有以下性质:(1)曲线在x轴的上方,与x轴不相交,曲线与x轴之间的面积为1.(2)曲线关于直线x=μ对称,且曲线在x=μ处达到峰值■.(3)当xμ时,曲线下降. 并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.(4)当μ一定时,曲线的形状由σ确定. σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.应用数形结合的思想方法理解以上四条性质并进行解题非常关键和有效.典例精讲■例1 (2014年高考辽宁卷)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图1所示.■图1将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).思索此题(2)问中的X是服从二项分布的,原因是题设中告诉我们每天的销售量相互独立,且由(1)问知“每天的销售量不低于100个”发生的概率为0.6,符合二项分布的应用条件,可判定X是服从二项分布的. 于是由P(X=k)=Cknpk(1-p)n-k(k=0,1,2,…,n)可求X取每一个值的概率,从而进一步得到分布列. 其数学期望与方差可直接由E(X)=np,D(X)=np(1-p)进行计算,方便快捷.破解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另1天销售量低于50个”. 因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率分别为:P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216.故X的分布列为:■因为X∽B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.■例2 某人参加射击,击中目标的概率是■.(1)设ξ1为他射击6次击中目标的次数,求随机变量ξ1的分布列;(2)设ξ2为他射击1次击中目标的次数,求随机变量ξ2的分布列;(3)设η为他第一次击中目标时所需要射击的次数,求η的分布列;(4)若他连续射击6次,设X为他第一次击中目标前射击的次数,求X的分布列;(5)设他只有6颗子弹,若他击中目标,则不再射击,否则子弹打完,求他射击次数Y 的分布列.思索此题有五个小问,涉及五个随机变量,其中(1)中的变量ξ1服从的是二项分布,因为6次射击相当于6次独立重复试验,每次试验“击中目标”的概率都是■,所以射击6次击中目标的次数ξ1服从二项分布;(2)问中ξ2服从的是两点分布(又称0-1分布),关于两点分布与二项分布的关系,事实上,两点分布是一种特殊的二项分布,即是n=1的二项分布;其他三个小问中变量η,X,Y服从的不是二项分布,它们虽然都表示射击的次数,但它们各自表示的意义是不一样的,所以解题时要正确理解.破解(1)随机变量ξ1服从二项分布B6,■,则P(ξ=k)=C■■■k·■6-k(k=0,1,2,3,4,5,6),故ξ1的分布列为:■■(2)随机变量ξ2服从两点分布B1,■,故ξ2的分布列为:■(3)设η=k,表示他前k-1次未击中目标,而在第k次射击时击中目标,则η的取值为全体正整数1,2,3,…,则P(η=k)=■k-1·■ (k=0,1,2,3,…). 故η的分布列为:■(4)设X=k表示前k次未击中目标,而第k+1次击中目标,X的取值为0,1,2,3,4,5,当X=6时,表示射击6次均未击中目标,则P(X=k)=■k·■(k=0,1,2,3,4,5),而P(X=6)=■6. 故X的分布列为:■(5)设Y=k,表示前k-1次未击中,而第k次击中,k=1,2,3,4,5,所以P(Y=k)=■k-1·■(k=1,2,3, 4,5);而Y=6表示前5次未击中,第6次可以击中,也可以未击中,所以P(Y=6)=■5. 故Y的分布列为:■■例3 如果X∽B20,■,则使P(X=k)取最大值的k的值是_______.思索问题的解决没有必要分别求出X取0,1,2,…,20时的概率,如果那样做的话,运算量显然是巨大的. 应该去考虑比值■=■·■=1+■,当kP(X=k),即概率随k值的增大而增大;当k>(n+1)p-1时,P(X=k+1)破解由已知可得■=■=■×■≥1,得k≤6. 所以当k≤6时,P(X=k+1)≥P(X=k);当k>6时,P(X=k+1)■例4 在某市组织的一次数学竞赛中,全体参赛学生的成绩近似地服从正态分布N(60,100),已知成绩在90分以上的学生有13人.(1)求此次参加竞赛的学生总数共有多少人;(2)若计划奖励竞赛成绩排在前228名的学生,问:受奖学生的分数线是多少?思索我们知道,正态密度函数φμ,σ(x)=■e■,若X∽N(μ,σ2),则对于任意a>0,P(μ-a破解设学生的得分为随机变量X,X∽N(60,100),则μ=60,σ=10.(1)P(3090)=■[1-P(30(2)成绩排在前228名的学生数占总数的0.0228. 设分数线为x0,则P(X≥x0)=0.0228,所以P(120-x01. 甲、乙两人进行乒乓球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为■,则甲以3∶1的比分获胜的概率为()A. ■B. ■C. ■D. ■2. 在高三的一个班中,有■的学生数学成绩优秀,若从班中随机找出5名学生,那么数学成绩优秀的学生数ξ~B5,■,则使P(ξ=k)取最大值的k的值为()A. 0?摇?摇?摇?摇?摇?摇B. 1?摇?摇?摇C. 2 ?摇?摇D. 33. 已知三个正态分布密度函数fi(x)=■e■(x∈R,i=1,2,3)的图象如图2所示,则()A. μ1σ3?摇?摇B. μ1>μ2=μ3,σ1=σ2C. μ1=μ2D. μ1■图24. 某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是■.(1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率;(3)求这支篮球队在6场比赛中胜场数的期望和方差.5. 在某次数学考试中,考生的成绩X服从正态分布,即X∽N(100,100),已知满分为150分.(1)试求考试成绩X位于区间(80,120]内的概率;(2)若这次考试共有2000名考生参加,试估计这次考试及格(不小于90分)的人数.1. A2. B3. D4. (1)■ (2)■(3)E(X)=6×■=2,D(X)=6×■×1-■=■.5. (1)0.9544 (2)1683人■。
二项分布、泊松分布和正态分布的关系及其应用
二项分布、泊松分布和正态分布的关系及其应用二项分布、泊松分布和正态分布是统计学中常见的三种分布类型,它们在描述随机变量的分布和概率方面有着重要的应用。
本文将介绍这三种分布的基本概念和特点,探讨它们之间的关系,并结合实际应用场景进行分析。
一、二项分布二项分布是描述一组独立重复的伯努利试验中成功次数的概率分布,其中每次试验有两种可能的结果:成功或失败。
假设试验成功的概率为p,失败的概率为1-p,进行n次试验后成功的次数X服从二项分布。
二项分布的概率质量函数为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)C(n, k)表示组合数,表示在n次试验中成功k次的概率。
二项分布在实际应用中有着广泛的应用,例如在质量控制中描述次品率、在市场营销中描述广告点击率等。
二、泊松分布泊松分布是描述单位时间或单位空间内事件发生次数的概率分布,常用于描述罕见事件的发生概率,如自然灾害的发生次数、电话交换机接到呼叫的次数等。
泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!λ表示单位时间或单位空间内事件的平均发生率,k表示事件发生的次数。
泊松分布的特点是均值和方差相等,且当n充分大、p充分小、np=λ时,二项分布可以近似地表示为泊松分布。
泊松分布在实际应用中有着丰富的场景,如在交通流量预测中描述交通事故发生的次数、在医学统计中描述疾病发作的次数等。
三、正态分布正态分布(又称高斯分布)是统计学中最常见的连续型概率分布,其概率密度函数呈钟型曲线,具有单峰对称的特点。
正态分布在自然界和社会现象中均有广泛应用,如身高、体重、考试成绩等往往服从正态分布。
正态分布的概率密度函数为:f(x) = (1/sqrt(2πσ^2)) * e^(-(x-μ)^2 / 2σ^2)μ表示均值,σ^2表示方差。
正态分布具有许多有用的性质,比如68-95-99.7法则,大部分数据分布在均值附近,以及许多随机变量的总和或平均值都近似服从正态分布等。
二项分布与正态分布详解
在二项分布和正态分布中的应用举例
二项分布参数估计
正态分布参数估计
二项分布假设检验
正态分布假设检验
对于二项分布B(n, p),可以使 用样本比例作为成功概率p的 点估计。同时,根据二项分布 的性质,可以构造出p的置信 区间进行区间估计。
对于正态分布N(μ, σ^2),可 以使用样本均值作为总体均值 μ的点估计,样本方差作为总 体方差σ^2的点估计。同样地 ,可以构造出μ和σ的置信区间 进行区间估计。
02
通过对二项分布和正态分布进行深入剖析,探讨它们之间的联
系和区别,以便更好地理解这两种分布。
为后续概率论与数理统计学习打下基础
03
二项分布和正态分布是概率论与数理统计中的重要内容,掌握
它们对于后续学习具有重要意义。
预备知识
概率论基础知识
要理解二项分布和正态分布,首先需要具备概率论的基础知识, 如事件、概率、随机变量等概念。
正态分布转化为二项分布的条件
在实际应用中,如果某个连续型随机变量可以取整数值,且这些整数值出现的概率可以 用二项分布来描述,那么可以将这个连续型随机变量近似为二项分布。但需要注意的是
,这种转化通常需要在一定的精度范围内进行。
实际应用中的选择依据
• 在实际应用中,选择使用二项分 布还是正态分布通常需要考虑以 下因素:首先,需要判断随机变 量是离散的还是连续的;其次, 需要考虑随机变量所描述的实际 情况是否符合二项分布或正态分 布的定义和性质;最后,还需要 考虑样本量大小、数据分布情况 等因素来选择最合适的分布类型 进行建模和分析。
方差
正态分布的方差等于其标准差的平方,即D(X)=σ^2。
正态分布的应用举例
01 02
质量控制
二项分布与正态分布了解二项分布与正态分布的性质与应用
二项分布与正态分布了解二项分布与正态分布的性质与应用二项分布与正态分布二项分布和正态分布是概率统计学中两个重要的分布形式。
二项分布适用于独立重复试验,每次试验只有两种可能的结果,成功或失败;而正态分布则是一种连续性的概率分布,常用于描述一组数据的分布情况。
本文将介绍二项分布和正态分布的性质与应用。
一、二项分布二项分布,又称为伯努利分布,是最基本的离散型概率分布之一。
它描述了在一系列相互独立的、同类的随机试验中,成功的次数的概率分布。
一次伯努利试验中,只有两个可能的结果,例如抛硬币的正反面。
二项分布的概率质量函数如下:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,X表示成功的次数,n表示试验的总次数,p表示每次试验成功的概率,C(n,k)表示从n次试验中选取k次成功的组合数。
从公式中可以看出,二项分布的参数为n和p。
二项分布的性质:1.期望和方差:二项分布的期望为E(X) = np,方差为Var(X) = np(1-p)。
2.形状特点:二项分布的形状呈现对称性,随着试验次数n的增加,其形状逐渐接近正态分布。
二项分布的应用:1.质量控制:在质量控制中,可以使用二项分布来描述合格品和不合格品的比例,判断产品是否符合生产标准。
2.市场调查:通过市场调查统计来预测某个事件的发生概率,例如选举候选人的支持率。
3.投资决策:根据二项分布的特点,可以计算在不同投资情况下的预期收益和风险。
二、正态分布正态分布,也称为高斯分布,是一种连续型的概率分布。
在自然界和社会科学中,许多现象都可以被正态分布描述,例如身高、体重等。
正态分布的概率密度函数如下:f(x) = 1/(σ*sqrt(2π)) * exp(-(x-μ)^2/(2σ^2))其中,x表示连续随机变量的取值,μ表示均值,σ表示标准差。
正态分布的参数为μ和σ。
正态分布的性质:1.对称性:正态分布是对称分布,其均值和中位数重合。
2.标准正态分布:当μ=0、σ=1时,得到标准正态分布。
二项分布与正态分布的应用
二项分布与正态分布的应用二项分布是概率论中重要的离散概率分布之一,而正态分布则是统计学中常见的连续型概率分布。
二项分布和正态分布在现实生活中有着广泛的应用,本文将分别探讨它们的应用领域及相关计算方法。
一、二项分布的应用二项分布适用于满足以下条件的离散随机变量:每次试验只有两种可能结果,且每次试验相互独立。
具体而言,二项分布常用于以下几个应用领域:1.1 质量检验在制造业中,常常需要对产品进行质量检验。
假设某产品每个单位有一定的概率存在缺陷,而每次抽取的产品相互独立。
那么我们可以利用二项分布来计算在一定抽取数量下,出现指定数量缺陷的概率。
这对于质量控制非常重要。
1.2 投资决策在金融领域中,投资是一项风险较高的行为。
投资者通过分析过往数据,可以得到某种投资方式的成功概率。
假设某个投资方式成功的概率为p,通过多次投资实验,我们可以利用二项分布来计算在一定次数内成功的概率。
这对于投资者来说,有助于做出更加明智的决策。
1.3 调查统计在社会科学研究中,调查统计是常用的研究方法。
假设我们想了解某个群体中某个现象出现的比例,如访问某个特定网站的比例。
我们可以通过抽样调查来获得样本中观察到该现象的次数,并利用二项分布来计算整个群体中该现象出现的比例。
二、正态分布的应用正态分布又称高斯分布,是一种常见的连续型概率分布。
其分布曲线呈钟型,对称且唯一峰值。
正态分布在各个领域都有着广泛的应用,以下是其中的几个例子:2.1 身高体重在人类的身高体重统计中,存在着一定的规律性。
大多数人的身高和体重集中于某个平均值,而相对极端的个案则较为罕见。
这种现象可以通过正态分布进行描述和分析,通过均值和标准差等参数,我们可以了解身高和体重在整个人群中的分布情况。
2.2 考试成绩在教育领域中,学生的考试成绩往往服从正态分布。
通过对一组学生的考试成绩进行统计,我们可以得到平均分数和标准差等指标,进而分析成绩的分布和学生群体的整体表现。
2.3 经济指标在经济学中,许多指标也服从正态分布。
《二项分布及其应》课件
• 改进方向: a. 引入其他分布:对于样本量较小的情况,可以考虑使用泊松分布等其他分布来近似二项分布。 b. 利 用贝叶斯推断:贝叶斯推断可以用于估计未知的分布参数,提高二项分布在实际应用中的精确度。 c. 考虑其他模型: 对于某些特定问题,可以考虑使用其他模型来描述实际数据,如正态分布、泊松分布等。
贝叶斯估计法的定义和原理 贝叶斯估计法在二项分布参数估计中的应用 贝叶斯估计法的优缺点分析 贝叶斯估计法与其他参数估计方法的比较
最小二乘估计法
定义:最小二乘法是一种数学统计方法,通过最小化误差的平方和来估计参数
原理:最小二乘法通过最小化预测值与实际值之间的误差平方和来估计参数,从而得到最佳的 参数估计值
假设检验的步骤和实例
提出假设
构造检验统计量
确定临界值
做出推断
实例演示
06
二项分布在实际应用中的案例分析
实验设计和数据分析
实验设计:确 定实验目的、 设计实验方案、 选择实验样本
数据分析:对 实验数据进行 整理、分析和 解释,得出结
论
实验结果:展 示实验结果, 包括数据表格、
图表等
结论与讨论: 对实验结果进 行讨论,提出 改进意见和建
议
二项分布在实际应用中的案例介绍
案例一:医学研究计学中的 二项分布
案例四:计算机科学中的 二项分布
二项分布在实际应用中的优缺点分析
优点:适用于独立 重复试验,可以快 速准确地计算概率
缺点:不适用于连 续性随机变量,需 要满足独立同分布 的条件
高中数学教学论文 二项分布及其应用
二项分布及其应用二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有着重要的地位:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生K 次的概率为P(X=k)=C n k p k (1-p)n-k ,k=0,1,2,…,n ,此时称随机变量X 服从二项分布,记作X ~B(n,p),并称p 为成功概率。
二项分布是一种常见的重要离散型随机变量分布列,其识别特点主要有两点:其一是概率的不变性;其二是试验的可重复性,下面加以例谈。
例题1 某车间有10台同类型的机床,每台机床配备的电动机功率为10千瓦,已知每台机床工作时,平均每小时实际开动12分钟,且开动与否是相互独立的。
现因当地电力供应紧张,供电部门只提供50千瓦电力,这10台机床能够不因电力不足而无法工作的概率为多大?在一个工作班的8小时内,不能正常工作的时间大约是多少?解析:设10台机床中实际开动的机床数为随机变量ξ,由题意知满足二项分布,即ξ~B (10,p ),其中p 是每台机床开动的概率,p=516012= ,从而)10,2,1,0()54()51()(1010Λ===-k C k P k k k ξ , 50千瓦电力可同时供5台机床同时开动,因而10台中同时开动数不超过5台都可以正常工作,这一事件的概率55510644107331082210911010010)54()51()54()51()54()51()54()51()54)(51()54()5(C C C C C C P +++++=≤ξ994.0≈。
由以上知,在电力供应为50千瓦的条件下,机床不能正常工作的概率仅为0.006,从而一个工作班的8小时内不能正常工作的时间大约为8×60×0.006=2.88(分钟),这说明,10台机床的工作基本不受电力供应紧张的影响。
二项分布及其应用、正态分布
因此 ,二项分布只有事件满足 以下条件时才能适用 :
( 1 ) 每次试验的结果只有一种并
且是相互对立的 . 如正面或反面 . 活
中的第k + l 项( 其d  ̄ q = l - p ) , 故 名二 项分布. 其分布列为 :
O 1
着或死亡等. ( 2 ) 如果 某一 事件 发生 的概 率
3
3
将 日销售量落入各 组的频 率视 为概率 ,并假设 每天的销售量相互
独立.
( 3 ) 设叩 = , 表示他前k 一 1 次未击
中目 标, 而在第J } 次射 击时击中 目 标,
则 的取 值 为 全 体 正 整 数 1 , 2, 3 , …,
( 1 ) 求 在未来 连 续3 天里 , 有 连 续2 天的 日销售量都不低于 1 0 0 个且 另l 天 的 日销售量低于5 o / 卜 的概率 : ( 2 ) 用 蓖 示在未来3 天里 日 销售 量 不低 于 1 0 0 个 的天数 , 求 随机变量 的分布列 , 期望E ( ) 及方差D ( ) . 思索 此题 ( 2 ) 问 中的 是服从
O . 7 2 .
P
・
4
6 0
7 2 9
例2 某人参加射击 , 击中
( 2 ) 随机 变量 服 从 两点分 布
目 标的概率是÷.
j
( 1 , ÷ ) , 故 的 分 布 列 为 :
Q
P 2
__— — __—
( 1 ) 设 为他射击6 次击中 目标
重点 : 理解n 次独立重复试 验模
及曲线所表示 的意义. 难点 : 正确判断随机变量的概率 分布模 型 ; 正确应用二项分 布 、 正态
二项分布与正态分布二项分布正态分布的性质与应用
二项分布与正态分布二项分布正态分布的性质与应用二项分布与正态分布概述:统计学中,二项分布和正态分布都是重要的概率分布。
它们在不同领域有着广泛的应用。
本文将介绍二项分布和正态分布的性质以及它们在实际问题中的应用。
一、二项分布的性质与应用1. 二项分布的定义:二项分布是一种离散概率分布,用于描述在重复进行相同试验的情况下,成功的次数的概率分布。
它的概率密度函数为:P(X=k)=C(n,k)p^k(1-p)^(n-k),其中n为试验次数,k为成功次数,p为每次试验成功的概率。
2. 二项分布的性质:(1)期望和方差:对于二项分布,其期望值μ=np,方差σ^2=np(1-p)。
这意味着在大量重复试验中,预期的成功次数接近于np,方差的开方近似于标准差。
(2)对称性:当p=0.5时,二项分布是对称的。
(3)独立性:在独立重复试验中,每次试验的结果不会影响其他试验的结果。
3. 二项分布的应用:(1)品质控制:二项分布可用于质量检验中,判断产品合格与否的概率。
(2)医学研究:例如,某种药物的治疗成功率可以用二项分布进行建模和分析。
(3)市场调研:根据市场调查的结果,可以利用二项分布对样本群体的属性进行推断。
二、正态分布的性质与应用1. 正态分布的定义:正态分布是一种连续概率分布,是自然界中许多随机现象的近似分布。
正态分布的概率密度函数为:f(x)=1/(σsqrt(2π)) * exp(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
2. 正态分布的性质:(1)均值与标准差:正态分布完全由均值μ和标准差σ确定。
均值决定了分布的位置,标准差决定了分布的宽度。
(2)对称性:正态分布是关于均值对称的,曲线在均值处达到峰值。
(3)中心极限定理:大量独立随机变量的和趋近于正态分布。
3. 正态分布的应用:(1)统计推断:正态分布在统计学中起到重要的作用,例如,利用正态分布进行参数估计和假设检验。
(2)风险管理:正态分布在金融领域常用于模拟资产回报率和风险价值的计算。
二项分布与正态分布
二项分布与正态分布在概率统计学中,二项分布和正态分布是两个非常重要的概率分布。
二项分布是描述离散型随机变量的分布,而正态分布则是描述连续型随机变量的分布。
本文将对二项分布和正态分布进行详细介绍和比较。
一、二项分布二项分布是由进行多次独立的二元实验而引起的概率分布。
在每次实验中,结果只有两种可能,成功或失败,成功的概率为p,失败的概率为1-p。
进行n次实验后,成功的次数就构成了一个二项分布。
二项分布的概率质量函数可以用公式表示为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,C(n,k)表示从n个实验中取出k个成功的组合数,p表示成功的概率,(1-p)表示失败的概率。
二、正态分布正态分布又称为高斯分布,是自然界中非常常见的一种连续型概率分布。
正态分布的概率密度函数在数学上表达为:f(x) = (1/σ√(2π)) * e^-(x-μ)^2/(2σ^2)其中,μ表示分布的均值,σ表示标准差,e表示自然对数的底。
正态分布的形状是一个钟形曲线,呈现对称性,并且均值、中位数、众数都位于曲线中心。
三、二项分布与正态分布的关系当二项分布中的实验次数n足够大,并且成功的概率p足够接近于0.5时,二项分布可以近似地用正态分布来描述。
这是由于中心极限定理的作用,即大量相互独立的随机变量的和近似服从正态分布。
具体来说,当n比较大时,二项分布的均值μ=n*p和方差σ^2=n*p*(1-p)的值也比较大。
而正态分布的均值和方差可以通过对二项分布的均值和方差进行适当的变换得到。
当n趋近于无穷大时,二项分布与正态分布的差别越来越小,因此可以用正态分布来近似描述二项分布。
四、应用场景二项分布常用于描述二元实验的结果,比如投掷硬币的结果、产品的合格率等。
通过对二项分布进行分析,可以计算出实验成功的概率、失败的概率以及在一定实验次数下成功的期望次数。
而正态分布则广泛应用于自然和社会科学的各个领域。
由于其对称性和中心极限定理的作用,正态分布可以用于描述和分析连续型随机变量的分布情况。
高考数学复习考点知识讲解课件68 二项分布、正态分布及其应用
a φμ,σ x dx ,则称随机变量X服从正态分布,记作X~N(μ,σ2).
(3)正态曲线的特点
①曲线位于x轴的上方,与x轴不相交;
②曲线是单峰的,它关于直线x=μ对称;
1
③曲线在x=μ处达到峰值
;
σ 2π
④曲线与x轴之间的面积为1;
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿着x轴平
5
6
1
36
36 6
1
P(甲丙)=0≠P(甲)P(丙),P(甲丁)= =P(甲)P(丁),
36
1
P(乙丙)= ≠P(乙)P(丙),P(丙丁)=0≠P(丁)P(丙).
36
解析:P(甲)= ,P(乙)= ,P(丙)= ,P(丁)= = ,
关键能力—考点突破
考点一
条件概率
[基础性]
1.[2022·安徽阶段测试]将三颗骰子各掷一次,记事件A=“三个点
y中有偶数,且x≠y”,则概率P(B|A)=(
)
1
1
1
1
A.
B.
C.
D.
3
4
5
6
答案:A
2×3×3 1
3×2 1
= ,P(AB)= = ,所以P(B|A)=
36
2
36
6
解析:因为P(A)=
1
6
1
2
1
3
= .
3.[选修2-3·P75 习题B组T2 改编]已知随机变量X服从正态分布N(3,
1),且P(X>2c-1)=P(X<c+3),则c等于(
生的条件下,事件B发生的概率.
(2)条件概率的性质
①条件概率具有一般概率的性质,即0≤P(B|A)≤1;
高三总复习数学课件 二项分布及其应用、正态分布
解析:根据n重伯努利试验公式得,该同学通过测试的概率为C×0.62×0.4+ 0.63=0.648.
答案:A
2.第六届世界互联网大会发布了 15 项“世界互联网领先科技成果”,其中有 5
项成果均属于芯片领域.现有 3 名学生从这 15 项“世界互联网领先科技成
果”中分别任选 1 项进行了解,且学生之间的选择互不影响,则恰好有 1 名
答案:B
2.(人教A版选择性必修第三册P77·T2改编)鸡接种一种疫苗后,有90%不会感
染某种病毒,如果有5只鸡接种了疫苗,则恰好有4只鸡没有感染病毒的概率
约为
()
A.0.33 B.0.66 C.0.5 D.0.45
答案:A
3.(湘教版选择性必修第二册 P130 ·例 4 改编)甲、乙两人进行乒乓球比赛,比
赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜
的概率均为23,则甲以 3∶1 的比分获胜的三册P87·习题T1改编)某学校高二年级数学学业质量 检测考试成绩X~N(80,25),如果规定大于或等于85分为A等,那么在参加考 试的学生中随机选择一名,他的成绩为A等的概率是________.(附:若X~ N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7) 解析:P(X≥85)=12[1-P(75≤ X< 85)]≈1-02.682 7≈0.158 7.
n重伯努利试验 ②特征:同一个伯努利试验重复做n次;各次试验的结
果_相__互__独__立___
2.二项分布 (1)二项分布的定义: 一般地,在 n 重伯努利试验中,设每次试验中事件 A 发生的概率为 p(0<p<1), 用 X 表示事件 A 发生的次数,则 X 的分布列为 P(X=k)=_C_kn_p_k_(_1_-__p_)n_-_k_,k= 0,1,2,…,n.如果随机变量 X 的分布列具有上式的形式,则称随机变量 X 服从 二项分布,记作 X~B(n,p) . (2)二项分布的均值与方差: 如果 X~B(n,p),那么 E(X)= np ,D(X)= np(1-p) .
高考数学总复习第十一章计数原理概率随机变量及其分布第七节二项分布超几何分布正态分布课件北师大版
从二项分布,即X~B(n,p)(其中p=
M
N
);若 远远小于N时,每抽取一次后,
采用不放回抽样的方法随机抽取则随 对N的影响很小,超几何分布
机变量X服从超几何分布
可以用二项分布近似
3.正态分布
(1)正态曲线
1
分布密度函数解析式为φμ,σ(x)=
2π
2
(-)
e 22
,x∈(-∞,+∞),其中实数μ,σ(σ>0)
)
1
2.设随机变量 X~B 6, 2 ,则 P(X=3)=(
5
A.16
3
B.16
5
C.8
)
3
D.8
答案 A
解析 因为 X~B
A.
1
6,
2
3
1
,所以由二项分布可得,P(X=3)=C63
2
1 3
12
=
5
.故选
16
3.已知随机变量X服从正态分布N(3,1),且P(X>2c-1)=P(X≤c+3),则
c=
因此,随机变量X在区间(μ-σ,μ+σ],(μ-2σ,μ+2σ],
(μ-3σ,μ+3σ]上取值的概率分别约为68.3%,95.4%,99.7%.
微点拨1.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线的关于直线
X=μ对称和曲线与x轴之间的面积为1.
2.在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取
答案
.
4
3
解析 因为X~N(3,1),所以正态曲线关于直线x=3对称,且P(X>2c-1)
=P(X≤c+3),所以2c-1+c+3=2×3,所以c= 4
专题十一 概率与统计第三十六讲二项分布及其应用、正态分布
专题十一 概率与统计第三十六讲二项分布及其应用、正态分布一、选择题1.(湖北)设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密度曲线如图所示.下列结论中正确的是A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥2.(山东)已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=)A .4.56%B .13.59%C .27.18%D .31.74%3.(新课标2)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A .0.8 B .0.75 C .0.6 D .0.45 4.(2011湖北)已知随机变量ξ服从正态分布()2,2σN ,且()8.04=<ξP ,则()=<<20ξPA .6.0B .4.0C .3.0D .2.0二、填空题5.(新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则DX = .6.(四川)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .7.(广东)已知随机变量X 服从二项分布(),n p B ,若()30E X =,()20D X =,则p = .8.(新课标)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十一 概率与统计
第三十六讲二项分布及其应用、正态分布
一、选择题
1.(2015湖北)设211(,)X
N μσ,2
22(,)Y N μσ,这两个正态分布密度曲线如图所
示.下列结论中正确的是
A .21()()P Y P Y μμ≥≥≥
B .21()()P X P X σσ≤≤≤
C .对任意正数t ,()()P X t P Y t ≤≥≤
D .对任意正数t ,()()P X t P Y t ≥≥≥
2.(2015山东)已知某批零件的长度误差(单位:毫米)服从正态分布2
(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为
(附:若随机变量ξ服从正态分布2
(,)N μσ,则()68.26%P μσξμσ-<<+=,
(22)95.44%P μσξμσ-<<+=)
A .4.56%
B .13.59%
C .27.18%
D .31.74%
3.(2014新课标2)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,
连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是
A .0.8
B .0.75
C .0.6
D .0.45 4.(2011湖北)已知随机变量ξ服从正态分布(
)2
,2σ
N ,且()8.04=<ξP ,则
()=<<20ξP
A .6.0
B .4.0
C .3.0
D .2.0
二、填空题
5.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回
地抽取100次,表示抽到的二等品件数,则DX = .
6.(2016四川)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次
试验成功,则在2次试验中成功次数X 的均值是 .
7.(2015广东)已知随机变量X 服从二项分布(),n p B ,若()30E X =,()20D X =,
则p = .
8.(2012新课标)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工
作,且元件3正常工作,则部件正常工作。
设三个电子元件的使用寿命(单位:小时)均服从正态分布)50,1000(2
N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为
.
三、解答题
9.(2017新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线
上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2
(,)N μσ.
(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 经计算得16119.9716i i x x ===∑,s ==
0.212≈,其中i x 为抽取的第i 个零件的尺寸,i =1,2, (16)
用样本平均数x 作为μ的估计值ˆμ
,用样本标准差s 作为σ的估计值ˆσ,利用
估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,
用剩下的数据估计μ和σ (精确到0.01).
附:若随机变量Z 服从正态分布2
(,)N μσ,则(33)P Z μσμσ-<<+=0.997 4,
160.99740.9592≈0.09≈.
10.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续
保人,续保人本年度的保费与其上年度出险次数的关联如下:
设该险种一续保人一年内出险次数与相应概率如下:
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.
11.(2015湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖
都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的
分布列和数学期望.
12.(2015湖北)某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛
奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W (单位:
吨)是一个随机变量,其分布列为
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(Ⅰ)求Z的分布列和均值;
(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.
13.(2015新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区
用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的
概率,求C的概率.
14.(2014山东)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即
结束.除第五局甲队获胜的概率是1
2
外,其余每局比赛甲队获胜的概率是
2
3
.假设各
局比赛结果互相独立.
(1)分别求甲队以3:0,3:1,3:2胜利的概率
(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜
利方得2分、对方得1分,求乙队得分X 的分布列及数学期望.
15.(2014陕西)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价
格和这块地上的产量具有随机性,且互不影响,其具体情况如下表:
(Ⅰ)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;
(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000
元的概率.
16.(2014广东)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36,根据上述数据得到样本的频率分布表如下:
(1)确定样本频率分布表中121,,n n f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在
区间(30,35]的概率.
17.(2011大纲)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险
但不购买甲种保险的概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l 种的概率;
(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望.。