大数据综述
大数据时代文献综述(一)2024
![大数据时代文献综述(一)2024](https://img.taocdn.com/s3/m/f2a022b3aff8941ea76e58fafab069dc502247a1.png)
大数据时代文献综述(一)引言概述:随着信息技术的不断发展和数据的大规模积累,大数据时代正以前所未有的速度产生着深远的影响。
在这个时代,大数据的应用已经渗透到诸多领域,如金融、医疗、交通等,给社会带来了诸多的机遇和挑战。
本文旨在通过文献综述的方式,介绍大数据时代的概念以及其主要特点,分析大数据对经济社会发展的影响,并总结目前相关研究的主要问题和趋势。
正文内容:一、大数据时代的概念和特点1. 大数据的定义和范围2. 大数据的四个特点:大量性、高速性、多样性和价值密度3. 大数据的数据源和采集技术4. 大数据的存储和处理技术5. 大数据的隐私与安全问题二、大数据对经济发展的影响1. 大数据在市场营销中的应用及效果2. 大数据对企业决策的支持作用3. 大数据对商业模式创新的推动4. 大数据对供应链管理的优化5. 大数据在金融行业的应用和风险管理三、大数据对社会发展的影响1. 大数据在医疗领域的应用和医疗服务的改进2. 大数据对教育领域的影响和学习模式的改变3. 大数据在城市规划和交通管理中的应用4. 大数据对环境保护与可持续发展的促进5. 大数据对政府决策与治理的影响四、大数据研究的主要问题和趋势1. 大数据的质量与准确性问题2. 大数据融合与共享的难题3. 大数据的处理与分析技术的挑战4. 大数据隐私保护的法律与伦理问题5. 大数据人才培养与研究的跨学科合作五、总结在大数据时代,大数据的产生和应用不仅带来了巨大的机遇,也带来了诸多挑战。
大数据已经对经济社会发展产生了深远影响,但同时也暴露出一系列问题。
未来,需要进一步研究与探索大数据的质量与准确性、处理与分析技术以及隐私保护等方面的问题,加强跨学科合作,培养专业人才,以更好地应对大数据时代的挑战与机遇。
文末总结。
大数据文献综述范文docx(二)2024
![大数据文献综述范文docx(二)2024](https://img.taocdn.com/s3/m/2f7829457dd184254b35eefdc8d376eeaeaa17eb.png)
大数据文献综述范文docx(二)引言概述:大数据在当前社会中扮演着重要角色。
本文综述了关于大数据的相关文献,分析了该领域的最新发展和趋势。
本文首先介绍了大数据的定义和特点,然后对大数据的应用领域进行了深入探讨,包括商业、医疗、社交媒体和智能交通等。
接着,本文讨论了大数据分析的关键技术和工具,包括数据挖掘、机器学习和云计算等。
其次,本文介绍了大数据在决策支持、市场预测和风险管理方面的应用案例。
最后,本文总结了目前大数据领域的挑战和未来发展方向。
正文:第一大点:大数据的定义和特点1. 什么是大数据2. 大数据的特点有哪些3. 大数据与传统数据的区别第二大点:大数据的应用领域1. 大数据在商业领域的应用2. 大数据在医疗领域的应用3. 大数据在社交媒体的应用4. 大数据在智能交通中的应用第三大点:大数据分析的关键技术和工具1. 数据挖掘在大数据分析中的应用2. 机器学习在大数据分析中的应用3. 云计算在大数据分析中的应用第四大点:大数据在决策支持、市场预测和风险管理中的应用案例1. 大数据在决策支持中的应用案例2. 大数据在市场预测中的应用案例3. 大数据在风险管理中的应用案例第五大点:大数据领域的挑战和未来发展方向1. 大数据领域目前面临的挑战2. 大数据未来的发展趋势总结:本文综述了关于大数据的相关文献,介绍了大数据的定义和特点,分析了大数据在商业、医疗、社交媒体和智能交通等领域的应用情况。
同时,本文讨论了大数据分析的关键技术和工具,以及大数据在决策支持、市场预测和风险管理等方面的应用案例。
最后,本文总结了当前大数据领域所面临的挑战,并展望了大数据的未来发展方向。
大数据时代 文献综述
![大数据时代 文献综述](https://img.taocdn.com/s3/m/2a0ef251fe00bed5b9f3f90f76c66137ef064f71.png)
大数据时代文献综述在当今信息爆炸的时代,大数据已经成为各行各业的热门话题。
大数据时代给我们带来了许多机遇和挑战,对于如何更好地利用大数据进行决策和创新,吸引了众多学者和研究者的关注。
本文将对大数据时代的相关文献进行综述,探讨大数据时代的发展趋势和应用前景。
一、大数据时代的定义和特点1.1 大数据的定义大数据是指规模巨大、种类繁多、处理速度快的数据集合,通常需要借助先进的技术和工具来进行存储、管理和分析。
1.2 大数据的特点大数据具有四个特点,即“四V”:Volume(规模)、Velocity(速度)、Variety(多样性)和Value(价值)。
1.3 大数据的来源大数据来自各种渠道,包括社交媒体、传感器、互联网搜索、挪移设备等,呈现出多样性和复杂性。
二、大数据时代的发展趋势2.1 数据驱动决策大数据时代强调数据驱动的决策,通过分析大数据来获取洞察和预测,匡助企业和组织做出更明智的决策。
2.2 人工智能与大数据融合人工智能技术的发展与大数据的应用相互促进,通过人工智能技术来挖掘和分析大数据,实现更高效的数据处理和应用。
2.3 数据安全和隐私保护随着大数据的应用范围不断扩大,数据安全和隐私保护问题日益凸显,如何确保数据的安全性和隐私性成为大数据时代的重要课题。
三、大数据时代的应用领域3.1 金融行业金融机构利用大数据技术进行风险管理、市场分析和客户画像等,提高业务效率和风险控制能力。
3.2 医疗健康医疗健康领域通过大数据分析来实现个性化诊疗、疾病预测和药物研发,提升医疗服务水平和效率。
3.3 零售行业零售企业通过大数据分析来了解消费者需求、优化供应链、提升销售效率,实现精准营销和客户关系管理。
四、大数据时代的挑战与解决方案4.1 数据质量与一致性大数据时代面临着数据质量和一致性的挑战,需要建立数据管理和质量控制机制来确保数据的准确性和可靠性。
4.2 技术人材短缺大数据技术的快速发展导致技术人材短缺,需要加强教育培训和技术创新,培养更多的大数据专业人材。
大数据时代 文献综述
![大数据时代 文献综述](https://img.taocdn.com/s3/m/5385f09cd05abe23482fb4daa58da0116c171f18.png)
大数据时代文献综述引言:随着信息技术的飞速发展,大数据已经成为当今社会的热门话题。
大数据时代的到来给各个领域带来了巨大的机遇和挑战。
本文将对大数据时代的相关文献进行综述,探讨大数据的定义、特点、应用领域以及对社会和经济的影响。
一、大数据的定义和特点1.1 定义:大数据是指规模庞大、类型繁多且难以处理的数据集合。
它具有三个特点:数据量大、数据类型多样、数据处理难度高。
1.2 特点:大数据的特点主要体现在以下几个方面:(1)数据量大:大数据的数据量通常以TB、PB、EB甚至更大的规模来衡量。
(2)数据类型多样:大数据包含结构化数据(如数据库中的表格数据)、半结构化数据(如XML文档、日志文件)和非结构化数据(如文本、图象、音频、视频等)。
(3)数据处理难度高:由于大数据的规模庞大且类型繁多,传统的数据处理方法已经无法胜任,因此需要借助新的技术和算法来处理大数据。
二、大数据的应用领域2.1 金融行业:大数据在金融行业的应用非常广泛。
通过对大量的金融数据进行分析,可以匡助银行和金融机构更好地了解客户需求、预测市场趋势、进行风险评估和欺诈检测等。
2.2 医疗健康:大数据在医疗健康领域的应用可以匡助提高医疗服务质量和效率。
通过分析大量的医疗数据,可以实现个性化医疗、疾病预测和药物研发等。
2.3 零售业:大数据在零售业的应用可以匡助企业更好地了解消费者需求、优化供应链管理、提高销售额和客户满意度等。
2.4 交通运输:大数据在交通运输领域的应用可以匡助提高交通运输效率和安全性。
通过分析大量的交通数据,可以实现交通拥堵预测、交通信号优化和智能导航等。
2.5 媒体传媒:大数据在媒体传媒领域的应用可以匡助媒体机构更好地了解受众需求、优化内容推荐和广告投放等。
三、大数据对社会和经济的影响3.1 社会影响:大数据的发展对社会产生了深远的影响。
它改变了人们的生活方式,提高了社会管理的效率,促进了社会的创新和发展。
3.2 经济影响:大数据的应用对经济产生了重要的影响。
《2024年大数据系统综述》范文
![《2024年大数据系统综述》范文](https://img.taocdn.com/s3/m/cad28e9f9fc3d5bbfd0a79563c1ec5da51e2d661.png)
《大数据系统综述》篇一一、引言随着互联网的迅猛发展,大数据已成为全球范围内的研究热点。
大数据系统作为一种集成海量数据处理、存储和管理的系统,正日益显现出其重要价值。
本文将对大数据系统的核心组成、技术应用以及未来发展趋势进行全面的综述,为相关领域的读者提供一个全面的参考和指引。
二、大数据系统的核心组成大数据系统通常包括数据收集、数据处理、数据存储、数据分析及数据展示等多个核心模块。
1. 数据收集:通过爬虫、API接口、数据库同步等方式,从各种来源获取结构化、半结构化及非结构化数据。
2. 数据处理:对收集到的数据进行清洗、转换、加工等操作,以供后续分析使用。
3. 数据存储:采用分布式文件系统或数据库管理系统,将数据进行高效存储和管理。
4. 数据分析:利用各种算法和工具,对数据进行深度挖掘和分析,以发现数据中的潜在价值。
5. 数据展示:将分析结果以图表、报告等形式进行展示,以便用户理解和决策。
三、大数据系统的技术应用1. 分布式处理技术:通过将计算任务分散到多个节点上,实现数据的并行处理和高效计算。
2. 存储技术:采用HDFS(Hadoop分布式文件系统)等分布式存储技术,实现对海量数据的存储和管理。
3. 数据库技术:利用关系型数据库和非关系型数据库,满足不同类型数据的存储需求。
4. 机器学习与人工智能:通过算法模型对数据进行深度挖掘和分析,发现数据中的规律和趋势,为决策提供支持。
5. 数据可视化技术:将分析结果以直观的图表形式展示,帮助用户更好地理解和分析数据。
四、大数据系统的应用领域大数据系统已广泛应用于各个领域,如金融、医疗、教育、政府等。
在金融领域,大数据系统可用于风险控制、客户画像、欺诈检测等方面;在医疗领域,大数据系统可用于疾病预测、患者管理、药物研发等方面;在教育领域,大数据系统可用于学生行为分析、课程优化等方面;在政府领域,大数据系统可用于城市管理、公共安全等方面。
五、未来发展趋势1. 技术融合与创新:大数据将与人工智能、物联网等新兴技术深度融合,形成更加强大的数据处理和分析能力。
大数据综述
![大数据综述](https://img.taocdn.com/s3/m/9ea38b58793e0912a21614791711cc7931b77897.png)
大数据综述
大数据综述
1.引言
本章将介绍大数据的概念、发展背景以及其在不同领域的应用。
同时还将探讨大数据对企业和社会带来的影响。
2.大数据的定义和特点
本章将详细介绍大数据的定义以及其特点。
包括数据的量大、
速度快、多样性等特点。
3.大数据的收集与管理
本章将介绍大数据的收集和管理方法。
包括传统数据收集方式
以及新兴的数据获取技术。
4.大数据的存储与处理
本章将详细介绍大数据的存储与处理方法。
包括云计算、分布
式存储技术以及大数据处理框架等内容。
5.大数据的分析与挖掘
本章将探讨大数据分析与挖掘的方法和技术。
包括数据挖掘算法、机器学习方法以及可视化技术等内容。
6.大数据在企业中的应用
本章将详细介绍大数据在企业中的应用案例。
包括市场营销、客户关系管理、供应链管理等领域的应用。
7.大数据在社会中的应用
本章将探讨大数据在社会中的应用案例。
包括城市管理、交通规划、医疗健康等领域的应用。
8.大数据的风险与挑战
本章将详细介绍大数据的风险与挑战。
包括隐私保护、数据安全以及伦理道德等问题。
9.大数据的未来发展趋势
本章将展望大数据的未来发展趋势。
包括与大数据的结合、边缘计算等新兴技术对大数据的影响。
10.结论
本章将对全文进行总结,并给出对大数据发展的展望。
附件:
本文档涉及附件的列表,包括图表、数据集等。
法律名词及注释:
本文涉及的法律名词及其对应的注释列表,确保读者对相关法律概念的理解。
大数据文献综述
![大数据文献综述](https://img.taocdn.com/s3/m/db2cb29d6037ee06eff9aef8941ea76e58fa4a2f.png)
大数据文献综述随着信息技术的飞速发展,数据的产生和积累速度呈指数级增长,大数据已经成为当今社会各个领域关注的焦点。
大数据不仅改变了我们获取、处理和分析信息的方式,也为科学研究、商业决策、社会治理等带来了前所未有的机遇和挑战。
本文将对大数据相关的文献进行综合梳理和分析,旨在全面了解大数据的概念、特点、技术架构以及其在不同领域的应用和影响。
一、大数据的概念与特点大数据的概念最早由知名咨询公司麦肯锡提出,其定义为:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
海量的数据规模是大数据最显著的特点之一。
在当今数字化时代,数据的生成来源极为广泛,包括互联网、物联网、社交媒体、金融交易、医疗记录等。
这些数据的总量已经达到了 PB 级甚至 EB 级,远远超出了传统数据处理技术的处理能力。
快速的数据流转意味着数据的产生和更新速度非常快。
在一些实时应用场景中,如金融交易、物流监控等,数据需要在极短的时间内被处理和分析,以做出及时的决策。
多样的数据类型也是大数据的重要特点。
除了传统的结构化数据(如关系型数据库中的表格数据),大数据还包含大量的半结构化数据(如 XML、JSON 格式的数据)和非结构化数据(如文本、图像、音频、视频等)。
价值密度低则是指在海量的数据中,真正有价值的信息往往只占很小的比例。
因此,如何从海量的数据中挖掘出有价值的信息成为了大数据处理的关键挑战之一。
二、大数据的技术架构大数据的处理需要一套完整的技术架构来支持,包括数据采集、数据存储、数据处理和数据分析等环节。
数据采集是大数据处理的第一步,其目的是从各种数据源中获取数据。
常见的数据采集技术包括网络爬虫、传感器数据采集、系统日志采集等。
数据存储是大数据处理的重要环节,由于大数据的规模巨大,传统的关系型数据库已经无法满足需求。
因此,分布式文件系统(如 HDFS)和分布式数据库(如 HBase、Cassandra 等)成为了大数据存储的主流选择。
大数据时代 文献综述
![大数据时代 文献综述](https://img.taocdn.com/s3/m/1523cf04590216fc700abb68a98271fe910eafb0.png)
大数据时代文献综述引言:随着信息技术的快速发展,大数据已成为当今社会的热门话题。
大数据时代的到来给各个领域带来了巨大的机遇和挑战。
本文将对大数据时代的相关文献进行综述,探讨大数据的定义、特点、应用领域以及对社会经济发展的影响。
一、大数据的定义和特点1. 定义:大数据是指规模庞大、种类繁多、速度快、价值密度低的数据集合。
这些数据来自于各种来源,包括传感器、社交媒体、互联网等。
大数据具有高度的复杂性和多样性,需要利用先进的技术和工具进行处理和分析。
2. 特点:(1)规模庞大:大数据的规模通常以TB、PB甚至EB为单位,远远超过传统数据处理能力。
(2)种类繁多:大数据包含结构化数据、半结构化数据和非结构化数据,如文本、图像、音频等。
(3)速度快:大数据的产生速度非常快,需要实时或近实时地进行处理和分析。
(4)价值密度低:大数据中包含了大量的噪音和无用信息,需要通过数据挖掘和分析提取有价值的信息。
二、大数据的应用领域1. 商业和市场营销领域:大数据在商业和市场营销领域的应用非常广泛。
通过对大数据的分析,企业可以了解消费者的需求和行为,制定精准的营销策略,提高销售额和市场份额。
同时,大数据还可以帮助企业进行风险管理和预测,优化供应链和物流管理。
2. 医疗和健康领域:大数据在医疗和健康领域的应用有助于提高医疗服务的质量和效率。
通过对大数据的分析,医疗机构可以实现个性化医疗,提供更精确的诊断和治疗方案。
此外,大数据还可以用于疾病监测和预测,帮助公共卫生部门及时采取措施应对突发疫情。
3. 城市管理和智能交通领域:大数据在城市管理和智能交通领域的应用可以提升城市的安全性、便利性和可持续发展水平。
通过对大数据的分析,城市管理者可以实时监测交通状况、优化交通流量,减少拥堵和交通事故。
同时,大数据还可以用于城市规划和资源分配,提高城市的整体运行效率。
4. 金融和风险管理领域:大数据在金融和风险管理领域的应用可以提高金融机构的风险控制能力和决策效率。
大数据时代 文献综述
![大数据时代 文献综述](https://img.taocdn.com/s3/m/abac8149b42acfc789eb172ded630b1c59ee9be5.png)
大数据时代文献综述引言概述:随着信息技术的迅猛发展,大数据时代已经到来。
大数据作为一种新兴的技术和应用,对于各个领域的发展和决策都具有重要的作用。
本文将从五个大点出发,对大数据时代的相关文献进行综述,以期对大数据时代的发展和应用有更深入的了解。
正文内容:1. 大数据的定义和特点1.1 大数据的定义大数据是指规模巨大、复杂度高、处理速度快的数据集合,传统的数据处理工具无法有效处理。
大数据的特点主要包括数据量大、数据类型多样、数据处理速度快和数据价值高等。
1.2 大数据的应用领域大数据的应用领域非常广泛,包括金融、医疗、交通、能源、教育等各个领域。
例如,在金融领域,大数据可以用于风险管理、投资决策等方面;在医疗领域,大数据可以用于疾病预测、药物研发等方面。
2. 大数据的技术和方法2.1 大数据的采集和存储技术大数据的采集和存储技术包括传感器技术、云计算技术、分布式存储技术等。
这些技术可以有效地获取和存储大数据。
2.2 大数据的处理和分析方法大数据的处理和分析方法包括数据挖掘、机器学习、人工智能等。
这些方法可以匡助人们从大数据中提取有价值的信息和知识。
3. 大数据的挑战和问题3.1 数据隐私和安全问题在大数据时代,数据的隐私和安全问题越来越重要。
如何保护用户的隐私和数据的安全,是大数据面临的一个重要挑战。
3.2 数据质量问题由于大数据的规模庞大,数据质量问题成为一个关键的挑战。
如何保证数据的准确性和完整性,是大数据处理中需要解决的问题之一。
4. 大数据的发展趋势4.1 人工智能与大数据的融合人工智能和大数据是相互促进的关系。
随着人工智能的发展,大数据的应用将会更加广泛,同时大数据也可以为人工智能提供更多的数据支持。
4.2 边缘计算与大数据的结合边缘计算是一种新兴的计算模式,可以将计算资源更加挨近数据源,提高数据处理的效率。
将边缘计算与大数据相结合,可以进一步提升大数据的处理能力。
5. 大数据的影响和意义5.1 对决策的影响大数据可以为决策提供更多的数据支持和参考,匡助决策者做出更准确、更科学的决策。
大数据时代 文献综述简版
![大数据时代 文献综述简版](https://img.taocdn.com/s3/m/7e13b059f08583d049649b6648d7c1c708a10b3d.png)
大数据时代文献综述引言概述:随着信息技术的快速发展,大数据时代已经到来。
大数据不仅仅是指数据的规模庞大,更重要的是数据的多样性、速度和价值。
在这个时代,大数据的应用已经渗透到各个领域,对于各行各业都具有重要意义。
本文将从五个大点来阐述大数据时代的相关文献综述。
正文内容:1. 大数据的概念和特点1.1 数据规模的增长:随着互联网的普及和各种传感器的广泛应用,数据规模呈指数级增长。
1.2 数据多样性的挑战:大数据不仅包括结构化数据,还包括非结构化数据如文本、图像、音频等,对数据处理和分析提出了新的挑战。
1.3 数据速度的要求:在大数据时代,数据的产生和传输速度非常快,对实时性要求很高。
2. 大数据的应用领域2.1 金融领域:大数据在金融领域的应用主要包括风险管理、欺诈检测、智能投资等方面。
2.2 医疗保健领域:大数据在医疗保健领域的应用主要包括疾病预测、个性化治疗、医疗资源优化等方面。
2.3 零售领域:大数据在零售领域的应用主要包括市场营销、供应链管理、智能化决策等方面。
2.4 交通领域:大数据在交通领域的应用主要包括交通流量优化、智能交通管理、智能导航等方面。
2.5 教育领域:大数据在教育领域的应用主要包括个性化教学、学生评估、教育资源优化等方面。
3. 大数据技术和工具3.1 分布式存储和计算:大数据处理需要分布式存储和计算技术,如Hadoop、Spark等。
3.2 数据挖掘和机器学习:大数据的挖掘和分析需要借助数据挖掘和机器学习算法,如关联规则挖掘、聚类分析、分类预测等。
3.3 可视化和交互工具:大数据的可视化和交互工具可以帮助用户更好地理解和利用数据,如Tableau、PowerBI等。
4. 大数据时代的挑战和机遇4.1 数据隐私和安全:大数据时代面临着数据隐私和安全的挑战,如数据泄露、隐私保护等问题。
4.2 数据质量和可信度:大数据时代的数据质量和可信度问题是一个亟待解决的难题。
4.3 数据分析人才的需求:大数据时代需要具备数据分析能力的人才,对人才培养提出了新的要求。
大数据文献综述(一)
![大数据文献综述(一)](https://img.taocdn.com/s3/m/6c8e5ff1fc0a79563c1ec5da50e2524de518d0c9.png)
大数据文献综述(一)引言概述:大数据是当前信息技术发展的热点,它以巨大规模的、多种类型的数据集为基础,通过创新的处理和分析方法,揭示出隐藏在数据背后的规律和价值,对于推动社会经济的发展具有重要作用。
本文旨在对大数据的相关文献进行综述,系统梳理大数据的定义、特点、应用领域等方面的研究成果,为深入理解和应用大数据提供参考依据。
正文内容:一、大数据的定义与特点1. 大数据的定义:从数据量、速度、多样性等方面阐述大数据的底线。
2. 大数据的特点:探讨大数据的海量、高维、真实、价值等特点,以区别于传统数据。
二、大数据的技术基础1. 大数据的存储技术:介绍分布式文件系统、NoSQL数据库等存储大数据的技术手段。
2. 大数据的处理技术:讨论MapReduce、Hadoop等大数据处理框架及其应用场景。
三、大数据的应用领域1. 金融领域:探索大数据在风险评估、投资决策等方面的应用。
2. 医疗领域:分析大数据在疾病预测、基因分析等方面的应用案例。
3. 零售领域:剖析大数据在市场分析、用户行为预测等方面的应用。
4. 媒体领域:阐述大数据在舆情分析、个性化推荐等方面的应用。
四、大数据的挑战与机遇1. 数据隐私与安全问题:探讨大数据背后存在的隐私泄露和数据安全问题。
2. 数据质量与整合问题:分析大数据链路中可能出现的数据质量不确定性和信息孤立问题。
3. 人才缺口与资源投入问题:讨论大数据技术人才与资源投入不足的挑战。
五、大数据的未来发展趋势1. 人工智能与大数据:探讨人工智能与大数据的紧密结合,推动大数据应用走向智能化。
2. 数据驱动的企业发展:分析数据驱动型企业的兴起和发展趋势。
3. 数据治理与合规性问题:讨论大数据时代下数据治理与合规性的重要性。
总结:本文通过对大数据的定义、特点、技术基础、应用领域、挑战与机遇以及未来发展趋势的综述,为读者提供了深入了解大数据的基础知识和前沿动态的参考。
随着信息技术的不断发展,大数据将继续引领社会变革的浪潮,为各行业创造更多的机遇与挑战。
大数据时代 文献综述
![大数据时代 文献综述](https://img.taocdn.com/s3/m/0d15ffab162ded630b1c59eef8c75fbfc67d9442.png)
大数据时代文献综述引言:随着信息技术的迅速发展,大数据已成为当今社会的热门话题。
大数据时代的到来为各行各业带来了巨大的机遇和挑战。
本文将对大数据时代的相关文献进行综述,探讨大数据时代的概念、特点、应用领域以及对社会经济发展的影响。
一、大数据时代的概念大数据时代是指在信息技术高度发达的背景下,海量、高速、多样化的数据被广泛应用于各个领域的时代。
大数据的特点主要体现在四个方面:数据量大、速度快、种类多、价值密度低。
二、大数据时代的特点1. 数据量大:大数据时代的最显著特点是数据量巨大。
传统的数据处理方法已经无法胜任大规模数据的处理和分析。
2. 速度快:大数据时代数据的产生速度非常快,实时数据分析能力成为了大数据时代的重要需求。
3. 种类多:大数据时代的数据种类繁多,包括结构化数据、半结构化数据和非结构化数据。
4. 价值密度低:大数据时代的数据中,有相当一部分数据是无效的,需要通过数据挖掘和分析来发现其中的价值。
三、大数据时代的应用领域1. 商业和市场营销:大数据分析可以帮助企业了解消费者需求、市场趋势,优化产品设计和营销策略,提高市场竞争力。
2. 金融服务:大数据分析可以帮助金融机构进行风险评估、欺诈检测和客户关系管理,提高金融服务的效率和安全性。
3. 医疗健康:大数据分析可以帮助医疗机构进行疾病预测、诊断和治疗方案选择,提高医疗服务的质量和效率。
4. 城市管理:大数据分析可以帮助城市管理者进行交通流量控制、环境监测和公共安全预警,提升城市管理水平。
5. 教育领域:大数据分析可以帮助教育机构进行学生学习行为分析、个性化教育和教学评估,提高教育质量。
四、大数据时代对社会经济发展的影响1. 创新驱动:大数据时代为创新提供了更多的机会和可能性,促进了科技创新和产业升级。
2. 资源优化:大数据分析可以帮助企业和政府优化资源配置,提高资源利用效率,降低成本。
3. 个性化服务:大数据分析可以根据用户的需求和行为提供个性化的服务,提升用户体验和满意度。
大数据文献综述
![大数据文献综述](https://img.taocdn.com/s3/m/e6bb266a0166f5335a8102d276a20029bd6463f8.png)
大数据文献综述近年来,大数据技术在各行各业都得到了广泛的应用。
大数据文献综述是对大数据相关文献的全面回顾和总结,可以帮助人们了解大数据的发展状况和未来趋势,同时也可以为相关研究提供参考。
本文将就大数据的定义、特点、应用领域和挑战进行综述,以期对读者有所启发。
首先,大数据的定义是指数据量巨大、多样化和高速增长的数据集合。
大数据的特点主要体现在四个方面。
一是数据量大,数据的规模从GB到TB,再到PB甚至EB级别;二是数据多样化,包括结构化、半结构化和非结构化数据;三是数据来源广泛,包括社交媒体、传感器、移动设备等;四是数据增长快速,数据的生成速度迅猛。
大数据的应用领域非常广泛。
在商业领域,大数据可以帮助企业进行数据驱动的决策,优化供应链管理和客户关系管理,提升市场营销的效果。
在医疗领域,大数据可以帮助提高疾病诊断的准确性,加快药物研发的速度,改善医疗服务的质量。
在城市管理领域,大数据可以帮助提升城市管理的效率,改善交通拥堵和环境污染等问题。
在科学研究领域,大数据可以帮助加速科学研究的进展,推动新的科学发现。
然而,大数据也面临着一些挑战。
首先是数据隐私和安全问题。
随着数据的增长,越来越多的个人隐私被泄露,同时也面临着黑客攻击和数据泄露的风险。
其次是数据质量问题。
大数据的数据质量往往不一致和不完整,这就需要数据清洗和处理的手段。
再次是数据分析和挖掘的问题。
大数据的复杂性对数据分析和挖掘提出了更高的要求,需要研发更高效准确的算法和工具。
最后是数据存储和计算能力的问题。
大数据的存储和计算需求巨大,传统的存储和计算技术已经无法满足其需求。
为了克服这些挑战,学术界和工业界都在不断地研究和探索。
在数据隐私和安全方面,研究者们提出了一系列的隐私保护方法和数据加密算法。
在数据质量方面,研究者们提出了一系列的数据清洗和处理算法。
在数据分析和挖掘方面,研究者们提出了一系列的机器学习算法和深度学习模型。
在数据存储和计算方面,研究者们提出了一系列的分布式存储和计算框架。
大数据时代 文献综述
![大数据时代 文献综述](https://img.taocdn.com/s3/m/d2057c3d1611cc7931b765ce0508763231127406.png)
大数据时代文献综述引言:随着信息技术的快速发展,大数据已经成为当今社会的热门话题。
大数据时代的到来为我们提供了许多新的机遇和挑战。
本文将对大数据时代的相关文献进行综述,探讨大数据的概念、应用领域、技术挑战以及对社会的影响。
一、大数据的概念大数据是指规模庞大、类型繁多的数据集合。
它通常具有三个特点:数据量大、数据速度快和数据种类多。
大数据的浮现主要是由于互联网的普及和信息技术的进步,使得数据的产生和存储变得更加容易和便宜。
二、大数据的应用领域大数据在各个领域都有广泛的应用。
在商业领域,大数据可以匡助企业进行市场分析、客户关系管理和业务决策等。
在医疗领域,大数据可以用于疾病预测、药物研发和个性化医疗等。
在交通领域,大数据可以用于交通流量管理、智能交通系统和车辆自动驾驶等。
在政府领域,大数据可以用于公共安全监控、城市规划和政策制定等。
三、大数据的技术挑战大数据的处理和分析面临着许多技术挑战。
首先是数据存储和管理的问题,如何高效地存储和管理大量的数据是一个难题。
其次是数据的清洗和预处理,大数据中往往存在着噪声和缺失值,需要进行清洗和预处理才干得到准确的结果。
此外,大数据的分析和挖掘也需要强大的计算能力和算法支持。
四、大数据对社会的影响大数据的浮现对社会产生了深远的影响。
首先,大数据的应用可以提高生产效率和经济增长。
其次,大数据可以改善人们的生活质量,如智能家居、智能健康监测等。
此外,大数据还带来了一些社会问题,如隐私保护、数据安全和数据滥用等。
结论:大数据时代的到来给我们带来了许多新的机遇和挑战。
在应对大数据时代的挑战时,我们需要加强数据存储和管理的能力,提高数据分析和挖掘的技术水平,同时也需要关注数据的使用和保护,确保大数据的应用能够为社会带来更多的福祉。
大数据时代 文献综述
![大数据时代 文献综述](https://img.taocdn.com/s3/m/9f56ca3acd1755270722192e453610661ed95ab9.png)
大数据时代文献综述引言:随着信息技术的快速发展,大数据已经成为当今社会的热门话题之一。
大数据时代的到来,给各行各业带来了巨大的机遇和挑战。
本文综述了大数据时代的概念、特点、应用领域以及相关的技术和方法,旨在全面了解大数据时代的发展现状和未来趋势。
一、概念和特点:1.1 大数据的概念大数据是指规模庞大、种类繁多、速度快的数据集合,它具有高度的复杂性和多样性。
大数据的特点主要包括四个方面:数据量大、数据种类多、数据速度快、数据价值高。
1.2 大数据的特点大数据具有以下几个特点:高速性、多样性、价值密度高、数据质量低、数据安全性等。
二、大数据的应用领域:2.1 商业领域大数据在商业领域的应用非常广泛,包括市场营销、客户关系管理、供应链管理、风险管理等。
通过对大数据的分析,企业可以更好地了解市场需求、优化产品设计、提高销售效率等。
2.2 医疗健康领域大数据在医疗健康领域的应用可以帮助医生提高诊断准确性、优化治疗方案、预测疾病风险等。
通过对大数据的分析,医疗机构可以更好地管理医疗资源、提高医疗服务质量。
2.3 金融领域大数据在金融领域的应用可以帮助银行和金融机构进行风险评估、反欺诈、信用评级等。
通过对大数据的分析,金融机构可以更好地了解客户需求、提供个性化的金融产品和服务。
2.4 城市管理大数据在城市管理中的应用可以帮助政府和城市规划者更好地了解城市居民的需求、优化交通系统、改善环境质量等。
通过对大数据的分析,城市管理者可以更好地提供公共服务、提高城市的可持续发展。
三、大数据的技术和方法:3.1 数据采集与存储技术大数据的采集与存储技术包括传感器技术、云计算技术、分布式存储技术等。
通过这些技术,可以实现对大数据的高效采集和存储。
3.2 数据处理与分析技术大数据的处理与分析技术包括数据清洗、数据挖掘、机器学习等。
通过这些技术,可以从大数据中提取有价值的信息,并进行深入分析。
3.3 数据可视化技术数据可视化技术可以将大数据转化为直观、易于理解的图形或图表,帮助人们更好地理解和利用大数据。
大数据文献综述
![大数据文献综述](https://img.taocdn.com/s3/m/70a7fc5315791711cc7931b765ce0508763275ab.png)
大数据文献综述一、引言随着信息技术的快速发展和互联网的广泛应用,大数据已成为当前社会发展的热点话题。
大数据的涌现和兴起,对各行各业产生了深远的影响。
本文旨在对大数据的相关文献进行综述,从不同领域的角度,探讨大数据的定义、特点、应用以及面临的挑战等方面进行分析。
二、大数据的定义与特点大数据是指数据量巨大、多样化、高速度产生和共享的信息资产。
其特点主要体现在以下几个方面:1. 三个"V"特征:大数据的特点可以用三个"V"来概括,即数据的体积(Volume)、速度(Velocity)和多样性(Variety)。
大数据所包含的数据量巨大,数据的生成和传输速度快,数据的来源和类型多样。
2. 价值密度低:大数据中存在着大量冗余、无效数据,有效数据的价值密度相对较低,需要通过大数据分析的手段提取有价值的信息。
3. 高度关联性:大数据中的数据之间存在着复杂的关联和相关性。
通过分析这些关联关系,可以发现隐藏在数据背后的规律与趋势。
4. 隐私保护需求:大数据涉及到个人隐私和商业机密等敏感信息,对数据的隐私保护提出了更高的要求。
三、大数据的应用领域1. 商业领域:大数据在商业领域的应用广泛,包括市场营销、客户关系管理、供应链管理等方面。
通过对大数据的分析,企业能够更好地了解消费者需求,优化产品和服务。
2. 健康医疗领域:大数据在健康医疗领域的应用可以加强疾病预测和预防,优化临床决策和个性化治疗。
大数据还可以为基因研究和药物研发提供支持。
3. 交通运输领域:大数据可以提供实时的交通状况信息,为交通管理和规划提供决策支持。
大数据还可以帮助优化公共交通线路和提供个性化的交通出行方案。
4. 城市规划领域:大数据可以实现城市运行的监测与管理,为城市规划提供数据支持。
通过对城市大数据的分析,能够改善城市的环境质量和公共服务。
四、大数据面临的挑战与问题1. 隐私与安全问题:大数据中涉及大量的个人隐私和敏感信息,如何保护数据的隐私与安全仍然是重要的挑战之一。
大数据概论综述
![大数据概论综述](https://img.taocdn.com/s3/m/6b0b72b1a1116c175f0e7cd184254b35effd1a5f.png)
大数据概论综述随着信息技术的迅猛发展,大数据作为一种新的数据处理方式逐渐引起了人们的重视。
本文将对大数据的概念、特征、应用和挑战进行综述,为读者全面了解大数据提供便利。
一、概念大数据是指由传统数据库处理能力难以应对的具有海量、多样和高速特征的数据集合。
大数据具有"5V"特征,即大量(Volume)、多样(Variety)、高速(Velocity)、真实性(Veracity)和价值(Value)。
大数据的产生主要是源于社交网络、物联网、移动互联网等新一代信息技术的迅猛发展。
二、特征1. 大量数据:大数据的数据量通常以TB、PB、EB等级别来计算,远远超过了传统数据库的处理能力。
2. 多样数据:大数据包含结构化数据、半结构化数据和非结构化数据,如文本、音频、视频等形式。
3. 高速数据:大数据具有数据实时性要求高的特点,需要能够快速处理和分析数据。
4. 真实性数据:大数据中的数据具有一定的不确定性,需要进行数据清洗、预处理和验证。
5. 价值数据:大数据中蕴含了丰富的信息和商业价值,可以通过深度挖掘和分析发现其中的潜在价值。
三、应用大数据在各行各业都有广泛的应用,如金融、零售、医疗、交通等领域。
以下列举几个具体的应用案例:1. 金融风控:利用大数据技术可以对用户的信用记录、消费行为等信息进行分析,从而提供更精确的信贷评估和风险控制。
2. 零售智能营销:通过对消费者的购买记录进行大数据分析,能够为企业提供个性化的推荐和定制化服务,提高销售额和用户满意度。
3. 医疗健康管理:大数据分析可以加速医学研究和疾病诊断,为医生提供更准确的医疗决策支持,并推动个性化治疗的发展。
4. 交通优化:通过分析交通流量、路况和驾驶行为数据,可以实现智能交通控制和路线规划,提高城市交通效率和减少拥堵问题。
四、挑战随着大数据应用的逐渐普及,也带来了一些挑战:1. 隐私保护:大数据中的个人信息保护成为了重要的问题,需要制定相关的法律法规进行保护。
大数据文献综述范文docx(一)2024
![大数据文献综述范文docx(一)2024](https://img.taocdn.com/s3/m/dd50ed4802d8ce2f0066f5335a8102d277a26172.png)
大数据文献综述范文docx(一)引言概述:本文旨在综述大数据领域的相关文献,通过对现有研究成果的整理和分析,归纳出目前大数据领域的研究热点和发展趋势,为进一步的研究提供参考和借鉴。
正文:一、大数据的定义与特征1. 大数据的概念及演变2. 大数据的四个基本特征:3V(Volume、Velocity、Variety)+ Value3. 大数据与传统数据的差异与联系4. 大数据对经济、社会、科学等领域的影响二、大数据的采集与存储1. 大数据采集的主要方法:传感器网络、物联网等2. 大数据存储的常用技术:分布式文件系统、NoSQL数据库等3. 大数据采集和存储过程中面临的挑战及解决方案4. 大数据隐私与安全保护的技术与方法三、大数据的分析与挖掘1. 大数据分析的基本流程与方法:数据清洗、数据集成、数据挖掘、模型建立、结果验证等2. 大数据分析常用的算法和技术:关联规则挖掘、聚类分析、分类与预测等3. 大数据分析的应用领域与案例研究4. 大数据分析在决策支持中的作用与价值四、大数据的可视化与交互1. 大数据可视化的基本原理及方法2. 大数据可视化工具的比较与选择3. 大数据可视化的应用案例与效果评估4. 大数据可视化的交互技术与方法五、大数据的发展趋势与挑战1. 大数据发展趋势:云计算、边缘计算、人工智能等技术的融合与应用2. 大数据面临的挑战:数据质量、隐私与安全、算法效率等问题3. 大数据发展的政策与法律环境4. 大数据发展的前景与应用展望总结:通过对大数据领域相关文献的综述,可以发现大数据在经济、社会和科学领域的重要作用和潜在价值。
同时,大数据采集、存储、分析与可视化面临许多挑战和难题,需要我们进一步研究和探索。
随着技术的不断发展和应用的深入推广,大数据必将在各个领域中发挥更大的作用,为社会进步和经济发展提供有力支持。
大数据时代 文献综述
![大数据时代 文献综述](https://img.taocdn.com/s3/m/1eb8903cf56527d3240c844769eae009581ba2cf.png)
大数据时代文献综述引言概述:在当今的大数据时代,数据量的快速增长与技术的不断进步使得大数据的应用越来越广泛。
本文将对大数据时代的相关文献进行综述,探讨大数据的定义、特点以及其在各个领域的应用。
一、大数据的定义和特点1.1 定义:大数据是指规模巨大、种类繁多、处理速度快的数据集合,其数据量远远超过传统数据库处理能力。
1.2 特点:1.2.1 高速性:大数据的采集、存储和分析速度非常快,能够实时处理大规模数据。
1.2.2 多样性:大数据不仅包括结构化数据,还包括非结构化数据和半结构化数据,如文本、图片、音频等。
1.2.3 价值密度低:大数据中包含了大量的冗余和噪声数据,需要通过数据挖掘和分析技术提取有价值的信息。
二、大数据在商业领域的应用2.1 市场营销:通过大数据分析用户行为和偏好,进行个性化推荐和定制化营销,提高市场竞争力。
2.1.1 用户画像:通过对用户数据的分析,构建用户画像,精准定位目标用户。
2.1.2 营销策略优化:通过大数据分析市场趋势和竞争对手信息,优化营销策略,提高销售额。
2.1.3 数据驱动决策:基于大数据分析结果,进行决策制定,提高决策的准确性和效率。
2.2 零售业:通过大数据分析顾客购买行为和消费偏好,提高商品销售和库存管理效率。
2.2.1 库存管理:通过大数据分析销售数据和供应链数据,优化库存管理,减少库存积压和缺货情况。
2.2.2 个性化推荐:通过大数据分析用户购买历史和兴趣,为用户提供个性化的商品推荐,提高购买转化率。
2.2.3 价格优化:通过大数据分析市场价格变动和竞争对手信息,优化商品定价策略,提高利润率。
2.3 金融领域:通过大数据分析客户信用风险和市场趋势,提高金融机构的风险控制和投资决策能力。
2.3.1 信用评估:通过大数据分析客户的信用记录和行为数据,评估客户的信用风险,减少坏账风险。
2.3.2 投资决策:通过大数据分析市场数据和经济指标,辅助金融机构进行投资决策,提高投资收益率。
大数据文献综述
![大数据文献综述](https://img.taocdn.com/s3/m/8232297b32687e21af45b307e87101f69e31fbeb.png)
大数据文献综述近年来,随着信息技术的快速发展,大数据已经成为了人们生活和工作中不可或缺的一部分。
大数据的应用范围涵盖了经济、医疗、交通、教育等各个领域,为人们带来了诸多便利与机遇。
本文将通过综述大数据相关的文献,探讨其应用领域、技术挑战以及未来发展趋势。
一、大数据在经济领域的应用在经济领域,大数据的应用已经取得了显著成果。
通过对大量数据的分析和挖掘,企业可以更加准确地了解市场需求,制定合理的营销策略。
另外,大数据还可以帮助企业进行风险评估和预测,降低企业经营风险。
例如,银行可以通过对客户的交易记录和个人信息进行分析,准确判断客户的信用状况,从而避免信贷风险。
二、大数据在医疗领域的应用医疗领域是大数据应用的一个重要领域。
通过对患者的电子病历、医学影像和基因数据等多源数据进行分析,可以帮助医生进行疾病诊断和治疗决策。
同时,大数据还可以用于公共卫生领域,通过分析人群健康数据,及早发现疫情和疾病的蔓延趋势,采取相应的防控措施。
三、大数据在交通领域的应用交通领域是一个典型的大数据应用场景。
通过对交通流量和车辆行驶轨迹等数据进行分析,可以帮助交通管理部门优化交通路网,并且提供实时的交通信息给司机,提高交通效率。
此外,大数据还可以用于城市规划,通过分析人流和交通数据,合理规划城市基础设施和公共交通线路。
四、大数据在教育领域的应用教育领域也逐渐开始应用大数据技术。
通过对学生的学习行为和评价数据进行分析,可以为教师提供个性化教学建议,提高教学效果。
另外,大数据还可以帮助学校进行学生招生和课程设置等决策,以及评价教师的教学质量。
五、大数据技术挑战尽管大数据应用带来了众多好处,但是也面临着一些挑战。
首先是大数据的存储和处理能力问题,由于数据量庞大,需要借助高性能的计算和存储设备来支撑。
其次是数据隐私和安全问题,大数据的分析过程需要获取大量的用户数据,如何保护用户隐私成为一个重要的问题。
此外,大数据的分析和挖掘技术还需要进一步发展,以提高数据分析的精确性和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据综述大数据作为互联网、物联网、移动计算、云计算之后IT产业又一次颠覆性的技术变革,正在重新定义社会管理与国家战略决策、企业管理决策、组织业务流程、个人决策的过程和方式。
随着科技和社会的发展进步加上计算机和网络技术的兴起,社交网络、物联网、云计算以及多种传感器的广泛应用,使数量庞大,种类众多,时效性强为特征的数据的不断涌现,引发了数据规模的爆炸式增长[1]。
国际数据公司(International Data Corporation,IDC)研究报告称:2011年全球被创建和被复制的数据总量超过1. 8ZB,且增长趋势遵循新摩尔定律(全球数据量大约每两年翻一番),预计2020 年将达到35ZB。
与此同时,数据复杂性也急剧增长,其多样性(多源、异构、多模态、不连贯语法或语义等) 、低价值密度(大量不相关信息、知识“提纯”难度高)、实时性(数据需实时生成、存储、处理和分析)等复杂特征日益显著。
预示着全球已然进入了“大数据”时代[2]。
1.大数据国外研究现状大数据相关理论的研究“大数据”这一术语从2008年开始在科技领域中出现,随之引起学术界的广泛研究兴趣。
《Nature》与《Science》杂志分别出版专刊,从互联网技术、互联网经济学、超级计算、环境科学、生物医药等多个方面讨论大数据处理和应用专题。
世界各国政府也高度重视大数据领域的研究和探索,并从国家战略的层面推出研究规划以应对其带来的挑战。
虽然大数据研究已在全球范围内成为热点和焦点,但目前国内外大数据相关的研究仍然处于起步阶段,面向管理和决策的大数据研究与应用逐步兴起,研究理念、思路、方法和学术路线等方面的探索已经开始全面展开[3]。
大数据蕴含着巨大的价值,对社会、经济、科学研究等各个方面都具有重要的战略意义。
目前,大数据已经在政府公共管理、医疗服务、零售业、制造业,以及涉及个人的位置服务等领域得到了广泛应用,并产生了巨大的社会价值和产业空间。
麦肯锡公司在一份研究报告中,根据西方产业数据预测,大数据的应用将能为欧洲发达国家的政府节省1000亿欧元以上的运作成本,使美国医疗保健行业的成本降低8%,约每年3000多亿美元,并使得零售商的营业利润率提高60%以上[4]。
市场调研机构IDC的“数字宇宙”研究报告中则预测,大数据技术与服务市场在2015年将达到169亿美元,实现40%的年增长率,为IT与通信产业增长率的7倍[5]。
大数据中蕴含的巨大商业价值、科学研究价值、社会管理与公共服务价值以及支撑科学决策的价值正在被认知与开发利用。
大数据关键技术进行的研究批量数据处理技术数据中蕴含的宝贵价值成为人们存储和处理大数据的驱动力。
Mayer-Schonberger在《大数据时代》一书中指出了大数据时代处理数据理念的三大转变,即要全体不要抽样,要效率不要绝对精确,要相关不要因果[6]。
因此,大数据的处理对于当前存在的技术来说是一种极大的挑战。
目前,人们对大数据的处理形式主要是对静态数据的批量处理、对在线数据的实时处理,以及对图数据的综合处理[7]。
批量大数据来源:在互联网领域中,批量大数据来源主要包括:(a)社交网络:Facebook、新浪微博、微信等以人为核心的社交网络产生了大量的文本、图片、音视频等不同形式的数据。
对这些数据的批量处理可以对社交网络进行分析,发现人与人之间隐含的关系或者他们中存在的社区,推荐朋友或者相关的主题,提升用户的体验。
(b)电子商务:电子商务中产生大量的购买历史记录、商品评论、商品网页的访问次数和驻留时间等数据,通过批量分析这些数据,每个商铺可以精准地选择其热卖商品,从而提升商品销量;这些数据还能够分析出用户的消费行为,为客户推荐相关商品,以提升优质客户数量。
(c)搜索引擎:Google、百度搜索等大型互联网搜索引擎将会产生大量的数据信息[8]。
主要批量数据处理系统:由Google公司2003年研发的Google文件系统GFS 和2004年研发的MapReduce编程模型以其Web环境下批量处理大规模海量数据的特有魅力,在学术界和工业界引起了很大反响。
凭借其适合非结构处理、大规模并行处理和简单易用等优势,在互联网搜索和其他大数据分析技术领域取得重大进展,成为主流技术[9]。
流式数据处理技术通俗而言,流式数据是一个无穷的数据序列,序列中的每一个元素来源各异,格式复杂,序列往往包含时序特性,或者有其他的有序标签。
数据流中的数据格式可以是结构化的、半结构化的甚至是无结构化的。
因此流式数据的处理系统要有很好的容错性与异构数据分析能力,能够完成数据的动态清洗、格式处理等.并且,流式数据是活动的(用完即弃),随着时间的推移不断增长,这与传统的数据处理模型(存储→查询)不同,要求系统能够根据局部数据进行计算,保存数据流的动态属性。
流式计算的应用场景:流式计算的应用场景较多,典型的有两类:(a) 数据采集应用:数据采集应用通过主动获取海量的实时数据,及时地挖掘出有价值的信息。
当前数据采集应用有日志采集、传感器采集、Web数据采集等。
日志采集系统是针对各类平台不断产生的大量日志信息量身订做的处理系统,通过流式挖掘日志信息,达到动态提醒与预警功能。
传感器采集系统(物联网)通过采集传感器的信息(通常包含时间、位置、环境和行为等内容),实时分析提供动态的信息展示,目前主要应用于智能交通、环境监控、灾难预警等。
Web 数据采集系统是利用网络爬虫程序抓取万维网上的内容,通过清洗、归类、分析并挖掘其数据价值。
(b) 金融银行业的应用:在金融银行领域的日常运营过程中会产生大量数据,这些数据的时效性往往较短,不仅有结构化数据,也会有半结构化和非结构化数据.通过对这些大数据的流式计算,发现隐含于其中的内在特征,可帮助金融银行进行实时决策。
这与传统的商业智能(BI)分析不同,BI 要求数据是静态的,通过数据挖掘技术,获得数据的价值.然而在瞬息万变的场景下,诸如股票期货市场,数据挖掘技术不能及时地响应需求,就需要借助流式数据处理的帮助。
流式数据处理系统:流式数据处理已经在业界得到广泛的应用,典型的有Twitter 的Storm,Facebook 的Scribe,Linkedin 的Samza,Cloudera 的Flume,Apache 的Nutch。
交互式数据处理技术在大数据环境下,数据量的急剧膨胀是交互式数据处理系统面临的首要问题。
互联网领域。
在互联网领域中,主要体现了人际间的交互.随着互联网技术的发展,传统的简单按需响应的人机互动已不能满足用户的需求,用户之间也需要交互,这种需求诞生了互联网中交互式数据处理的各种平台,如搜索引擎、电子邮件、即时通讯工具、社交网络、微博、博客以及电子商务等,用户可以在这些平台上获取或分享各种信息。
此外,各种交互式问答平台,如百度的知道、新浪的爱问以及Yahoo!的知识堂等。
由此可见,用户与平台之间的交互变得越来越容易,越来越频繁。
这些平台中数据类型的多样性,使得传统的关系数据库不能满足交互式数据处理的实时性需求。
目前,各大平台主要使用NoSQL类型的数据库系统来处理交互式的数据,如HBase[10]采用多维有续表的列式存储方式;MongoDB[11]采用JSON格式的数据嵌套存储方式。
大多NoSQL 数据库不提供Join 等关系数据库的操作模式,以增加数据操作的实时性。
交互式数据处理系统:交互式数据处理系统的典型代表系统是Berkeley的Spark系统和Google 的Dremel系统。
图数据处理技术图由于自身的结构特征,可以很好地表示事物之间的关系,在近几年已成为各学科研究的热点。
图中点和边的强关联性,需要图数据处理系统对图数据进行一系列的操作,包括图数据的存储、图查询、最短路径查询、关键字查询、图模式挖掘以及图数据的分类、聚类等.随着图中节点和边数的增多(达到几千万甚至上亿数),图数据处理的复杂性给图数据处理系统提出了严峻的挑战。
图能很好地表示各实体之间的关系,因此,在各个领域得到了广泛的应用,如计算机领域、自然科学领域以及交通领域。
当今世界上比较流行的 3 个典型的图数据处理系统,包括Google的Pregel 系统,Neo4j系统和微软的Trinity 系统。
大数据与云计算相结合的研究大数据分析是大数据研究领域的核心内容之一。
然而云计算技术对大数据的分析具有得天独厚的优势。
Google 首席经济学家Hal Varian 教授指出:“数据正在变得无处不在、触手可及;而数据创造的真正价值,在于我们能否提供进一步的稀缺的附加服务。
这种增值服务就是数据分析[。
”数据的背后隐藏着信息,而信息之中蕴含着知识和智慧。
大数据作为具有潜在价值的原始数据资产,只有通过深入分析才能挖掘出所需的信息、知识以及智慧.未来人们的决策将日益依赖于大数据分析的结果,而非单纯的经验和直觉。
早在2009年, 联合国就启动了“全球脉动计划”, 拟通过云计算技术对大数据进行分析进而推动落后地区的发展, 2011 年 5 月,全球知名咨询公司麦肯锡( Mckinsey and Company)发布了《大数据: 创新、竞争和生产力的下一个前沿领域》[12]报告,报告指出“数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素[13]而2012 年1 月的世界经济论坛年会也把“云计算与大数据”作为重要议题之一。
2012年3月, 美国政府提出“大数据研究和发展倡议”, 发起全球开放政府数据运动, 把大数据的分析放在重要的战略位置. 英国政府也将大数据分析技术作为重点发展的科技领域, 在发展8 类高新技术的6 亿英镑投资中, 大数据的注资占三成。
2014 年7月, 欧盟委员会也呼吁各成员国积极发展大数据技术,并将采取具体措施发展大数据业务. 例如建立大数据领域的公私合作关系;依托“地平线2020”科研规划, 创建开放式数据孵化器;成立多个超级云计算中心;在成员国创建数据处理设施网络[14]。
评述:国外在对大数据的行研究,主要集中在对大数据格式的转化、数据转移和大数据及时处理的问题上,但是由于大数据具有异构性和异质性的特点,所以学者需要设法提高大数据格式转化的效率和大数据的处理速率,目前国外学者主要从批量数据、流式数据、交互式数据和图数据处理技术进行研究,目的在于加速大数据的处理和计算能力从而有效的提高大数据的应用价值。
2.大数据国内研究现状日前,IDC的首份关于大数据的报告《中国大数据技术与服务市场2012-2016年预测与分析》发布,该报告显示大数据市场规模将从2011年的7760万美元增长到2016年的亿美元,未来5年的复合增长率达%,市场规模增长近7倍。
该报告指出中国已进入大数据时代。
IDC中国负责商业分析软件市场研究的经理潘永花指出:“从全球看,大型的IT公司普遍增加了对大数据相关技术和产品的投资,同时也出现了不少新的关注大数据的小型公司。