简述奥氏体的形成过程及影响奥氏体晶粒长大的过程
奥氏体晶粒长大及其控制
*
起始晶粒度:珠光体刚刚转变成奥氏体 的晶粒大小。 实际晶粒度:热处理后所获得的奥氏体 晶粒的大小。 本质晶粒度:度量钢本身晶粒在930℃ 以下,随温度升高,晶粒长 大的程度。
加热速度愈大,过热度就愈大,即奥氏体实际形成温度就愈高,奥氏体的形核率与长大速度之比值I/G增大(表9.1),所以快速加热时可以获得细小的奥氏体起始晶粒。而且,加热速度愈快,奥氏体起始晶粒就愈细小。
*
表9.1 奥氏体的形核率I、长大速度G 与温度的关系
转变温度 (℃)
形核率I (1/mm3·s)
*
(2)晶界推移阻力
图9.12 晶界移动时与第二相粒子的交互作用示意图
1
2
*
在第二相粒子附近的晶界发生弯曲,导致晶界面积增大,界面能升高。弥散析出的第二相粒子愈细小,粒子附近晶界的弯曲曲率就愈大,晶界面积的增大就愈多,因此界面能的增大也就愈多。这个使系统自由能增加的过程是不可能自发进行的。所以,沉淀析出的第二相粒子的存在是晶界推移的阻力。
9.1.4 奥氏体晶粒长大 及其控制
1.奥氏体晶粒度 2.奥氏体晶粒长大原理 3.影响奥氏体晶粒长大的因素
奥氏体化的目的是获得成分均匀和一定晶粒大小的奥氏体组织。多数情况下希望获得细小的奥氏体晶粒,有时也需要得到较大的奥氏体晶粒。因此,为获得所期望的奥氏体晶粒尺度,必须了解奥氏体晶粒的长大规律,掌握控制奥氏体晶粒度的方法。
*
(4)合金元素的影响
钢中加入适量形成难溶化合物的合金元素如Nb、Ti、Zr、V、Al、Ta等,将强烈地阻碍奥氏体晶粒长大,使奥氏体晶粒粗化温度显著升高。上述合金元素在钢中形成熔点高、稳定性强、不易聚集长大的NbC、NbN、Nb(C,N)、TiC等化合物,它们弥散分布于奥氏体基体中,阻碍晶粒长大,从而保持细小的奥氏体晶粒。
热处理习题整理
热处理习题整理⾦属热处理原理与⼯艺习题及解答1.给出简化后的Fe-Fe3C相图,并标出各个区间的相的组成,根据Fe-Fe3C相图,回答下列现象的原因。
(1)含碳量1%的铁碳合⾦⽐含碳量0.5%的铁碳合⾦的硬度⾼。
含碳量1%的铁碳合⾦(过共析)与含碳量0.5%的铁碳合⾦(亚共析)硬度对⽐实际上是解释渗碳体和铁素体之间的的硬度区别。
(2)⼀般要把刚才加热到1000~1250°C⾼温下进⾏热轧加⼯。
奥⽒体的塑性好(3)靠近共晶成分的铁碳合⾦的铸造性能好。
对铸造性来说,铸铁的流动性⽐钢好,易于铸造,特别是靠近共晶成分的铸铁,其结晶温度低,流动性也好,结晶温度范围⼩,更具有良好的铸造性能。
某度给的超长答案:(1)含碳量1%的铁碳合⾦⽐含碳量0.5%的铁碳合⾦硬度⾼。
答:因为铁碳合⾦是由⽐较软的相——铁素体和⽐较硬的相——渗碳体两相组成,渗碳体是铁与碳的化合物,含碳量越⾼,碳化物越多,硬度就越⾼,所以含碳量⾼的铁碳合⾦硬度⾼。
(2)⼀般要把钢材加热到1000~1250°C,在⾼温下进⾏锻轧加⼯。
答:铁碳合⾦中有3种独⽴的组织,铁素体、奥⽒体和渗碳体(珠光体是由铁素体和共析渗碳体构成,莱⽒体是由奥⽒体和共晶渗碳体构成,都不是独⽴组织),其中,奥⽒体是⾯⼼⽴⽅结构晶格,⽽⾯⼼⽴⽅结构滑移系最多,塑性最好,最容易塑性变形,⽽锻轧加⼯就是对钢材进⾏塑性变形的⼯艺,但是奥⽒体⼀般室温下不存在,所以,为了得到奥⽒体,必须把钢材加热到奥⽒体状态,才容易进⾏塑性变形。
此外,如果只加热到奥⽒体状态,在锻造或轧制过程中,温度会下降,故应该加热到温度⽐较⾼的奥⽒体状态,所谓乘热打铁就是如此。
(3)接近共晶成分的铁碳合⾦的铸造性良好。
答:所有成分的铁碳合⾦熔点最低的就是共晶成分,当把铁碳合⾦加热到⼀定温度,⽐如1200度,其他成分的合⾦还没有熔化,⽽只有接近共晶成分(熔点1148度)的合⾦成为液体,故适合铸造。
奥氏体的形成
45-39
(2 8)
随加热温度升 高,奥氏体晶粒长大 速度成指数关系迅速 增大. 加热温度升高 时,保温时间应相应 缩短,这样才能获得 细小的奥氏体晶粒.
图2-21 奥氏体晶粒大小与加热 温度,保温时间的关系
45-40
(2)加热速度的影响
加热速度越大,奥氏体的实际形成温度 越高,形核率与长大速度之比(N/G)随 之增大,可以获得细小的起始晶粒度. 快速加热并且短时间保温可以获得细小 的奥氏体晶粒度. 如果此时长时间保温,由于起始晶粒细 小,加上实际形成温度高,奥氏体晶粒很 容易长大.
45-31
公式(2-6)的推导:
面积为A的晶界如果移动dx 距离时,体系总的Gibbs自由 能变化为dGt ,则沿x方向有力 P作用于晶界上,构成晶界移 动的驱动力. 图2-13中A,B晶粒间的晶界 构成一曲率半径为R的球面.
图2-13 双晶体中的A,B 两晶粒,其中B晶粒呈球 状存在于A晶粒中.
图2-2 Fe-C 相图
45-2
2.1.2 奥氏体的性能 奥氏体的比容最小,线膨胀系数最大,且为顺 磁性(无磁性).利用这一特性可以定量分析奥 氏体含量,测定相变开始点,制作要求热膨胀灵 敏的仪表元件. 奥氏体的导热系数较小,仅比渗碳体大.为避 免工件的变形,不宜采用过大的加热速度. 奥氏体塑性很好,σS 较低,易于塑性变形. 故工件的加工常常加热到奥氏体单相区进行.
45-3
2.1.3 奥氏体形成的热力学条件
G = Gv + Gs+ Gve - Gd ---- 在晶体缺陷处形核 引起的自由能降低 相 变 必 须在一定的过热 度T下,使得GV <0,才 能得到G<0.所以相变必 须在高于 A1 的某一温度下 才能发生,奥氏体才能开 始形核. 图2-3 自由能和温度关系图
金属热处理思考题
《金属热处理》思考题第二章钢在加热时的转变1.说明A1、A3、Acm、Ac1、,Ac3、Accm、Ar1、Ar3、Arcm各临界点的意义。
2.奥氏体形成的全过程经历了那几个阶段?简答各阶段的特点。
3.奥氏体的形核部位在哪里优先及条件?4.哪些因素影响(及如何影响)奥氏体的形成速度?其中最主要的因素是什么?5.为什么说钢的加热相变珠光体向奥氏体转变的过程受碳扩散的控制? 用图示加以说明。
6.粒状珠光体,片状珠光体(粗片状与细片状),回火马氏体转变为奥氏体时共转变速度有何差别?7.什么是奥氏体的起始晶粒度,实际晶粒度,本质晶粒度?8.为什么细晶粒钢强度高,塑性,韧性也好?9.钢件加热时欠热,过热,过烧有何不同?能否返修?10.奥氏体是高温相,在一般钢中冷却下来就已经不存在了,谈论A体晶粒大小,还有什么实际意义?11.钢件加热时过热会造成什么不良后果?12. 什么是珠光体向奥氏体转变过热度?它对钢的组织转变有何影响?第三章珠光体转变与钢的退火和正火1.简述珠光体的形成过程。
2.什么是珠光体?性能如何?如何获得珠光体?3.珠光体有哪几种组织形态?片状珠光体的片间间距决定于什么?它对钢的性能有何影响?4.珠光体的形成条件、组织形态和性能方面有何特点?5.粒状珠光体,片状珠光体(粗片状与细片状),回火马氏体转变为奥氏体时共转变速度有何差别?6.亚共析钢中铁素体和过共析钢中渗碳体有哪几种组织形态?它们对性能有何影响?7.若共析钢加热到A体状态,然后进行等温转变和连续冷却转变,均获得片状珠光体,但其组织特征有何区别?8.为什么说钢的珠光体转变过程受碳扩散的控制? 用图示加以说明。
9.分析渗碳体球化过程的机制和高碳钢要进行球化退火的原因。
10.45钢制零件820℃加热后分别进行退火和正火,其显微组织有什么不同?性能有什么不同?11.何谓球化退火?为什么过共析钢必须采用球化退火而不采用完全退火?12.正火与退火的主要区别是什么?生产中应如何选择正火及退火?第四章马氏体转变1.钢中常见的马氏体形态和亚结构有哪几种?2.马氏体组织有哪几种基本类型?它们在形成条件、晶体结构、组织形态、性能有何特点?3.钢获得马氏体组织的条件是什么?与钢的珠光体相变,马氏体相变有何特点?4.条状M体和片状M体在强度,硬度,韧性等方面的性能差异如何?5.0.2%C,1.0%C钢淬火后的M体形态和亚结构有什么异同?6.钢中常见的马氏体形态和亚结构有哪几种?7.M体的强化机构有哪几个方面?8.Ms点位置高低有什么实际意义?它受哪些因素的影响?其中主要的因素是什么?9.淬火钢中A残的存在有什么影响?决定A残量的因素有哪些?在热处理操作上如何控制?10.试分析如何通过控制热处理工艺因素提高中碳钢件和高碳钢件的强韧性。
奥氏体形成的四个步骤_奥氏体形成的影响因素
奥氏体形成的四个步骤_奥氏体形成的影响因素奥氏体是钢中最重要的组织之一,它具有良好的强度和硬度,被广泛应用于钢材的制造和加工过程中。
奥氏体形成的过程是复杂的,涉及多个步骤和影响因素。
下面将详细介绍奥氏体形成的四个步骤以及奥氏体形成的影响因素。
1.软化处理(预处理):首先,将钢材加热到适当的温度范围进行软化处理。
在软化处理过程中,钢材中的残余应力被消除,晶粒被结晶,这为后续形成奥氏体提供了条件。
2.超韧化处理:在软化处理后,将钢材降温至室温以下,并加入适量的合金元素,如铬、钼等。
超韧化处理的目的是增加钢材的韧性和强度,为奥氏体的形成奠定基础。
3.过冷处理:在超韧化处理后,将钢材继续降温至高温区和过冷区之间的过渡区域。
在这个温度范围内,钢材中的亚稳相(如贝氏体、马氏体等)开始分解,形成奥氏体的种子晶粒。
4.贝氏体转变:在过冷处理的基础上,进一步降温至适当的温度,贝氏体开始转变为奥氏体。
贝氏体转变过程比较复杂,包括界面扩散、原子重排、晶格变形等多个步骤。
通过适当的温度和时间控制,可以得到理想的奥氏体组织。
1.合金元素的存在:合金元素对奥氏体形成有着重要的影响。
例如,铬可以提高钢材的耐蚀性和强度,钼可以提高钢材的硬度和耐热性。
合金元素通过改变钢中的相变温度及相变速率等参数,影响奥氏体的形成过程。
2.冷却速度:冷却速度是影响奥氏体形成最主要的因素之一、快速冷却可以促使钢材中的贝氏体转变为奥氏体,而慢速冷却则有利于贝氏体的形成。
冷却速度的选择根据所需的力学性能及材料的用途来确定。
3.退火温度和时间:退火温度和时间也会对奥氏体形成产生影响。
过高的退火温度会导致晶粒长大,影响奥氏体的结晶性能,而过低的退火温度则会使奥氏体的形成受到限制。
退火时间越长,奥氏体的形成越充分。
4.碳含量:碳是钢中最主要的合金元素,对奥氏体形成有着重要的影响。
在钢中,当碳含量超过一个临界值时(通常为0.8%~1.5%),奥氏体就会形成。
简述钢的奥氏体化过程
简述钢的奥氏体化过程钢是一种重要的金属材料,广泛应用于建筑、制造、交通等领域。
而钢的性能与其组织结构密切相关,其中奥氏体是钢中最重要的组织之一。
本文将简述钢的奥氏体化过程。
一、什么是奥氏体奥氏体是一种由铁和碳组成的固溶体,具有良好的机械性能和塑性。
在钢中,奥氏体的形态、数量和分布对钢的性能起着决定性的影响。
二、奥氏体的形成钢的奥氏体化过程是指在适当的温度下,铁和碳发生固溶反应,形成奥氏体的过程。
奥氏体的形成与钢中的碳含量、温度等因素密切相关。
1. 碳含量钢中的碳含量越低,奥氏体的形成温度越低。
一般来说,碳含量低于0.8%的钢称为低碳钢,碳含量在0.8%-2.11%之间的钢称为中碳钢,碳含量高于 2.11%的钢称为高碳钢。
在低碳钢中,奥氏体的形成温度较低,而在高碳钢中,奥氏体的形成温度较高。
2. 温度温度是奥氏体形成的另一个重要因素。
在适当的温度下,钢中的碳和铁能够充分反应,形成奥氏体。
一般来说,奥氏体的形成温度在800℃-1000℃之间。
三、奥氏体的相变奥氏体的形成是一个相变过程,主要包括两个阶段:奥氏体的形核和奥氏体的长大。
1. 奥氏体的形核当钢中的温度达到奥氏体的形成温度时,奥氏体的形核开始进行。
形核是指在晶界或晶内形成奥氏体的起始过程。
形核的速度取决于温度和钢中的合金元素含量。
当温度升高或合金元素含量增加时,形核速度加快。
2. 奥氏体的长大奥氏体的长大是指形核后的奥氏体晶粒逐渐长大和增多的过程。
在奥氏体的长大过程中,晶界迁移、晶粒的吞噬和晶粒的再结晶等现象会发生,最终形成具有一定形状和尺寸的奥氏体晶粒。
四、奥氏体的应用奥氏体具有良好的塑性和韧性,因此在钢的制造和加工过程中,通常会通过控制奥氏体的形成来调节钢材的性能。
例如,在焊接过程中,通过控制焊接温度和冷却速度,可以获得不同形态和含量的奥氏体,从而实现钢材的强度和韧性的平衡。
奥氏体还可以通过热处理来改善钢材的性能。
热处理是指将钢材加热到适当的温度,保持一定时间后进行冷却,以改变钢材的组织结构和性能。
钢的奥氏体化过程
钢的奥氏体化过程钢是一种重要的金属材料,具有优良的力学性能和耐腐蚀性能。
而钢的奥氏体化过程是指钢在加热冷却过程中的晶体结构转变。
本文将以钢的奥氏体化过程为标题,详细介绍钢的奥氏体化过程及其影响因素。
一、奥氏体的定义奥氏体是一种在钢中常见的晶体结构,具有面心立方结构。
在室温下,奥氏体是钢的主要组织之一,它具有较高的硬度和强度。
二、奥氏体化过程奥氏体化过程是指钢在加热到一定温度后,晶体结构发生转变,从其他组织转变为奥氏体结构的过程。
奥氏体化过程是钢的热处理过程中的重要环节。
1. 加热阶段在奥氏体化过程中,首先需要将钢件加热到一定的温度。
加热温度的选择是根据钢的成分、组织结构和所需性能来确定的。
通常情况下,钢的加热温度在临界点以上,即钢的临界温度。
2. 保温阶段钢件加热到一定温度后,需要保持一段时间,使钢件内部温度均匀分布,以促进晶体结构的转变。
保温时间的长短取决于钢件的尺寸和所需的晶体结构转变程度。
3. 冷却阶段在保温阶段结束后,需要将钢件迅速冷却到室温或低温,以固定奥氏体的晶体结构。
冷却速度的选择也是根据钢的成分、组织结构和所需性能来确定的。
通常情况下,冷却速度越快,所得到的奥氏体的晶体结构越细小,强度和硬度也会相应提高。
三、奥氏体化过程的影响因素奥氏体化过程的结果会受到多种因素的影响,包括温度、时间和冷却速度等。
1. 温度温度是奥氏体化过程中最重要的影响因素之一。
加热温度的选择应根据钢的成分和所需的晶体结构来确定。
过高的温度可能导致晶粒长大,从而降低钢的强度和硬度。
2. 时间保温时间的长短也会对奥氏体化过程产生影响。
保温时间过短可能导致晶体结构转变不完全,保温时间过长则可能导致晶粒长大。
因此,保温时间的选择应根据钢的成分和所需的晶体结构转变程度来确定。
3. 冷却速度冷却速度是奥氏体化过程中另一个重要的影响因素。
快速冷却可以得到细小的奥氏体晶粒,从而提高钢的强度和硬度。
慢速冷却则会导致晶粒长大,从而降低钢的强度和硬度。
奥氏体形成过程
当剩余渗碳体全部溶解后奥氏体中的碳浓度仍是不均匀的原来存在渗碳体的区域碳浓度较高而原来存在铁素体的区域碳浓度较低只有继续延长保温时间使碳原子充分扩散才能得到成分均匀的单相奥氏体
以共析钢为例,说明奥氏体是怎样形成的。并讨论为 什么在铁素体消失的瞬间,还有部分渗碳体未溶解?
奥氏体的形成过程由Fe的晶格改组和Fe、C 原子的扩散,它包括四个阶段:
Page 7
(四)、奥氏体成分均匀化: 当剩余渗碳体全部溶解后,奥氏体中的碳浓度仍是不均匀的,原 来存在渗碳体的区域碳浓度较高,而原来存在铁素体的区域碳浓 度较低,只有继续延长保温时间,使碳原子充分扩散才能得到成 分均匀的单相奥氏体。
综上述共析碳钢的奥氏体等温形成是通过碳、铁原子的扩散, 通过形核—长大—碳化物溶解—奥氏体均匀化四个步骤实现的。
奥氏体核的形成; 奥氏体核的长大 剩余渗碳体溶解; 奥氏体成分均匀化
Page 2
(一)、奥氏体形核的形;奥氏体晶核优先在铁素体与渗碳体相界面 处通过扩散机制形成; (2)珠光体团交界处; (3)先共析铁素体/珠光体团交界处。 2、在上述位置优先在铁素体与渗碳体相界面处形核,这是由 于满足三个起伏:
2、碳原子在铁素体内部的扩散: 碳在奥氏体中的扩散的同时,在奥氏体中出现了碳的浓度梯 度(CA-Fe3C-CA-F),碳在铁素体中也 进行扩散,促使奥氏 体长大。由于F中与A交界的界面浓度CF-A原子向A一侧扩散, 使F中碳浓度升高,有利于向奥氏体的转化。
Page 6
(三)、剩余渗碳体溶解:
铁素体消失以后,仍有部分渗碳体尚未溶解,这部分渗碳体称为剩余渗 碳体。 1、实验现象: (1)、F消失时,组织中的Fe3C还未完全转变; (2)、测定后发现A中含碳量低于共析成分0.77%。 2、原因: Fe-Fe3C相图上ES线斜度大于GS线,S点不在CA-F与CA- Fe3C中点,而 稍偏右。所以A中平均 碳浓度,即(CA-F + CA- Fe3C)/2低于S点成分。 当F全部转变为A后,多余的碳即以Fe3C形式存在。 通过随着保温时间延长或继续升温,剩余渗碳体通过碳原子的扩散,不 断溶入奥氏体中,使奥氏体的碳浓度逐渐接近共析成分。这一阶段一直 进行到渗碳体全部消失为止。
材料工程基础答案
一、金属材料的制备1.简要说明高炉的结构及高炉内主要区域分布。
高炉本体是冶炼生铁的主体设备。
由耐火材料砌筑成竖式圆筒形,外有钢板炉壳加固密封,内嵌冷却设备保护;高炉内部工作空间的形状称为高炉内型。
高炉内型从下往上分为炉缸、炉腹、炉腰、炉身和炉喉五个局部,该容积总和为它的有效容积,反映高炉所具备的生产能力。
根据物料存在形态的不同,可将高炉划分为五个区域:块状带、软熔带、滴落带、风口前盘旋区、渣体聚集区。
2高炉炼铁的主要原料和产品分别是什么?原料:铁矿石:含铁矿物+脉石=机械混合物天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿和菱铁矿等几种产品:〔1〕生铁-----不是纯铁!!含Fe、C、Si、Mn、P、S等元素组成的合金。
w(C)在2%左右,实际上可达3.5%-4.5%铸造生铁:即灰口生铁,碳以游离石墨形式存在,断面呈灰色炼钢生铁:即白口生铁,碳以Fe3C形式存在,断面呈银白色特种生铁:高锰、高硅生铁〔2〕高炉煤气:含CO、CO2、CH4、H2等〔3〕炉渣3高炉炼铁的主要理化过程有哪些?主要的反响有哪些?1〕燃烧过程:C+O2——CO2↑CO2在上升过程中:CO2+C——CO↑2〕溶剂分解:CaCO3——CaO+CO2↑3〕铁的复原:FeO+CO——CO2+Fe(间接复原)FeO+C——Fe+CO 〔直接复原〕4〕增碳:铁水在与焦碳的接触中会增碳-扩散过程,使铁水被C所饱和。
5〕其他元素的复原:Mn,Si 局部被复原,被复原后进入铁水中Al不被复原,只能和熔剂形成渣6〕去S: FeS+CaO——CaS+FeO7〕P复原:Ca3(PO4)2+5C -3CaO+2P+5CO8〕造渣:SiO2、Al2O3、CaO等铁水中:C饱和,溶有局部Mn,Si,S以及全部的P。
4炼钢有哪些主要方法?炼钢过程的主要反响是什么?主要方法:转炉炼钢:氧气转炉炼钢法电炉炼钢:电弧炉炼钢法平炉炼钢炼钢过程的主要反响:脱CSi、Mn的氧化脱P脱S脱O5说明连铸机的组成及作用。
材料热处理原理第二章 奥氏体的形成
• 奥氏体的形成速度:形核率I 和长大速度G
转变温度/℃
740 760 780 800
共析碳钢
形核率I /(1/mm3s)
长大速度 G/(mm/s)
2280
0.0005
11000
0.010
51500
0.026
616000
0.041
转变一半所需 时间/s 100 9 3 1
• T,形成速度增大
1. 奥氏体等温形成动力学
结构: 体心立方 复杂斜方 面心立方
C含量: 0.02% 6.69% 0.77%
奥氏体A(γ)
Acm A3
A1
奥氏体的形成: (1) 的点阵重构 (2)渗碳体的溶解 (3)C在中的扩散重新分布
1. 奥氏体形核
G -Vgv S V < 0
V•gv :新奥氏体与母相之间的体积 自由能之差,加热相变的动力
T,有利于改善淬火钢尤其是淬火高碳工具钢的韧性。
1. 奥氏体等温形成动力学
• ②碳含量的影响
– 钢中碳含量愈高,奥氏体形成速度就愈快。
原因:
**碳含量增高时,碳化物数量增多,铁素体与渗碳体的相
界面面积增大,因而增加了奥氏体的形核部位,使形核率增 大。
**同时,碳化物数量增多后,使碳的扩散距离减小, ** 随奥氏体中碳含量增加,碳和铁原子的扩散系数增大
1. 奥氏体等温形成动力学
• T
C / - C /
形核所需C浓度的起伏
,有利于提高形核率
• 因此,T,相变过热 度增加,形核急剧增 加 (I>G),有利于形 成细小的奥氏体晶粒。
1.奥氏体等温形成动力学
(2) 长大速度G • 等温转变
G
重庆大学金属学热处理期末试题
XX大学学期考试试卷课程名称:金属学及热处理课程代码:主要班级:教学班号:本卷为 A 卷,共 2 页,考试方式:闭卷,考试时间:120 分钟一、填空题(15分)1、在BCC和FCC晶格中,单位晶胞内的原子数分别为和,其致密度分别为和。
2、金属的结晶过程是的过程。
控制结晶后晶粒大小的方法有、和。
3、冷变形金属在加热时组织与性能的变化,随加热温度不同,大致分为、和三个阶段。
4、1Crl8Ni9Ti钢中Ti的作用是,而20CrMnTi钢中Ti的作用是。
5、碳在白口铸铁中主要以形式存在,而在灰口铸铁中主要以形式存在。
二、名词解释(10分)1、合金;2、共晶转变;3、枝晶偏析;4、伪共晶;5、回复;三、选择题(12分)1、工程上使用的金属材料一般都呈( )。
A.各向异性;B.各向同性;C.伪各向异性;D.伪各向同性。
2、固溶体的晶体结构( )。
A.与溶剂的相同;B.与溶质的相同;C.与溶剂、溶质的都不相同;D.是两组元各自结构的混合。
3、多晶体金属的晶粒越细,则其( )。
A.强度越高,塑性越好B.强度越高,塑性越差C.强度越低,塑性越好D.强度越低,塑性越差4、调质处理后可获得综合力学性能好的组织是( )A.回火马氏体B.回火托氏体C.回火索氏体D.索氏体5、过共析钢正火的目的是( )。
A.调整硬度,改善切削加工性B.细化晶粒,为淬火作组织准备C消除网状二次渗碳体D.防止淬火变形与开裂6、对于可热处理强化的铝合金,其热处理方法为( )。
A.淬火+低温回火B.完全退火C.水韧处理D.固溶+时效四、判断题(5分)1、金属铸件可通过再结晶退火来细化晶粒。
( )2、亚共析钢加热至Ac1和Ac3之间将获得奥氏体+铁素体二相组织,在此区间,奥氏体的含碳量总是大于钢的含碳量。
( )3、化学热处理既改变工件表面的化学成分,又改变其表面组织。
( )4、所有合金元素均使Ms、Mf点下降。
( )5、可锻铸铁可在高温下进行锻造加工。
金属材料与热处理课后习题
第一章金属材料基础知识1、什么是强度?材料强度设计的两个重要指标分别是什么?2、什么是塑性?塑性对材料的使用有何实际意义?3、绘出简化后的Fe-Fe3C相图。
4、根据Fe-Fe3C相图,说明下列现象的原因。
(1)含碳量1%的铁碳合金比含碳量0.5%的铁碳合金的硬度高。
(2)一般要把钢材加热到1000~1250℃高温下进行锻轧加工。
(3)靠近共晶成分的铁碳合金的铸造性能好。
5、随着含碳量的增加,钢的组织性能如何变化?6、铁碳相图中的几个单相分别是什么?其本质及性能如何?第二章钢的热处理原理1、何谓奥氏体?简述奥氏体转变的形成过程及影响奥氏体晶粒长大的因素。
奥氏体晶粒的大小对钢热处理后的性能有何影响?2、什么是过冷奥氏体与残余奥氏体。
3、为什么相同含碳量的合金钢比碳素钢热处理的加热温度要高、保温时间要长?4、画出共析钢过冷奥氏体等温转变动力学图。
并标出:(1)各区的组织和临界点(线)代表的意义;(2)临界冷却曲线;,S,T+M组织的冷却曲线。
(3)分别获得M、P、B下5、什么是第一类回火脆性和第二类回火脆性?如何消除?6、说明45钢试样(Φ10mm)经下列温度加热、保温并在水中冷却得到的室温组织:700℃,780℃,860℃,1100℃。
7、马氏体的本质是什么?它的硬度为什么很高?是什么因素决定了它的脆性?8、简述随回火温度升高,淬火钢在回火过程中的组织转变过程与性能的变化趋势。
第三章钢的热处理工艺1、简述退火的种类、目的、用途。
2、什么是正火?正火有哪些应用?3、什么是淬火,淬火的主要目的是什么?4、什么是临界冷却速度?它与钢的淬透性有何关系?5、什么是表面淬火?表面淬火的方法有哪几种?表面淬火适应于什么钢?简述钢的表面淬火的目的及应用。
6、有一具有网状渗碳体的T12钢坯,应进行哪些热处理才能达到改善切削加工性能的目的?试说明热处理后的组织状态。
7、简述化学热处理的几个基本过程。
渗碳缓冷后和再经淬火回火后由表面到心部是由什么组织组成?8、什么是钢的淬透性和淬硬性?影响钢的淬透性的因素有哪些?如何影响?9、过共析钢一般在什么温度下淬火?为什么?10、将共析钢加热至780℃,经保温后,请回答:(1)若以图示的V1、V2、V3、V4、V5和V6的速度进行冷却,各得到什么组织?(2)如将V1冷却后的钢重新加热至530℃,经保温后冷却又将得到什么组织?力学性能有何变化?11、甲、乙两厂生产同一种零件,均选用 45 钢,硬度要求 220 ~ 250HBS 。
描述共析钢的奥氏体化过程,影响奥氏体晶粒大小的因素
描述共析钢的奥氏体化过程,影响奥氏体晶粒大小的因素
共析钢的奥氏体化过程是指共析钢中的铁碳合金在冷却过程中发生相变,从而形成奥氏体晶粒。
在共析钢的冷却过程中,先是由高温下的奥氏体发生分解,形成初生铁素体和渗碳体。
随着冷却的进行,初生铁素体和渗碳体会发生固溶体转变,形成奥氏体晶粒。
影响奥氏体晶粒大小的因素主要有以下几个:
1. 冷却速度:冷却速度越快,奥氏体晶粒越细小。
快速冷却能够抑制铁素体的生长,从而减小奥氏体晶粒尺寸。
2. 碳含量:碳含量越高,奥氏体晶粒越大。
高碳铁素体在共析钢中会转变为奥氏体,因此,高碳量会使奥氏体晶粒尺寸增大。
3. 合金元素:合金元素的添加可以影响奥氏体晶粒的形成。
一些合金元素,如铌、钒、钛,能够抑制铁素体的生长,使奥氏体晶粒尺寸减小。
4. 热处理工艺:调整共析钢的热处理工艺,如控制加热温度、保温时间等,可以影响奥氏体晶粒的大小。
总的来说,奥氏体晶粒的大小是通过控制冷却速度、碳含量、合金元素和热处理工艺等因素来实现的。
较细小的奥氏体晶粒通常具有更好的力学性能和韧性。
潘金生《材料科学基础》(修订版)(章节题库 固态相变(Ⅰ)——扩散型相变)【圣才出品】
3.说明奥氏体的概念,简述奥氏体转变的形成过程及影响奥氏体晶粒长大的因素。 答:奥氏体是 C 溶解在 γ-Fe 中的固溶体。 形成过程:奥氏体生核,长大,残余渗碳体溶解,奥氏体均匀化。 影响晶粒长大的因素:加热温度、保温时间、加热速度、含碳量、合金元素、冶炼方 法、原始组织等。
4.根据共析碳钢的过冷奥氏体转变 c 曲线(TTT 曲线)(如图 11-1 所示),请写出经 过图中所示 6 种不同工艺处理后材料的组织名称以及硬度排列(从高到低)。
留下位错环。将增加位错线长度,并且第二相粒子及位错环加大对后续运动位错的阻力,
产生第二相强化。
(2)如果析出相粒子可发生变形,将产生新的相界面,使析出相与基体相之间共格
(或半共格)界面遭到破坏;滑移面产生错配,可能使有序排列遭到破坏。综上,宏观产
生强化。
2.实际应用过程中,为消除时效强化可采用什么处理方法?为什么? 答:通过时效回归处理或重新固溶处理可以使时效强化现象消失。因为伴随着时效回 归处理或重新固溶处理沉淀脱溶产生的第二相重新溶入固溶体之中。当沉淀析出相已经为 稳定相时,只能采用固溶处理。
6/7
圣才电子书
十万种考研考证电子书、题库视频学习平 台
图 11-5
(3)珠光体相对含量为: 6.67-1.1 X100% 94.4% 6.67-0.77
网状渗碳体相对含量为: 1.1-0.77 X100% 5.6% 6.67-0.77
圣才电子书
十万种考研考证电子书、题库视频学习平
台
第 11 章 固态相变(Ⅰ)——扩散型相变
一、选择题 任一合金的有序结构形成温度( )无序结构形成温度。 A.低于 B.高于 C.可能低于或高于 【答案】A
二、判断题 奥氏体的溶碳能力之所以比铁素体高是因为奥氏体晶体间隙大。( ) 【答案】√ 【解析】铁素体即为碳在 α-Fe 中的间隙固溶体,具有体心立方结构,奥氏体为耐心 立方点阵结构,是一种最密排的点阵结构,与铁素体相比晶体间隙小,溶碳能力小。
材料科学基础复习题及答案(1)
一、填空题1.铸锭的宏观组织是由表层细晶区、柱状晶区、中心等轴晶区三个区组成。
2. 每个面心立方晶胞中的原子数为 4 ,其配位数为12 。
3a, 配3.晶格常数为a的体心立方晶胞, 其原子数为 2 , 原子半径为4/位数为 8 ,致密度为 0.68 。
4. 根据参数相互关系,可将全部点阵归属于7 种晶系,14 种布拉维点阵。
5. 刃型位错的柏氏矢量与位错线互相垂直 , 螺型位错的柏氏矢量与位错线互相平行。
螺型位错的位错线平行于滑移方向,位错线的运动方向垂直于位错线。
6. 扩散的驱动力是__化学势梯度____。
分别以D L、D S和D B表示晶内、表面和界面的扩散系数,则三者大小的一般规律是D L<D B<D S 。
7. 在过冷液体中,晶胚尺寸小于临界尺寸时不能自发长大。
8. 均匀形核既需要结构起伏,又需要能量起伏。
9. 蠕变是指在某温度下恒定应力下所发生的缓慢而连续的塑性流变现象。
10. 再结晶形核机制包括晶界弓出和亚晶形核两种,其中亚晶形核机制又分为亚晶合并和亚晶迁移两种。
11. 纯金属结晶时,固液界面按微观结构分为光滑界面和粗糙界面。
12.纯金属的实际开始结晶温度总是低于理论结晶温度,这种现象称为过冷,理论结晶温度与实际开始结晶温度之差称为过冷度。
13.合金中的基本相结构,有固溶体和金属化合物两类,其中前者具有较高的综合机械性能,适宜做基体相;后者具有较高的熔点和硬度,适宜做强化相。
14. 刃型位错的割阶部分仍为刃型位错,扭折部分则为螺型位错;螺形位错中的扭折和割阶部分均属于刃型位错。
15. 再结晶的驱动力是变形金属经回复后未被释放的储存能。
16. 为了使材料获得超塑性,通常应满足三个条件:具有等轴细小两相组织、在(0.5~0.65)Tm 温度范围内和在10-2~10-4 s-1 应变率范围内进行。
17. 非稳态扩散可用菲克第一定律结合质量守恒条件推导出的菲克第二定律描述。
18. 间隙相和间隙化合物主要受组元的 原子尺寸 因素控制。
课题二奥氏体形成
(3)剩余渗碳体的溶解 剩余渗碳体借助于Fe、C原子的扩散进 一步溶解。
(4)奥氏体成分的均匀化 原渗碳体部位的碳浓度高,原铁素体部 位的碳浓度低。 通过Fe、C原子在新形成奥氏体中的扩 散,实现奥氏体成分的均匀化。
17
4、 奥氏体形成的动力学
4.1 形核率
为了满足形核的热力学条件,需依靠能量起 伏,补偿临界晶核形核功,所以形核率应与获 得能量涨落的几率因子 exp(-∆G*/kT) 成正比。
在 930±10℃,保温3~8小时后测定: 1~4级----本质粗晶粒钢,晶粒容易长大。 5~8级----本质细晶粒钢,晶粒不容易长大。
30
Ac1
930℃
图2-11 加热温度对奥氏体晶粒大小的影响 31
6.2 奥氏体晶粒长大机制
(1) 晶粒长大的驱动力
驱动力来自总的晶界能的下降。
对于球面晶界,有一指向曲率中 心的驱动力P作用于晶界。
Vt ---- 新形成奥氏体的体积分数
转变量达50%左右时,转变速度最大。 转变温度越高,奥氏体形成的孕育期越短。 转变温度越高,完成转变所需的时间越短。
21
形成温度升高,N的 增长速率高于G的增长 速 率 , N/G 增 大 , 可 获 得细小的起始晶粒度。
形 成 温 度 升 高 , Gγ→α/Gγ→k 增大 , 铁 素 体消失时,剩余渗碳体 量增大,形成奥氏体的 平均碳含量降低。
晶粒长大速度与晶界迁移速率及晶 粒长大驱动力成正比。
V K exp Qm
RT R K 常数
(2 8)
Qm 晶界移动激活能
40
随加热温度升高, 奥氏体晶粒长大速 度成指数关系迅速 增大。
加热温度升高时, 保温时间应相应缩 短,这样才能获得 细小的奥氏体晶粒。
钢在加热时的转变
钢在加热时的转变热处理—将固体金属或合金在一定介质中的加热、保温和冷却,以改变材料整体或表面组织,从而获得所需要的工艺性能。
大多数热处理工艺都要将钢加热到临界温度以上,获得全部或部分奥氏体组织,即奥氏体化。
奥氏体的形成奥氏体的形成是形核和长大的过程,也是Fe,C原子扩散和晶格改变的过程。
分为四步。
共析钢中奥氏体的形成过程如图1所示:第一步奥氏体晶核形成:首先在a与Fe3C相界形核。
第二步奥氏体晶核长大:g晶核通过碳原子的扩散向a和Fe3C方向长大。
第三步残余Fe3C溶解:铁素体的成分、结构更接近于奥氏体,因而先消失。
残余的Fe3C随保温时间延长继续溶解直至消失。
第四步奥氏体成分均匀化:Fe3C溶解后,其所在部位碳含量仍很高,通过长时间保温使奥氏体成分趋于均匀。
图1 奥氏体的形成示意图亚共析钢和过共析钢的奥氏体化过程与共析钢基本相同。
但由于先共析a或二次Fe3C的存在,要获得全部奥氏体组织,必须相应加热到Ac3或Accm以上。
2. 影响奥氏体转变速度的因素(1)加热温度和速度增加→转变快;(2)钢中的碳质量分数增加或Fe3C片间距减小→界面多,形核多→转变快;(3)合金元素→钴、镍增加奥氏体化速度,铬、钼等降低奥氏体化速度。
3.奥氏体晶粒度(1)奥氏体晶粒度—奥氏体晶粒越细,退火后组织细,则钢的强度、塑性、韧性较好。
淬火后得到的马氏体也细小,韧性得到改善。
某一具体热处理或加工条件下的奥氏体的晶粒度叫实际晶粒度。
奥氏体化刚结束时的晶粒度称起始晶粒度,此时晶粒细小均匀。
通常将钢加热到930±10℃奥氏体化后,保温8小时,设法把奥氏体晶粒保留到室温测得的晶粒度为本质晶粒度。
用来衡量钢加热时奥氏体晶粒的长大倾向。
g晶粒度为1-4级的是本质粗晶粒钢,5-8级的是本质细晶粒钢。
前者晶粒长大倾向大,后者晶粒长大倾向小。
(2)影响奥氏体晶粒度的因素第一,加热温度越高,保温时间越长→晶粒尺寸越大。
第二,碳质量分数越大晶粒长大倾向增多。
2014考研西安理工大学《816材料科学基础》真题、典型题解析讲义
1 .指出位错环各部分的位错类型。 2 .若柏氏矢量 b 垂直于位错环所在的水平面,指出位错环各部分的位错类型。 3 .在图中表示出使位错环向外运动所需施加的切应力方向。 4 .该位错环运动出品体后,晶体外形如何变化?
四、F e - F e C相图分析 3
1 .默画 F e - F e C相图,标出各点的含碳量并写出三条水平线上的反应。 3 2 .若有两个钢试样,经组织分析其珠光体的含量相同,能否得出这两种试样是同一种材料?为 什么? 3 .计算含碳量为 4 2 8 %的铁碳合金在 1 1 4 8 ℃温度的平衡分配系数,并说明其在该温度平衡凝固和 非平衡凝固时组织上出现的差别。 4 .分析含碳量为 1 8 %的铁碳合金的平衡结晶过程,并计算其最终组织组成物和相组成物的相对 含量。
西安理工大学《 8 1 6材料科学基础》 真题、 典型题解析
— 3—
考试点( w w w k a o s h i d i a n c o m ) 名师精品课程 电话: 4 0 0 6 8 8 5 3 6 5
第 3讲 2 0 0 8年真题解析 ( 一)
一、名词解释
1 .成分过冷 2 .中间相 3 .离异共晶 4 .反应扩散 5 .动态再结晶
— 7—
考试点( w w w k a o s h i d i a n c o m ) 名师精品课程 电话: 4 0 0 6 8 8 5 3 6 5
( 2 ) 如将 v 冷却后的钢重新加热至 5 3 0 ℃,经保温后冷却后又将得到什么组织?力学性能有何 1 变化? ( 3 ) 论述影响钢的淬透性的因素。 :M + A :T+ M;v :S + T+ M+ A :S + T ;v :S ;v :S 。 3 .( 1 )v 1 残留 ; v 2 3 残留 ; v 4 5 6 ( 2 )S 回火,硬度有所下降,塑性、韧性等上升,综合力学性能提高。 ( 3 ) 影响材料淬透性的因素有: 1 ) 钢的化学成分 ①碳含量:碳含量增加,淬透性增加。 i 、Z r 、C o 外,其他元素的加入会增加淬透性。 ②合金元素:除 T 2 ) 奥氏体晶粒度:奥氏体晶粒度越大,淬透性越大。 3 ) 奥氏体化温度,奥氏体化温度越高,淬透性越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回答人的补充 2009-06-18 11:30
4. 合金元素的影响 当钢中含有能形成难熔化合物的合金元素,如Ti、Zr、V、Al、Nb、Ta等时,会强烈阻止奥氏体晶粒长大,并使奥氏体粗化温度升高。但不形成化合物的合金元素,如Si、Ni、Cu则影响不大。Mn、散,所以,会促进奥氏体晶粒长大