第三章 电力系统的短路电流计算

合集下载

电力系统短路电流计算

电力系统短路电流计算

电力系统短路电流计算附录1电力系统的短路计算1.1一般规定1.1.1一般要求1.1.1.1本附录适用于船舶交流电力系统三相短路的短路电流和短路功率因数的计算。

两相短路的短路电流值,可取为相应三相短路的短路电流值的0.866倍。

1.1.1.2本计算方法适用于交流50Hz或60Hz非网格形,且中性点通过阻抗接地或中性点绝缘的低压和高压三相电力系统。

其计算结果具有足够的精确度。

1.1.1.3采用本计算方法计算短路发生后100m以内的短路电流,其计算结果可用作:(1)校核所选用的保护电器的短路接通能力和短路分断能力;(2)校核汇流排等元件的电动力稳定性和热稳定性;(3)为电力系统保护的设计和整定提供依据;(4)为在必要时选择适当的限流设备,以能将短路电流限制在保护电器的能力范围之内提供依据。

1.1.1.4在计算最大短路电流时,应考虑最恶劣情况,即应计及对应于船舶或海上设施电站最大负载工况下:(1)所有可能并联连接于主汇流排的发电机(包括短时转移负载的发电机在内)所馈送的短路电流;(2)所有可能投入运行的电动机所馈送的短路电流。

1.1.1.5一般应计算下列各处的短路电流:(1)发电机输出端;(2)主汇流排;(3)应急配电板、区配电板以及分配电板的汇流排;(4)电力和照明变压器次级侧。

此外,为电力系统保护的设计和整定需要,有时还应进行馈电线末端短路电流的计算。

1.1.1.6计算所需要的发电机、电动机、变压器和电缆等的各项特征参数,应由产品制造厂提供,并保证足够的精确度。

1.1.2定义1.1.2.1短路在正常情况下电路中处于不同电压的两点或更多点,通过一比较低的电阻或阻抗偶然或有意的连接。

1.1.2.2短路电流在电源不变情况下,由于故障或误操作引起短路而产生的过电流。

1.1.2.3预期短路电流(针对开关电器)当开关电器的每一极由一阻抗可以忽略不计的导体代替时,电路中可能流过的短路电流。

1.1.2.4对称短路电流预期(可达到的)短路电流交流对称分量的方均根值。

第三章短路电流及其计算

第三章短路电流及其计算

例题 3—2,P60
6、计算示例
例题:已知供电系统如图所示,系统出口断路器的断路容量为 500MVA。 求:1)工厂配电所10kV母线上k1点和车间变电所低压380V母线上 * * k2点短路回路的总电抗标幺值 X k 1 X k 2 ,值; , ( (3 ( 2)k1 ,k2两点的 I k 3) ish ) 及 S k 3 ) 值。 ,
根据
Id * X
I
( 3) 可以分别计算出 k
( (3 (3 I k( 2) , I ''(3) , I 3) , ish ) , I sh ) , S k(3) 。
4、三相短路容量
S
( 3) k
3I dU c S d 3I U C * * X X
( 3) k
5、计算步骤
(1)确定各基准值; (2)分别计算各元件电抗标幺值; (3)根据计算电路绘出等效电路,并将各元件电抗标幺值和短路 计算点一一标出在等效电路上; (4)分别求出各短路计算点的总电抗标幺值; (5)分别计算各短路计算点的各短路参数值; (6)将各计算结果列表。
2、短路电流非周期分量
(波形按指数函数衰减 )
t t
inp inp( 0)e

2 I ' 'e

3、短路瞬时电流
ik i p inp I k .m sin( t k ) inp( 0) e
Rt t L
4、短路冲击电流
ish K sh 2I ''
第三章
短路电流及其计算
本章主要内容:无限大容量电力系统三相短路时的物理过 程及物理量 三相短路及两相和单相短路的计算 短路电流的效应及短路校验条件 第一节 短路的原因、后果、形式及几率

第3章电力系统的短路

第3章电力系统的短路

第3章电⼒系统的短路第3章电⼒系统的短路3.1 短路的类型及计算假设3.1.1短路的原因、类型及后果短路是电⼒系统的严重故障。

短路:指⼀切不正常的相与相或相与地(对于中性点接地的系统)之间发⽣通路的情况。

1.短路的原因元件损坏;⽓象条件恶化;⼈为事故;其他,如⼯程建设时挖沟损伤电缆等;2.短路的类型三相短路、两相短路、两相接地短路、单相接地短路等。

三相短路也称对称短路;其他类型的短路是不对称短路;3.短路的后果1)短路故障使短路点附近⽀路出现⽐正常电流⼤许多倍的短路电流,产⽣较⼤的电动效应和热效应,破坏设备;2)短路时系统电压⼤幅度下降,对⽤户影响很⼤;3)短路会使并列运⾏的发电机失去同步,破坏系统的稳定,造成系统的解列,出现⼤⾯积停电;4)不对称短路对附近通信线路和⽆线电波会产⽣电磁⼲扰。

3.1.2短路电流计算的⽬的与计算假设1.短路电流计算的⽬的选择有⾜够机械稳定和热稳定的电器设备;合理配置各种继电保护和⾃动装置并正确整定其参数;设计和选择发电⼚和电⼒系统主接线;进⾏电⼒系统的暂态稳定计算,分析短路对⽤户的影响;确定输电线路对通信的影响;2.短路电流计算的基本假设短路过程中各发电机之间不发⽣摇摆,并认为所有发电机的电势都同相位;负荷只作近似估计,或当作恒定电抗,或当做某种临时附加电源,要视具体情况⽽定;不计磁路饱和;对称三相系统;忽略⾼压输电线的电阻和电容,忽略变压器的电阻和励磁电流,即发电、输电、变电和⽤电均⽤纯电抗表⽰;⾦属性短路:不计过渡电阻的影响,即认为过渡电阻等于零的短路情况;3.1.3实⽤短路电流计算的基本流程根据基本假设,采⽤标⼳值⽅法计算已知待计算系统所有设备的电抗标⼳值;⽤设备电抗标⼳值替换设备元件并重新绘制成图,形成短路计算电路图;等值简化⽹络,简化⽬标是所有电源到短路点都只有⼀个等值电抗的最简单等值电路图;采⽤⽆限⼤容量系统的概念计算现实中电⼒系统对短路点提供的短路电流;采⽤⽆限⼤容量系统的概念计算现实中电⼒系统的短路电流;叠加不同元件相同时刻的短路电流。

电力系统短路电流计算

电力系统短路电流计算

电力系统短路电流计算电力系统短路电流计算是电力系统设计和运行中非常重要的一项工作。

短路电流是指在系统发生故障时电流的最大值,通常由短路电流计算来确定。

短路电流的计算对于保护设备的选择、电路设计和系统运行状态的分析都具有重要意义。

短路电流计算主要分为对称分量法和非对称分量法两种方法。

下面将对这两种方法进行详细介绍。

1.对称分量法:对称分量法是一种传统的短路电流计算方法,它将三相电流分解为正序、负序和零序三个对称分量,然后再计算每个分量的短路电流。

对称分量法的计算步骤如下:a.首先需要确定系统的短路电流初始值。

可以通过测量系统的各个节点电压和电流来获得。

一般来说,短路电流初始值取系统额定电流的2-3倍。

b.将系统的正常运行条件下的三相电流表示为复数形式:iA,iB和iC。

c.计算三相电流的正序分量:I1=(iA+α^2*iB+α*iC)/3,其中α=e^(j2π/3),j为虚数单位。

d.计算三相电流的负序分量:I2=(iA+α*iB+α^2*iC)/3e.计算三相电流的零序分量:I0=(iA+iB+iC)/3f.计算每个分量的短路电流。

可以使用短路电流公式和阻抗矩阵来计算。

例如,正序分量的短路电流I1'=Z1*I1,其中Z1为正序阻抗。

g.将三个分量的短路电流叠加得到总的短路电流。

2.非对称分量法:非对称分量法是一种更加准确的短路电流计算方法,它考虑了系统故障时的非对称特性,可以更好地反映系统的短路电流分布。

非对称分量法的计算步骤如下:a.获取系统正常运行条件下的三相电流。

b. 将三相电流转换为abc坐标系下的矢量形式。

c.计算叠加故障电流矢量。

d. 将叠加故障电流矢量转换为dq0坐标系的正序、负序和零序分量。

e.根据正、负、零序分量计算短路电流。

非对称分量法相比于对称分量法更加准确,但在计算过程中需要考虑更多的参数和细节,计算复杂度较高。

需要注意的是,短路电流计算是在假设系统中所有设备均采用理想的电气参数的情况下进行的。

第3章-短路电流计算

第3章-短路电流计算


确定合理的主接线方案和运行方式
第三章
短路电流计算
无限大容量供电 系统三相短路分析
第二节
第三章
短路电流计算
一、无限大容量电源概念

无限大容量供电系统定义


内阻为零
端电压恒定不变 短路电流周期分量恒定不变
通常将电源内阻抗小于短路回路总阻抗10%的电源看作无限大
容量供电系统;一般的工矿企业供电系统的短路点离电源的距
产生最大短路电流的条件
最大三相短路电流是指最大短路电 流瞬时值。由ik的公式可以知道,短 路电流瞬时值最大的条件就是短路电 流非周期分量初始值最大的条件。 短路电流非周期初始值既与短路
前的负载情况有关,又与短路发生时
刻、短路后回路性质有关。 因此,当供电回路为空载Im=0或者cosψ=1时,Im与横轴重合。电源 电压过零(电源电压与横坐标重合)时短路,而且短路回路为纯感性, 则短路电流非周期初始值最大。
短路电流计算
无限大电源容量的暂态过程
设电源电压为: 正常运行电流为:
u ph = U phm sin(wt + q) i = I phm sin(wt + q - f )
I phm = U phm / ( R + Rlo )2 + (wl + wLlo )2
式中:I
-短路前电流的幅值
phm


-短路前回路的阻抗角
对于纯感性电路ksh =2;
第三章
有效值,
短路电流计算
短路冲击电流的有效值Ish是指短路后第一个周期的短路电流全电流的
I sh =
I
2 pe (0.01)
+I

第三章电力系统三相短路的实用计算

第三章电力系统三相短路的实用计算

计算的条件和近似:电源
E|0| U|0| jI|0| xd
发电机的等值电动势为次暂态电动势; 等值电抗为直轴次暂态电抗; 若忽略负荷,则短路前为空载状态,所有电源的等值电动 势标幺值均为1,且同相位。 当短路点远离电源时,发电机端电压母线看作恒定电压源。
计算的条件和近似:电网 • 忽略线路对地电容和变压器的励磁回路 • 计算高压网时忽略电阻,低压网和电缆 线路用阻抗模值计算 • 标幺值计算中取变压器变比为平均额定 电压之比
计算的条件和近似:负荷 • 不计负荷(均断开)。 • 短路前按空载情况决定次暂态电动势, 短路后电网上依旧不接负荷。 • 近似的可行性是由于短路后电网电压下 降,负荷电流<<短路电流。
计算的条件和近似:电动机
• 短路后瞬间电动机倒送短路电流现象:图3-1 异步电动机在失去电源后能提供短路电流: 机械惯性和电磁惯性。 异步电动机短路电流中有交流分量和直流分量。
• 电力系统短路电流的工程计算只要求计 算短路电流基频交流分量的初始值,即 次暂态电流 I 。
WHY? 由于使用快速保护和高速断路器以后, 断路器开断时间小于0.1S
Q:各种电机的时间常数的大致范围为多少?
P32 表2-2
第三章 电力系统三相短路电流的实用计算
第一节 短路电流交流分量初始值计算
线形 网络
I f
f
只有第i个电势源 单独作用时的电 流分布
Iii
表示第i个电势源单独作用时从节点i流入网络的电流 表示第j个电势源单独作用时从节点i流出网络的电流
Iij
第i个电源节点的电流可以表示为:
I i I ii I ij
j 1 j i
n

第三章电力系统三相短路电流的实用计算

第三章电力系统三相短路电流的实用计算

t Tq
t 0 I
E0 xd
实用计算例1
第三章 电力系统三相短路电流的实用计算 b) 电网侧
忽略线路对地电容和变压器励磁回路; 高压电网计算忽略电阻; 标幺值计算时认为变压器变比=平均额定电压之比。
c) 综合负荷侧
短路前后电网近似计算时都按空载进行计算,忽略综荷。
1 x xst I st
I st 5
x xst 0.2
(3-3)
xst 启动电抗标幺值; I st 启动电流标幺值。
E U 0 jI 0 x 0
次暂态电动势E ;正常极端电压为 U 0 ;吸收电流 I 0 0
其模值为:
E U 0 I 0 x sin 0 0
第三章 电力系统三相短路电流的实用计算
0 U q 0 jI d 0 xd Eq 0 jI d xd Eq
q
E 0
0 Ed
E 0
Id
0 Eq jxd
0 Ed jxq
Eq 0
0 U d 0 jI q 0 xq Ed
3.1.3 复杂系统计算
一般应用叠加定理进行计算。 计算公式为:
I f
U f 0 jx
(3-5)
假设:1.短路前后综荷视为空载 2.
乃至网络各点电压均视为1 E
1 I f x
例3-2 (P68) 例3-3 (P71)
则可近似计算:
第三章 电力系统三相短路电流的实用计算 等值系统:实际短路电流计算时,将短路点以外其余系统
异步电动机短路失去电源后能提供短路电流。
突然短路瞬间,异步电动机在机械和电磁惯性作用下,
定转子绕组中均感应有直流分量电流,当端电压低于 次暂态电动势时,就向外供应短路电流。

电气工程基础第三章

电气工程基础第三章
ish I zm ifi0 e
_ 0.01 Tfi
I zm (1 e
_ 0.01 Tfi

0.01 Tfi
)
令冲击系数ksh为
k sh 1 e
在高压系统中 k sh 1.8 在低压系统中 k sh 1.3
ish 2.55I z ish 1.84I z
Iz
是短路电流周期分量有效值。


一般而言,电力线路故障大致分为二大类型:瞬时故障和 永久故障。 瞬时故障通过重合闸装臵可恢复供电,多属于雷电等过电 压引起的闪络,但不会引起致命的绝缘损害。但故障点往 往是薄弱点,需要尽快找到加以处理并及时排除。排除时 间长短直接影响到供电系统的供电保障和电力系统安全运 行。 永久故障是指导体之间以及包括一个或多个导体对地的短 路故障,此类故障发生时,不可能成功重合闸,多由机械 外力造成,其中常见的、对电力系统危害比较严重的有: 短路、断路以及各种复杂故障。而短路故障是电力系统危 害最严重的故障。
供电系统各元件的电抗值
(1)系统电源电抗Xs
Xs U av 3I
(3) k

2 U av (3) 3I k U av
2 U av Sk
S k —系统(电源)母线上的短路容量;
(2)变压器电抗XT 当忽略变压器的电阻时,变压器的电抗 X T
2 Uav X T ZT uk % SNT
k
k
(3)
两 相 短 路
(2)
两 相 接 地 短 路 单 相 接 地 短 路
k (1,1)
k
(1)
三、短路的现象及后果
现象:电流剧烈增加;电压大幅度下降; 后果: (1) 短路电流产生的热量,使导体温度急剧上升,会使绝缘 损坏; (2)短路电流产生的电动力,会使设备载流部分变形或损坏; (3)短路会使系统电压骤降,影响系统其他设备的正常运行; (4)严重的短路会影响系统的稳定性; (5)短路还会造成大面积停电; (6)不对称短路的短路电流会对通信和电子设备等产生电磁干 扰等。

供配电技术(第3版)[完整可编辑版]第3章

供配电技术(第3版)[完整可编辑版]第3章

若假设短路电流非周期分量在所取的周期内恒定不变,
其值等于在该周期中心的瞬时值
i;np 周( t ) 期分量的有
效值为
I,p (则t ) 此时的全电流有效值得:
IK(t)
I2 p(t)
in2p(t)
3.2 无限大容量供电系统三相短路分析
4.短路冲击电流和冲击电流的有效值
短路冲击电流是短路全电流的最大瞬时值,由图分析 可知,短路全电流最大瞬时值出现在短路后半周期, 即 t0.0S1 时,由短路全电流表达式可得:
▪ 供电系统可以认为是无限大容量供电系统,不考虑电 源对于短路的影响,简化分析。
3.2 无限大容量供电系统三相短路分析
二.无限大容量供电系统的三相短路暂态过程
三相短路是对 称的,可以采用单 相等值电路进行分 析,三相短路的系 统图和电路图,以 及单相等值电路如 图所示。其中:为 短路回路的电阻和 电抗,为负载的电 阻和电抗。
第三章 短路电流计算
内容:短路计算基础,无限大容量系统三相短路 分析,无限大容量系统三相短路电流的计 算,短路电流的效应。
难点: 熟悉无限大容量系统三相短路分析和短路 电流的效应,掌握用标幺制法计算无限大 容量系统三相短路电流。
第三章 短路电流计算
§3.1 短路概述 §3.2 无限大容量系统三相短路分析 §3.3 无限大容量系统三相短路电流的计算 §3.4 短路电流的效应 小结 思考题与习题
Ish
I I 2 p(0.01)
2 np(0.01)
将短路电流冲击系数带入即得:
Ish 12(ksh1)2Ip
3.2 无限大容量供电系统三相短路分析
3.2 无限大容量供电系统三相短路分析
1.正常运行
正常运行时,设电源侧A相电压为:uUmsi nt () 电流为: iImsi nt ()

第三章、短路计算(2016版)

第三章、短路计算(2016版)
三相电路中都流过很大的 短路电流,短路时电压和 电流保持对称,短路点电 压为零
二、短路的原因
•1.设备绝缘损坏: • 自然老化、操作过电压、大气过电压、机械损伤 •2.误操作: • 带负荷拉、合隔离开关,检修后忘拆除地线合闸 •3.鸟兽跨接裸导体
三、短路的危害
1.短路产生很大的热量,导体温度升高,将绝缘 损坏。 2.短路产生巨大的电动力,使电气设备受到机械 损坏。 3.短路使系统电压严重降低,电器设备正常工作 受到破坏。 4.短路造成停电,给国民经济带来损失,给人民 生活带来不便。 5.严重的短路影响电力系统运行稳定性,使并列 的同步发电机失步,造成系统解列,甚至崩溃。 6.单相短路产生不平衡磁场,对附近通信线路和 弱电设备产生严重电磁干扰,影响其正常工作。
第三节 短路电流计算
一、有名制法 二、标幺制法
一、有名制法
1、方法:
①、进行短路电流计算,首先要绘出计算电路图,在计算电 路图上,将短路计算所需考虑的各元件的主要参数都表示出 来,并将各元件依次编号,然后确定短路计算点。 ②、短路计算点要选择得使需要进行短路校验的电气元件有 最大可能的短路电流通过。 ③、按所选择的短路计算点绘出等效电路图,并计算电路中 各主要元件的阻抗。在等效电路图上,只需将所计算的短路 电流流经的一些主要元件表示出来,并标明其序号和阻抗值, 一般是分子标序号,分母标阻抗值(即有电阻又有电抗时, 用复数形式R+jX表示)。 ④、然后将等效电路化简。对企业供配电系统来说,由于将 电路系统当作无限大容量电源,求出其等效总电阻。 ⑤、最后计算短路电流和短路容量。
常用的有名单位制法(又称欧姆法)
2、采用有名制法进行三相路计算
在无限大容量系统中发生三相短路时,其三相短路电流周期 分量有效值可按下式计算:

高压_短路电流计算

高压_短路电流计算

二、短路过程的简单分析(设

R
X
(3)
k
RL
XL
G
Q电源
a)
续上页
等效电路的电压方程为
Rik
L
dik dt
Um sin t
解之得,短路电流为
t
ik Ikm sin(t k ) Ce
短路前负荷电流为 i Im sin(t )
当t=0时,由于短路电路存在着电感,因此电流不会突变,
即ik0=i0,可求得积分常数,即
C Ikm sink Im sin
则得短路电流
无限大容量系统发生三相短路时的电压、电流曲线如下图:
i,u i, u
i ish
ikk
iipp
iinnpp
ish
uuii
np(0) i
u
O
0.01s

p(0) i
i0
正常运行状态
暂态
i
Hale Waihona Puke 稳态2I∞t(ωt t)

XS
Xd

Sd Sk
式中,Sk为电力系统变电所高压馈电线出口处的短路容量。
续上页 2)电力线路的电抗标幺值
X
* WL

X WL
Xd

x0 L
Sd
U
2 c
式中: L为线路长度,x0为线路单位长度的电抗,可查手册。
通常 10kV架空线 x0=0.35Ω/km,10kV电缆 x0=0.1Ω/km 3)电力变压器的电抗标幺值
(对高压系统)
I (3) sh
1.09I "(3)
(对低压系统)
三相短路容量:

第三章 电力系统的短路电流计算

第三章 电力系统的短路电流计算

直流电流的初值越大,暂态过程中短路冲击电流也就越大。
直流分量的起始值大小与电源电压的初始角 α 及短路前回路 中电流值 Im 0 及 ϕ 角等有关。
出现最大的短路冲击电流的条件:
图3-3为t=0时刻A相相量图 U& mA:电源电压; I&mA 0 :短路前的电流; I& pmA :短路电流交流分量; 相量在时间轴t上的投影
短路前瞬间电流
短路后瞬间电流
( ) 从而 c = Im 0 sin α −ϕ 0 − I pm sin(α −ϕ )
[ ( ) ] iA = I pm sin(ωt + α −ϕ )+ Im 0 sin α −ϕ 0 − I pm sin(α −ϕ ) e−t Ta
( ) iB = I pm sin ωt + α − 1200 −ϕ
后的T/2时刻出现。
在f=50Hz的情况下,大约 为0.01s时出现冲击电流最 大值。
iM = I pm + I pme−0.01 Ta
( ) = 1 + e−0.01 Ta I pm
= K M I pm
KM:冲击系数,表示冲击电流为短路电流交流分量幅值的倍数。
冲击系数的变化范围 1 ≤ KM ≤ 2
3.3.1 同步发电机在空载情况下突然三相短路的物理过程
同步发电机稳态对称运行时,电枢反应磁动势的大 小固定,在空间以同步速度旋转,由于它与转子没有相 对运动,因而不会在转子绕组中感应出电流。
当发电机端部突然三相短路时,定子电流在数值上将 急剧变化,由于电感回路的电流不能突变,定子绕组中必 然有其他电流自由分量产生,从而引起电枢反应磁通变化。 此变化又会影响到转子,在转子绕组中感应出电流,进一 步影响定子电流的变化。

电力系统的短路电流计算

电力系统的短路电流计算

电力系统的短路电流计算电力系统的短路电流计算是电力工程中一个非常重要的环节,它可以帮助工程师确保电力系统的运行安全和稳定。

短路电流计算通常涉及到电力系统的拓扑结构、电气设备的参数以及电源的特性等多个方面,本文将详细介绍短路电流计算的方法和步骤。

一、短路电流计算的目的短路电流计算的主要目的是确定电力系统中的各个节点、支路以及设备上出现短路时所产生的电流大小,从而判断设备和电气系统是否能够承受这些电流并确保系统的正常运行。

通过短路电流计算,我们可以评估电力系统的稳定性、选择合适的保护设备以及确定设备参数和系统结构等重要工作。

二、短路电流计算的方法1. 传统短路电流计算法传统的短路电流计算法主要通过手工计算实现,通常包括以下几个步骤:首先,需要确定电力系统的拓扑结构,包括各个节点的连线关系和支路连接情况;其次,需要收集系统中各个设备的参数,如电流互感器、变压器、发电机等的额定值以及阻抗等参数;然后,根据短路电流计算公式,对各个节点进行计算,并确定电流的大小和方向;最后,通过对计算结果的分析,判断系统的稳定性和是否需要采取相应的措施进行改进。

2. 计算软件辅助短路电流计算法随着计算机技术的不断发展,短路电流计算方法也得到了很大的改进。

现在,我们可以利用专业的电力系统计算软件来辅助进行短路电流的计算。

这些软件可以根据用户输入的电力系统拓扑结构和设备参数,自动进行计算并输出结果。

相比传统的手工计算方法,计算软件的优势在于可以大大提高计算效率和准确性,并且可以处理更加复杂的电力系统结构和参数。

三、短路电流计算的步骤无论是传统的手工计算方法还是计算软件辅助计算方法,短路电流计算的步骤大体上是相似的,下面是一个典型的短路电流计算的步骤:1. 收集系统参数:包括电力系统的拓扑结构、设备参数以及电源特性等信息。

2. 建立短路电流模型:根据系统参数,建立电力系统的等值电路模型,主要包括发电机、线路、变压器、负荷等元件。

第三章电力系统三相短路电流的实用计算

第三章电力系统三相短路电流的实用计算

第三章 电力系统三相短路电流的实用计算上一章讨论了一台发电机的三相短路电流,其阐发过程已经相当复杂,并且还不是完全严格的。

那么,对于包含有许多台发电机的实际电力系统,在进行短路电流的工程实际计算时,不成能也没有必要作如此复杂的阐发。

实际上工程计算时,只要求计算短路电流基频交流分量的初始值I ''即可。

1、I ''假设取 1.8M K =2.551.52M ch M ch i i I I I I ''==''==2、求I ''的方法:〔1〕手算 〔2〕计算机计算〔3〕运算曲线法:不单可以求0t =时刻的I ',还可以求任意时刻t 的t I 值。

§3-1I ''的计算〔I ''-周期分量起始有效值〕一、计算I ''的条件和近似1、电源参数的取用〔1〕发电机: 以101E ''和d X ''等值〔且认为d q X X ''''=,即都是隐极机〕 101101101d E U jI X ''''=+ 〔3-1〕101E ''在0t =时刻不突变。

〔2〕调相机: 与发电机一样,以101E ''和d X ''等值 但应注意:当调相机短路前为欠激运行时,∵101101E U ''< ∴不提供§3-2应用运算曲线法求任意时刻周期分量有效值tI由上章的阐发可知,即使是一台发电机,要计算其任意时刻的短路电流,也是较繁的。

首先必需知道各时间常数、电抗、电势参数,然后进行指数计算。

这对工程上的实用计算显然不适合的。

50年代以来,我国电力部分持久采用畴前苏联引进的一种运算曲线法来计算的。

此刻试行据我国的机组参数绘制的运算曲线,下面介绍这种曲线的制定和应用。

第三章:电力系统三相短路实用计算

第三章:电力系统三相短路实用计算

E _
''

1
x '' d1
xL1
E _
''

2
xd'' 2
+ xL2
U f |0|
x '' d1 xL1
xd'' 2
xL2 U f |0|
正常分量
故障分量
采用
E'' |0|
1
和忽略负荷的近似后
I
'' f

1
x '' d1

xL1

1
x'' d2

x '' L2
或者应用叠加原理,直接由故障分量求的
G
G
S LD1
L1 L2
S LD 2
f (3)
K
S LD 3
SLD1 SLD 2 SLD 3 为负荷
短路发生在 K 点
发生三相短路后的等效电路图
_
+ E1''
x '' d1
_
+ E2''
xd'' 2
xL1
零点电势等效为
xL2
U f |0|
U f |0|
上图可以等效 故障后网络=正常分量+故障分量
SB
30 103

1650A
3U B 3 10.5
k (3) 115kV
50km
xd
xd
U S
2 N
N
U
2 B
xd 0.2

供配电技术第3章-短路电流计算

供配电技术第3章-短路电流计算

图3-3无限大功率电源供电系统三相短路时的短路电流波形图
图3-4 三相短路时的相量图
产生最严重短路电流的条件: (1)短路瞬时电压过零 α=0或1800 (2)短路前空载或 cosΦ1 (3)短路回路纯电感 ΦK=900
将I=0,a=0,øk=90o代入上式,得
图3-5 最严重三相短路时的电流波形图
I
* K
2
1
X
* KL
1 7.516
0.133
IK2
Id
I
* K
144.3 0.133 19.192kA
ish.k 2 1.84I K 2 1.84 19.192 35.313kA
SK2
Sd
X
* K
2
100 0.133 13.3MVA
5.计算K2点三相短路流经变压器3T一次绕组的短路电流 I'K2
电动机对冲击短路电流的影响,如图3-9所示。
图3-9 电动机对冲击短路电流的影响示意图
电动机提供的冲击短路电流可按下式计算
式中,Ksh·M为电动机的短路电流冲击系数,低压电动机取1.0,高压 电机取 1.4~1.6; 为电动机的次暂态电势标幺值; 为电动机的次暂态电抗标幺值 IN·M为电动机额定电流。
稳态短路电流有效值是短路电流非周期分量衰减完后的短路电流有效值,用I∞ 表示。 在无限大容量系统中,I∞=Ip。 6.短路容量 SK 三相短路容量是选择断路器时,校验其断路能力的依据,它根据计算电压即平均
额定电压进行计算,即
3.3无限大功率电源供电系统三相短路电流的计算
3.3.1 标幺制
用相对值表示元件的物理量,称为标幺制。标幺值没有单位。
图3-7 例3-1供电系统图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力工程
E0 = U G + j I Xd
′ = f ( I ′) E0
无法直接求解 I ′
电力工程
φad
同步发电机空载运行三相短路
φad = ∆φ0 + ∆φ f σ
′ = φ ad − ∆ φ 0 = ∆ φ f σ φ ad
′ 电枢反应电抗 X ad
φ0 φ0
∆φ0∆φ
同步发电机负载时三相短路
f σ σσ
′ φ ad
j I′ Xd

有阻尼绕组同步发电机负载时三相短路
′′ = X ad ′′ + X σ 发电机次暂态电抗 X d
φ0
′ φ ad
φσ
XX
ωω
φ φ
X ′d
I

E′
UG


φ0
φ fσ φfσ+∆φfσ
A A
E0
• • •

δ
UG

ω
∆φfσ φσ
X ′′d
I

′′ < X d ′ < Xd Xd
3.限制短路电流对电力系统危害
采取限制短路电流措施,合理设计电网,加装电 抗器 依靠继电保护设备,迅速隔离故障,保证无故障 部分正常运行 故障后恢复供电,输电线路采用自动重合闸装置
短路的类型 a)三相短路 b)两相短路 c)单相接地短路 d)两相接地短路 电力工程
不对称短路:
两相短路f(2) (10%) 单相接地短路f(1) (65%) 两相接地短路f(1,1) (20%) G
−U f 0
f (3)
+
−U f 0
If
I
" f
Uf 0
电力工程
I" f
U f (0) 短路前节点的开路电压 X ∑ 短路点输入电抗 ′′ = 1 Uf 0 E∗ 1 If = I f* = X X * ∑ U f (0) = 1 ∑
电力工程
短路电流 短路电流 周期分量 周期分量
jX ∑
f (3) f (3)
电压大幅下降
瞬时性和永久性
电力工程
电力工程
4. 短路电流计算目的
选择有足够机械稳定度和热稳定度的电气设备, 必须以短路电流为依据; 为了合理地配置各种继电保护和自动装置并正确 整定其参数; 在设计和选择电气主接线时,依据短路计算结果 确定是否需要采取限制短路电流的措施等,造价评 估,选择最佳接线方案;
f (3)
冲击电流 冲击电流 最大有效值 最大有效值
U f (0)
I
f
I f* =
电力工程
1 X * ∑
常用到 ∆ / Y 形等效变换
1
1
图示火力发电厂主接线,相关参数如下 发电机 发电机升压变压器
R1 R12
PN = 300 MW , U N = 20 KV ,cos ϕ N = 0.85, xd '' = 0.168
φad
φ0
∆ φ0
φ0
空载电势
E0
ω
X
3-3 同步发电机三相短路 简要分析
负载运行 定子绕组流过电流,三相
绕组空间和时间相差120度,合成磁 场旋转(电枢磁场) 电枢磁通 φa 感应电势 E a 电枢反应磁通 φad
• • •
A
φ0
φad 出现 三相短路,
φ0 + ∆φ0
φ f σ + ∆φ f σ
ia = I pm sin(ω t + α − ϕ )
t Ta
ϕ(0)
X + X′ = arctan R + R′
周期分量:取决于电源电压和回路阻抗,幅值在暂 Um 态过程中保持不变。 I pm = R2 + X 2 i P = I pm sin(ω t + α − ϕ ) X ϕ = arctan( ) 电力工程 R
1.短路的原因及其后果
主要内容
3.1 概述
所谓短路,是指电力系统中正常情况以外的 一切相与相之间或相与地之间发生通路的情况。
第三章 电力系统的短路电流计算
3.2 无限大功率电源供电系统的三相短路电流 3.3 同步发电机突然三相短路 3.4 电力系统短路电流实用计算 3.5 电力系统不对称短路分析和计算
E ′′
UG

X ad Xd
X
φ fσ

′ = X ad ′ + Xσ 发电机暂态电抗 X d E I′ = 0 ′ Xd
′ φ ad
E ′0 = U G + j I ′ X d ′ E 0 = UG + j I′ X d
• • •
A
暂态电流起始值
E0

δ
UG

j I ′′ X d

X
φ fσ
A
I′ =
R31
R3
2 3
R2
2
m
S N = 370 M VA , 242 / 20 K V U K % = 14% ;
E ′ 暂态电势,正比于磁链
′ 暂态电抗 Xd
E0 ′ Xd
′′ E = U G + j I ′′ X d



次暂态电流起始值
E ′′ 次暂态电势
I ′′ =
E0 ′′ Xd
I ′′ > I ′ > I ∞
′ = f ( I ′) E0
无法直接求解 I ′
电力工程 电力工程
有限容量同步发电机短路,短路电流同样出现周期分量和非 周期分量,由于电枢反应的作用,周期分量不再保持不变
短路的原因
电气设备载流部分绝缘损坏; 气象条件恶化,线路倒塌、裸露导体短接; 运行人员误操作; ……
电力工程
电力工程
电力工程
短路现象
电流剧烈增加
短路后果
持续发热,烧损设 备 电磁力损坏设备 异步电动机无法正 常运转,产品报废 发电机失去同步, 系统解列 电磁干扰……
2.短路的种类
对称短路:
三相短路f(3) (5%)
2 2 IM = Ip + In p(0.01)
2 I pt =(
I pmt 2
)2
正弦函数在一个周 期内的积分,其值 为0
2 2 I pt + I npt
电力工程
I
2 npt
I np (0.01) = inp (0.01) = I pm e −0.01/ Ta = (k M − 1) I pm
IM = ( Ipm 2 )2 + [(kM −1) Ipm ]2 = 0.707 I pm 1 + 2(kM −1)2
电力工程
= i p + inp
ia = − I pm cos ω t + I pm e
I np 0
电力工程
& I pm
& I pm
& −I & I m(0) pm
短路冲击电流
i = − I pm cos ω t + I pm e
短路电流的最大值约在短 路后的T/2时刻出现。 短路冲击电流为
−0.01/ Ta
I m (0) sin(α − ϕ(0) ) = I pm sin(α − ϕ ) + C

ua = U m sin(ω t + α ) ia = I m (0) sin(ω t + α − ϕ (0) )
Im(0) = Um ( R + R′)2 + ( X + X ′)2
电力工程
C = I m (0) sin(α − ϕ(0) ) − I pm sin(α − ϕ ) = inp 0
1.无限大功率电源
容量为无限大且内阻抗为零的电源 无 限 大 功 率 电 源 特 点
3.2无限大功率电源供电系统
的三相短路电流计算
S >> ∆S
P >> ∆P
频率恒定
Q >> ∆Q
端电压恒定
Xs = 0
电力工程 电力工程
电力工程
2.三相短路暂态过程分析
短路后电路中的电流应满足:
Ri a + L di a = U m sin(ω t + α ) dt
U (1 + 110%) UB = Uav = N 2
X % U RN % S B SB X R∗ =⎞ 2 R X *(G ) = X *(GN 发电机 X 电抗器 ) X S ⎛U S BU 2 SGN 3I RN av X *( B ) = = X *( N ) N = X *( N ) B ⎜ N ⎟ 100 = X *( N ) ZB ZB SN ⎝ U B ⎠ SN U k % SB SB 变压器 X T ∗ = 输电线路 X l ∗ = xo l 2 100 STN U av
− t / Ta
短路冲击电流
f1 f2
iM = K M I pm
f3
短路电流最大有效值
短路电流有效值 有效值It 是指以任一时刻t为中心的一个周期内瞬 时电流的均方根值。
☺电力系统实用计算中,KM依据短路位置取值 ~ 在发电机端部发生短路时, KM =1.9 在发电厂高压侧母线上短路时, KM =1.85 其他地点短路时, KM =1.8
电气设备承受短路电流电动力(与冲击电流平 方成正比)作用,校验电气设备和载流导体的动 稳定性需要计算短路冲击电流。
动稳定性-电气设备承受短路情况下的电动力 作用而不致损害的能力。
− t Ta − t Ta
C = I m (0) sin(α − ϕ(0) ) − I pm sin(α − ϕ ) = inp 0
相关文档
最新文档