第三章废水生物处理的基本概念和生化反应动力学基础
水污染控制工程
Water Pollution Control Engineering
目录
第一章 绪论 第二章 物理法
第一章 绪论
第三章 废水生物处理概念和生化反应动力学基础第二章 污水的好氧活性污泥法 第四章 好氧生物处理——活性污泥法
第五章 好氧生物处理——生物膜法
第三章 污水的好氧生物膜法
第六章 污水的其他好氧生物处理 第七章 厌氧生物处理
第一章 绪论
1.1 水资源及其循环 1.2 水污染的来源及其危害 1.3 污水水质与水污染控制标准 1.4 水体自净与水环境容量 1.5 水污染控制的原则与方法
1.1 水资源及其循环
1.1.1 水资源
a) 全球水资源
地球上的总水量约为 13.6×108km3
海洋水占97.212%; 淡水占不足3%; 对人类生活和生产活动关系密切
1.3 污水水质与水污染控制标
准
1.3.2 水污染控制标准
标准编号
标准名称
备注
GB/T14848— 1993
地下水质量标准
CJ/T206—2005
城市供水水质标准
CJ 3020—93
生活饮用水水源水质标准
GB50282—1998
城市给水工程规划规范
GB/T50102— 2003
工业循环冷却水处理设计规范
如采矿和冶炼是重金属的最主要的污染源。
1.3 污水水质与水污染控制标准
➢生物性指标
细菌总数:反映了水体受细菌污染的程度。 大肠杆菌:大肠菌群作为最基本的粪便污染指示菌群。
细菌总数不能说明细菌的来源,必须结合大肠菌群数 来判断水体污染的来源和安全程度。 大肠菌群的值可表明水样被粪便污染的程度,间接反 应有肠道病菌 (伤寒、痢疾、霍乱等)存在的可能性。
废水生化处理理论基础
废水生化处理理论基础废水处理是指对工业、农业、生活等生产和生活活动中所产生的废水进行处理,将废水中的各种有害物质去除或降低,使其达到环境排放标准,保护环境、维护生态平衡。
废水处理技术较为复杂,其中生化处理是一种常用的处理方法。
本文将介绍废水生化处理的理论基础。
1. 废水生化处理概述废水生化处理是利用微生物的生物化学作用,将有机物质降解成较为稳定、不易污染环境的无机物质,以实现对废水的净化处理。
生化处理一般包括好氧生物处理和厌氧生物处理两种方式。
•好氧生物处理:好氧生物处理是指在充氧的条件下,利用好氧微生物将废水中的有机物质氧化分解为二氧化碳和水。
这种处理方式对细菌的要求较高,需要提供足够的氧气。
•厌氧生物处理:厌氧生物处理是指在没有氧气的条件下,利用厌氧微生物将废水中的有机物质降解成沼气、二氧化碳等产物。
这种处理方式对微生物的适应能力要求较高,处理效果也较好。
2. 废水生化处理原理废水生化处理的基本原理是将废水中的有机物质通过生物作用转化为无机物质。
有机物质能够为微生物提供能量和生长所需的碳、氮、磷等元素,而微生物则通过代谢作用将有机物质降解为无机物质。
生化处理的主要过程包括:•底物的降解:微生物利用底物(有机物质)作为碳源和能源,在水体中进行降解反应,生成底物降解产物和生物体。
•底物的转化:底物降解产物经过一系列酶类的作用,逐步转化为无害的终产物,如CO2、H2O等。
•生物体的生长:底物的降解还伴随着微生物的生长和繁殖,微生物的数量和种类变化也会影响处理效果。
3. 废水生化处理的关键技术废水生化处理的关键技术包括微生物培养、废水处理工艺设计、氧气供给等方面。
其中,微生物在生化处理中扮演着重要的角色,其培养和管理对处理效果至关重要。
•微生物培养:合理选择适应性强、活性高的微生物种类,进行培养和管理,提高其降解效率和处理能力。
•工艺设计:根据废水特性和处理要求设计合理的生化处理工艺,包括反应器设置、曝气方式、混合方式等。
污水生物处理基本概念和生化反应动力学基础精品PPT课件
2. 好氧生物处理过程的生化反应方程式: • ① 分解反应(又称氧化反应、异化代谢、分解代谢)
② 合成反应(也称合成代谢、同化作用) ③ 内源呼吸(也称细胞物质的自身氧化)
污水处理技术离尽善尽美还相差很远, 主要缺点:生化环境不够理想、微生物数量不够 多、反应速率尚低、处理设施的基建投资和运行 费用很高、运行不够稳定、难降解有机物处理效 果差等。
从可持续发展的战略观点来衡量: 废水生物处理还有消耗大量有机碳、剩余污
泥量大、释放较多二氧化碳等缺点。
利用微生物的无穷潜力和反应设备的发展及相关 学科技术的进步,与其他工艺相交叉,利用协同 作用。废水生物处理工艺必将取得更大的发展, 发挥更大的作用。
W. B. Whitman (U. Of Georgia)细菌普查 ,地球上存在51030个细菌, 非常活跃的 群体在海、陆、空等一般环境和极端环境 中的极端环境微生物;
Pseudomonas cepacia:能降解90种以上有 机物甲基汞、有毒氰、酚类化合物等都能 被微生物作为营养物质分解利用。
(3)繁殖快、易变异、适应性强
C6H12C6+4NO3 - → 6CO2+6H2O+2N2↑+1755.6kJ C6H12C6 →2CO2+2CH3CH2OH+92.0kJ
2.污水生物处理分类
分类依据
–生化环境:好氧、缺氧、厌氧 –反应器构型:依据微生物在反应器中
的生长方式:悬浮型、附着型和混合型.
2.1 废水的好氧生物处理
污水生物处理的基本概念和生化反应动力学基础
求得:
1 Xa Y S S V 1 b Q
0
V Q
为水力停留时间
在恒化器处于静态的时候, x
x 为固体停留时间(SRT),也称为平均细胞停留时间
(MCRT)或者污泥龄
系统中的活性生物量 x 1 活性生物量的产率
即泥龄是净比生长速率的倒数
第 1章
污水生物处理的基本概念 和生化反应动力学基础
1.1 基本速率表达式 Basic Rate Expressions
细菌生长动力学,最常用的是莫诺特方程
1 dX a S μ syn μ X dt K S a syn
syn 为合成的比生长速率,T-1
x min
S 随着 x 增加而单调下降
S min , S min 是维持稳态 接近极小值 S
b Y q b
菌体需要的最小基质浓度
S min K
如果 S S min ,细胞的净生长速率就是负数,菌体不会累积 而将逐渐消失,只有 S S min ,才能维持稳态菌体。 4)当
无穷大,可以将 S 从 S 0 降低到 S min
不能去除基质,没有活性菌体累积
刚刚产生污泥流失时的 x 值称为 x min
0 K S x min 0 S Y q b bK
min 增大,逐渐达到其极限值: 随着 S 0 增大, x
min x
lim
1 Y q b
2)对于所有的 x 3)对于很大的 x
X a为活性菌体的浓度,MxL-3
S 为限制生长速率的基质浓度,MsL-3
水污染控制工程高廷耀程学习重点
水污染控制工程 Wastewater Treatment一、水质指标:物理指标、化学指标、生物指标(一)BOD5(5日生化需氧量):指5天内水中有机污染物被好氧微生物分解时所需的氧量(mg/L)(二)水体自净作用:以河流为例,指河水中的污染物在河水向下游流动中浓度自然降低的现象。
(1)物理净化:指污染物由于稀释、扩散、沉淀等作用,使河水污染物浓度降低的过程。
(2)化学净化:指污染物由于氧化、还原、分解等作用,使河水污染物浓度降低的过程。
(3)生物净化:由于水中生物活动,尤其是水中微生物对有机物氧化分解作用而使河水污染物浓度降低的过程。
二、污水的物理处理(一)格栅(Screening):在水处理中,格栅是用来去除可能阻塞水泵机及管道阀门的较粗大的悬浮物,并保证后续处理设备能正常运行的一种装置。
Screening to remove large subjects,such as stones or sticks that could plug lines or block tank inlets.(二)沉淀的基础理论1.沉淀法:利用水中悬浮颗粒和水的密度差,在重力作用下产生下沉作用,以达到固液分离的一种过程。
2.沉淀法的四种用法:1.污水处理系统的预处理(沉砂池—预处理手段去除污水中易沉降的无机性颗粒物)2.污水的初步处理(初沉池)(经济有效地去除污水中的悬浮固体和呈悬浮状态的有机物)3.生物处理后的固液分离(二次沉淀池,简称二沉池)4。
污泥处理阶段的污泥浓缩(污泥浓缩池)3.沉淀类型(1)自由沉淀:悬浮颗粒物浓度不高:沉淀过程中悬浮固体之间互不干扰,颗粒各单独进行沉淀,颗粒沉淀轨迹呈直线。
沉淀过程中,颗粒的物理性质不变.发生在沉砂池。
(2)絮凝沉淀:悬浮颗粒物浓度不高:沉淀过程中悬浮颗粒之间有互相絮凝作用,颗粒因相互聚集增大而加快沉降,沉淀轨迹呈曲线。
沉淀过程中,颗粒的质量、形状、沉速是变化的.化学絮凝沉淀属于这种类型.(3)区域沉淀(成层沉淀或拥挤沉淀):悬浮颗粒浓度较高(5000mg/L以上):颗粒的沉降受到周围其他颗粒的影响,颗粒间相对位置保持不变,形成一个整体共同下降,与澄清水之间有清晰的泥水界面。
废水生物处理的基本概念和生化反应动力学基础PPT课件
第三节 反应速度和反应级数
化学反应速度:单位时间内,反应物浓度的减少或生成物浓度的增加表示。
生化反应速度:在生化反应中,单位时间里,底物的减少量、最终产物的增 加量。
合成
细胞
底物
分解
最终产物
2. 反应级数
lgv 2级
ns
yx + zp
v=d[s]/dt =k[s]n 式中k为反应常数,随温度而异; n为反应级数;
微生物的生长环境
影响微生物生长的主要环境有: 1. 微生物的营养 最佳营养比为BOD5 :N:P=100:5:1 2. 温度 中温细菌为主,它的最适合温度200 c~370 c 3.PH值 4.溶解氧 好氧2~4mg/l 5.有毒物质
生化反应动力学基础
基本概念: 生物化学反应:一种以生物酶为催化挤的化学反应(由微生物参加以生物好氧 生物化学反应,三大要素:底物 ;微生物;氧气。 底物:一切在生物体内可通过酶的催化作用而进行的生化变化的物质 微生物:通过显微镜能看到的生物 氧:在一个大气压下200 c下,氧溶解度10mg/g. 底物降解:废水中有的营养物质,被微生物从利用和转化,使得厚有复杂的高分 子氧化分解为低分子的过程..
一.底物降解与酶促速度
影响酶促反应速度的因素有:酶浓度、底物浓度、温度、PH、产物 浓度。
零级反应区 酶反应速度
中间产物学说:
S + E k1 ES k3 P+ E k2
½ vmax 混合级反应区
一级反应区
底物浓度
M—-M方程
S + E k1
E k3 S
P+ E
k2
串连反应
V=Vmax[s]/Km+[s]
第章十一章废水生物处理的基本概念和生化反应动力学基础节第一节废水的好氧生物处理和厌氧生物处理节第二节微生物的生长规律和生长环境节第三节反应速度和反应级数节第四节里米歇里门坦方程式第五节莫诺特方程式六第六节废水生物处理工程的基本数学模式第一节废水的好氧生物处理和厌氧生物处理微生物的呼吸类型
3.5 生化反应动力学基础
酶促反应分为两步进行,第一步,酶与底物作用形成中间产物(此中间产物被看作 稳定的过渡态物质)。第二步,中间产物分解形成产物,并释放出游离的酶。
E S ES P E 整个酶反应处于动态平衡(steady state)
生化反应,即酶促反应,反应速度受酶浓度、底物浓度、pH值、温度、 反应产物、活化剂和抑制剂等因素影响,在有足够底物又不受其他因 素的影响时,酶促反应速度与酶浓度成正比。但是当底物浓度较低时, 反应速度与底物浓度成正比(一级反应)。当底物浓度增加到一定限 度时,所有酶与底物结合后,酶反应速度达到最大值,此时反应速度 与底物浓度没有关系(零级反应)。
水污染控制工程
Water Pollution Control
Engineering
-----Wastewater Treatment and Reuse-----
第三章
The basic concept of biological wastewater treatment and the biochemical reaction kinetics
微生物增长与底物降解的基本关系式
1951年,霍克莱金(Heuklelkian)等人通过大量实验,得出如下方程:
d[ X ] dt g
y d[S ] dt u
Kd [ X ]
微生物净 增长速度
底物利用速度 (降解速度)来自内源呼吸 (衰减)系数
d[ X ]
米氏常数获得方法
1)V对[S]作图可以得到 Vmax,Vmax/2处[S]即 是Km。而真实的情况无 法达到Vmax,所以存在 误差。
2)双倒数法(doublereciprocal plot Line weaver-Burk法)
废水生物处理和生化反应
人工 条件 下
水体自净-天然水体和氧化塘
土壤净化-污水灌溉
悬浮生物法-活性污泥法及其 变种、氧化塘、氧化沟 固着生物法-生物滤池、生物转 盘、接触氧化、好氧生物流化床 堆肥
厌氧塘
悬浮生物法-厌氧消化、上流式 厌氧污泥床、高温堆肥、化粪池
固着生物法-厌氧滤池、厌氧流化 床
3.3 微生物的生长规律和生长环境
为了使沉降分离性能良好,较大的絮凝体是所期望的, 因此溶解氧浓度以2-3mg/L左右为宜。
5、有毒物质(toxic materials)
对生物处理有毒害作用的物质很多。毒物大致可 分为重金属、H2S等无机物质和氰、酚等有机物质。
这些物质对细菌的毒害作用,或是破坏细菌细胞 某些必要的生理结构,或是抑制细菌的代谢进程。
2. 呼吸
微生物在降解底物的过程中,将释放出的电子交给电子载体, 再经电子传递系统传给外源电子受体,从而生成水或其它还原 型产物并释放出能量的过程,称为呼吸作用。
有氧呼吸(aerobic respiration): 以分子氧作为最终电子受体
无氧呼吸(anaerobic respiration): 以氧化型化合物作为最终电子受体
有机物氧化释放的电子直接交给本身未完全氧化的某种中间产物, 同时释放能量并产生各种不同的代谢产物。
有机化合物只是部分地被氧化,因此,只释放出一小部分的能量。
发酵过程的氧化是与有机物的还原偶联在一起的。被还原的有机 物来自于初始发酵的分解代谢,即不需要外界提供电子受体。
发酵的种类有很多,可发酵的底物有碳水化合物、有机酸、氨基 酸等。
4.衰亡期 (Decline或Death phase):
特点: 个体死亡的速度超过新生的速度(繁殖数<死亡数),整个群体就呈现出
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微生物的新陈代谢
新陈代谢:微生物不断从外界环境中摄取营养物质, 通过生物酶催化的复杂生化反应,在体内不断进行物 质转化和交换的过程。
分解代谢:分解复杂营养物质,降解高能化合物,获 得能量; 合成代谢:通过一系列的生化反应,将营养物质转化 为复杂的细胞成分,机体制造自身。
底物降解: 污水中可被微生物通过酶的催化作用而进行生物化学变化的物质 称为底物或基质。 可生物降解有机物量:有机物的降解转化 可生物降解底物量:包括有机的和无机的可生物利用物质
厌氧呼吸的受氢体不是分子氧。在厌氧呼吸过程中,底物氧 化不彻底,最终产物不是二氧化碳和水,而是一些较原来底 物简单的化合物。这种化合物还含有相当的能量,故释放能 量较少。
如有机污泥的厌氧消化过程中产生的甲烷,是含有相当能量 的可燃气体。
厌氧呼吸按反应过程中的最终受氢体的不同,可分为发酵和 无氧呼吸。
好氧呼吸、无氧呼吸、发酵三种呼吸方式,获得的 能量水平不同, 如下表所示。
呼吸方式
好氧呼吸
能量利用率42%
无氧呼吸
发酵
能量利用率26%
1.发酵 指供氢体和受氢体都是有机化合物的生物氧化作用,最
终受氢体无需外加,就是供氢体的分解产物(有机物)。 这种生物氧化作用不彻底,最终形成的还原性产物,是
比原来底物简单的有机物,在反应过程中,释放的自由能较 少,故厌氧微生物在进行生命活动过程中,为了满足能量的 需要,消耗的底物要比好氧微生物的多。
C6H12O6 6O2 6CO2 6H2O 2817.3kJ
C11H 29O7
14O2
H
11CO2
13H2O
NH
4
能量
异氧微生物又可分为化能异氧微生物和光能异氧微生物:
化能异氧微生物:氧化有机物产生化学能而获得能量的微生物。
光能异氧微生物:以光为能源,以有机物为供氢体还原CO2,合成 有机物的一类厌氧微生物。
C6H12O6 6H2O 6CO2 24[H ]
24[H ] 4NO3 2N2 12H2O
总反应式:
C6 H12O6
4 NO3
6CO2
6H 2O
2
N
2
1755.6kJ
在无氧呼吸过程中,供氢体和受氢体之间也需要细胞色素等中间 电子传递体,并伴随有磷酸化作用,底物可被彻底氧化,能量得以 分级释放,故无氧呼吸也产生较多的能量用于生命活动。但由于有 些能量随着电子转移至最终受氢体中,故释放的能量不如好氧呼吸 的多。
微生物的呼吸类型
微生物的呼吸指微生物获取能量的生理功能
根据受氢体的不同分为
好氧呼吸
厌氧呼吸
根据氧化的底物、氧化产物的不同
按反应过程中的最终受氢体的不同
异养型微生物 自养型微生物
发酵
无氧呼吸
好氧呼吸
好氧呼吸是营养物质进入好氧微生物细胞后,通过一系列氧 化还原反应获得能量的过程。 有分子氧参与的生物氧化, 反应的最终受氢体是分子氧。 底物中的氢被脱氢酶活化,并从底物中脱出交给辅酶(递氢 体),同时放出电子,氧化酶利用底物放出的电子激活游离 氧,活化氧和从底物中脱出的氢结合成水。
H2S 2O2 H2SO4 能量
大型合流污水沟道和污水沟 道存在该式所示的生化反应
NH
4
2O2
NO3
2H
H 2O
能量
生物脱氮工艺中的生物硝化过程
厌氧呼吸
厌氧呼吸是在无分子氧(O2)的情况下进行的生物氧化。
厌氧微生物只有脱氢酶系统,没有氧化酶系统。在呼吸过程 中,底物中的氢被脱氢酶活化,从底物中脱下来的氢经辅酶 传递给除氧以外的有机物或无机物,使其还原。
2H
NAD(P) NAD(P)H H
2H
NAD(P)烟酰胺腺嘌呤二核苷酸(磷酸)
好氧呼吸过程实质上是脱氢和氧活化相结合的过程。在这过 程中,同时放出能量。
依好氧微生物的类型不同,被其氧化的底物不同,氧化产物 也不同。好氧呼吸有异养型微生物和自养型微生物两种 。
1.异养型微生物 异养型微生物以有机物为底物(电子供体),其终点产物为二氧化 碳、氨和水等无机物,同时放出能量。如下式所示:
氧化磷酸化 光合磷酸化
底物水平磷酸化 电子传递磷酸化
低能化合物
ATP
细胞合成
磷酸根
能量
生理需要
高能化合物
ADP
热能释放
微生物的呼吸
一切生物时刻都在进行着呼吸,没有呼吸就没有生命
呼吸作用的生物现象:
呼吸作用中发生能量转换:供细胞合成、其它生命 活动、多余以热量形式释放; 通过呼吸作用,复杂有机物逐步转化为简单物质; 呼吸作用过程中吸收和同化各种营养物质
有机废水的好氧生物处理,如活性污泥法、生物膜法、污泥的好氧 消化等属于这种类型的呼吸。
2.自养型微生物 自养型微生物以无机物为底物(电子供体),其终点产物也是无机 物,同时放出能量。
光能自养微生物 需要阳光或灯光作能源,依靠体内的光合作用色素合成有机物。
光
CO2+H2O 叶绿素
[CH2O]+O2
化能自养微生物 化能自养微生物不具备色素,不能进行光合作用,合成有机物所需 的能量来自氧化NH3、H2S等无机物。
例如葡萄糖发酵的过程:
C6 H12O6 2CH3COCOOH 4[H ]
2CH3COCOOH 2CO2 2CH3CHO
4[H ] 2CH3CHO 2CH3CH 2OH
总反应式:
C6H12O6 2CH3CH 2OH 2CO2 92.0kJ
2.无氧呼吸
是指以无机氧化物,如NO3-,NO2-,SO42-,S2O32-,CO2等代 替分子氧,作为最终受氢体的生物氧化作用。 在反硝化作用中,受氢体为NO3-可用下式所示:
No free lunch for the bugs, No free lunch for us either.
Let us serve the bugs before bugs serve us better.
第十一章
废水生物处理的基本概念 和生化反应动力学基础
第一节 废水的好氧生物处理和厌氧生物处理
分解代谢 (异化作用)
新陈代谢
合成代谢 (同化作用)
复杂物质分解为简单物质
释放能量 吸收能量
能量代谢
物质代谢
简单物质合成为复杂物质
能量循环:三磷酸腺苷ATP(Adenosine Triphosphate) AMP+~P→ADP+ ~P →ATP ADP磷酸化生成ATP: ATP水解产生能量
ADP磷酸化