2012年高考真题——数学文(四川卷)解析
2012年高考文科数学真题答案全国卷1
2012 年高考文科数学真题及答案全国卷1注息事项 :1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷 (非选择题 )两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动 .用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后 .将本试卷和答且卡一并交回。
第1 卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合 A={ x|x2- x- 2<0} , B={ x|- 1<x<1} ,则(A)A B(B)BA(C)A=B(D)A∩B=【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题.【解析】 A= (- 1,2),故 B A ,故选 B.( 2)复数 z=3i的共轭复数是2 i( A )2 i( B )2 i(C)1 i( D)1 i【命题意图】本题主要考查复数的除法运算与共轭复数的概念,是简单题.【解析】∵ z =3 ii ,∴ z 的共轭复数为 1 i ,故选D.= 12i(3)在一组样本数据( x1, y1),( x2, y2),⋯,( x n, y n)(n≥ 2, x1,x2, ⋯ ,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2, ⋯, n) 都在直线y 1x 1 y=1x+1上,则这组样本22数据的样本相关系数为(A)- 1(B)0(C)1(D)1 2【命题意图】本题主要考查样本的相关系数,是简单题.【解析】有题设知,这组样本数据完全正相关,故其相关系数为1,故选 D.12x2y2=1(a> b >0)的左、右焦点,P 为直线 x3a(4)设F,F是椭圆E:a2b2上一2点,△ F2PF1是底角为300的等腰三角形,则 E 的离心率为A .1B .2C .3D .4 2345【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】∵△F2 PF1是底角为300的等腰三角形,∴ PF 2A600, | PF 2 | | F 1F 2 | 2c ,∴ | AF 2 | = c ,∴2c3a ,∴e =3,故选 C.24( 5)已知正三角形 ABC 的顶点 A(1,1) ,B(1,3) ,顶点 C 在第一象限,若点(x ,y )在△ ABC内部,则 zxy 的取值范围是(A )(1- 3,2)( B ) (0, 2)( C )( 3- 1,2)( D ) (0, 1+ 3)【命题意图】本题主要考查简单线性规划解法,是简单题.【解析】有题设知C(1+ 3 ,2),作出直线l 0:xy 0 ,平移直线l 0,有图像知,直线 l : zx y 过B点时, z max=2,过 C 时,z min =1 3 ,∴ z x y 取值范围为(1-3,2),故选 A.( 6)如果执行右边的程序框图,输入正整数N ( N ≥2)和实数a 1,a 2,⋯,a N ,输出A ,B ,则A . A + B 为a 1,a 2,⋯,a N 的和ABB .为a 1,a 2,⋯,a N 的算术平均数C .A 和B 分别为a 1,a 2,⋯,a N 中的最大数和最小数D . A 和 B 分别为a 1,a 2,⋯,a N 中的最小数和最大数【命题意图】本题主要考查框图表示算法的意义,是 简单题 .【解析】由框图知其表示的算法是找大值和最小值,A 和B分别为 a 1, a 2,⋯, a N 中 的最大数和最小数,故选C.(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A .6B .9C .12D .18【命题意图】本题主要考查简单几何体的三视图及体积计算,是简单题 .【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为 6,这边上高为 3,棱锥的高为 3,故其体积为116 33 =9,32故选 B.(8) 平面α截球 O 的球面所得圆的半径为1,球心 O 到平面α的距离为 2,则此球的体积为( A ) 6π( B ) 4 3π(C ) 4 6π( D ) 6 3π【命题意图】【解析】N 个数中的最( 9)已知>0,0,直线x =和x =5是函数f ( x) sin( x ) 图像的两条44相邻的对称轴,则=( A )ππ π 3π4(B )3 (C )2 (D )4【命题意图】本题主要考查三角函数的图像与性质,是中档题.【解析】由题设知,5,∴ =1,∴= k( k Z ),=4442∴= k ( kZ ),∵0,∴ =,故选 A.44( 10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 216x 的准线交于 A 、B 两点,| AB |=4 3,则C 的实轴长为A .2B .2 2C .4D .8.【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题【解析】由题设知抛物线的准线为: x 4 ,设等轴双曲线方程为:x 2 y 2 a 2,将x 4代入等轴双曲线方程解得y =16 a 2 ,∵| AB|=43,∴2 16a 2 = 4 3 ,解得 a =2,∴ C 的实轴长为4,故选 C.(11)当 0< x ≤1时,4xlog a x ,则a 的取值范围是222(A )(0,2 ) (B )( 2 , 1) (C ) (1, 2) (D ) ( 2,2)【命题意图】本题主要考查指数函数与对数函数的图像与性质及数形结合思想, 是中档题 .0 a12 【解析】由指数函数与对数函数的图像知11,解得a2 ,故选 A.loga242( 12)数列 { a n } 满足a n 1( 1)n a n2n 1 ,则{ a n }的前60项和为( A )3690 (B ) 3660( C ) 1845 ( D ) 1830 【命题意图】本题主要考查灵活运用数列知识求数列问题能力,是难题 . 【解析】【法 1】有题设知a 2 a 1=1,① a 3a 2=3②a 4 a 3=5③a 5 a 4=7, a 6 a 5=9, a 7 a 6=11, a 8a 7=13, a 9 a 8=15, a 10 a 9=17, a 11a 10=19, a 12a1121 ,⋯⋯∴②-①得 a 1a 3=2,③+②得 a 4 a 2=8,同理可得 a 5 a 7=2, a 6 a 8=24, a 9a 11=2,a10a 12=40,⋯,∴ a 1 a 3,a 5 a 7,a 9 a 11,⋯,是各项均为 2 的常数列,a 2a 4,a 6a 8,a 10a 12,⋯是首项为8,公差为 16 的等差数列,∴ { a n } 的前 60 项和为 15 215 8116 15 14 =1830.2【法 2】可证明:bn 1a4 n 1a4n 2a4 n 3a4 n 4a4 n 3a4n 2a4 n 2a 4n 16b n16b 1a 1a 2 a 3 a 4 1 01 5 1 4 S 1510 1516 18302第Ⅱ卷二.填空题:本大题共 4 小题,每小题 5 分。
2012年高考真题——理科数学(四川卷) (word版) (有答案)
D CB2012年普通高等学校招生全国统一考试(四川卷)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ?g 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010 B 、1010 C 、510 D 、5155、函数1(0,1)xy a a a a=->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a r 、b r 都是非零向量,下列四个条件中,使||||a ba b =r rr r 成立的充分条件是( )A 、a b =-r rB 、//a b r rC 、2a b =r rD 、//a b r r 且||||a b =r r8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012年高考数学理(四川卷)含答案
D CAE B2012年普通高等学校招生全国统一考试(四川卷)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010 B 、1010 C 、510 D 、5155、函数1(0,1)xy a a a a=->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b = 8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012年普通高等学校招生全国统一考试(四川卷)数学试题 (理科) 解析版
8、已知抛物线关于 x 轴对称,它的顶点在坐标原点 O ,并且经过点 M (2, y0 ) 。若点 M 到该抛物 线焦点的距离为 3 ,则 | OM | ( )
A、 2 2
B、 2 3
C、 4
D、 2 5
[答案]B
[解析]设抛物线方程为 y2=2px(p>0),则焦点坐标为( p ,0 ),准线方程为 x= p ,
9、某公司生产甲、乙两种桶装产品。已知生产甲产品 1 桶需耗 A 原料 1 千克、 B 原料 2 千克;生
产乙产品 1 桶需耗 A 原料 2 千克, B 原料 1 千克。每桶甲产品的利润是 300 元,每桶乙产品的利
润是 400 元。公司在生产这两种产品的计划中,要求每天消耗 A 、 B 原料都不超过 12 千克。通过
合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A、1800 元
B、2400 元
C、2800 元
D、3100 元
[答案]C
[解析]设公司每天生产甲种产品 X 桶,乙种产品 Y 桶,公司共可获得 利润为 Z 元/天,则由已知,
得 Z=300X+400Y
X 2Y 12
2X Y 12
[点评]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.
6、下列命题正确的是( ) A、若两条直线和同一个平面所成的角相等,则这两条直线平行 B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D、若两个平面都垂直于第三个平面,则这两个平面平行 [答案]C [解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,
2012年普通高等学校招生全国统一考试数学卷(四川.文)含详解
a2 b2 c c c
|PF|∈[a-c,a+c]
b2 于是 ∈[a-c,a+c] c
即 ac-c2≤b2≤ac+c2
ac c 2 a 2 c 2 ∴ 2 2 2 a c ac c
w_w w. k#s5_u.c o* m
c 1 a c 1或 c 1 a 2 a
个单位长度,再把所得各点的 10
横坐标伸长到原来的 2 倍(纵坐标不变) ,所得图像的函数解析式是高^考#资*源^网 (A) y sin(2 x
10
) )
(B) y sin(2 x
5
)
(C) y sin( x
1 2
10
(D) y sin( x
1 2
20
)
解析:将函数 y sin x 的图像上所有的点向右平行移动 式为 y=sin(x-
w_w w. k#s5_u.c o*m
y 80 70 (15,55)
(A)甲车间加工原料 10 箱,乙车间加工原料 60 箱 (B)甲车间加工原料 15 箱,乙车间加工原料 55 箱 (C)甲车间加工原料 18 箱,乙车间加工原料 50 箱
(D)甲车间加工原料 40 箱,乙车间加工原料 30 箱高^考#资*源^网 解析:解析:设甲车间加工原料 x 箱,乙车间加工原料 y 箱
40 1 800 20 160 320 200 120 8, 16 , 10 , 6 20 20 20 20
故各层中依次抽取的人数分别是 答案:D
(5)函数 f ( x) x mx 1的图像关于直线 x 1 对称的充要条件是
2
(A) m 2
(B) m 2
2012年理数高考试题答案及解析-四川
2012年普通高等学校招生全国统一考试(四川卷)数 学(供理科考生使用)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、21 [答案]D[解析]二项式7)1(x +展开式的通项公式为1+k T =k k x C 7,令k=2,则2273x C T 、= 21C x 272=∴的系数为[点评]:高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力.2、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i - [答案]B.[解析]2(1)2i i-=12212-=-+i ii [点评]突出考查知识点12-=i ,不需采用分母实数化等常规方法,分子直接展开就可以.3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于0 [答案]A[解析]分段函数在x=3处不是无限靠近同一个值,故不存在极限. [点评]对于分段函数,掌握好定义域的范围是关键。
2012年普通高等学校招生全国统一考试 理数(四川卷)解析版
2012年普通高等学校招生全国统一考试(四川卷)数 学(理工类)【试题总评】历年的四川高考试题都始终遵从源于教材、注重基础、全面考查、突出主干、注重思想、考查本质、多考点想,少考点算、能力立意、突出思维、稳中有进, 2012年高考数学四川卷也不例外,作为四川省最后一届的大纲版学习考试,在此次的高考中,试卷在题型、题量、难度分布上保持了相对的稳定,同时也有适当的创新,在2010年四川高考中把17、18、19题考点内容进行调整后,此次高考试卷也对试题的顺序做了适当的顺序调整,打破了以前的传统式的考题顺序。
2012年四川高考数学卷很大一部分试题直接源于教材或由教材上的例题、习题、复习题改变而成,这些试题注重基础知识的理解和运用。
例如第(1)、(5)、(8)等15个题目。
从而也充分说明了高考对基础知识的重视,立足于教材、回归到教材、重视课本、减轻学业负担,实施素质教育的导向作用。
2012年四川高考数学解答题目注重学生对基础知识的理解和运用,在题型上面略有创新,题目的灵活性加强,不再像以往试题固定化模式解题。
解答题部分注重考察学生的思维能力,运算能力,分析问题和解决问题的能力,创新意识,考察函数,方程的转化、划归,特殊和一般等思想方法。
总的来说,2012年四川高考数学试题相对稳定,注重基础,保持了四川卷的命题风格,同时又立足于现行高中数学教材和教学实际试题。
参考公式:如果事件互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p = 在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k k n k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2012年高考真题——理科数学(四川卷)精校版含答案
2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中表示球的半径球的体积公式如果事件在一次试验中发生的概率是,那么在次独立重复试验中事件恰好发生次的概率其中表示球的半径第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、的展开式中的系数是()A、 B、 C、 D、2、复数()A、B、C、D、3、函数在处的极限是()A、不存在B、等于C、等于D、等于4、如图,正方形的边长为,延长至,使,连接、则()A、 B、 C、 D、5、函数的图象可能是()6、下列命题正确的是()A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行7、设、都是非零向量,下列四个条件中,使成立的充分条件是()A、 B、 C、 D、且8、已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。
若点到该抛物线焦点的距离为,则()A、 B、 C、 D、9、某公司生产甲、乙两种桶装产品。
已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克。
每桶甲产品的利润是300元,每桶乙产品的利润是400元。
公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克。
通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A、1800元B、2400元C、2800元D、3100元10、如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为()A、 B、 C、 D、11、方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A、60条B、62条C、71条D、80条12、设函数,是公差为的等差数列,,则()A、 B、 C、 D、第二部分(非选择题共90分)注意事项:(1)必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。
2012年高考真题——数学理(四川卷)word版含答案
2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B? 球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012年高考文科数学四川卷-答案
第Ⅱ卷
二、填空题
13.【答案】
,
1 2
【解析】由分母部分的1
2x
0
,得到
x
,
1 2
。
【提示】结合函数 f (x) 1 的表达式可得不等式1 2x 0 的解集即为所求。
1 2x
【考点】函数的定义域及其求法。
14.【答案】 90
【解析】方法一:连接 D1M ,易得 DN A1D1 ,DN D1M ,所以,DN 平面 A1MD1 ,又 A1M 平面 A1MD1 , 所以, DN A1D1 ,故夹角为 90 。
a3
【提示】先画出图象,结合图象以及椭圆的定义求出 △FAB 的周长的表达式,进而求出何时周长最大,即
可求出椭圆的离心率。
【考点】椭圆的简单性质。 16.【答案】①④
【解析】若 a,b 都小于 1,则 a b 1。若 a,b 中至少有一个大于等于 1,则 a b 1。 由 a2 b2 (a b)(a b) 1,所以, a b 1。故①正确。对于 | a3 b3 || (a b)(a2 ab b2 ) |1, 若 a,b 中至少有一个大于等于 1,则 a2 ab b2 1,则| a b |1。若 a,b 都小于 1,则 | a b |1 ,
【提示】通过图象经过定点 (1,0) ,排除不符合条件的选项,从而得出结论。
【考点】指数函数的图像变换。
5.【答案】B
【解析】 | AE |1,正方形的边长也为 1
| ED | | AE |2 | AD |2 2 | ED | , | EC | (| EA | | AB |)2 | CB |2 5 ,| CD |1,
44
4
距最大时,即 z 有最大值为 z 3x 4y = 3 4 4 4 28 。
2012年文数高考试题答案及解析-四川
2012 年一般高等学校招生全国一致考试(四川卷)数学(供文科考生使用)参照公式:假如事件互斥,那么P(A + B) = P( A) + P(B)假如事件互相独立,那么P (A ?B) P( A) P( B)假如事件 A 在一次中生的概率是p ,那么在 n 次独立重复中事件 A 恰巧生 k 次的概率P (k ) = C k p k (1- p)n - k(k = 0,1,2,⋯, n)n n 球的表面公式2S = 4p R此中 R 表示球的半径球的体公式43V =p R3此中 R 表示球的半径第一部分(选择题共60分)注意事:1、必使用2B 笔将答案涂在机卡上目的地点上。
2、本部分共12 小,每小 5 分,共 60 分。
一、:每小出的四个中,只有一是切合目要求的。
1、会合A{ a, b} , B {b, c, d} ,A B()A、{ b}B、{b, c, d}C、{ a, c, d}D、{ a,b,c,d}[答案 ]D[分析 ]会合 A 中包括 a,b 两个元素,会合 B 中包括 b,c,d 三个元素,共有a,b,c,d 四个元素,所以 A B{ a、 b、 c、 d}[点 ]本旨在考会合的并集运算,会合属于高中数学入知,考出度不大,要点是掌握好本的基知 .2、(1 x)7的睁开式中x2的系数是()A、21B、 28C、35D、42[答案 ]A[分析 ]二式(1 x)7睁开式的通公式T k 1=C7k x k,令k=2, T3 C 72、x 2 x 2的系数为 C7221[点 ]高考二睁开式型度不大,要获得部分分,第一需要熟掌握二睁开式的通公式,其次需要化考生的算能力.3、交通管理部认识机(称)某新法的知状况,甲、乙、丙、丁四个社区做分抽。
假四个社区的人数N ,此中甲社区有96 人。
若在甲、乙、丙、丁四个社区抽取的人数分12,21,25,43 ,四个社区的人数 N()A、101B、 808C、 1212D、 2012[答案 ]B[分析 ]N= 962196 96 439612258081212[评论 ]解决分层抽样问题,要点是求出抽样比,此类问题难点要注意能否需要剔除个体 .4、函数 ya x a( a0, a 1) 的图象可能是()[答案 ]C[分析 ]采纳特别值考证法. 函数 ya xa( a 0, a 1) 恒过( 1,0),只有 C 选项切合 .[评论 ]函数大概图像问题,解决方法多样,此中特别值考证、清除法比较常用,且简单易用.5、如图,正方形 ABCD1,延伸BA 至 E ,使 AE1,连结 ECED则 sinCED的边长为、()DC3101055B 、C 、D 、A 、10101510[答案 ]BEAB[分析 ] AE 1,正方形的边长也为 1 EDAE222ADEC ( EA225 AB )CBCD1222310cosCEDEDEC -CD2 ED EC10sinCED1 cos 2CED1010[评论 ]注意恒等式 22α的的范围决定其正余弦值的正负状况.sin α +cos α =1的使用,需要用 6、以下命题正确的选项是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个订交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行[答案 ]C[分析 ]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能订交,所以 A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面能够平行,也能够垂直;故 D 错;应选项C正确 .[评论 ]本题旨在观察立体几何的线、面地点关系及线面的判断和性质,需要娴熟掌握课本基础知识的定义、定理及公式 .7、设a、b都是非零向量,以下四个条件中,使a b成立的充足条件是()| a ||b |A、| a | | b |且a // bB、a bC、a // bD、a 2b[答案 ]Da b[分析 ]若使成立,则 a与 b方向同样,选项中只有D能保证,应选 D.| a || b |[评论 ]本题观察的是向量相等条件模相等且方向同样.学习向量知识时需注意易考易错零向量,其模为 0 且方向随意 .x y3,x 2 y12,8、若变量x, y 知足拘束条件2x y 12 ,则z3x 4 y 的最大值是()x0y 0A、 12B、26C、 28D、33[答案 ]C[分析 ]目标函数z 3x 4 y 能够变形为y 3xz,做函数y3 x 的平行线,444当其经过点B( 4,4)时截距最大时,即 z 有最大值为z 3x 4 y =3 4 4 428 .[评论 ]解决线性规划题目的惯例步骤:一列(列出拘束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).9、已知抛物线对于x 轴对称,它的极点在座标原点O ,而且经过点 M (2, y0 ) 。
2012高考试题—数学理(四川卷)word版含答案
2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B+=+24S Rp=如果事件相互独立,那么其中R表示球的半径()()()P A B P A P B?球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径()(1)(0,1,2,,)k k n kn nP k C p p k n-=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x+的展开式中2x的系数是()A、42B、35C、28D、212、复数2(1)2ii-=()A、1B、1-C、iD、i-3、函数29,3()3ln(2),3xxf x xx x⎧-<⎪=-⎨⎪-≥⎩在3x=处的极限是()A、不存在B、等于6C、等于3D、等于04、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5、函数1(0,1)xy a a aa=->≠的图象可能是()6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b = 8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012年普通高等学校招生全国统一考试文科数学(四川卷)
12四川(文)1.(2012四川,文1)设集合A={a,b},B={b,c,d},则A∪B=( ).A.{b}B.{b,c,d}C.{a,c,d}D.{a,b,c,d}D A∪B={a,b}∪{b,c,d}={a,b,c,d},故选D.2.(2012四川,文2)(1+x)7的展开式中x2的系数是( ).A.21B.28C.35D.42A因为含x2项是二项式展开式中的第三项T3=27C x2=21x2,所以x2的系数是21,故选A.3.(2012四川,文3)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( ).A.101B.808C.1212D.2012B四个社区抽取的总人数为12+21+25+43=101,由分层抽样可知,9612=101N,解得N=808.故选B.4.(2012四川,文4)函数y=a x-a(a>0,且a≠1)的图象可能是( ).C当a>1时,y=a x是增函数,-a<-1,则函数y=a x-a的图象与y轴的交点在x轴下方,故选项A不正确;y=a x-a的图象与x轴的交点是(1,0),故选项B不正确;当0<a<1时,y=a x是减函数,y=a x-a的图象与x轴的交点是(1,0),故选项C正确;若0<a<1,则-1<-a<0,y=a x-a的图象与y轴的交点在x轴上方,故选项D不正确.5.(2012四川,文5)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC,ED,则si n∠CED=( ).A31010B1010C510D515B因为四边形ABCD是正方形,且AE=AD=1,所以∠AED=π4.又因为在Rt△EBC中,EB=2,BC=1,所以sin∠BEC55cos∠BEC255于是sin∠CED=sinπBEC4∠⎛⎫-⎪⎝⎭=sinπ4cos∠BEC-cosπ4si n∠BEC222552 2551010故选B.6.(2012四川,文6)下列命题正确的是( ).A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行C若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交.选项A 错;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,则经过这三个点的平面与这个平面相交,选项B 不正确;如图,平面α∩β=b ,a ∥α,a ∥β,过直线a 作平面ε∩α=c ,过直线a 作平面γ∩β=d ,∵a ∥α,∴a ∥c ,∵a ∥β,∴a ∥d ,∴d ∥c ,∵c ⊂α,d ⊄α,∴d ∥α,又∵d ⊂β,∴d ∥b ,∴a ∥b ,选项C 正确;若两个平面都垂直于第三个平面,则这两个平面可平行、可相交,选项D 不正确. 7.(2012四川,文7)设a ,b 都是非零向量.下列四个条件中,使a |a |=b |b |成立的充分条件是( ).A .|a |=|b |且a ∥bB .a =-bC .a ∥bD .a =2bD 若a |a |=b |b |,则向量a |a |与b |b |是方向相同的单位向量,所以a 与b 应共线同向,故选D .8.(2012四川,文8)若变量x ,y 满足约束条件x y 3,x 2y 12,2x y 12,x 0,y 0,-≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩则z =3x +4y 的最大值是( ). A .12B .26C .28D .33C 作出可行域如图五边形OABCD 边界及其内部,作直线l 0:3x +4y =0,平移直线l 0经可行域内点B 时,z 取最大值.由x 2y 12,2x y 12,+=⎧⎨+=⎩得B (4,4),于是z max =3×4+4×4=28,故选C .9.(2012四川,文9)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦3,则|OM |=( A .2B .3C .4 D .5B 由抛物线定义知,p 2+2=3,所以p =2,抛物线方程为y 2=4x .因为点M (2,y 0)在此抛物线上,所以20y =8,于是|OM 204y +3故选B .10.(2012四川,文10)如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点∠BOP =60°,则A ,P 两点间的球面距离为( ). A .R 24B .R 4πC .R 33D .R 3πA 过点A 作AH ⊥平面BCD .∵平面BCD 与底面所成角为45°,AO ⊥平面α,在交线上,点B 与平面α的距离最大,为4.∴点H 在OB 上,且∠AOB =45°.过点H 作HM ⊥OP ,垂足为M ,连接AM ,在等腰直角三角形AOH中,AH =OH 2.在Rt △HOM 中,∠HOP =60°,∴HM =OH 24R .在Rt △AHM 中,AM 4R ,∴sin ∠AOM =44∴cos ∠AOM 4∴∠AOP =4∴A ,P 两点间的球面距离为R 411.(2012四川,文11)方程ay =b 2x 2+c 中的a ,b ,c ∈{-2,0,1,2,3},且a ,b ,c 互不相同.在所有这些方程所表示的曲线中,不同的抛物线共有( ). A .28条 B .32条 C .36条 D .48条B 因为a ,b 不能为0,先安排a ,b ,有24A 种,c 有13C 种,所以表示的抛物线共有2143A C =36(条).又因为当b =±2时,b 2都为4,所以重复的抛物线有1122C C =4(条).所以这些方程所表示的曲线中,不同的抛物线共有36-4=32(条).故选B .12.(2012四川,文12)设函数f (x )=(x -3)3+x -1,{a n }是公差不为0的等差数列,f (a 1)+f (a 2)+…+f (a 7)=14,则a 1+a 2+…+a 7=( ). A .0 B .7 C .14 D .21D 由f (a 1)+f (a 2)+…+f (a 7)=14知,(a 1-3)3+(a 2-3)3+…+(a 7-3)3+(a 1+a 2+…+a 7)-7=14.因为{a n }是公差不为0的等差数列,所以(a 1-3)3+(a 2-3)3+…+(a 7-3)3+7(a 4-3)=0.因为(a 1-3)3+(a 7-3)3=[(a 1-3)+(a 7-3)][(a 1-3)2+(a 7-3)2-(a 1-3)(a 7-3)]=2(a 4-3)2217713(a 3)-(a 3)(a 3)24⎧⎫⎪⎪⎡⎤--+-⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭=2(a 4-3)22177133a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 令222177133a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=M 1>0, 同理(a 2-3)3+(a 6-3)3=2(a 4-3)22266133a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=(a 4-3)·M 2, (a 3-3)3+(a 5-3)3=2(a 4-3)22355333a a (a 3)224⎡⎤⎛⎫--+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=(a 4-3)·M 3, (a 4-3)3=(a 4-3)(a 4-3)2,其中M 2>0,M 3>0,所以(a 1-3)3+(a 2-3)3+…+(a 7-3)3+7(a 4-3)=(a 4-3)M 1+(a 4-3)M 2+(a 4-3)M 3+(a 4-3)(a 4-3)2+7(a 4-3) =(a 4-3)[M 1+M 2+M 3+(a 4-3)2+7]=0,因为M 1+M 2+M 3+(a 4-3)2+7>0恒成立,所以a 4-3=0,a 4=3,而a 1+a 2+…+a 7=7a 4=21.故选D . 13.(2012四川,文13)函数f (x.(用区间表示)1,2⎛⎫-∞ ⎪⎝⎭ ∵1-2x >0,∴x <12,∴f (x )的定义域为1,2⎛⎫-∞ ⎪⎝⎭.14.(2012四川,文14)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是 .90° 如图所示,以点D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立坐标系D -xyz ,设正方体的棱长为2,则1M A =(2,-1,2),D N =(0,2,1),于是1M A ·D N=0,故异面直线A 1M 与DN 所成的角为90°.15.(2012四川,文15)椭圆22x a+2y 5=1(a 为定值,且a 5的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,△FAB 的周长的最大值是12,则该椭圆的离心率是 .23如图所示,设椭圆右焦点为F 1,AB 与x 轴交于点H ,则|AF |=2a -|AF 1|,△ABF 的周长为2|AF |+2|AH |=2(2a -|AF 1|+|AH |),∵△AF 1H 为直角三角形,∴|AF 1|>|AH |,仅当|AF 1|=|AH |,即F 1与H 重合时,△AFB 的周长最大,即最大周长为2(|AF |+|AF 1|)=4a =12,∴a =3,而b 5∴c =2,离心率e =c a=23.16.(2012四川,文16)设a ,b 为正实数.现有下列命题: ①若a 2-b 2=1,则a -b <1; ②若1b-1a=1,则a -b <1;③若a b 1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中的真命题有 .(写出所有真命题的编号) ①④ ①a 2=b 2+1,∵b 2>0,∴a 2>1,故a >1,而a -b =1a b+,∵a >1,b >0,∴a +b >1,∴1a b+<1,∴①正确;②1b-1a=1,∵当b =23,a =2时,满足1b-1a=32-12=1,而此时a -b >1,∴②不正确;③∵a ,b 为正实数,且a b 1.不妨设a >b ,则a -b a b a b a b a b 1>1,∴a -b a b 1,∴③不正确;④∵a ,b 是正实数,不妨设a >b ,∴a 3-b 3=(a -b )(a 2+b 2+ab ),∴a -b =3322a ba ab b-++=221a ab b++,∵a 3=1+b 3>1,∴a 2>1,∴a 2+ab +b 2>1,则0<221a ab b++<1,∴a -b =221a ab b++<1,即|a -b |<1.同理,设a <b ,也能得到|a -b |<1的结论,故④正确.17.(2012四川,文17)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率. 解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110·p =4950.解得p =15.(2)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D ,那么 P (D )=23110C ×21110⎛⎫- ⎪⎝⎭+31110⎛⎫- ⎪⎝⎭=9721 =243250.故系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为243250.18.(2012四川,文18)已知函数f (x )=cos 2x 2-sin x 2cos x 2-12.(1)求函数f (x )的最小正周期和值域;(2)若f (α10求sin 2α的值.解:(1)由已知,f (x )=cos 2x 2-sin x 2cos x 2-12=1(1+cos x )-12sin x -122x 4π⎛⎫+ ⎪⎝⎭.所以f (x )的最小正周期为2π,值域为22⎡⎢⎣⎦.(2)由(1)知,f (α2α4π⎛⎫+ ⎪⎝⎭10所以cos α4π⎛⎫+⎪⎝⎭=35.所以sin 2α=-cos 2α2π⎛⎫+ ⎪⎝⎭=-cos 2α4π⎡⎤⎛⎫+⎪⎢⎥⎝⎭⎣⎦=1-2cos 2α4π⎛⎫+⎪⎝⎭=1-1825=725.19.(2012四川,文19)如图,在三棱锥P -ABC 中,∠APB =90°,∠PAB =60°,AB =BC =CA ,点P 在平面ABC 内的射影O 在AB 上.(1)求直线PC 与平面ABC 所成的角的大小; (2)求二面角B -AP -C 的大小.解法一:(1)如图,连结OC .由已知,∠OCP 为直线PC 与平面ABC 所成的角.设AB 的中点为D ,连结PD ,CD . 因为AB =BC =C A ,所以CD ⊥AB . 因为∠APB =90°,∠PAB =60°, 所以△PAD 为等边三角形.不妨设PA =2,则OD =1,OP AB =4.所以CD =OC在Rt △OCP 中,tan ∠OCP =O P O C13故直线PC 与平面ABC 所成的角的大小为13(2)过D 作DE ⊥AP 于E ,连结CE .由已知可得,CD ⊥平面PAB . 根据三垂线定理知,CE ⊥PA .所以∠CEDB -AP -C 的平面角. 由(1)知,DE 在Rt △CDE 中,tan ∠CED =C D D E2.故二面角B -AP -C 的大小为arctan 2. 解法二:(1)设AB 的中点为D ,连结CD .因为O 在AB 上,且O 为P 在平面ABC 上的射影, 所以PO ⊥平面ABC .所以PO ⊥AB ,且PO ⊥CD . 由AB =BC =CA ,知CD ⊥AB . 设E 为AC 中点,则EO ∥CD ,从而OE ⊥PO ,OE ⊥AB .如图,以O 为坐标原点,OB ,OE ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系O -xyz .不妨设PA =2,由已知可得,AB =4,OA =OD =1,OP CD =所以O (0,0,0),A (-1,0,0),C (1,0),P (0,0所以C P =(-1,-而O P =(0,0为平面ABC 的一个法向量. 设α为直线PC 与平面ABC,则sin α=C P |C P||O P|4故直线PC 与平面ABC 所成的角的大小为4(2)由(1)有,AP=(1,0,AC =(2,0).设平面APC 的一个法向量为n =(x 1,y 1,z 1),则n ,n A P A C ⎧⊥⎪⎨⊥⎪⎩ ⇔n 0,n 0A P A C ⎧⋅=⎪⎨⋅=⎪⎩⇔111111(x ,y ,z )(1,0,(x ,y ,z )(2,0)0.⎧⋅=⎪⎨⋅=⎪⎩ 从而1111x z 0,2x y 0.⎧+=⎪⎨+=⎪⎩ 取x 1则y 1=1,z 1=1, 所以n 1,1).设二面角B -AP -C 的平面角为β,易知β为锐角. 而面ABP 的一个法向量为m =(0,1,0),则cos β=n m |n||m |⋅5故二面角B -AP -C 的大小为520.(2012四川,文20)已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立. (1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列n 1a lg ⎧⎫⎨⎬⎩⎭的前n 项和最大? 解:(1)取n =1,得λ21a =2S 1=2a 1,a 1(λa 1-2)=0.若a 1=0,则S n =0.当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0(n ≥1). 若a 1≠0,则a 1=2λ.当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=n2λ.综上,当a 1=0时,a n =0; 当a 1≠0时,a n =n2λ.(2)当a 1>0且λ=100时,令b n =lg n1a , 由(1)有,b n =lg n1002=2-n lg 2.所以数列{b n }是单调递减的等差数列(公差为-lg 2). b 1>b 2>…>b 6=lg 61002=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 71002=lg 100128<lg 1=0,故数列n 1a lg ⎧⎫⎨⎬⎩⎭的前6项的和最大.21.(2012四川,文21)如图,动点M 与两定点A (-1,0),B (1,0)构成△MAB ,且直线MA ,MB 的斜率之积为4.设动点M 的轨迹为C .(1)求轨迹C 的方程;(2)设直线y =x +m (m >0)与y 轴相交于点P ,与轨迹C 相交于点Q ,R ,且|PQ |<|PR |,求|PR ||PQ |的取值范围.解:(1)设M 的坐标为(x ,y ),当x =-1时,直线MA 的斜率不存在;当x =1时,直线MB 的斜率不存在. 于是x ≠1且x ≠-1.此时,MA 的斜率为y x 1+,MB 的斜率为y x 1-.由题意,有y x 1+·y x 1-=4,化简可得4x 2-y 2-4=0.故动点M 的轨迹C 的方程为4x 2-y 2-4=0(x ≠1且x ≠-1). (2)由22y x m ,4x y 40=+⎧⎨--=⎩消去y ,可得3x 2-2mx -m 2-4=0.(*)对于方程(*),其判别式Δ=(-2m )2-4×3(-m 2-4)=16m 2+48>0, 而当1或-1为方程(*)的根时,m 的值为-1或1. 结合题设(m >0)可知,m >0,且m ≠1. 设Q ,R 的坐标分别为(x Q ,y Q ),(x R ,y R ), 则x Q ,x R 为方程(*)的两根. 因为|PQ |<|PR |, 所以|x Q |<|x R |,x Q3x R3所以|PR ||PQ |=R Qx x=11,2,所以1<13,且153≠, 所以1<|PR ||PQ |=R Qx x <3,且|PR ||PQ |=R Qx 5x 3≠.综上所述,|PR ||PQ |的取值范围是551,,333⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⋃.22.(2012四川,文22)已知a 为正实数,n 为自然数,抛物线y =-x 2+na2与x 轴正半轴相交于点A .设f (n )为该抛物线在点A 处的切线在y 轴上的截距. (1)用a 和n 表示f (n ); (2)求对所有n 都有f (n)-1n f (n )1n 1≥++成立的a 的最小值;(3)当0<a <1时,比较1f (1)-f (2)+1f (2)-f (4)+…+1f (n)-f (2n )与6·f (1)-f (n 1)f (0)-f (1)+的大小,并说明理由.解:(1)由已知得,交点A的坐标为0⎫⎪⎪⎭.对y =-x 2+12a n 求导得y '=-2x ,则抛物线在点A 处的切线方程为yx -⎝, 即y+a n . 则f (n )=a n .(2)由(1)知f (n )=a n , 则f (n)-1n f (n )1n 1≥++成立的充要条件是a n ≥2n +1.即知a n ≥2n +1对所有n 成立. 特别地,取n =1得到a ≥3.当a =3,n ≥1时,a n =3n =(1+2)n =1+1n C ·2+…≥2n +1. 当n =0时,a n =2n +1. 故a =3时,f (n)-1n f (n )1n 1≥++对所有自然数n 均成立.所以满足条件的a 的最小值为3. (3)由(1)知f (k )=a k . 下面证明:1f (1)-f (2)+1f (2)-f (4)+…+1f (n)-f (2n )>6·f (1)-f (n 1)f (0)-f (1)+.首先证明:当0<x <1时,21x x->6x .设函数g (x )=6x (x 2-x )+1,0<x <1. 则g '(x )=18x 2x 3⎛⎫- ⎪⎝⎭.当0<x <23时,g '(x )<0;当23<x <1时,g '(x )>0.故g (x )在区间(0,1)上的最小值g (x )min =g 23⎛⎫ ⎪⎝⎭=19>0.所以,当0<x <1时,g (x )>0,即得21x x->6x .由0<a <1知0<a k <1(k ∈N *), 因此k2k1a a->6a k ,从而1f (1)-f (2)+1f (2)-f (4)+…+1f (n)-f (2n )=21a a-+241a a-+…+n2n1a a->6(a +a 2+…+a n )=6·n 1a a1a+--=6·f (1)-f (n 1)f (0)-f (1)+.。
2012年理数高考试题答案及解析-四川
2012 年普通高等学校招生全国统一考试(四川卷)数学(供理科考生使用)参考公式:如果事件互斥,那么球的表面积公式P (A + B) = P( A) + P( B)S = 4p R2如果事件相互独立,那么其中 R 表示球的半径P (A ?B)P( A) P( B )球的体积公式如果事件 A 在一次试验中发生的概率是p ,那么V =4p R33在 n 次独立重复试验中事件 A 恰好发生k次的概率其中 R 表示球的半径P (k ) = C k p k (1- p)n - k(k = 0,1,2, ⋯, n)n n第一部分(选择题共 60 分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12 小题,每小题 5 分,共 60 分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、(1 x)7的展开式中x2的系数是()A、42B、35C、28D、21[答案 ]D[解析 ]二项式(1 x)7展开式的通项公式为T k 1=C7k x k,令k=2,则 T3C72、x 2 x 2的系数为 C7221[点评 ]:高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力.(1i )22、复数()2iA、1B、1C、iD、i[答案 ]B.(1 i) 2 1 i 22i1[解析 ]2i2i[点评 ]突出考查知识点i 2 1 ,不需采用分母实数化等常规方法,分子直接展开就可以.3、函数f (x)x29, x3在 x 3 处的极限是(x3)ln( x2), x3A 、不存在B 、等于 6C 、等于 3D 、等于 0[答案 ]A[解析 ]分段函数在 x=3 处不是无限靠近同一个值,故不存在极限.[点评 ]对于分段函数,掌握好定义域的范围是关键。
4、如图,正方形 ABCD 的边长为 1,延长 BA 至 E ,使 AE1 ,连接 EC 、ED 则 sinCED()DC3 10B 、10C 、55A 、10D 、101015[答案 ]BEAB[解析 ]AE 1,正方形的边长也为1ED222AEAD(22,ECEAAB )CB15 CDED 2EC 22cos CED- CD3 102 ED EC10sinCED1 cos2CED1010[点评 ]注意恒等式 22α的的范围决定其正余弦值的正负情况.sin α +cos α =1的使用,需要用5、函数 yax1(a 0, a 1) 的图象可能是()a[答案 ]C[解析 ]采用排除法.函数ya x a(a0, a1) 恒过( 1,0),选项只有C 符合,故选 C.[点评 ]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用 6、下列命题正确的是()A 、若两条直线和同一个平面所成的角相等,则这两条直线平行.B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行[答案 ]C[解析 ]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以 A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项[点评 ]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式 .7、设a、b都是非零向量,下列四个条件中,使a b成立的充分条件是()| a || b |A、abB、a // bC、a2bD、a // b且| a | |b | [答案 ]D[解析 ]若使a b成立,则a与b方向相同,选项中只有 D 能保证,故选 D.| a || b |[点评 ]本题考查的是向量相等条件模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0 且方向任意 .8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2, y0)。
2012年高考真题汇编——文科数学(解析版)4:三角函数
2012高考试题分类汇编:4:三角函数一、选择题1.【2012高考安徽文7】要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象 (A ) 向左平移1个单位 (B ) 向右平移1个单位 (C ) 向左平移 12个单位 (D ) 向右平移12个单位【答案】C【解析】 cos 2cos(21)y x y x =→=+左+1,平移12。
2.【2012高考新课标文9】已知ω>0,πϕ<<0,直线4π=x 和45π=x 是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4【答案】A 【解析】因为4π=x 和45π=x 是函数图象中相邻的对称轴,所以2445T =-ππ,即ππ2,2==T T .又πωπ22==T ,所以1=ω,所以)sin()(ϕ+=x x f ,因为4π=x 是函数的对称轴所以ππϕπk +=+24,所以ππϕk +=4,因为πϕ<<0,所以4πϕ=,检验知此时45π=x 也为对称轴,所以选A.3.【2012高考山东文8】函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2- (B)0 (C)-1 (D)1--【答案】A【解析】因为90≤≤x ,所以6960ππ≤≤x ,369363πππππ-≤-≤-x ,即67363ππππ≤-≤-x ,所以当336πππ-=-x 时,最小值为3)3sin(2-=-π,当236πππ=-x 时,最大值为22sin2=π,所以最大值与最小值之和为32-,选A.4.【2012高考全国文3】若函数()sin ([0,2])3x f x ϕϕπ+=∈是偶函数,则=ϕ(A )2π(B )32π (C )23π (D )35π【答案】C【解析】函数)33sin(3sin )(ϕϕ+=+=x x x f ,因为函数)33sin()(ϕ+=x x f 为偶函数,所以ππϕk +=23,所以Z k k ∈+=,323ππϕ,又]2,0[πϕ∈,所以当0=k 时,23πϕ=,选C.5.【2012高考全国文4】已知α为第二象限角,3sin 5α=,则sin 2α=(A )2524-(B )2512-(C )2512 (D )2524【答案】B【解析】因为α为第二象限,所以0cos <α,即54sin 1cos 2-=--=αα,所以25125354cos sin 22sin -=⨯-==ααα,选B.6.【2012高考重庆文5】sin 47sin 17cos 30cos17-(A )2-(B )12-(C )12(D )2【答案】C 【解析】sin 47sin 17cos 30sin(3017)sin 17cos 30cos17cos17-+-=sin 30cos17cos 30sin 17sin 17cos 30sin 30cos171sin 30cos17cos172+-====,选C.7.【2012高考浙江文6】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【解析】由题意,y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为y=cosx+1,向左平移一个单位为y=cos (x-1)+1,向下平移一个单位为y=cos (x-1),利用特殊点,02π⎛⎫⎪⎝⎭变为1,02π⎛⎫- ⎪⎝⎭,选A. 8.【2012高考上海文17】在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定【答案】A【解析】根据正弦定理可知由C B A 222sinsinsin<+,可知222c b a <+,在三角形中02cos 222<-+=abcb a C ,所以C 为钝角,三角形为钝角三角形,选A.9.【2012高考四川文5】如图,正方形A B C D 的边长为1,延长B A 至E ,使1A E =,连接E C 、ED 则sin C ED ∠=( )(1)10B10C 10D15【答案】B【解析】 2EB EA AB =+=,EC ===3424E D C E D A A D C πππ∠=∠+∠=+=,由正弦定理得sin 1sin 5C ED D C ED CC E∠===∠,所以3sin sin sin55410C ED ED C π∠=∠==.10.【2012高考辽宁文6】已知sin cos αα-=,α∈(0,π),则sin 2α=(A)-1 (B) 2- (C) 2(D) 1【答案】A【解析】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=- 故选A【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题。
2012年高考数学理(四川卷)含答案
2012年普通高等学校招生全国统一考试(四川卷)数 学(理工类)参考公式:如果事件互斥,那么球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A B C D 5、函数1(0,1)xy a a a a=->≠的图象可能是( )6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
高考数学 高频考点归类分析 真假命题的判定(真题为例)
典型例题:例1. (2012年全国课标卷理5分)下面是关于复数21z i=-+的四个命题:其中的真命题为【 】1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【答案】C 。
【考点】真假命题,复数的概念。
【解析】∵22(1)11(1)(1)i z i i i i --===---+-+--,()()2211=2z =-+-,()221=2z i i =--,1i --的共轭复数是1i -+,∴1:2p z =不是真命题;22:2p z i =是真命题;3:p z 的共轭复数为1i +不是真命题;4:p z 的虚部为1-是真命题。
故选C 。
例2. (2012年四川省理5分)下列命题正确的是【 】 A 、若两条直线和同一个平面所成的角相等,则这两条直线平行 B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D 、若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C 。
【考点】立体几何的线、面位置关系及线面的判定和性质。
【解析】采用排除法:若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错; 故选项C 正确。
故选C 。
例3. (2012年山东省文5分)设命题p :函数sin 2=y x 的最小正周期为2π;命题q :函数cos =y x 的图象关于直线2π=x 对称.则下列判断正确的是【 】A p 为真B ⌝q 为假C ∧p q 为假D ∨p q 为真 【答案】C 。
【考点】真假命题的判定,三角函数的周期和对称性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
) C、35
k k
A、21 [答案]A
7
B、28
D、42
2、 2
[解析]二项式 (1 + x) 展开式的通项公式为 Tk +1 = C7 x ,令 k=2,则 T3 = C 7 x
2 ∴ x 2的系数为 C 7 = 21
[点评]高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式 的通项公式,其次需要强化考生的计算能力. 3、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、 丁四个社区做分层抽样调查。 假设四个社区驾驶员的总人数为 N , 其中甲社区有驾驶员 96 人。 若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为 12,21,25,43 ,则这四个社区驾驶员的 总人数 N 为( A、101 [答案]B ) B、808 C、1212 D、2012
3 z 3 y = − x + ,做函数 y = − x 的平行线, 4 4 4
当其经过点 B(4,4)时截距最大时, 即 z 有最大值为 z = 3 x + 4 y = 3 × 4 + 4 × 4 = 28 . [点评]解决线性规划题目的常规步骤: 一列(列出约束条件) 、 二画(画出可行域) 、 三作(作目标函数变形式的平行线) 、 四求(求出最优解). 9、已知抛物线关于 x 轴对称,它的顶点在坐标原点 O , 并且经过点 M (2, y0 ) 。若点 M 到该抛物线焦点的距离为 3 ,则 | OM |= ( A、 2 2 [答案]B [解析]设抛物线方程为 y2=2px(p>0),则焦点坐标为( B、 2 3 C、 4 D、 2 5 )
S = 4p R 2
其中 R 表示球的半径 球的体积公式
4 V = p R3 3 其中 R 表示球的半径
Pn (k ) = Cnk p k (1 - p )n-k (k = 0,1, 2,…, n)
第一部分
(选择题 共 60 分)
注意事项: 1、选择题必须使用 2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。 2、本部分共 12 小题,每小题 5 分,共 60 分。 一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。 1、设集合 A = {a, b} , B = {b, c, d } ,则 A ∪ B = ( A、 {b} B、 {b, c, d } C、 {a, c, d } ) D、 {a, b, c, d }
第 - 2 - 页 共 12 页
2012 四川高考真题解析
[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础 知识的定义、定理及公式.
� � � � a b 7、设 a 、 b 都是非零向量,下列四个条件中,使 � = � 成立的充分条件是( |a| |b|
A、 | a |=| b | 且 a // b [答案]D
第 - 5 - 页 共 12 页
2012 四川高考真题解析
Hale Waihona Puke 第二部分注意事项:
(非选择题 共 90 分)
(1)必须使用 0.5 毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用 铅笔绘出,确认后再用 0.5 毫米黑色签字笔描清楚。答在试题卷上无效。 (2)本部分共 10 个小题,共 90 分。 二、填空题(本大题共 4 个小题,每小题 4 分,共 16 分。把答案填在答题纸的相应位置上。 ) 13、函数 f ( x) = [答案]( - ∞, ) [解析]由分母部分的 1-2x>0,得到 x∈( - ∞, ). [点评]定义域问题属于低档题,只要保证式子有意义即可,相对容易得分.常见考点有:分母不 为 0;偶次根下的式子大于等于 0;对数函数的真数大于 0;0 的 0 次方没有意义. 14、如图,在正方体 ABCD − A1 B1C1 D1 中, M 、 N 分别是 CD 、 CC1 的 中点,则异面直线 A1M 与 DN 所成的角的大小是____________。 [答案]90º [解析]方法一:连接 D1M,易得 DN⊥A1D1 ,DN⊥D1M, 所以,DN⊥平面 A1MD1, 又 A1M ⊂ 平面 A1MD1,所以,DN⊥A1D1,故夹角为 90º 方法二:以 D 为原点,分别以 DA, DC, DD1 为 x, y, z 轴,建立空间直角坐标 系 D—xyz.设正方体边长为 2,则 D(0,0,0) ,N(0,2,1) ,M(0,1,0)A1(2,0,2) 故, DN = (0,2,1 ), MA1 = (2, − 1,2) 所以,cos< 〈 DN, MA1 〉 =
2012 四川高考真题解析
2012 年普通高等学校招生全国统一考试(四川卷)
数 学(供文科考生使用)
参考公式: 如果事件互斥,那么 球的表面积公式
P( A + B) = P( A) + P( B)
如果事件相互独立,那么 P( A × B) = P( A)i P( B) 如果事件 A 在一次试验中发生的概率是 p ,那么 在 n 次独立重复试验中事件 A 恰好发生 k 次的概率
p p ,准线方程为 x= − , ,0 ) 2 2
第 - 3 - 页 共 12 页
2012 四川高考真题解析
∵ M在抛物线上, ∴ M到焦点的距离等于到准线的距离,即 p 2 p 2 2 ∴ (2 - ) + y0 = (2 + ) =3 2 2 解得:p = 1, y 0 = 2 2 ∴ 点M(2,2 2),根据两点距离公式有: ∴| OM |= 2 2 + (2 2 ) 2 = 2 3
x
[答案]C [解析]采用特殊值验证法. 函数 y = a − a (a > 0, a ≠ 1) 恒过(1,0) ,只有 C 选项符合. [点评]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用. 5、 如图, 正方形 ABCD 的边长为 1 , 延长 BA 至 E , 使 AE = 1 , 连接 EC 、 ED 则 sin ∠CED = ( ) D C A、
∴ COS∠AOP =
AO • PO 2 = 2 R 4
A(
2 2 1 3 R ,0 , R ), P ( R , R ,0 ) 2 2 2 2
∴ ∠AOP = arccos
2 4
⌢ 2 ∴ AP = R ⋅ arccos 4
[点评]本题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等 基础知识结合到了一起 . 是一道知识点考查较为全面的好题 .要做好本题需要有扎实的数学基 本功. 11、方程 ay = b x + c 中的 a, b, c ∈ {−2, 0,1, 2,3} ,且 a, b, c 互不相同,在所有这些方程所表 示的曲线中,不同的抛物线共有( A、28 条 B、32 条 ) C、36 条
3
f (a1 ) + f ( a2 ) + ⋅⋅⋅ + f ( a7 ) = 14 ,则 a1 + a 2 + ⋯ a 7 = (
A、0 [答案]D B、7 C、14
) D、21
[解析]∵ {an } 是公差不为 0 的等差数列,且 f (a1 ) + f ( a2 ) + ⋅⋅⋅ + f ( a7 ) = 14
第 - 1 - 页 共 12 页
2012 四川高考真题解析
[解析]N= 96 + 21 ×
96 96 96 + 25 × + 43 × = 808 12 12 12
)
[点评]解决分层抽样问题,关键是求出抽样比,此类问题难点要注意是否需要剔除个体. 4、函数 y = a − a (a > 0, a ≠ 1) 的图象可能是(
2 2
= 10 10
3 10 10
[点评]注意恒等式 sin2α+cos2α=1 的使用,需要用α的的范围决定其正余弦值的正负情况. 6、下列命题正确的是( ) A、若两条直线和同一个平面所成的角相等,则这两条直线平行 B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D、若两个平面都垂直于第三个平面,则这两个平面平行 [答案]C [解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能 相交,所以 A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面 平行,故 B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故 D 错;故选项 C 正确.
第 - 4 - 页 共 12 页
2 2
D、48 条
2012 四川高考真题解析
[答案]B [解析]方程 ay = b x + c 变形得 x = 所以,分 b=-2,1,2,3 四种情况:
2 2 2
a c y − 2 ,若表示抛物线,则 a ≠ 0, b ≠ 0 2 b b
⎧a = −2, c = 0, 或1, 或3 ⎪ ⎨a = 1, c = −2, 或0, 或3 ⎪a = 3,c = −2, 或0, 或1 ⎩
[答案]D [解析]集合 A 中包含 a,b 两个元素,集合 B 中包含 b,c,d 三个元素,共有 a,b,c,d 四个元素,所 以 A ∪ B = {a、b、c、d } [点评]本题旨在考查集合的并集运算, 集合问题属于高中数学入门知识, 考试时出题难度不大, 重点是掌握好课本的基础知识.
7 2、 (1 + x ) 的展开式中 x 的系数是( 2
)
�
�
� �
B、 a = −b
�
�
C、 a // b
� �
D、 a = 2b
�
�
� � a b [解析]若使 � = � 成立,则 a与b方向相同, 选项中只有 D 能保证,故选 D. |a| |b|