低温静态容量法测定固体比表面和孔径分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低温静态容量法测定固体比表面和孔径分布
第一部分 基 本 原 理
一. 背景知识
细小粉末中相当大比例的原子处于或靠近表面。如果粉末的颗粒有裂缝、缝隙或在表面上有孔,则裸露原子的比例更高。固体表面的分子与内部分子不同,存在剩余的表面自由力场。同样的物质,粉末状与块状有着显著不同的性质。与块状相比,细小粉末更具活性,显示出更好的溶解性,熔结温度更低,吸附性能更好,催化活性更高。这种影响是如此显著,以至于在某些情况下,比表面积及孔结构与化学组成有着相当的重要性。因此,无论在科学研究还是在生产实际中,了解所制备的或使用的吸附剂的比表面积和孔径分布有时是很重要的事情。例如,比表面积和孔径分布是表征多相催化剂物化性能的两个重要参数。一个催化剂的比表面积大小常常与催化剂活性的高低有密切关系,孔径的大小往往决定着催化反应的选择性。目前,已发展了多种测定和计算固体比表面积和孔径分布的方法,不过使用最多的是低温氮物理吸附静态容量法。
1.吸附
气体与清洁固体表面接触时,在固体表面上气体的浓度高于气相,这种现
象称吸附(adsorption)。吸附气体的固体物质称为吸附剂(adsorbent);被吸附的气体称为吸附质(adsorptive);吸附质在表面吸附以后的状
态称为吸附态。
吸附可分为物理吸附和化学吸附。
化学吸附:被吸附的气体分子与固体之间以化学键力结合,并对它们的性
质有一定影响的强吸附。
物理吸附:被吸附的气体分子与固体之间以较弱的范德华力结合,而不影
响它们各自特性的吸附。
两种吸附的不同特征
化 学 吸 附 物 理 吸 附
吸附热 吸附速率 发生温度 选择性
吸附层 较大
需要活化,速率慢
高温(高于气体液化点)
有选择性,与吸附质、吸
附剂性质有关
单层
较小
不需要活化,速率快
接近气体液化点
无选择性,任何气体可在
任何吸附剂上吸附
多层
由于物理吸附的“惰性”,通过物理吸附的行为及吸附量的大小可以确定固体的表面积、孔体积及其孔径分布。
2.孔的定义
固体表面由于多种原因总是凹凸不平的,凹坑深度大于凹坑直径就成为孔。有孔的物质叫做多孔体(porous material),没有孔的物质是非孔体(nonporous material)。多孔体具有各种各样的孔直径(pore
diameter)、孔径分布(pore size distribution)和孔容积(pore
volume)。
孔的吸附行为因孔直径而异。IUPAC定义的孔大小(孔宽)分为:
微孔(micropore) < 2nm
中孔(mesopore) 2~50nm
大孔(macropore) 50~7500nm
巨孔(megapore) > 7500nm(大气压下水银可进入)此外,把微粉末填充到孔里面,粒子(粉末)间的空隙也构成孔。虽然在粒径小、填充密度大时形成小孔,但一般都是形成大孔。分子能从外部进入的孔叫做开孔(open pore),分子不能从外部进入的孔叫做闭孔(closed pore)。
单位质量的孔容积叫做物质的孔容积或孔隙率(porosity)
3.吸附平衡
固体表面上的气体浓度由于吸附而增加时,称吸附过程(adsorption);反之,当气体在固体表面上的浓度减少时,则为脱附过程(desorption)。
吸附速率与脱附速率相等时,表面上吸附的气体量维持不变,这种状态即为吸附平衡。吸附平衡与压力、温度、吸附剂的性质、吸附质的性质等因素有关。一般而言,物理吸附很快可以达到平衡,而化学吸附则很慢。
吸附平衡有三种:等温吸附平衡、等压吸附平衡和等量吸附平衡。
4.等温吸附平衡――吸附等温线
在恒定温度下,对应一定的吸附质压力,固体表面上只能存在一定量的气体吸附。通过测定一系列相对压力下相应的吸附量,可得到吸附等温线。吸附等温线是对吸附现象以及固体的表面与孔进行研究的基本数据,可从中研究表面与孔的性质,计算出比表面积与孔径分布。
吸附等温线有以下六种(图1)。前五种已有指定的类型编号,而第六种是近年补充的。吸附等温线的形状直接与孔的大小、多少有关。
图1 吸附等温线的基本类型
Ⅰ型等温线:Langmuir等温线
相应于朗格缪单层可逆吸附过程,是窄孔进行吸附,而对于微孔来说,可以说是体积充填的结果。样品的外表面积比孔内表面积小很多,吸附容量受孔体积控制。平台转折点对应吸附剂的小孔完全被凝聚液充满。微孔硅胶、沸石、炭分子筛等,出现这类等温线。
这类等温线在接近饱和蒸气压时,由于微粒之间存在缝隙,会发生类似于大孔的吸附,等温线会迅速上升。
Ⅱ型等温线:S型等温线
相应于发生在非多孔性固体表面或大孔固体上自由的单一多层可逆吸附过处有拐点B,是等温线的第一个陡峭部,它指示单分子层的饱和程。在低P/P
吸附量,相当于单分子层吸附的完成。随着相对压力的增加,开始形成第二层,在饱和蒸气压时,吸附层数无限大。
这种类型的等温线,在吸附剂孔径大于20nm时常遇到。它的固体孔径尺寸
区,曲线凸向上或凸向下,反映了吸附质与吸附剂相互作无上限。在低P/P
用的强或弱。
Ⅲ型等温线:在整个压力范围内凸向下,曲线没有拐点B
在憎液性表面发生多分子层,或固体和吸附质的吸附相互作用小于吸附质之间的相互作用时,呈现这种类型。例如水蒸气在石墨表面上吸附或在进行过憎水处理的非多孔性金属氧化物上的吸附。在低压区 的吸附量少,且不出现B点,表明吸附剂和吸附质之间的作用力相当弱。相对压力越高,吸附量越多,表现出有孔充填。
有一些物系(例如氮在各种聚合物上的吸附)出现逐渐弯曲的等温线,没有可识别的B