分式和分式方程 专题复习讲义设计(含答案)

合集下载

《分式方程及应用》(复习课)教学设计

《分式方程及应用》(复习课)教学设计

的值。

3、若关于x 的方程11122-+=---x xx m x x无实数解,则m 的值为________. 4、如果25452310A B x x x x x -+=-+--,则 A=____ B=________. 5、(注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.)甲乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时.问二人每小时各走几千米?(1)设乙每小时走x 千米,根据题意,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(2)列出方程(组),并求出问题的解. 6、列方程,解应用题: 某车间要加工170个零件,在加工完90个以后改进了操作方法,每天多加工10个,一共用 5天完成了任务.求改进操作方法后每天加工的零件个数.2、教师参与小组讨论,尤其是难点题目。

3、教师组织展示、点评,并做好小组评价。

2、小组内交流题目解法并制定展示策略。

3、分小组进行展示。

其他小组可补充和点评。

帮助学生探究本章知识点的综合应用和难点题型的解题方法。

达到知识应用的升华。

通过小组探究、展示、教师引导突破重点和难点。

锻炼学生合作学习的能力。

4、课堂练习:(第四题选作)1、若关于x 的方程m x m =---211无实数根,求m 的取值范围。

2、当m 为何值时,关于x 的方程21212m x x x x x x -=---+-的解是正值? 3、某施工队挖掘一条长96米的隧道,开工后每天比原计划多挖2米,结果提前4天完成任务,原计划每天挖多少米?4、甲、乙两地相距200千米,一艘轮船从甲地逆流航行至乙地,然后又从乙地返回甲地,已知水流的速度为4千米/时,回来时所用的时、1、教师出示练习题目。

、2、针对性的个别辅导。

中考数学分式与分式方程复习教案分式方程及应用

中考数学分式与分式方程复习教案分式方程及应用
(4)解方程并检验;
(5)写出答案。
在列分式方程解应用题时,不仅要检验所的解是否满足方程式,还要检验它是否符合题意。
一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。
列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.
7. 解方程:
8. 就要毕业了,几位要好的同学准备中考后结伴到某地游玩,预计共需费用1200元,后来又有2名同学参加进来,但总费用不变,于是每人可少分摊30元,试求原计划结伴游玩的人数.
9.2004年12月28日,我国第一条城际铁路一合宁铁路(合肥至南京)正式开工建设.建成后,合肥至南京的铁路运行里程将由目前的312 km缩短至154 km,设计时速是现行时速的2.5倍,旅客列车运行时间将因此缩短约3.13小时,求合宁铁路的设计时速.
2013中考数学分式与分式方程复习教案-分式方程及应用
教学目标
掌握分式方程的解法及分式方程的综合应用。
重点、难点
重点:分式方程求解;
难点:利用分式方程解决实际问题。
考点及考试要求
解分式方程和列分式方程解应用题是中考的重要考点,有时与函数、其他知识综合考察。常以填空、选择、解答题的形式出现。
教学内容
一、分式方程:分母中含有未知数的方程叫做分式方程。
③验根:求出未知数的值后必须验根。因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

八年级数学 第八章《分式及分式方程》复习教案

八年级数学 第八章《分式及分式方程》复习教案

第八章:分式及分式方程知识要点1、分式的定义: 。

2、对于分式 有意义;值为零。

(注意分式与分数的关系)3、分式的基本性质: ;用字母表示为:(其中 )。

(注意分式基本性质的应用,如改变分子、分母、分式本身的符号,化分子、分母的系数为整数等等)。

4、分式的约分: 。

(思考:公因式的确定方法)。

5、最简分式: 。

6、分式的通分: 。

7、最简公分母: 。

8、分式加减法法则: 。

(加减法的结果应化成 )9、分式乘除法则: 。

10、分式混合运算的顺序: 。

11、分式方程的定义: 。

12、解分式方程的基本思想: ;如何实现: 。

13、方程的增根: 。

14、解分式方程的步骤: 。

15、用分式方程解决实际问题的步骤习题巩固一、 填空1、当x 时,分式31-+x x 有意义,当x 时,分式32-x x 无意义。

2、分式392--x x 当x ____时分式的值为零。

3、xyzx y xy 61,4,13-的最简公分母是 。

4、=∙c b a a bc 222 ;=÷23342yx y x ; 5、=-b a a b 32 ;=--+yx y x 12 。

6、已知432z y x ==,则=+--+zy x z y x 232 。

7、若分式方程21=++ax x 的一个解是1=x ,则=a 。

8、当1984=x ,1916=y 时,计算=+-∙+--2222442yx x y y xy x y x 。

9、若分式13-x的值为整数,则整数x= 。

10、不改变分式的值,把下列各式的分子、分母中的各项系数都化为整数①23 x-32 y 56 x+y = ; ② 0.3a-2b -a+0.7b = 。

11、已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______。

12、若分式231-+x x 的值为负数,则x 的取值范围是_ _。

13、约分: ①=b a ab 2205______,②=+--96922x x x _____。

《分式方程》复习课--教案

《分式方程》复习课--教案

第二章分式与分式方程课型:复习主备人:审核人:初三数学组一、教学目标(1)知识与技能1.进一步掌握分式方程的定义、解法、增根及应用。

2.熟练利用分式方程分析问题、解决问题。

(2)过程与方法1.通过“互学、独学、对学、合学、群学”等环节,“合作、交流、展示、点评、质疑”等方式促进学生对知识的掌握。

2.体会“转化”、“方程”的数学思想解决问题。

(3)情感与态度1.进一步体会数学与生活的联系,了解数学的价值。

2.增强学生合作与交流的意识,培养学习的兴趣。

二、教学重点和难点重点:进一步掌握分式方程的定义、解法、增根及应用。

难点:进一步理解增根的条件,灵活应用分式方程解决实际问题。

三、教学方法1.在教学中,给学生提前配发导学案进行预习,在课堂中我采用了引导式、探究式的教学方法,以“问题串”的形式,“学生为主体,老师为主导,练习为主线”的思路贯穿整个课堂,并结合了多媒体辅助教学。

2.在学法中,通过“互学、独学、对学、合学、群学”等环节,“合作、交流、展示、点评、质疑”等方式促进学生对知识的掌握。

四、教具教师:教学设计、电子白板、幻灯片若干张、小组评价表、彩色粉笔、激光灯。

学生:课本、导学案、学生分成8个小组(每组4人,有1号、2号、3号、4号,每人答对或答错都有不同的加分)根据分数评出本节课的优秀小组和优秀个人以资鼓励。

五、教学过程(一)梳理知识知识框架图:(边出示幻灯片边设计板书)【设计意图】老师提问学生,以框架图的形式梳理本节课知识点,并重点性的板书,提问主要针对3号、4号学生,让他们都积极参与课堂。

本环节设计的主要目的是:使学生对本节课的知识有个整体的认识,形成清晰的思路,以便更好地完成学习目标。

本节复习课共设计了十个教学环节:第一环节:定义跟踪;第二环节:巩固练习;第三环节:拓展延伸;第四环节:直击难点;第五环节:中考衔接;第六环节:回顾与反思;第七环节:当堂检测;第八环节:小组评价结果;第九环节:布置作业;第十环节:课外思考题(随机题)。

第5章《分式与分式方程》复习教案

第5章《分式与分式方程》复习教案
x=5
[错因分析与解题指导]在方程两边同乘(x—2)时,右边—3项漏乘了.去分母时,特别要当心原方程中原来 没有分母”(其实是分母为1)的项,不 要漏乘.
正确解法:
方程两边同乘以(x—2),得1 =—(1—x)—3(x—2)
解,得x=2
检验:将x=2代入x—2=0.
所以x=2是原方程的增根,原方程无解.
步,将整式方程的根代入最简公分母,如果使最简公分母为零,则此根为原方 程的增根,若最简公分母不为零,则此根是原方程的解•
[生]我认为从解分式方程的步骤就可以看出分式方程是通过去分母转化 为一元一次方程后完成的•但解分式方程必须检验,这就是和一元一次方程的区 别•因为在把分式方程转化为整式方程时,方程两边同乘以含未知数的最简公分 母,若解出的整式方程(这里通常是一元一次方程)的根使最简公分母为零, 则原分式方程无意义,所以分式方程必须验根•
A=A M B B M
M是不等于零的数,分 数基本性质,分数通分
M是不等于零的整式,
分式基本性质
A_ A壬M B = B^M
M是不等于零的数,分 数基本性质,分数约分
M是不等于零的整式, 分式基本性质,分式约 分
a c ac
・ ・
b d _bd
分数乘法法则
分式的乘法法则
a c ad
.—
b d bc
分数除法法则
冋题串:
1.实际生活中的一些量可以用分式表示,一些问题可以通过列分式方程解
决,请举一例•
2.分式的性质及有关运算法则与分数有什么异同?
3•如何解分式方程?它与解一元一次方程有何联系与区别?
[师]同学们可针对以上问题,以小组为单位讨论、交流,然后在全班进
行交流•

人教版初中数学八年级下册《分式与分式方程》复习教案

人教版初中数学八年级下册《分式与分式方程》复习教案

人教版初中数学八年级下册《分式与分式方程》复习教案中考考点:了解分式的概念,会用分式基本性质进行约分和通分,熟练掌握简单的分式加减乘除运算和掌握解分式方程的基本方法.会利用分式方程解决实际问题. 应用.试题特点:对分式的有关概念、性质及运算的考查,以选择题、填空题居多,尤其对分式的化简求值考查较多.考查可化为一次方程的分式方程的解法及实际应用题多以解答题形式出现.题量约占总题量的4,.命题趋势:分式化简求证及具有鲜活的时代背景列可化为一元一次方程的分式方程的运用,将仍会在2010中考题中出现. 分式作为初中数学的重点内容之一,也是每年中考的热门考点,考查题型也是多种多样,分值一般在6-9分左右。

一(知识回顾:1、下列各式是分式的是( )a161B. C. D A.3,a2x,22、当x_______时,分式有意义。

x,53、当x_______时,分式的值为零4、下列分式是最简分式的是( ) 222a,a26xyx,1x,1A. B. C. D. ab3ax,1x,1 224x,y5. 若将分式中的x、y的值都扩大2倍,则分式的值( ) 2x,3yA、扩大2倍B、不变C、扩大3倍D、扩大4倍 2a,a,16. 化简得( ) a,1112a,1B、,C、A、 D、 2 a,1a,1a,1m,1x,,07、关于x的方程有增根,则m的值是( ) x,1x,1A.,2B.2C.1D.,18、解方程746124 (1),,(2),,2222x,xx,xx,1x,1x,1x,1知识点一 :22xx,1. 分式的概念注意:(1)除外 ;(2)分式是形式定义,如化简之后为x,但是分xx式2.分式有意义的条件:分式成立的条件即分母不能为03分式的值为零的条件:同时具备两个条件:(1)分式的分子为零(2)分式的分母不为零 4分式的基本性质用式子表示为:(其中M?0).5. 约分和最简分式(1) 分式的约分:把一个分式的分子与分母中的公因式约去叫约分.(2) 最简分式:分式的分子和分母已没有公因式,这样的分式我们称为最简分式. 规律总结:要使分式有意义,只要分式的分母不为零即可,与分式的分子无关;若要求分式的值何时为零,就应该两个条件:一是分式的分子为零;二是确保分式的分母不为零.在解题时应注意检验分母的值是否为零.知识点二分式的运算:本类题主要考查分式的化简和代数式的值。

八年级数学下册《分式与分式方程》知识要点回顾(含答案)

八年级数学下册《分式与分式方程》知识要点回顾(含答案)

《分式与分式方程》知识要点回顾《分式与分式方程》一章的主要内容是分式的概念、分式的基本性质及其运算、可化为一元一次方程的分式方程和列简单的分式方程解应用题.这些知识都是学习数学的基础内容,为了帮助同学们能够不够好地掌握这些知识,现将这一章的重点再来一次回顾.一、知识要点回顾1、分式的概念:形如AB(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中A叫做分式的分子,B•叫做分式的分母.整式和分式统称有理数,即有理式⎧⎨⎩整式,分式.2、分式的基本性质:分式的这一基本性质可类比分数的基本性质而得到,但又区别于分数的基本性质.3、约分:约分是根据分式的基本性质,分子、分母都同除以最大公约式,化成最简分式.约分后,分子与分母不再有公因式.我们把这样的分式称为最简分式.公因式:①系数取最大公约数;②字母取相同字母;③相同字母取最低次幂.4、通分:分式的通分,即要求把几个异分母的分式分别化为与原来的分式相等的同分母的分式.通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂作为公分母,叫做最简公分母.最简公分母:①系数取最小公倍数;②字母取所有字母;③取所有字母的最高次幂.特别强调:为确定最简公分母,通常先将各分母分解因式.5、分式的乘除:类似分数乘除法法则即可得出分式乘除法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后与被除数相乘.6、同分母的分式的加减法法则:同分母的分式的加减法,只要把分子相加减,而分母不变.异分母的分式的加减法法则异分母分式相加减,先通分,变为同分母分式,然后再加减.分式的混合运算类似分数的混合运算法则.7、分式方程:含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.解分式方程,类似于解一元一次方程的去分母,把分式方程两边同时乘以最简公分母,约去分母得到整式方程,解这个整式方程.8、关于增根:①增根:将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.②解分式方程时必须进行检验.③为什么会产生增根呢?对于原分式方程来说,必须要求使方程中各分式的分母的值均不为零,但方程变形后得到的整式方程则没有这个要求,如果所得整式方程的某个根使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式的值为零,这就不适合原方程,即是原方程的增根.④分式方程怎样检验?将方程的根代入最简公分母,看它的值是否为零,如果为零,即为增根.9、可化为一元一次方程的分式方程的应用同整式方程的应用一样,首先分析题意,假设一个未知量x,根据题意列出分式方程,并解出这个分式方程,检验是不是原方程的根且是否符合题意,并答.步骤如下:①审清题意;②设未知数;③根据题意中数量关系列出式子,找出相等关系列出分式方程;④解分式方程,并验根;⑤看方程的解是否符合题意;⑥写出答案。

分式和分式方程复习教案及练习

分式和分式方程复习教案及练习

分式和分式方程复习教案及练习辅导教案学生姓名任课老师课题重点分式和分式方程分式的化简求值和解分式方程年级上课日期初二科目时间段教研组审批数学难点教学过程分式的化简求值和解分式方程一、基础知识1、分式的定义(概念;分子、分母;有意义的条件) 、性质、运算2、分式方程的定义、解法、关于增根二、要点提示1、分式值为0、正数、负数、1、-1 的条件;分式有意义的条件2、分式的性质(分子、分母――加减、乘除) 3、分式的约分(分子、分母必须分解因式)――最简分式的定义(分子、分母无公因式) 4、分式的通分(找最简公分母;利用分式的乘法性质变式)确定最简公分母的一般步骤:Ⅰ 取各分母系数的最小公倍数;Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。

Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。

注意:分式的分母为多项式时,一般应先因式分解。

5、分式的四则运算与分式的乘方a b a b a c ad bc c c c b d bda c a c a c a d a db d b d b d bc b can a n b b 6、分式的加、减、乘、除、乘方的混合运算的运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。

★a a am n m n n★ ammna mnn m n★ ab a n b nn★a a a ★a n(a 0) (a 0)an a ★ n b b ★a 10n1 an( a 0 ) (任何不等于零的数的零次幂都等于1)其中m,n 均为整数。

三、例题辅导教案1.下列各式中,不是分式方程的是(A. 1 x 1)x x 1 x x C. 1 10 x 2 x1 B. ( x 1) x 1 x 1 1 D. [ ( x 1) 1] 1 3 22.如果分式A.03.把分式| x | 5 的值为0,那么x 的值是( x2 5x) D.±5 ) D.缩小2 倍B .5C.-52x 2 y 中的x,y 都扩大2 倍,则分式的值( x yA.不变B.扩大2 倍)C.扩大4 倍4.下列分式中,最简分式有(a3 x y m2 n2 m 1 a 2 2ab b2 , , , , 3x 2 x 2 y 2 m2 n 2 m2 1 a 2 2ab b2A.2 个5.分式方程B.3 个C.4 个) D.无解D.5 个1 1 42 的解是( x3 x 3 x 9A.x=±2 6.若2x+y=0,则A.-1 5B.x=2C.x=-2 )x 2 xy y 2 的值为( 2 xy x 2B. 3 5C.1D.无法确定7.关于x 的方程x k 2 化为整式方程后,会产生一个解使得原分式方程的最简公分母为x 3 x 30,则k 的值为( A.3 8.计算(1) B.0) C.±3 D.无法确定(2) x2 1 x 2 3x 2 ( x 1) . x2 4 x 4 x 1a2 4 a 2 4a 4 2 ( a 4) ; a 2 2a 8 a 21 1 1 )÷(1- ) ,其中x=- x 1 x 12 总结:这节课你学到了什么?还有哪些方面内容不明白?作业:9.化简求值(1+;学生课堂表现:分式和分式方程作业1.在下面的有理式中,是分式的()5x 75y5m2A 、B、C、D、7m 2n10 m0、5x-12. 不改变分式的值,把它的分子和分母中各项的系数都化为整数,则所得的0、3x 2结果为_______acb3. 分式,,3的最简公分母是___________ 3bx5cxax2ax ya bm nm2 m 22a b(a b)2,,4. 下列分式3x,22,22,m n,中,最简分式有 . 22b ax ya b4 4mmab a2a b ac bcx2 y2( ) xy y25. m,2( )y( ) xy yx2 16. 当x 时,分式的值为0x 117. 当x 时,分式的值为正。

八年级数学下册《分式与分式方程》复习指导(含答案)

八年级数学下册《分式与分式方程》复习指导(含答案)

《分式与分式方程》 复习指导一、知识结构梳理二、 知识点精讲 1、分式及相关概念:如果A ,B 分别表示两个整式,并且分母B 中含有字母,那么式子B A 就叫分式. 2、当分式的分母等于零时,分式无意义,当分式的分母不等于零寸,分式有意义,当分子等于零 且分母不等于 零时,分式的值为零.3、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,其值不变.例如由分式b a 一定可以变形为2bab 但由分式b a 就不一定变形为ab a 2,这是因为b 分式的分母,一定有0 b 而a 是分子,有可能等于0.4、分式的约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.如果一个分式的分子或分母没有公因式,则该分式叫做最简分式.5、分式的通分:把几个异分母的分式化为与原来相等的同分母的分式的过程称为分式的通分.分式通分的关键是确定几个分式的最简公分母,找最简公分母要注意以下几点:①各分母所有因式的最高次幂指凡出现的字母或含字母的式子为底数的幂的因式选取指数最大②如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数.难点:正确理解分式的概念,在分式的分子与分母同时乘以或除以整式A 时,应首先判断A 是否为0,分子、分母中的系数都是分数(或小数)时,要把分式化简,都是分数时,应把分子、分母都乘以分子、分母中各系数分母的最小公倍数如y x y x y x y x y x y x 43636123131241213134121+-=⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-=+-,分子、分母中的系数都是小数时,应把分子、分母都乘以可使系数互质的整数. 如()xy x x y x y y x 723107.0102.03.07.02.03.0+=⨯⨯+=+ 6、分式的乘法法则:用分子相乘的积作为积的分子,用分母的积作为积的分母.分式的除法法则:两个分式相除,把除式的分子、分母颠倒位置后,再与被除式相除.7、分式的加减法则:同分母分式的加减,分母不变,分子相加减;异分母分式的加减,先通分,化成同分母分式,然后再加减.8、分式的混合运算分式的混合运算的运算顺序与分数类似,先乘方,再乘除,最后算加减,遇到括号,应先算括号内的,后算括号外的,同级运算,从左到右,依次运算,如果能用公式或运箅律运算,可先用公式或运箅律运算.9、分式方程:分母中含有末知数的方程,叫做分式方程.10、分式方程的解法步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.产生增根的原因:(1)解方程出现增根,这是一个新问题,事实上,对于分式方程,当分式中分母的值为零时没有意义.所以分式方程不允许末知数取那些使分母的值为零的值.即分式方程本身隐含着分母不为零这一条件,当我们通过去分母把分式方程转化为一元一次方程时,这种限制被取消了,于是就可能出现使原分式方程的分母为零的根,即“增根”.(2)验根的方法,因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.11、列分式方程解应用题的方法步骤(1)审:分析问题,寻找已知、未知及相相等关系,(2)设:设恰当的未知数(3)列:根据相等关系列出分式方程(4)解:求出所列方程的解(5)验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)答:写出答案.三、 要点点拨1、在理解分式的概念时,不要轻易约分(1) 判断一个式子是否为分式,应在对式子不约分的基础上看分母中是否含有字母,例如,x x 22是分式,若把x x 22化为2x 后,再把判断它不是分式就错了. (2) 在确定分式有无意义的条件时,也不能约分后求解.例如,当x 为时,分式()()()322-++x x x 有意义,若把它划为()31-x 后,解03≠-x 得3≠x 时原分式有意义,得出的结果是错误的,因为当2-=x 时,()()()322-++x x x 也无意义,这样就容易造成“漏解”.2、分式运算时注意三点(1) 注意运算顺序,例如,计算()32231-+⋅+÷-x x x x ,应按照同一级运算从左到存依次计算的法则进行.(2) 通分时不能丢掉分母,例如,计算11---x x x ,有的同学通分时消去分母,出现了这样的解题错误:原式=11-=--x x 这一点要引以为戒.(3) 最后的运算结果应化为最简分式.四、数学思想方法总结1、类比思想:通过两个或两类研究对象进行比较,找出它们之间某些属性的相同点或相似焱,依次为依琚推测它的其他属性这种推理方法称为类比.例如:同分数进行类比研究,有助于对分式有关知识的发生,发展过程的理解,如分式的意义,四则运算,通分,约分等.2、转化思想:就是设法把待解决的问题通过某种转化归结到一类己经斛决或容易解决的问题,最终获得解原题的一种手段或方法.例如:通常把分式方程通过去分母转化为一元一次方程体现了转化的数学思想.3、数学建模思想:是运用数学知识解决实际问题,首先要经过观察分析,把实际问题转化为数学问题,通过对数学问题的求解,来解释原来的现实世界中的某些现象.例如列分式方程解应用题,其核心在于将实际问题中的数量关系抽象成分式,即建立数学模型,并合理转化为分式方程的问题,从而达到解决实际问题的目的.五、常见考点透视考点1:考查分式有意义的条件例1、(2007河南)使分式2+x x 有意义的x 的取值范围为( ) A .2≠x B .2-≠x C .2->x C .2<x 分析:对分式的概念,中考主要考查分式BA 中字母取什么值时有意义、无意义和值为零的问题.当B ≠0时,分式B A 有意义;当B=0时,分式BA 无意义;当A=0且B≠0时,分式B A =0.由此,依题意应选B 点评:若分式有意义,则分母一定不等于零,若分式的分母等于0,则分式无意义.考点2:考查分式的基本性质例2、(2007无锡) 化简分式2b ab b +的结果为( ) A.1a b + B.11a b + C.21a b + D.1ab b+ 分析:根据分式的分子与分母都乘以或除以同一个不等于零的整式,分式的值不变这一性质,2b ab b +=()ba b a b b +=+1故应选A . 点评:在应用分式的基本性质解题时,要特别注意性质中都和同这两个字的含义,有不少同学解这类问题时,忽视这一点,犯上述不该犯的错误,望引起重视.考点3:考查条件求值例3、(1)(2007江苏)己知实数x 满足01442=+-x x 则代数式xx 212+的值为(2)(2006江苏扬州)先化简412312-+÷⎪⎭⎫ ⎝⎛-+a a a 然后请你给a 选取一个合适的值,再求此时原式的值.析解:(1)仔细观察考题不难形成两种解题通道,一是从条件01442=+-x x 入手,通过变形得x x 4142=+从而有2212=+xx (注意理解这里的0≠x )二是从所术代数式入手即2242142122==+=+xx x x x x (2)化简得原式=a+2,01,02≠+≠-a a Θ且042≠-a任取2±和1-以外的数为x 值如取a=3原式=a+2=5点评:(1)寻找规律简化运算是合理计算、合理推理的必然要求(2)求值具有开放性,自取的值必须使原每个分式都有意义.考点4、考察分式的运算分式的运算主要包括分式的计算、化简与求值.这些需要应用较多的基础知识,解题方法多样,有的变形极易混淆,故特别要注意每步运算的根据,选择合理的运算途径,严格依据运算法则、顺序和运算性质进行.例4、(1)(2007北京)计算:22111x x x ---. (2)(2007绵阳)化简:1)2)(1(31-+---x x x x ,并指出x 的取值范围 分析:(1)应注意运算顺序和乘法公式的运用,通分时不能忽略分数线的括号作用;(2)需按要求先化简,再求值,化简时可先将括号里通分运算后再做乘法,也可由其特点运用运算律直接做乘法约分化简.解:(1)原式=.解:22111x x x ---21(1)(1)1x x x x =-+--2(1)(1)(1)x x x x -+=+-1(1)(1)x x x -=+- 11x =+. (2)原式=11+x ,x 的取值范围是x ≠-2且x ≠1的实数. 例5.(2007荆门) 先化简,再求值:(22ab a b +)3÷(322ab a b-)2·[12()a b -]2,其中a =-12,b =23. 分析: 分式乘方与乘除的混合运算,一般情况下先算乘方,再算乘除,并把除法统一改为乘法,以便同时进行约分.利用分式的乘除运算先化简原式,再代入化简后的式子求值.解 : (22ab a b +)3÷(322ab a b-)2·[12()a b -]2 =233(2)()ab a b +·22232()()a b ab -·214()a b - =3638()a b a b +·2226()()a b a b a b +-·214()a b - =2a a b +.当a =-12,b =23时,原式=12()21223⨯--+=-6. 考点5:考查解分式方程例6、解下列方程:xx x x -++=--212253 析解:先确定最简公分母,再两边同乘以最简公分母,将原方程化为整式方程,求出根并检验即可.原方程即为212253-+-=--x x x x 方程两边同乘以(x-2),去分母,得:3x-5=2(x-2)-(x 十1)整理,得x=0检验:当x=0时,x-2≠0所以x=2是原方程的根.例7、(2007南充)用换元法解方程41122=+++x x x x ,可设y=x+x 1,则原方程化为关于y 的整式方程是_________. 分析:应注意配方法和整体思想的运用,即2)1(1222-+=+x x x x . 解:设y=x+x1,则原方程化为y 2-2+y=4,即应填y 2+y-6=O . 点评:去分母的关键是找出最简公分母,将分式方程转化为整式方程,但还应注意:(1)灵活运用分式符号法则,有时将能使最简分母更简单,(2)方程两边同乘以最简公分母时,别忘了常数项相乘(3)当去分母时,分数线消失,应在分子部分添上括号,并且要特别注意符号.考点6:考查列分式方程解应用题例8.(2007泰安)某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?析解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 解得:5x =经检验5x =是原方程的解 所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元)答:该老板两次售书总体上是赚钱了,共赚了520元例9.(2007日照市)今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?析解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200,经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200.答:第五次提速后的平均速度为160公里/时,第六次提速后的平均速度为200公里/时.点评: 列分式方程解情景应用问题是中考常考的热点问题.首先要弄清题意,找到等量关系,再根据题意,正确地列出方程,注重解题过程中的检验,不可忽略考点7:探索创新应用例10.(2007舟山)给定下面一列分式:3579234,,,,x x x x y y y y --…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律.试写出给定的那列分式中的第7个分式.分析:通过观察可以看到第二个分式除以第一个分式等于y x 2-,第三个分式除以第二个分式等于y x 2-,…,以此类推,可得出规律.解:(1)规律是任意一个分式除以前面的分式恒等于y x 2-(2)第7个分式应该是715y x例11. (2007邵阳市)对于试题:“先化简,再求值:132--x x -11-x ,其中x =2”某同学写出了如下的解答:解:132--x x -11-x =)1)(1(3-+-x x x -11-x =)1)(1(3-+-x x x -)1)(1(1-++x x x =(x -3)-(x +1)=x -3+x +1=2x -2.当x =2时,原式=2×2-2=2她的解答正确吗?如不正确,请你写出正确解答.解析:本题这位同学上面的解法是错误的,因其在求解的过程中出现两个错误:①是在第三步时忽略了分母,②是在第四步又忽略了去括号时括号内的各项都变号的规定.原式应等于132--x x -11-x =)1)(1(3-+-x x x -11-x =)1)(1(3-+-x x x -)1)(1(1-++x x x =)1)(1()1(3-++--x x x x =)1)(1(4-+-x x ,所以当x =2时,原式的值应为-34. 点评:探索规律和创新类问题,是课改后出现的新题型,由于它具有考查能力,拓展思维等优点,成了近几年热点题型,值得大家普遍关注和重视.。

(完整)分式与分式方程题型分类讲义

(完整)分式与分式方程题型分类讲义

分式方程及其应用一、基本概念1.分式方程:分母中含有 的方程叫分式方程。

2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程; (2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3。

用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 。

二、题型分类考点一:分式方程题型(一)分式方程去分母 1、解分式方程22311x x x时,去分母后变形为( )。

A .()()1322-=++x xB .()1322-=+-x xC .()()x x -=+-1322D .()()1322-=+-x x 2、下列方程是分式方程的是( )A .0322=--x xB .13-=x x C .x x =1 D .12=-πx题型(二)解分式方程用常规方法解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);();题型(三)分式方程的解 1。

已知方程261=311xax a x -=+-的解与方程的解相同,则a 等于( ) A .3 B .-3 C. 2 D .-22。

方程13462232622+++++++x x x x x x -5=0的解是( )A 。

无解 B. 0 , 3 C 。

—3 D 。

0, ±33。

如果)2)(1(3221+-+=++-x x x x B x A 那么A-B 的值是( ) A .34 B 。

35C. 41 D 。

八年级数学分式与分式方程单元复习(二)(北师版)(含答案)

八年级数学分式与分式方程单元复习(二)(北师版)(含答案)

分式与分式方程单元复习(二)(北师版)一、单选题(共13道,每道7分)1.若,则( )A. B.11C.-3D.3答案:D解题思路:方法一:整体代入(变形条件)∴y-x=2xy,方法二:整体代入(变形结论)∵xy≠0,∴将的分子、分母同时除以xy,得故选D试题难度:三颗星知识点:略2.已知,那么的值为( )A. B.C. D.答案:D解题思路:∵,∴,即,∴,∴,∴故选D.试题难度:三颗星知识点:略3.如果,,则的值为( )A.1B.C. D.答案:C解题思路:由得,ab=2;由得则所以试题难度:三颗星知识点:略4.设m>n>0,,则( )A. B.C. D.3答案:A解题思路:∵m>n>0得:∴故选A试题难度:三颗星知识点:略5.先化简,然后从的范围内选择一个合适的整数作为x 的值代入,求得的结果为( )A.-2B.2C.-4D.4答案:A解题思路:∵,且为整数,∴若使原分式有意义,只能取-2,当时,故选A试题难度:三颗星知识点:略6.先化简,再求值:,其中x是不等式3x-14<1的正整数解.则最后求值的结果可能是()A. B.1C.-1D.0答案:C解题思路:试题难度:三颗星知识点:略7.关于x的分式方程有增根,则m的值为()A.5B.4C.3D.1答案:B解题思路:试题难度:三颗星知识点:略8.若关于x的方程的解为非负数,则a的取值范围是()A.a>1B.a≧1C.a≧1且a≠9D.a≦1答案:C解题思路:试题难度:三颗星知识点:略9.若x为整数,且的值为整数,则符合条件的x的个数为( )A.3B.4C.7D.8答案:C解题思路:由题意可知:,即将化简为最简分式:∵为整数且为整数∴为8的因数∴即又∵∴∴即符合条件的有7个.故选C.试题难度:三颗星知识点:略10.如果关于x的方程的解也是不等式组的一个解,则m 的取值范围是( )A. B.C. D.答案:C解题思路:解分式方程,得,解不等式组,得∵方程的解也是不等式组的一个解,∴且,∴且,即且,∴的取值范围是.故选C.试题难度:三颗星知识点:略11.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天完成B.每天比原计划少铺设10米,结果延期15天完成C.每天比原计划多铺设10米,结果提前15天完成D.每天比原计划少铺设10米,结果提前15天完成答案:C解题思路:试题难度:三颗星知识点:略12.某商场计划购进冰箱、彩电进行销售,相关信息如下表:已知商场用80 000元购进冰箱的数量与用64 000元购进彩电的数量相等.(1)表中a的值为()进价(元/台)售价(元/台)a 2 500冰箱a-400 2 000彩电A.1600B.2000C.2500D.2400答案:B解题思路:试题难度:三颗星知识点:略13.(上接第12题)(2)为满足市场需求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的,则该商场有()种进货方案.A.2B.3C.4D.5答案:B解题思路:试题难度:三颗星知识点:略。

分式和分式方程知识点总结材料及练习

分式和分式方程知识点总结材料及练习

分式和分式方程知识点总结一、分式的根本概念 1、分式的定义 一般地,我们把形如BA的代数式叫做分式,其中 A ,B 都是整式,且B 含有字母。

A 叫做分式的分子,B 叫做分式的分母。

分式也可以看做两个整式相除〔除式中含有字母〕的商。

分式的分子和分母同乘〔或除以〕一个不为0的整式,分式的值不变。

MB M A M B M A B A ÷÷=⨯⨯=。

其中,M 是不等于0的整式。

把分式中分子和分母的公因式约去,叫做分式的约分。

分子和分母没有公因式的分式叫做最简分式。

利用分式的根本性质可以对分式进展化简 二、分式的运算 1、分式的乘除 分式的乘法法如此分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。

DB C A D C B A ••=• 分式的除法法如此分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。

C BD A C D B A D C B A ••=•=÷2、分式的加减同分母的分式加减法法如此同分母的两个分式相加〔减〕,分母不变,把分子相加〔减〕。

BCA B C B A ±=± 异分母的分式加减法法如此异分母的两个分式相加〔减〕,先通分,化为同分母的分式,再加〔减〕。

分式的通分把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个一样的分母叫做这几个分式的公分母。

几个分式的公分母不止一个,通分时一般选取最简公分母BDBCAD BD BC BD AD D C B A ±=±=± 分式的混合运算分式的混合运算,与数的混合运算类似。

先算乘除,再算加减;如果有括号,要先算括号里面的。

三、分式方程 1、分式方程的定义分母中含有未知数的方程叫做分式方程。

2、分式方程的解使得分式方程等号两端相等的未知数的值叫做分式方程的解〔也叫做分式方程的根〕。

3、解分式方程的步骤1.通过去分母将分式方程转化为整式方程,3.将整式方程的根代入分式方程〔或公分母〕中检验。

2024年中考数学复习讲义 第06讲 分式方程(含答案)

2024年中考数学复习讲义 第06讲  分式方程(含答案)

第06讲 分式方程目 录考点一 解分式方程题型01 判断分式方程题型02 分式方程的一般解法题型03 分式方程的特殊解法类型一 分组通分法类型二 分离分式法类型三 列项相消法类型四 消元法题型04 错看或错解分式方程问题题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值题型07 根据分式方程有解或无解求参数题型08 已知分式方程有增根求参数题型09 已知分式方程有整数解求参数考点二 分式方程的应用题型01 列分式方程题型02 利用分式方程解决实际问题类型一 行程问题类型二 工程问题类型三 和差倍分问题类型四 销售利润问题考点一解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.1.分式方程与整式方程的根本区别:分母中含有未知数,也是判断分式方程的依据.2. 去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项.3. 分式方程的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.4. 分式方程的增根是去分母后的整式方程的根,也是使分式方程的公分母为0的根,它不是原分式方程的根.5. 解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.6. 分式方程有增根与无解并非是同一个概念.分式方程无解,需分类讨论:可能是解为增根,也可能是去分母后的整式方程无解.题型01 判断分式方程题型02 分式方程的一般解法解分式方程方法:先通过方程两边同乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.题型03 分式方程的特殊解法类型一分组通分法方法简介:如果整个方程一起通分,计算量大又易出错,观察方程中分母的特点可联想分组通分求解.类型二分离分式法方法简介:每个分式的分母与分子相差1,利用这个特点可采用分类分式法求解类型三列项相消法方法简介:根据分式方程的结果特点,依据公式“1n(n+1)=1n―1n+1”化积为差,裂项相消,简化难度.类型四消元法方法简介:当方程中的分式互为倒数,或不同分式中的分母互为相反式,或方程中分子、分母的二次项与一次项分别相同时,可考虑用换元法.题型04 错看或错解分式方程问题+1,其中x=先化简,再求值:3―xx―4⋅(x―4)+(x―4)解:原式=3―xx―4=3―x+x―4=―1【答案】5题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.题型07 根据分式方程有解或无解求参数已知分式方程的解确定字母参数,首先将分式方程化为整式方程,用含字母参数的代数式表x,再根据解的情况确定字母参数的取值. 同时要注意原分式方程的最简公分母不能为零.题型08 已知分式方程有增根求参数依据分式方程的增根确定字母参数的值的一般步骤:1)先将分式方程转化为整式方程;2)由题意求出增根;3)将增根代入所化得的整式方程,解之就可得到字母参数的值.题型09 已知分式方程有整数解求参数考点二分式方程的应用用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:题型01 列分式方程A.1.4―x2.4―x =813B.1.4+x2.4+x=题型02 利用分式方程解决实际问题类型一行程问题类型二工程问题键.类型三和差倍分问题【答案】每个A型扫地机器人的进价为1600【分析】设每个A型扫地机器人的进价为=总价÷单价,结合用96000元购进A型扫地机器人的数量等于用即可得出关于x的分式方程,解之经检验后即可求出每个解得:x=1600,经检验,x=1600是原方程的解,且符合题意,∴2x﹣400=2×1600﹣400=2800.答:每个A型扫地机器人的进价为1600元,每个B型扫地机器人的进价为2800元.【点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.类型四销售利润问题。

人教版八年级上册期末复习——第十五章分式及分式方程复习讲义(解析版)

人教版八年级上册期末复习——第十五章分式及分式方程复习讲义(解析版)

八年级上册期末复习——第十五章分式及分式方程复习讲义班级: 姓名: .考点1:分式有无意义、值为0的条件1.分式一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式.其中A 叫做分子,B 叫做分母. 要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式A B才有意义.1.若分式242x x -+有意义,则x 的取值范围是( ) A .2x ≠B .=2xC .=-2xD .2x ≠- 答案:D解析:20,2x x +≠≠与分子无关2.当x ________时,分式11x -没有意义. 答案:x=1解析:当,即=1时,分式11x -没有意义 3.若分式242x x --的值等于零,则=_______; 答案:=-2;解析:由=0,得. 当=2时-2=0,所以=-2; 考点2:分式的概念与基本性质 1.分式的基本性质 (M 为不等于0的整式).2.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.1.在中,分式的个数是( ) A.2 B.3 C.4 D.5答案:C ;解析:21(1)31,,,x x a x x x y m+++为分式,注意:π是数字,并不是字母 2.把分式2x y x y+的x,y 都扩大为原来的3倍,则分式的值( ) 10x -=x x x 24x -2x =±x x x ma y x xy x x x x 1,3,3,)1(,21,12+++πA.不变B.扩大为原来的3倍C.扩大为原来的9倍D.扩大为原来的2倍答案:C 解析:222(3)3279333()x y x y x y x y x y x y==+++,为原来的9倍 3.下列运算正确的( )A .a a a b a b =----B .0.220.33a b a b a b a b ++=++C .221b a a b a b-=--+ D .22a b a b a b +=-+ 答案:C解析:A:a a a b a b =---+,B:0.22100.3310a b a b a b a b++=++,C:正确,D :22a b a b ++不能再化简约分 4.下列分式是最简分式是( )A .22x x y +B .23x xy xy -C .224x x +-D .2121x x x --+答案:A解析:B .23(3)3x xy x x y x y xy xy y ---==,C .22214(2)(2)2x x x x x x +-==--++,D .2211121(1)1x x x x x x --==--+-- 考点3:分式的基本运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 ,其中是整式,. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 ,其中是整式,. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.a c acb d bd⋅=a b c d 、、、0bd ≠a c a d ad b d b c bc÷=⋅=a b c d 、、、0bcd ≠(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.A .1m -B .+1mC .1m +D .1m - 答案:D 解析:2211111(1)(1)(1)(1)1m m m m m m m m m -=+=---+-+- 2.计算:2222132(1)441x x x x x x x -++÷-⋅++-.答案:22(1)(2)(1)x x x +-+- 解析:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 3.计算: (1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)2224222a a a a a a ⎛⎫⨯- ⎪+--⎝⎭; (3)6333a a a a a a ⎛⎫-÷ ⎪-+-⎝⎭.答案:(1)822a b (2)a (3)13a + 解析:(1)3322326331122b b b b a a ab a a a b ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷=-÷-÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭268233322b a a b a b a b ⎛⎫⎛⎫=--⨯= ⎪⎪⎝⎭⎝⎭; (2)2222244(2)(2)222(2)222a a a a a a a a a a a a a a a a ⎛⎫-+-⨯-=⨯=⨯ ⎪+--+-+-⎝⎭ (2)2a a a a =⨯+=+; (3)6333a a a a a a ⎛⎫-÷ ⎪-+-⎝⎭= (3)a(3)3(3)(3)6a a a a a a a+---⨯+-, 631(3)(3)63a a a a a a -=⨯=+-+.4.先化简再求值:2222111a a a a a --⎛⎫-÷ ⎪+⎝⎭,其中2a =答案:原式=1a a -,当2a =时,原式=11=2a a -解析: 222222111(1)(1)=(1)(1)1a a a a a a a a a a a a a--⎛⎫-÷ ⎪+⎝⎭⎡⎤-+⎢⎥+-⎣⎦-=当2a =时,原式=11=2a a - 考点4:分式方程 1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.1.把分式方程311x x x -=+化为整式方程,去分母正确的事( ) A .23(1)1x x +-=B .23(1)(1)x x x x +-=+C .23(1)+1x x +=D .23(1)(1)x x x x -+=+ 答案:B 解析:23113(1)(1)x x x x x x x -=+⇒+-=+2.如果关于x 的分式方程2122m x x x -=--无解,那么m 的值为( ) A .4B .-4C .2D .-2 答案:A 解析:2122m x x x-=--解方程得:2x m =--,因为方程无解,所以22x m =--=,则4m = 3.如果关于x 的分式方程62033x m x x --=--有增根,则m 的值是( ) A .32 B .32- C .3 D .3- 答案:A 解析:62033x m x x --=--,解方程得:62x m =-,因为有增根,所以623x m =-=,则32m =4.从-1,0,1,2,3,4,5,这7个数中随机抽取一个数,记为a ,若数a 使关于x 的不等式1253x a x x-<⎧⎨+≤⎩无解,且使关于x 的分式方程122x a x -=-的解为非负数,那么这7个数中所有满足条件的a 的值之和是( ) A .6B .8C .9D .10 答案:A解析:解不等式组得:15x a x <+⎧⎨≥⎩,因为不等式组无解,所以51,4a a ≥+≤, 分式方程解得:2222,233a a x --=≠且,所以:14a a ≥≠且 综上所述41a >≥,所以1,2,3a =,故答案选A5.解方程(1)23222x x x -=+- (2)()1231244x x x -=---答案:(1)27x =,(2)32x =- 解析:(1)解:23222x x x -=+- 方程两边同乘以()()22x x -+,得()()()()2232222x x x x x --+=+--72x =-27x =检验: 当27x =时,最简公分母()()22x x -+≠0, ∴27x =是原方程的解. (2)解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解. 考点5:分式方程实际应用1.县城建局对某一条街的改造工程要限期完成,甲工程队独做可以提前一天完成,乙工程队独做要延期6天,现由两个工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x 天,则所列方程正确的是( )A .4116x x x +=+- B .416x x x =-+ C .4116x x x +=-- D .4116x x x +=-+答案:D 解析:设总工作总量为1,工程期限为x 天,所以可列方程:4116x x x +=-+ 2.A 、B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程为( )A .3636944x x +=+- B .3636944x x +=+- C .3649x += D .3636944x x -=+-答案:A解析:设轮船在静水中速度为x ,可列方程的:3636944x x +=+- 3.小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?答案:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .解析:解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .4.“抗击疫情,八方支援”截止2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A 、B 俩两种品牌消毒酒精捐赠当地医院,已知A 品牌消毒酒精每桶的价格比B 品牌消毒酒精每桶的价格多20元,用3000元购进A 品牌消毒酒精个用1800元购进B 品牌消毒酒精的数量相同.(1)A 品牌消毒酒精每桶的价格和B 品牌消毒酒精的每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A 、B 两种品牌消毒酒精共40桶,其中A 品牌的消毒酒精的数量不低于B 品牌的消毒酒精数量的一半,小明有几种购买方案?答案:(1)A :50,B :30(2)共5中方案。

分式和分式方程 专题复习讲义(含答案)

分式和分式方程 专题复习讲义(含答案)

分式和分式方程 专题复习讲义中考考点知识梳理: 一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质 (1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则(1) ;;bc adc d b a d c b a bd ac d c b a =⨯=÷=⨯(2));()(为整数n b a ba n nn =(3);c b a c b c a ±=± (4)bd bc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

考点典例一、分式的值【例1】当x= 时,分式x-22x+5的值为0.【答案】2. 【解析】试题分析:∵x-22x+5的值为0,∴x-2=0且2x+5≠0,解得x=2. 考点:分式.【点睛】使分式的值为零必须满足分子等于0分母不等于零这两个条件. 【举一反三】1.使分式11x-有意义的x的取值范围是()A.x≠1 B.x≠﹣1 C.x<1 D.x>1 【答案】A.考点:分式有意义的条件.2.若分式211xx-+的值为0,则x=【答案】1 【解析】试题分析:根据题意可知这是分式方程,211xx-+=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解. 答案为1.考点:分式方程的解法 考点典例 二、分式的化简【例2】化简2(1)1a a a -+-的结果是( ) A .11a - B .11a -- C .211a a -- D .211a a --- 【答案】A . 【解析】试题分析:原式=22(1)1a a a ---=11a -,故选A .考点:分式的加减法.【点睛】观察所给式子,能够发现是异分母的分式减法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式和分式方程 专题复习讲义中考考点知识梳理: 一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质 (1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则(1) ;;bc adc d b a d c b a bd ac d c b a =⨯=÷=⨯(2));()(为整数n b a ba n nn =(3);c b a c b c a ±=± (4)bd bc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

考点典例一、分式的值【例1】当x= 时,分式x-22x+5的值为0.【答案】2. 【解析】试题分析:∵x-22x+5的值为0,∴x-2=0且2x+5≠0,解得x=2. 考点:分式.【点睛】使分式的值为零必须满足分子等于0分母不等于零这两个条件. 【举一反三】1.使分式11x-有意义的x的取值范围是()A.x≠1 B.x≠﹣1 C.x<1 D.x>1 【答案】A.考点:分式有意义的条件.2.若分式211xx-+的值为0,则x=【答案】1 【解析】试题分析:根据题意可知这是分式方程,211xx-+=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解. 答案为1.考点:分式方程的解法 考点典例 二、分式的化简【例2】化简2(1)1a a a -+-的结果是( ) A .11a - B .11a -- C .211a a -- D .211a a --- 【答案】A . 【解析】试题分析:原式=22(1)1a a a ---=11a -,故选A .考点:分式的加减法.【点睛】观察所给式子,能够发现是异分母的分式减法。

利用异分母分式的减法法则计算即可得到结果. 【举一反三】 1.化简:÷= .【答案】x 1.【解析】试题分析:原式=xx x x x x 1)3()2()2(322=+-⋅-+. 考点:分式的化简. 2.计算:= .【答案】325a c . 【解析】试题分析:先约分,再根据分式的乘除法运算的计算法则计算即可,即原式=3225125ac a a c =⋅.考点:分式的运算.3.计算: = .【答案】325ac.【解析】试题分析:先约分,再根据分式的乘除法运算的计算法则计算即可,即原式=3225125acaac=⋅.考点:分式的运算.考点典例三、分式方程【例3】方程532x x-=-的解为.【答案】x=﹣3.考点:解分式方程.【点睛】先去掉分母,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解。

【举一反三】1.方程12=2x x-3的解是 .【答案】x=-1.【解析】试题分析:方程两边同乘以2x(x-3)得,x-3=4x,解得x=-1,经检验x=-1是原方程的解.考点:解分式方程.2.用换元法解方程x x 122-﹣122-x x =3时,设xx 122-=y ,则原方程可化为( )A .y=y 1﹣3=0 B .y ﹣y 4﹣3=0 C .y ﹣y 1+3=0 D .y ﹣y4+3=0 【答案】B . 【解析】试题分析:∵设xx 122-=y ,则122-x x =y 1,原方程可转化为:y ﹣y 4=3,即y ﹣y 4﹣3=0.故答案选B .考点:换元法解分式方程. 考点典例四、分式方程的应用【例5】穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度比普通列车快160km/h ,设普通列车的平均行驶速度为xkm/h ,依题意,下面所列方程正确的是( )A.4804804160x x -=+B.4804804160x x -=+C.4804804160x x -=-D.4804804160x x -=- 【答案】B . 【解析】考点:由实际问题抽象出分式方程.【点睛】方程的应用解题关键是设出未知数,找出等量关系,列出方程求解. 【举一反三】1. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运40千克,A 型机器人搬运1200千克所用时间与B 型机器人搬运800千克所用时间相等.设B 型机器人每小时搬运化工原料x 千克,根据题意可列方程为( )A.120080040x x =+B.120080040x x =-C.120080040x x =-D.120080040x x =+【答案】A. 【解析】考点:由实际问题抽象出分式方程.2.在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A .11538x x =-B .11538x x =+C .1853x x =-D .1853x x =+【答案】B. 【解析】试题分析:根据题意,3X 的倒数比8X 的倒数大5,故答案选B. 考点:倒数.课后自测小练习一.选择题1.下列运算结果为x -1的是( )A .11x -B .211x x xx -•+ C .111x x x +÷- D .2211x x x +++ 【答案】B. 【解析】试题分析:选项A ,原式=x x 12-;选项B ,原式=x-1;选项C ,原式=xx 12-;选项D ,原式=x+1,故答案选B.考点:分式的计算.2.下列分式中,最简分式是( )【答案】A.【解析】考点:最简分式.3.下列计算正确的是()A、x2y2=xy(y¹0)B、xy2¸12y=2xy(y¹0)C、2x+3y=5xy(x³0,y³o)D、(xy3)2=x2y6【答案】D.【解析】试题分析:选项A错误;选项B,xy2¸12y=xy2·2y=2xy3,错误;选项C,2x+3y,由于x与y 不是同类二次根式,不能进行加减法,错误;选项D、根据幂的乘方运算法则就可以得出答案,正确,故答案选D.考点:代数式的运算.4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠C.m>﹣D.m>﹣且m≠﹣34【答案】B.【解析】考点:分式方程的解.5.某次列车平均提速20km/h,用相同的时间,列车提速行驶400km,提速后比提速前多行驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A.40040010020x x+=+B.40040010020x x-=-C .40040010020x x +=- D .40040010020x x -=+ 【答案】B . 【解析】试题分析:设提速前列车的平均速度为xkm /h ,根据题意可得:40040010020x x -=-.故选B . 考点:由实际问题抽象出分式方程. 二.填空题6.当x = 时,分式132x x -+的值为0. 【答案】1. 【解析】试题分析:当x ﹣1=0时,x =1,此时分式132x x -+的值为0.故答案为:1. 考点:分式的值为零的条件. 7.方程21x x-=的正根为 . 【答案】x =2. 【解析】考点:分式方程的解. 8.分式方程212011x x +=--的解是__________. 【答案】x = -3 【解析】试题分析:因为x 2-1=(x +1)(x -1),所以可确定最简公分母(x +1)(x -1),然后方程两边同乘最简公分母将分式方程转化为整式方程求解即可,注意检验. 试题解析:方程两边同乘(x +1)(x -1), 得x +1+2=0, 解得x =-3.经检验x =-3是分式方程的根. 考点:解分式方程. 9.若分式方程1x x -﹣1m x-=2有增根,则这个增根是 . 【答案】x =1. 【解析】试题分析:因为分式方程有增根,所以x ﹣1=0,即x =1,故方程的增根为x =1. 故答案是x =1.考点:分式方程的增根. 10.分式方程的解为 .【答案】x=4 【解析】考点:分式方程的解法. 三、解答题11.先化简,再求值:÷(﹣),其中a=.【答案】原式=(a ﹣2)2,当a=2,原式=(2﹣2)2=6﹣42 【解析】试题分析:先把括号内通分化简后把乘除化为乘法,再进行约分,化为最简分式后代入计算即可. 试题解析:原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∴原式=(﹣2)2=6﹣4考点:分式的化简求值.12.先化简,再求值:(﹣)+,其中a=2,b=.【答案】原式=,当a=2,b=时,原式=6.【解析】考点:分式的化简求值.13.先化简,再求值:2221()211a aa a a a+÷--+-,其中a是方程2230x x+-=的解.【答案】原式=21aa-, 由2230x x+-=,得11x=,232x=-又10a-≠∴32a=-.原式=23()9231012-=---.【解析】试题分析:先把分式化简后,再解方程确定a的值,最后代入求值即可.试题解析:原式=2(1)2(1)(1)(1)a a a aa a a+--÷--=2(1)(1)(1)1a a a aa a+-⋅-+=21aa-由2230x x+-=,得11x=,232x=-又10a-≠∴32a=-.∴原式=23()9231012-=---.考点:分式的化简求值;一元二次方程的解法.14.先化简,再求值:11133222-+⋅--÷+-aaaaaaaa,其中2016=a【答案】原式=1+a=2016+1=2017【解析】考点:分式的化简求值.15.解方程:23311xx x+-=--.【答案】x=0.【解析】试题分析:观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可.试题解析:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.考点:解分式方程.16.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?【答案】(1)100;(2)1190元.【解析】考点:分式方程的应用;一元一次不等式的应用.17.我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【答案】3.【解析】试题分析:设学生步行的平均速度是每小时x 千米,服务人员骑自行车的平均速度是每小时2.5x 千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.试题解析:设学生步行的平均速度是每小时x 千米.服务人员骑自行车的平均速度是每小时2.5x 千米,根据题意:6.35.22424=-xx , 解得:x=3,经检验,x=3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时3千米.考点:分式方程的应用.18.某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.【答案】乙班的达标率为90%.【解析】考点:分式方程的应用.19.某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?【答案】原计划每小时种植50棵树.【解析】试题分析:设原计划每小时种植x 棵树,则实际劳动中每小时植树的数量是120%x 棵,根据“结果提前2小时完成任务”列出方程并求解.试题解析:设原计划每小时种植x 棵树,依题意得:2%120600600+=xx , 解得x=50.经检验x=50是所列方程的根,并符合题意.答:原计划每小时种植50棵树.考点:分式方程的应用.。

相关文档
最新文档