2019东营中考数学模拟试题1
2019年山东省东营中考数学试卷真卷含答案-答案在前
山东省东营市2019年初中学业水平考试数学答案与解析第Ⅰ卷(选择题 共30分)一、选择题 1.【答案】B【解析】2019-的相反数是:2019.故选:B . 2.【答案】C【解析】A 、333352--x x x =,故此选项错误;B 、32842÷x x x =,故此选项错误;C 、2xy --xxy y x y=,正确;D C . 3.【答案】A 【解析】BA EF ∥,30∠︒A =,30∴∠∠︒FCA A ==.45∠∠︒F E ==,304575∴∠∠+∠︒+︒︒AOF FCA F ===.故选:A .4.【答案】D【解析】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D . 5.【答案】A【解析】设这个队胜x 场,负y 场,根据题意,得10216+=⎧⎨+=⎩x y x y .故选:A .6.【答案】D【解析】画树状图得:共有12种等可能的结果,任取两个不同的数,2219+a b >的有4种结果,2219∴+a b >的概率是41123=,故选:D . 7.【答案】A【解析】由作法得GF 垂直平分BC ,∴FB FC =,2CG BG ==,⊥FG BC ,90∠︒ACB =,∴FG AC ∥,∴BF CF =,∴CF 为斜边AB 上的中线,235AB =,1522∴CF AB ==.故选:A .8.【答案】C【解析】A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均无174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选:C . 9.【答案】D【解析】如图将圆锥侧面展开,得到扇形'ABB ,则线段BF 为所求的最短路程. 设∠'︒BAB n =.64180⋅=n ππ,120∴n =即120∠'︒BAB =.E 为弧'BB 中点,90∴∠︒AFB =,60∠︒BAF =,•6∴∠BF AB sin BAF ==∴最短路线长为D .10.【答案】B【解析】①四边形ABCD 是正方形,45∴⊥∠∠︒OC OD AC BD ODF OCE =,,==,90∠︒MON =,∴∠∠COM DOF =,∴COE DOFASA △≌△(),故①正确; ②90∠∠︒EOF ECF ==,∴点O E C F 、、、四点共圆,∴∠∠∠∠EOG CFG OEG FCG =,=,∴OGE FGC △∽△,故②正确;③COE DOF △≌△,∴COE DOF S S △△=,1=4∴OCD ABCD CEOF S S S △正方形四边形=,故③正确; ④COE DOF △≌△,∴OE OF =,又90∠︒EOF =,∴EOF △是等腰直角三角形,45∴∠∠︒OEG OCE ==,∠∠EOG COE =,∴OEG OCE△∽△,∴OE OC OG OE:=:,2•∴OG OC OE =,12OC AC =,OE ,2•∴OG AC EF =,CE DF BC CD =,=,∴BE CF =,又Rt CEF △中,222+CF CE EF =,222∴+BE DF EF =,22•∴+OG AC BE DF =,故④错误,故选:B . 二、填空题 11.【答案】4210⨯【解析】20 000用科学记数法表示为4210⨯. 12.【答案】(1)(3)--x x【解析】原式=(3)(3)(1)(3)-----x x x x x =. 13.【答案】1【解析】由统计表可知共有:1222105352++++=人,中位数应为第26与第27个的平均数, 而第26个数和第27个数都是1,则中位数是1.14.【答案】6+【解析】作⊥AD BC 于D ,AB AC =,∴BD DC =,在R t A B D △中,30∠︒B =,12∴AD AB =,由勾股定理得,3BD ,26∴BC BD ==,∴ABC △的周长为:66++15.【答案】71≤x ﹣<【解析】解不等式324--x x ()>,得:1x <,解不等式2x 1122-+≤x ,得:7≥-x ,则不等式组的解集为71-≤x <.16. 【解析】点M N ,分别是BC AC ,的中点,12∴MN AB =,∴当AB 取得最大值时,MN 就取得最大值,当AB 是直径时,AB 最大,连接AO 并延长交O 于点'B ,连接'CB ,'AB 是O 的直径,90∴∠'︒ACB =.45∠︒ABC =,5AC =,45∴∠'︒AB C =,sin45∴'︒ACAB=2∴MN最大=17.【答案】0)【解析】如图,ACE△是以菱形ABCD的对角线AC为边的等边三角形,2AC=,1∴CH=,∴AH30∠∠︒ABO DCH==,∴DH AO=,∴OD,∴点D的坐标是0). 18.【答案】10093-【解析】由题意可得,1⎛⎝⎭A,2(1,A,3(3,-A,4(-A,5A,6(9,-A,…,可得21+nA的横坐标为3-n()2019210091⨯+=,∴点2019A的横坐标为:1009100933--()=,三、解答题19.【答案】(1)2020(2)1+a b,1【解析】(1)原式2019122++-=2020+=2020=;(2)原式()()222a•--+b aa ab a b=()()()()2•-+-+a b a b aa ab a b=1+a b=,当1a =-时,取2b =, 原式1112-+==. 20.【答案】(1)200(2)(3)126° (4)14【解析】(1)被抽到的学生中,报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,∴在这次调查中,一共抽取了学生为:2010%200÷=(人);(2)被抽到的学生中,报名“绘画”类的人数为:20017.5%35⨯=(人),报名“舞蹈”类的人数为:20025%50⨯=(人);补全条形统计图如下:(3)被抽到的学生中,报名“声乐”类的人数为70人,∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:70360126200︒︒⨯=; (4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A B C D 、、、,画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,∴小东和小颖选中同一种乐器的概率为41164=.21.【答案】(1)见解析(2 【解析】(1)证明:连接OC .AC CD =,120∠︒ACD =,30∴∠∠︒A D ==. OA OC =,30∴∠∠︒ACO A ==.90∴∠∠∠︒OCD ACD ACO =﹣=.即⊥OC CD , ∴CD 是O 的切线.(2)30∠︒A =,260∴∠∠︒COB A ==.260333602⋅∴=BOC S ππ扇形=,在Rt OCD △中,CD OC tan 60︒=⋅=11S 3222∴=⋅=⨯⨯=OCD OC CD △,∴-OCD BOC S S △扇形∴图中阴影部分的面积为32π. 22.【答案】(1)=1=4m n -,- (2)112=-+y x【解析】(1)直线y mx =与双曲线=ny x相交于2Aa B (-,)、两点,∴点A 与点B 关于原点中心对称,2∴B a (,-), 20∴C (,); 2AOC S △=,1222∴⨯⨯a =,解得2a =, 22∴A (-,),把22∴A (-,)代入y mx =和=n y x 得22-m =,n22=-,解得14m n =-,=-; (2)设直线AC 的解析式为+y kx b =, 直线AC 经过A C 、,2220-+=⎧∴⎨+=⎩k b k b ,解得1k 2b 1⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为112=-+y x .23.【答案】电子产品降价后的销售单价为180元时,公司每天可获利32 000元. 【解析】设降价后的销售单价为x 元,则降价后每天可售出3005200[]+-x ()个, 依题意,得:10030052003]200[0-+-x x ()()=, 整理,得:2360324000-+x x =, 解得:12180x x ==.180200<,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元. 24.【答案】(1(2)当0360︒≤︒α<时,AFBD的大小没有变化 (3)5【解析】(1)①当0︒α=时,Rt ABC △中,90∠︒B =,∴==AC ,点D E 、分别是边BC AC 、的中点,11122∴====AE AC BD BC ,∴AEBD. ②如图1﹣1中,当180︒α=时, 可得AB DE ∥,=AC BCAE BD ,∴=AE ACBD BC(2)如图2,当0360︒≤︒α<时,AFBD的大小没有变化, ∠∠ECD ACB =, ∴∠∠ECA DCB =,又ACBC==EC DC ∴ECA DCB △∽△,∴==AE ECBD DC.(3)①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE △中,2==CE BC ,1∴==BE , 5∴+AE AB BE ==,5=AEBD ,∴==BD .②如图3﹣2中,当点E 在线段AB 上时,易知1413-BE AE =,==,5=AEBD ,5∴=BD ,综上所述,满足条件的BD . 25.【答案】(1)2142=--y x x (2)24(-,-)(3)315,48⎛⎫-⎪⎝⎭G 【解析】(1)抛物线4+-y ax bx =经过点2040A B (-,),(,),424016440+-=⎧∴⎨--=⎩a b a b , 解得1a 2b 1⎧=⎪⎨⎪=⎩,∴抛物线解析式为2142=--y x x ; (2)如图1,连接OP ,设点21,42⎛⎫+- ⎪⎝⎭P x x x ,其中40-x <<,四边形ABPC 的面积为S ,由题意得04C (,-),∴++AOC OCP OBP S S S S △△△=21111244(x)4x x 42222⎛⎫=⨯⨯+⨯⨯-⨯⨯--+ ⎪+⎝⎭, 24228---+x x x =, 2412--+x x =,2216-++x =().10-<,开口向下,S 有最大值, ∴当2x =-时,四边形ABPC 的面积最大,此时,4y =-,即24--P (,).因此当四边形ABPC 的面积最大时,点P 的坐标为24--(,).(3)221194(1)222=+-=+-y x x x , ∴顶点912--M(,). 如图2,连接AM 交直线DE 于点G ,此时,CMG △的周长最小.11 / 12设直线AM 的解析式为y kx =,且过点92012--A M (,),(,),2092+=⎧⎪∴⎨-+=-⎪⎩k b k b ,∴直线AM 的解析式为332=-y x . 在Rt AOC △中,==ACD 为AC 的中点,12∴==AD AC ADE AOC △∽△, ∴=AD AFAO AC , 2=A , 5∴AE =,523∴--OE AE AO ===,30∴E (-,), 由图可知12D (,-)设直线DE 的函数解析式为+y mx n =,230+=-⎧⎨-+=⎩m n m n , 解得:1232⎧=-⎪⎪⎨⎪=-⎪⎩m n ,∴直线DE 的解析式为1322=--y x .12 / 121322332⎧=-⎪⎪⎨⎪=-⎪⎩y x y x , 解得:34158⎧=⎪⎪⎨⎪=⎪⎩x y ,315,48⎛⎫∴- ⎪⎝⎭G .数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前山东省东营市2019年初中学业水平考试数 学(总分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.2019-的相反数是( )A .2019-B .2019C .12019- D .12019 2.下列运算正确的是( )A .3335=2--x x xB .384=2÷x x xC .2=--xy xxy y x yD=3.将一副三角板(30∠︒=A ,45∠︒=E )按如图所示方式摆放,使得BA EF ∥,则∠AOF 等于( )A .75︒B .90︒C .105°D .115︒ 4.下列图形中,是轴对称图形的是( )ABCD5.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为 ( )A .10216+=⎧⎨+=⎩x y x yB .10216+=⎧⎨-=⎩x y x yC .10216+=⎧⎨-=⎩x y x yD .10216+=⎧⎨+=⎩x y x y 6.从1,2,3,4中任取两个不同的数,分别记为a 和b ,则2219+>a b 的概率是 ( )A .12B .512C .712D .137.如图,在△Rt 中,90∠︒=ACB ,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于、D E 两点,作直线DE 交AB 于点F ,交BC 于点G ,连结CF .若3=AC ,2=CG ,则CF 的长为( )A .52 B .3 C .2 D .728.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是 ( )A .乙队率先到达终点B .甲队比乙队多走了126米C .在47.8秒时,两队所走路程相等D .从出发到13.7秒的时间段内,乙队的速度慢9.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)A.BC .3 D. 10.如图,在正方形ABCD 中,点O 是对角线、AC BD 的交点,过点O 作射线、OM ON分别交、BC CD 于点、E F ,且90∠︒=EOF ,、OC EF 交于点G .给出下列结论:①COE DOF △≌△;②OGE FGC △∽△;③四边形CEOF 的面积为正方形ABCD 面积的14;④22•+=DF BE OG OC .其中正确的是 ( )A .①②③④B .①②③C .①②④D .③④第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20 000吨,20 000用科学记数法表示为 . 12.因式分解:33--+()=x x x .13.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表1415.不等式组3(2)421152-->⎧⎪-+⎨≤⎪⎩x x x x 的解集为 .16.如图,AC 是O 的弦,5=AC ,点B 是 O 上的一个动点,且45∠︒=ABC ,若点、M N 分别是、AC BC 的中点,则MN 的最大值是 .17.如图,在平面直角坐标系中,△ACE 是以菱形ABCD 的对角线AC 为边的等边三角形,2=AC ,点C 与点E 关于x 轴对称,则点D 的坐标是 .18.如图,在平面直角坐标系中,函数y 和y 的图象分别为直线1l ,2l ,过1l上的点11(A 作x 轴的垂线交2l 于点2A ,过点2A 作y 轴的垂线交1l 于点3A,过点3A 作x 轴的垂线交2l 于点4A ,…依次进行下去,则点2019A 的横坐标为 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分8分,第(1)小题4分,第(2)小题4分)(1)计算:101 3.142sin452019|π-+-++︒()()(2)化简求值:222 22+ba+-÷--(a b a aba b a ab,当1=-a时,请你选择一个适当的数作为b的值,代入求值.20.(本题满分8分)为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率. 21.(本题满分8分)如图,AB是 O的直径,点D是AB延长线上的一点,点C在 O上,且=AC CD, 120∠︒=ACD.(1)求证:CD是 O的切线;(2)若 O的半径为3,求图中阴影部分的面积.22.(本题满分8分)如图,在平面直角坐标系中,直线=y mx与双曲线=nyx相交于()2,-A a、B两点,⊥BC x轴,垂足为C,△AOC的面积是2.(1)求、m n的值;(2)求直线AC的解析式.23.(本题满分8分)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32 000元?---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第5页(共8页)数学试卷第6页(共8页)数学试卷 第7页(共8页) 数学试卷 第8页(共8页)24.(本题满分10分)如图1,在△Rt ABC 中,90∠︒=B ,4=AB ,2=BC ,点、D E 分别是边、BC AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α. (1)问题发现 ①当0︒=α时,=AE BD ;②当180︒=α时,=AEBD. (2)拓展探究试判断:当0360︒≤︒<α时,AEBD的大小有无变化?请仅就图2的情形给出证明.(3)问题解决CDE △绕点C 逆时针旋转至、、A B E 三点在同一条直线上时,求线段BD 的长.25.(本题满分12分)已知抛物线24+-=y ax bx 经过点()()2,04,0-、A B ,与y 轴交于点C . (1)求这条抛物线的解析式;(2)如图1,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标;(3)如图2,线段AC 的垂直平分线交x 轴于点E ,垂足为D ,M 为抛物线的顶点,在直线DE 上是否存在一点G ,使CMG △的周长最小?若存在,求出点G 的坐标;若不存在,请说明理由.。
精编2019级东营市中考数学模拟试卷(有标准答案)(Word版) (2)
山东省东营市中考数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣D.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y43.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣15.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.157.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12.(3.00分)分解因式:x3﹣4xy2= .13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M 的坐标为.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a= ,b= ,c= ,d= ;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.山东省东营市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1.【解答】解:﹣的倒数是﹣5,故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.【解答】解:A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.3.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是30【分析】根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.【解答】解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D不正确.故选:B.【点评】本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.【点评】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【点评】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×1011【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)分解因式:x3﹣4xy2= x(x+2y)(x﹣2y).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.【点评】此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15 .【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S=•AC•DQ=×10×3=15,△ACD故答案为:15.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为20π.【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长=πrl代入计算即可.l为5,然后根据圆锥的侧面积公式:S侧【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π【点评】本题考查了圆锥的计算,连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.掌握圆锥的侧面积公式:S=•2πr•l=πrl侧是解题的关键.也考查了三视图.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M 为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.【分析】要使得MB﹣MA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求.【解答】解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)【点评】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.【分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:【点评】本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,再判断即可.【解答】解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,则﹣1是不等式组的解,不是不等式组的解.【点评】本题考查了绝对值、特殊角的三角函数值、零指数幂、负整数指数幂、解一元一次组等知识点,能求出每一部分的值是解(1)的关键,能求出不等式组的解集是解(2)的关键.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数频率(本)名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a= 0.35 ,b= 150 ,c= 0.22 ,d= 0.13 ;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.【分析】(1)根据名人传记的圆心角求得其人数所占百分比,再用名人传记的人数除以所得百分比可得总人数;(2)根据频率=频数÷总数分别求解可得;(3)用总人数乘以样本中科普图书和小说的频率之和可得;(4)列表得出所有等可能结果,从中找到恰好1人捐“名人传记”,1人捐“科普图书”的结果数,利用概率公式求解可得.【解答】解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.【点评】本题考查了列表法和树状图法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.【解答】解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= 75 °,AB= 4.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.【点评】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD 的值;(2)利用勾股定理求出BE 、CD 的长度.25.(12.00分)如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使△OCA ∽△OBC .(1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点C 是BM 的中点时,求直线BM 和抛物线的解析式;(3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x 的值,确定出A 与B 坐标,根据已知相似三角形得比例,求出OC 的长即可;(2)根据C 为BM 的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC ,确定出C 的坐标,利用待定系数法确定出直线BC 解析式,把C 坐标代入抛物线求出a 的值,确定出二次函数解析式即可;(3)过P 作x 轴的垂线,交BM 于点Q ,设出P 与Q 的横坐标为x ,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ ,四边形ACPB 面积最大即为三角形BCP 面积最大,三角形BCP 面积等于PQ 与B 和C 横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P 的坐标即可.【解答】解:(1)由题可知当y=0时,a (x ﹣1)(x ﹣3)=0,解得:x 1=1,x 2=3,即A (1,0),B (3,0),∴OA=1,OB=3∵△OCA ∽△OBC ,。
2019-2020学年东营市中考数学模拟试卷(有标准答案)(Word版) (2)
山东省东营市中考数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣D.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y43.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣15.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.157.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12.(3.00分)分解因式:x3﹣4xy2= .13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M 的坐标为.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a= ,b= ,c= ,d= ;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.山东省东营市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1.【解答】解:﹣的倒数是﹣5,故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.【解答】解:A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.3.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是30【分析】根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.【解答】解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D不正确.故选:B.【点评】本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.【点评】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【点评】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×1011【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)分解因式:x3﹣4xy2= x(x+2y)(x﹣2y).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.【点评】此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15 .【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S=•AC•DQ=×10×3=15,△ACD故答案为:15.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为20π.【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长=πrl代入计算即可.l为5,然后根据圆锥的侧面积公式:S侧【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π【点评】本题考查了圆锥的计算,连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.掌握圆锥的侧面积公式:S侧=•2πr•l=πrl是解题的关键.也考查了三视图.17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.【分析】要使得MB﹣MA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求.【解答】解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)【点评】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答.18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.【分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:【点评】本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,再判断即可.【解答】解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,则﹣1是不等式组的解,不是不等式组的解.【点评】本题考查了绝对值、特殊角的三角函数值、零指数幂、负整数指数幂、解一元一次组等知识点,能求出每一部分的值是解(1)的关键,能求出不等式组的解集是解(2)的关键.20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数频率(本)名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a= 0.35 ,b= 150 ,c= 0.22 ,d= 0.13 ;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.【分析】(1)根据名人传记的圆心角求得其人数所占百分比,再用名人传记的人数除以所得百分比可得总人数;(2)根据频率=频数÷总数分别求解可得;(3)用总人数乘以样本中科普图书和小说的频率之和可得;(4)列表得出所有等可能结果,从中找到恰好1人捐“名人传记”,1人捐“科普图书”的结果数,利用概率公式求解可得.【解答】解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.【点评】本题考查了列表法和树状图法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.【解答】解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= 75 °,AB= 4.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.【点评】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD 的值;(2)利用勾股定理求出BE 、CD 的长度.25.(12.00分)如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使△OCA ∽△OBC .(1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点C 是BM 的中点时,求直线BM 和抛物线的解析式;(3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x 的值,确定出A 与B 坐标,根据已知相似三角形得比例,求出OC 的长即可;(2)根据C 为BM 的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC ,确定出C 的坐标,利用待定系数法确定出直线BC 解析式,把C 坐标代入抛物线求出a 的值,确定出二次函数解析式即可;(3)过P 作x 轴的垂线,交BM 于点Q ,设出P 与Q 的横坐标为x ,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ ,四边形ACPB 面积最大即为三角形BCP 面积最大,三角形BCP 面积等于PQ 与B 和C 横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P 的坐标即可.【解答】解:(1)由题可知当y=0时,a (x ﹣1)(x ﹣3)=0,解得:x 1=1,x 2=3,即A (1,0),B (3,0),∴OA=1,OB=3∵△OCA ∽△OBC ,。
2019学年山东省东营市中考一模数学试卷【含答案及解析】
2019学年山东省东营市中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列等式正确的是()A. B.C. D.2. 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A. B. C. D.3. 如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70° B.∠DOC=90°C.∠BDC=35° D.∠DAC=55°4. 若,,则的值等于()A. B. C. D.5. 如图,已知扇形的圆心角为60°,半径为,则图中弓形的面积为()A. B.C. D.6. 如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.167. 一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.55二、解答题8. 为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A.9 B.10 C.12 D.15三、选择题9. 定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{,﹣x}的最大值是()A. B. C.1 D.010. 已知二次函数()的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④().其中正确的个数是()A.1 B.2 C.3 D.4四、填空题11. 2013年东营市围绕“转方式,调结构,扩总量,增实力,上水平”的工作大局,经济平稳较快增长,全年GDP达到3250亿元,3250亿元用科学记数法表示为元.12. 已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为.13. 某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为(精确到0.1).14. 如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积.15. 如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是.16. 如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t= .17. 如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图象上,OA=1,OC=6,则正方形ADEF的边长为.18. 在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P 伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为.五、解答题19. 计算:;(2))解不等式组,并写出它的非负整数解.六、填空题20. 某县为了解七年级学生对篮球、羽毛球、乒乓球、足球(以下分别用A、B、C、D表示)这四种球类运动的喜爱情况(每人只能选一种),对全县七年级学生进行了抽样调查,并将调查情况绘制成如图两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的学生有人;(2)若全县七年级学生有4000人,估计喜爱足球(D)运动的人数是人;(3)在全县七年级学生中随机抽查一位,那么该学生喜爱乒乓球(C)运动的概率是.七、计算题21. 如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE 的外接圆的半径.八、解答题22. 海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)23. 学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?24. 探究:如图①,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,AE,求证:△ACE≌△CBD.应用:如图②,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G,求∠CGE的度数.25. 如图,二次函数()的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交于B,与二次函数的图象交于另一点C,且C点的横坐标为﹣1,AC:BC=3:1.(1)求点A的坐标;(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
2019年山东东营中考数学试题(附详细解题分析)
2019年山东省东营市市初中学生学业考试数学试题第I 卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. {题目}1. (2019•山东省东营市,1)-2019的相反数是( ) A.-2019 B.2019 C.20191-D.20191 {答案}B{解析}本题考查了相反数的定义,∵负数的相反数是正数,∴-2019的相反数是2019. 因此本题选B . {分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}2.(2019•山东省东营市,2) 下列运算正确的是( ) A .x x x 25333-=- B .x x x 2483=÷ C .yx xy xy xy -=-2 D .1073=+{答案}C{解析}选项A 考查了整式加减,系数相加,字母和字母指数不变,答案错误;选项B 考查了单项式除以单项式,答案为2x 2,答案错误;选项C 考查了分式的约分,首先把分母因式分解问哦y(x-y),然后分式的分子和分母同时约去因数y ,答案正确;选项D 不是同类二次根式,不能运算,答案错误.因此本题选C . {分值}3{章节:[1-2-2]整式的加减} {章节:[1-14-1]整式的乘法} {章节:[1-15-1]分式} {章节:[1-16-1]二次根式} {考点:合并同类项} {考点:单项式除法} {考点:约分}{考点:二次根式的加减法} {类别:常考题} {难度:2-简单}{题目}3.(2019•山东省东营市,3)将一副三角板(∠A =30°,∠E =45°) 按如图所示方式摆放,使得BA ∥EF ,则∠AOF 等于( )A .75°B .90°C .105°D .115° {答案}A{解析}本题考查了平行线的性质以及三角形外角的性质,∵BA ∥EF ,∴∠OCF=∠A=30°.所以∠AOF=∠F+∠OCF=∠F+∠A=45°+30°=75°. 因此本题选A . {分值}3{章节:[1-5-3]平行线的性质}{章节:[1-11-2]与三角形有关的角} {考点:两直线平行内错角相等} {考点:三角形的外角} {类别:常考题} {难度:3-中等难度}{题目}4.(2019•山东省东营市,4)下列图形中,是轴对称图形的是( ){答案}D{解析}本题考查了轴对称图形的定义.选项A 、B 、C 沿某直线对折,折线两旁的部分不能完全重合,选项D 符合要求. {分值}3{章节:[1-13-1-1]轴对称} {考点:轴对称图形} {类别:常考题} {难度:2-简单}{题目}5.(2019•山东省东营市,5)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为( ) A .⎩⎨⎧=+=+16210y x y x B .⎩⎨⎧=-=+16210y x y x C .⎩⎨⎧=-=+16210y x y x D .⎩⎨⎧=+=+16210y x y x{答案}A{解析}本题考查了二元一次方程组模型的应用,∵某队参与了10场比赛,可列方程x+y=10;而该队在比赛中共得16分,可得2x+y=16,∴可得方程组⎩⎨⎧=+=+16210y x y x .因此本题选A .{分值}3{章节:[1-8-3]实际问题与二元一次方程组} {考点:简单的列二元一次方程组应用题} {类别:常考题} {难度:2-简单}{题目}6.(2019•山东省东营市,6)从1,2,3,4中任取两个不同的数,分别记为a 和b ,则22b a +>19的概率是( ) A .21 B .125 C .127D .31{答案}Da a 2+b 2 b 1 2 3 4 1 5 10 17 2 5 13 20 3 10 13 25 4 17 20 25从表格可以看到,12种结果中,只有4种符合要求,所以概率为31124=.因此本题选D . {分值}3{章节:[1-25-1-2]概率} {考点:两步事件不放回} {类别:常考题} {难度:2-简单}{题目}7.(2019•山东省东营市,7)如图,在Rt △ABC 中,∠ACB=90°,分别以点B 和点C 为圆心,大于21BC 的长为半径作弧,两弧相交于D 、E 两点,作直线DE 交AB 于点F ,交BC 于点G ,连结CF ,若AC=3,CG=2,则CF 的长为( ) A .25 B .3 C .2 D .27{答案}A{解析}由作图可知,DE 是边BC 的垂直平分线,那么BC=2CG=4,在Rt △ABC 中,由勾股定理,可得AB=5.因为∠ACB=90°,所以DE ∥AC ,因为G 为BC 中点,所以F 为AB 中点,所以CF=21AB=25.因此本题选A . {分值}3{章节:[1-13-1-2]垂直平分线} {章节:[1-17-1]勾股定理} {考点:垂直平分线的性质} {考点:勾股定理}{考点:直角三角形斜边上的中线} {类别:常考题} {难度:2-简单}{题目}8.(2019•山东省东营市,8)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图像如图所示,请你根据图像判断,下列说法正确的是( )A .乙队率先到达终点B .甲队比乙两队多走了126米C .在47.8秒时,两队所走路程相等D .从出发到13.7秒的时间段内,乙队的速度慢{答案}C{解析}从图像上可知,甲先到达终点,故选项A 错误;甲、乙两队比赛的路程都是300米,所以选项B 错误;从图像上可看出,在47.8秒时,甲、乙两队的路程都是174米,故选项C 正确;由图像可知,从出发到13.7秒的时间段内,甲队的图像在乙队的下方,所以在相同的时间,乙队行驶的路程比甲队长,那么此时乙队速度快,选项D 错误.因此本题选C . {分值}3{章节:[1-19-1-2] 函数的图象} {考点:距离时间图象}{类别:思想方法}{类别:常考题} {难度:2-简单}{题目}9.(2019•山东省东营市,9)如图所示时一个几何体的三视图,如果一只蚂蚁从这个几何体的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为( )A .23B .233 C .3 D .33 {答案}D{解析}本题考查了圆锥侧面图的知识,如图,将圆锥侧面展开,线段BD 为所求的最短路程,条件得,∠BAB /=120°,C 为弧BB /中点,所以BD=23AB=23×6=33(厘米).因此本题选D . {分值}3{章节:[1-24-4]弧长和扇形面积} {考点:圆锥侧面展开图}{类别:思想方法}{类别:常考题} {难度3-中等难度}{题目}10.(2019•山东省东营市,10)如图,在正方形ABCD 中,点O 时对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF=90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;②△OGE ∽△FGC ;③四边形CEOF 的面积为正方形ABCD 面积的41;④DF 2+BE 2=OG·OC .其中正确的是( )A .①②③④B .①②③C .①②④D .③④{答案}B{解析}因为正方形ABCD ,所以OC=OD ,∠OCE=∠ODC=90°,∠COD=90°.因为∠EOF=90°,所以∠DOF=∠COE ,所以△COE ≌△DOF ,①对;由△COE ≌△DOF ,得OE=OF ,所以∠OEF=45°,所以∠OEF=∠OCF .因为∠OGE ∠CGF ,可得△OGE ∽△FGC 所以②正确;由△COE ≌△DOF ,得△COE 与△DOF 面积相等,所以四边形CEOF 的面积=△COE 的面积+△COF 面积=△DON +△COF=△COD 的面积=为正方形ABCD 面积的41,所以③正确;④①②③④.因为∠OEG=∠OCE=45°,∠EOG=∠COE ,所以△OGE ∽△OEC ,所以OE:OC=OG:OE ,所以OE 2=OG·OC .因为OE 2+OF 2=EF 2=CE 2+CF 2,又因为OE=OF ,DF=CE ,CF=BE ,所以2OE 2=DF 2+BE 2=2OG·OC .所以④错误.故正确的是①②③. {分值}3{章节:[1-18-2-3] 正方形} {考点:切线的性质}{考点:三角形的全等与相似的综合} {考点:几何选择压轴}{类别:思想方法}{类别:常考题} {难度:4-较高难度}第‖卷(非选择题 共90分){题型:2-填空题}二、填空题:本大题共8小题,其中11—14题每小题3分,15—18题每小题4分,共28分.只要求填写最后结果.{题目}11.(2019•山东省东营市,11)2019年11月12日,“五指山”舰正式服役,是我国第六艘01型综合登陆舰艇,满载排水量超过20000吨,20000用科学记数法表示为 . {答案}2×104{解析}本题考查了科学记数法,20000=2×104. {分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}12.(2019•山东省东营市,12)因式分解:x(x-3)-x+3= . {答案}B{解析}本题考查了多项式的因式分解,因为x(x-3)-x+3=x(x-3)-(x-3)=(x-3)(x-1). {分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法} {类别:常考题} {难度:1-最简单}{题目}13.(2019•山东省东营市,3)东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是 小时.{答案}1{解析}本题考查了中位数的定义,∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1. {分值}3{章节:[1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:1-最简单}{题目}14.(2019•山东省东营市,14)已知等腰三角形的底角是30°,腰长为32,则它的周长是 .{答案}346{解析}本题考查了锐角三角函数的定义或勾股定理.过等腰三角形的顶点作底边的垂线,设底边为2a ,那么cos30°=a32,所以a=3,所以周长=6+43. {分值}3{章节:[1-28-3]锐角三角函数} {考点:特殊角的三角函数值} {类别:常考题} {难度:2-简单}{题目}15.(2019•山东省东营市,15)不等式组⎪⎩⎪⎨⎧+≤-〉--21512,4)2(3xxxx的解集是.{答案}-7≤x<1{解析}本题考查了解不等式组,∵不等式x-3(x-2)>4的解集为x<1,不等式21512+≤-xx的解集是x≥-7,∴不等式组的解集为-7≤x<1.{分值}4{章节:[1-9-3]一元一次不等式组}{考点:解一元一次不等式组}{类别:常考题}{难度:2-简单}{题目}16.(2019•山东省东营市,16)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N分别是AC、BC的中点,则MN的最大值是.第16题图{答案}225{解析}本题考查了圆的有个性质以及三角形中位线定义,因为当MN最大时,AB也最大,此时AB 为⊙O的直径,那么△ABC为等腰直角三角形,由锐角三角函数或勾股定理,求得AB=2AC=52.因为点M、N分别是AC、BC的中点,那么由三角形中位线定理,求得MN=21AB=225.{分值4{章节:[1-24-1-3]弧、弦、圆心角}{考点:直径所对的圆周角}{考点:三角形中位线}{类别:常考题}{难度3-中等难度}{题目}2.(2019•山东省东营市,17)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是.第17题图{答案}(33,0) {解析}本题考查了等边三角形的性质以及全等三角形、勾股定理等,设CE 交x 轴于点F ,因为△ACE是等边三角形,所以∠CAD=30°,那么CF=21AC=1.由勾股定理求得AF=3.因为CD 2=DF 2+CF 2,CD=2DF ,所以可求得DF=33.由“HL”定理易知△ABO 与△DCF 全等,所以AO=DF 33.所以OD=AF-AO-DF=3333333=--,即点D 坐标为(33,0). {分值}4{章节:[1-7-2]平面直角坐标系} {考点:含30度角的直角三角形} {考点:勾股定理}{考点:等边三角形的性质} {考点:全等三角形的判定HL} {类别:常考题} {难度3-中等难度}{题目}18.(2019•山东省东营市,18)如图,在平面直角坐标系中,函数x y 33=和x y 3-=的图象分别为直线1l ,2l ,过1l 上的点A 1(1,33)作x 轴的垂线交2l 于点A 2,过点A 2作y 轴的垂线交1l 于点A 3,过点A 3作x 轴的垂线交2l 于点A 4…,一次进行下去,则点2019A 的横坐标为 .{答案}-31009{解析}本题考查坐标里的点规律探究题,观察发现规律:A 1(1,33),A 2(1,3-),A 3(-3,3-),A 4(-3,33),A 5(9,33),A 6(9,39-),A 7(-27,39-),……A 2n+1[(-3)n ,3×(-3)n ](n 为自然数),2019=1009×2+1,所以A 2019的横坐标为:(-3)1009=-31009. {分值}4{章节:[1-7-2]平面直角坐标系} {考点:坐标与图形的性质}{考点:规律探究型问题:代数填空压轴} {类别:常考题} {难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共 7 小题,共 62 分.解答要写出必要的文字说明、证明过程或演算步骤.{题目}19.(2019·山东省东营市,19) (1)计算: E M B E D E q u a t i o n .D S M T 4 1(1)- {解析}(1)题考查了实数的有关运算,解决问题的关键在于掌握负整指数、零次幂、特殊角的三角函数值、开方运算以及绝对值的定义,解决此题时,可先求出E M B E D E q u a t i o n .D SM T 4{答案}解:(1)原式= 2019+1+232+2 22-23=2020; {章节:[1-28-2-1]特殊角} {考点:简单的实数运算} {类别:常考题} {难度:2-简单} {题目}19.(2019·山东省东营市,19)(2)化简求值:22222()a b a ab b a b a ab a +÷+---,当 a 1 时,请你选择一个适当的数作为b 的值,代入求值. {解析}(2)本题考查了分式的化简与求值.正确化简分式是解题的关键,熟练掌握整式的因式分解是化简的基础.将a 的值代入化简后的代数式进行求值. {答案}解: (2)原式=222()()a b a a a b a b ⨯--+=2()()()()a b a b a a a b a b ⨯-+-+=1a b +. {分值}8 {章节:[1-15-2-2]分式的加减} {考点:分式的混合运算} {类别:常考题} {难度:2-简单} {题目}20.(2019·山东省东营市,20) 为庆祝建国 70 周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)补全条形统计图; (3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数; (4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率. {解析}本题考查了统计条形统计图、扇形统计图与概率.(1)利用书法人数和所占百分数直接计算求出总人数;(2)求出绘画、舞蹈人数补全条形统计图;(3)根据360⨯︒声乐人数总人数求出“声乐”类对绘画 声乐 17.5% 书法 10% 舞蹈 25% 器乐应扇形圆心角的度数;(4)小提琴、单簧管、钢琴、电子琴分别用A、B、C、D 表示列出所有可能性表,根据概率公式求解即可.{答案}解:(1)被抽到的学生中,报名“书法”类的人数有20 人,占整个被抽到学生总数的10%,所以抽取学生的总数为20÷10%=200(人).(2)被抽到的学生中,报名“绘画”类的人数为200×17.5%=35 人,报名“舞蹈”类的人数为200×25%=50 人.直方图如下:(3)被抽到的学生中,报名“声乐”类的人数为70 人,∴扇形统计图中“声乐”类对应扇形圆心角的度数为70360200⨯︒=126°.小颖小东A B C DA (A,A)(A,B)(A,C)(A,D)B (B,A)(B,B)(B,C)(B,D)C (C,A)(C,B)(C,C)(C,D)D (D,A)(D,B)(D,C)(D,D)由列表可以看出,一共有16 种结果,并且它们出现的可能性相等,同一种乐器的结果有4种,所以P(同一乐器)=416=14.{分值}9{章节:[1-25-2]用列举法求概率}{考点:统计的应用问题}{考点:两步事件放回}{类别:常考题}{难度:2-简单}{题目}21.(2019·山东省东营市,21) 如图,AB 是⊙O 的直径,点D 是AB 延长线上的一点,点C 在⊙O 上,且AC=CD,∠ACD=120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为3,求图中阴影部分的面积.{解析}本题考查了切线的判定以及阴影部分面积的求法.(1)连接OC ,证明DC ⊥CO 即可;(2)S 阴影=S △OCD - S 扇形OBC . {答案}(1)证明:如图,连接OC .∵AC =CD ,∠ACD =120°, ∴∠A =∠D =30°. ∵OA =OC ,∴∠ACO =∠A =30°,∴∠DCO =∠ACD -∠ACO =90°,即 DC ⊥CO , ∵点 C 在⊙O 上, ∴CD 是⊙O 的切线.(2)解:∵∠A =30°,∴∠COB =2∠A =60°, ∴ S 扇形OBC260333602ππ=g .在 R t △OCD 中, C D = O C ×tan 60=3 3,S △OCD =12 OC C D =123 33=932,∴ S △OCD -S 扇形OBC =9332-. ∴图中阴影部分的面积为9332-. {分值}8{章节:[1-24-4]弧长和扇形面积} {考点:切线的判定} {考点:扇形的面积} {类别:常考题} {难度:2-简单}{题目}22.(2019·山东省东营市,22) 如图,在平面直角坐标系中,直线y =mx 与双曲线 y nx相交于A (-2,a )、B 两点,BC ⊥x 轴,垂足为 C ,△AOC 的面积是 2. (1)求 m 、n 的值;(2)求直线 AC 的解析式.{解析}本题考查了反比例函数与一次函数的综合题,解决问题的关键是由两种函数关于原点成中心对称由点A的坐标得到点B的横坐标为2.(1)先由函数关于原点成中心对称得点B的横坐标为2,从而OC=2,再根据△AOC 的面积为2,求出点A的坐标,把坐标代入解析式从而确定出m、n的值;(2)由待定系数法直接求出直线AC 的解析式.{答案}解:(1)∵直线y=mx 与双曲线y nx相交于A(-2,a)、B 两点,∴点B横坐标为2,∵BC⊥x 轴,∴点C的坐标为(2,0),∵△AOC 的面积为2,∴122a 2 ,∴a=2∴点A的坐标为(-2,2),将A(-2,2)代入y=mx,y nx,∴2m 2,22n-=,∴m=-1,n=-4;(2)设直线AC 的解析式为y=kx+b,∵y=kx+b 经过点A(-2,2)、C(2,0),∴22 20k bk b-+=⎧⎨+=⎩解得k 12,b 1.∴直线A C 的解析式为y 12+1.{分值}8{章节:[1-26-1]反比例函数的图像和性质} {考点:中心对称}{考点:反比例函数与一次函数的综合} {考点:待定系数法求一次函数的解析式} {类别:常考题}{难度:2-简单}{题目}23.(2019·山东省东营市,23) 为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200 元时,每天可售出300 个;若销售单价每降低 1 元,每天可多售出 5 个.已知每个电子产品的固定成本为100 元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000 元?{解析}本题考查了一元二次方程应用中的营销问题.根据等量关系“利润=(售价-成本)×销售量”列出每天的销售利润与销售单价的方程求解,求解结果符合题意即可.{答案}解:设降价后的销售单价为x 元,根据题意得:x100300+5200x32000.整理得:x 1001300 5x 32000.即:x2 360x 32400 0.解得:x1 x2 180,x 180 200 ,符合题意.答:这种电子产品降价后的销售单价为180 元时,公司每天可获利32000 元.{分值}8{章节:[1-21-4]实际问题与一元二次方程}{考点:中心对称}{考点:一元二次方程的应用—商品利润问题}{类别:常考题}{难度:2-简单}{题目}24.(2019·山东省东营市,24) 如图1,在 Rt△ABC 中,∠B=90°,AB=4,BC=2,点D、E 分别是边BC、AC 的中点,连接DE.将△CDE 绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现①当α =0°时,AEBD=;②当α= 180°时,AEBD=.(2)拓展探究试判断:当0°≤α<360°时,AEBD的大小有无变化?请仅就图 2 的情形给出证明.(3)问题解决△CDE 绕点C 逆时针旋转至A、B、E 三点在同一条直线上时,求线段BD 的长.{解析}本题属于旋转的综合题.考查了、旋转的性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握分类讨论思想的应用是解此题的关键.(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的AE BD 值是多少;②α=180°时,可得AB ∥DE ,然后根据AC BC AE BD =,求出AEBD的值是多少即可;(2)首先判断出∠ A CE =∠ B CD ,再根据5CACE CD CB==,判断出△ACE ∽△BCD ,然后由相似三角形的对应边成比例,求得答案.(3)分两种情况分析,A 、B 、E 三点所在直线与DC 不相交和与DC 相交,然后利用勾股定理分别求解即可求得答案. {答案}解:(1)5;5.(2)AE BD 的大小无变化.证明:如图 1, ∵∠B =90°,AB =4,BC =2,∴ A C =22AB BC +=2242+= 25, ∵点 D 、E 分别是边 BC 、AC 的中点,∴ C E =12AC =5,CD =12BC =1.如图 2,∵∠ DCE =∠ B CA ,∴∠ A CE +∠ D CA =∠ B CD +∠ D CA ,∴∠ A CE =∠ B CD , ∵5CA CE CD CB == ∴△ ACE ∽△BCD , ∴5CE AE BD CD ==,即AE BD的大小无变化.(3)第一种情况(如图 3):在 R t △BCE 中,CE 5,BC =2,BE 22EC BC -54-=1, ∴ A E =AB + B E = 5 ,由(2)得5AEBD∴ B D 55=第二种情况(如图 4):由第一种情况知:BE =1. ∴AE =AB - BE = 3 ,由(2)得5AEBD =,∴ B D =355=.综上所述,线段 B D 的长为5或35.{分值}10{章节:[1-23-1]图形的旋转} {考点:旋转的性质}{考点:平行线分线段成比例} {考点:相似三角形的性质} {考点:由平行判定相似} {类别:发现探究} {难度:3-中等难度}{题目}25.(2019·山东省东营市,25) 已知抛物线 y ax 2 bx 4 经过点 A (2,0)B (-4,0)与 y 轴交于点C .(1)求这条抛物线的解析式; (2)如图 1,点 P 是第三象限内抛物线上的一个动点,当四边形 ABPC 的面积最大时,求点 P 的坐标;(3)如图 2,线段 AC 的垂直平分线交 x 轴于点 E ,垂足为 D ,M 为抛物线的顶点,在直线 DE 上是否存在一点 G ,使△CMG 的周长最小?若存在,求出点 G 的坐标;若不存在,请说明理由.{解析}本题属于二次函数的的综合题、压轴题.(1)已知抛物线 yax 2bx 4 经过直接把点A (2,0)B (-4,0)代入y ax2bx4可求解析式;(2)连接OP,设点P(x,12x2 x 4),其中 4 x 0 ,四边形ABPC 的面积为S,则S S△AOC S△OCP S△OBP交直线D E 于点G,此时,△CMG 的周长最小,确定出AM、DE的解析式,然后联立求得点G的坐标.{答案}解:(1)∵抛物线y ax2bx4经过点A (2,0)、B (-4,0),∴424016440a ba b+-=⎧⎨--=⎩,解得121ab⎧=⎪⎨⎪=⎩∴这条抛物线的解析式为y12x2 x 4.(2)如图1,连接OP,设点P(x,12x2 x 4),其中 4 x 0 ,四边形ABPC 的面积为S, 由题意得C(0,-4),∴S S△AOCS△OCPS△OBP=122 4124 (x)124 (12x2 x 4)4 2x x2 2x 8x2 4x 12∵-1<0,开口向下,S 有最大值.∴当x=-2 时,四边形ABPC 的面积最大,此时,y12x2 x 4= 4 ,即P(-2,-4)因此当四边形A BPC 的面积最大时,点P的坐标为(-2,-4).(3)y12x2 x 4=12(x+1)2-92,∴顶点M(1,-92),如图2,连接A M 交直线D E 于点G,此时,△CMG 的周长最小,设直线AM 的函数解析式为y=kx+b,且过点A (2,0),M(1,-92),根据题意,得2092k bk b+=⎧⎪⎨-+=-⎪⎩,解得323kb⎧=⎪⎨⎪=-⎩∴直线AM 的函数解析式为y32x 3,在R t△AOC 中,A C 22AO OC+=2224+=25,∵D 为AC 的中点,∴A D12AC 5,∵△ADE∽△AOC,∴CADAOAEA=,∴5225AE=,∴A E 5 ,∴O E AE AO 5 2 3 ,∴ E (-3,0).由图可知D(1,-2),设直线DE 的函数解析式为y=mx+n,且过D(1,-2), E (-3,0),根据题意,得230m nm n+=-⎧⎨-+=⎩,解得1232mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线DE 的函数解析式为y12x-32由3321322y xy x⎧=-⎪⎪⎨⎪=--⎪⎩,得34158xy⎧=⎪⎪⎨⎪=-⎪⎩,∴G(34,158-).因此在直线DE 上存在一点G,使△CMG 的周长最小,此时G(34,158-). {分值}12{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质}{考点:其他二次函数综合题}{考点:几何图形最大面积问题}{难度:5-高难度}。
山东省东营市2019-2020学年中考数学一模试卷含解析
山东省东营市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一次函数y =x ﹣1的图象与反比例函数2y x =的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC =BC ,则点C 的坐标为( )A .(0,1)B .(0,2)C .50,2⎛⎫⎪⎝⎭ D .(0,3)2.下列四个几何体中,主视图是三角形的是( )A .B .C .D .3.下列计算正确的是( )A .2223x x x +=B .623x x x ÷=C .235(2)2x x x =gD .222(3)6x x =4.方程x (x -2)+x -2=0的两个根为( )A .10x =,22x =B .10x =,22x =-C .11x =- ,22x =D .11x =-, 22x =-5.下列方程中,是一元二次方程的是( )A .2x ﹣y=3B .x 2+1x =2 C .x 2+1=x 2﹣1 D .x (x ﹣1)=06.在下列条件中,能够判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线7.在平面直角坐标系中,点(2,3)所在的象限是( )A .第一象限B .第二象限C .第三象限 D .第四象限8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A .48B .60C .76D .80 9.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3 B .a <﹣3C .a >3D .a≥3 10.若A(﹣4,y 1),B(﹣3,y 2),C(1,y 3)为二次函数y =x 2﹣4x+m 的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 3<y 211.平面直角坐标系中的点P (2﹣m ,12m )在第一象限,则m 的取值范围在数轴上可表示为( ) A .B .C .D .12.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( ) A . B . C . D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组的解是________.14.已知Rt △ABC 中,∠C=90°,AC=3,BC=7,CD ⊥AB ,垂足为点D ,以点D 为圆心作⊙D ,使得点A 在⊙D 外,且点B 在⊙D 内.设⊙D 的半径为r ,那么r 的取值范围是_________.15.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A 、B 、C 、D 都是格点,AB 与CD 相交于M ,则AM :BM=__.16.已知反比例函数21k y x+=的图像经过点(2,1)-,那么k 的值是__.17.函数123y x x =-+-中自变量x 的取值范围是___________. 18.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,∠ABC ,射线BC 上一点D ,求作:等腰△PBD ,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.20.(6分)如图,已知O e 的直径10AB =,AC 是O e 的弦,过点C 作O e 的切线DE 交AB 的延长线于点E ,过点A 作AD DE ⊥,垂足为D ,与O e 交于点F ,设DAC ∠,CEA ∠的度数分别是α,β,且045α︒<<︒.(1)用含α的代数式表示β;(2)连结OF 交AC 于点G ,若AG CG =,求»AC 的长.21.(6分)问题提出(1)如图1,正方形ABCD 的对角线交于点O ,△CDE 是边长为6的等边三角形,则O 、E 之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD 中,以CD 为直径作半圆O ,点P 为弧CD 上一动点,求A 、P 之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD 及弓形AMD 组成,AB=2m ,BC=3.2m ,弓高MN=1.2m(N 为AD 的中点,MN ⊥AD),小宝说,门角B 到门窗弓形弧AD 的最大距离是B 、M 之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B 到门窗弓形弧AD 的最大距离.22.(8分)已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .求证:AP=BQ ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.23.(8分)如图,一次函数y =kx+b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点. 求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.24.(10分)解不等式组: .25.(10分)如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过点A 作x 轴的平行线,交函数2(0)y x x =<的图象于B 点,交函数6(0)y x x=>的图象于C ,过C 作y 轴和平行线交BO 的延长线于D .(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?26.(12分)解不等式组3122324xx x⎧-≥⎪⎨⎪+<⎩请结合题意填空,完成本题的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为.27.(12分)已知抛物线23y ax bx=++的开口向上顶点为P(1)若P点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【详解】由1{2y x y x=-=,解得21x y =⎧⎨=⎩ 或12x y =-⎧⎨=-⎩, ∴A (2,1),B (1,0),设C (0,m ),∵BC=AC ,∴AC 2=BC 2,即4+(m-1)2=1+m 2,∴m=2,故答案为(0,2).【点睛】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.2.D【解析】【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【详解】解:主视图是三角形的一定是一个锥体,只有D 是锥体.故选D .【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.3.C【解析】【分析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.【详解】A 、2x 与2x 不是同类项,不能合并,此选项错误;B 、66422x x x x -÷==,此选项错误;C 、235(2)2x x x =g ,此选项正确;D 、224(3)9x x =,此选项错误.故选:C .此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.4.C【解析】【分析】根据因式分解法,可得答案.【详解】解:因式分解,得(x-2)(x+1)=0,于是,得x-2=0或x+1=0,解得x1=-1,x2=2,故选:C.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.5.D【解析】试题解析:A.含有两个未知数,B.不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:()1含有一个未知数,()2未知数的最高次数是2,()3整式方程. 6.C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.7.A【解析】【分析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【详解】解:点(2,3)所在的象限是第一象限.故答案为:A考核知识点:点的坐标与象限的关系. 8.C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.9.A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.10.B【解析】【分析】根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.【详解】抛物线y=x2﹣4x+m的对称轴为x=2,当x<2时,y随着x的增大而减小,因为-4<-3<1<2,所以y3<y2<y1,故选B.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键. 11.B【解析】【分析】【详解】根据第二象限中点的特征可得:2-m0 1m0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征12.D【解析】【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x>4【解析】【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.79 44xp p.【解析】【分析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,,∴.∵CD⊥AB,∴CD=4.∵AD•BD=CD2,设AD=x,BD=1-x.解得x=94,∴点A在圆外,点B在圆内,r的范围是79 44x<<,故答案为79 44x<<.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.15.5:1【解析】【分析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.【详解】解:作AE∥BC交DC于点E,交DF于点F,设每个小正方形的边长为a,则△DEF∽△DCN,∴EFCN=DFDN=13,∴EF=13 a,∵AF=2a,∴AE=53 a,∵△AME∽△BMC,∴AMBM=AEBC=534aa=512,故答案为:5:1.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.32 k=-【解析】【分析】将点的坐标代入,可以得到-1=212k+,然后解方程,便可以得到k的值.【详解】∵反比例函数y=21kx+的图象经过点(2,-1),∴-1=21 2 k+∴k=−32;故答案为k=−32.【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答17.x≤2【解析】试题解析:根据题意得:20 {x30x-≥-≠解得:2x≤.18.【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得. 【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析.【解析】【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.20.(1)902βα=︒-;(2)103π 【解析】【分析】(1)连接OC ,根据切线的性质得到OC ⊥DE ,可以证明AD ∥OC ,根据平行线的性质可得DAC ACO ∠=∠,则根据等腰三角形的性质可得2DAE α∠=,利用90DAE E ∠+∠=︒,化简计算即可得到答案;(2)连接CF ,根据OA OC =,AG CG =可得OF AC ⊥,利用中垂线和等腰三角形的性质可证四边形AFCO 是平行四边形,得到△AOF 为等边三角形,由OA OC =并可得四边形AFCO 是菱形,可证AOF V 是等边三角形,有∠FAO=60°,120AOC ∠=︒再根据弧长公式计算即可. 【详解】解:(1)如图示,连结OC ,∵DE 是O e 的切线,∴OC DE ⊥.又AD DE ⊥,∴90D OCE ∠=∠=︒,∴AD OC P ,∴DAC ACO ∠=∠.∵OA OC =,∴OCA OAC ∠=∠.∴2DAE α∠=.∵90D ∠=︒,∴90DAE E ∠+∠=︒.∴290αβ+=︒,即902βα=︒-.(2)如图示,连结CF ,∵OA OC =,AG CG =,∴OF AC ⊥,∴FA FC =,∴FAC FCA CAO ∠=∠=∠,∴CF OA ∥,∵AF OC ∥,∴四边形AFCO 是平行四边形,∵OA OC =,∴四边形AFCO 是菱形,∴AF AO OF ==,∴AOF V 是等边三角形,∴260FAO α∠==︒,∴120AOC ∠=︒,∵10AB =,∴»AC 的长1205101803ππ⋅⋅==. 【点睛】本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.21.(1)333;(2)353;(2110553. 【解析】【分析】(1)连接AC ,BD ,由OE 垂直平分DC 可得DH 长,易知OH 、HE 长,相加即可;(2)补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,由勾股定理可得AO 长,易求AP 长;(1)小贝的说法正确,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长. 【详解】解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.∵△DCE为等边三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DH12=DC=1.∵四边形ABCD为正方形,∴△OHD为等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HE3=DH=13,∴OE=HE+OH=13+1;(2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,AD=6,DO=1,∴AO22AD DO=+=53OP DO==Q∴51;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,由题意知,点N 为AD 的中点, 3.2,AD BC OA OD ===,∴AN 12=AD=1.6,ON ⊥AD , 在Rt △ANO 中,设AO=r ,则ON=r ﹣1.2.∵AN 2+ON 2=AO 2,∴1.62+(r ﹣1.2)2=r 2,解得:r 53=, ∴AE=ON 53=-1.2715=, 在Rt △OEB 中,OE=AN=1.6,BE=AB ﹣AE 2315=, ∴BO 221105OE BE =+= ∴BP=BO+PO 11055153=+, ∴门角B 到门窗弓形弧AD 110553. 【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.22.(1)证明见解析;(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ.【解析】试题分析:(1)利用AAS 证明△AQB ≌△DPA ,可得AP=BQ ;(2)根据AQ ﹣AP=PQ 和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD 中,AD=BA ,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP ⊥AQ ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP ,∵AQ ⊥BE 于点Q ,DP ⊥AQ 于点P ,∴∠AQB=∠DPA=90°,∴△AQB ≌△DPA (AAS ),∴AP=BQ.(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.23. (1)y=2x -,y=−x−1;(2)x<−2或0<x<1 【解析】【分析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (1,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A,B 两点的坐标即可写出一次函数的值大于反比例函数的值的x 的取值范围.【详解】(1)∵A(−2,1)在反比例函数y=m x 的图象上, ∴1=2m -,解得m=−2. ∴反比例函数解析式为y=2x-, ∵B(1,n)在反比例函数上,∴n=−2,∴B 的坐标(1,−2), 把A(−2,1),B(1,−2)代入y=kx+b 得122k b k b =-+⎧⎨-=+⎩解得:11k b =-⎧⎨=-⎩∴一次函数的解析式为y=−x−1;(2)由图像知:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.24.x<2.【解析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:,由①得:x<3,由②得:x<2,∴不等式组的解集为:x<2.25.(1)线段AB与线段CA的长度之比为13;(2)线段AB与线段CA的长度之比为13;(3)1.【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)∵A(0,2),BC∥x轴,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴线段AB与线段CA的长度之比为13;(2)∵B是函数y=﹣2x(x<0)的一点,C是函数y=6x(x>0)的一点,∴B(﹣2a,a),C(6a,a),∴AB=2a,CA=6a,∴线段AB与线段CA的长度之比为13;(3)∵ABAC=13,∴ABBC=14,又∵OA=a,CD∥y轴,∴14 OA ABCD BC==,∴CD=4a,∴四边形AODC的面积为=12(a+4a)×6a=1.26.(I)x≥1;(Ⅱ)x>2;(III)见解析;(Ⅳ)x≥1.【解析】【分析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.【详解】(I )解不等式(1),得x≥1;(Ⅱ)解不等式(2),得x >2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:(Ⅳ)原不等式组的解集为x≥1.【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.27.(1)21234y x x =-+;(2)1-4a≤y≤4+5a ;(3)b =2或-10. 【解析】【分析】(1)将P (4,-1)代入,可求出解析式(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线2b x a =- 中,可判断22b x a=->,且开口向上,所以y 随x 的增大而减小,再把x=-1,x=2代入即可求得. (3)观察图象可得,当0≤x≤1时,抛物线上的点到x 轴距离的最大值为6,这些点可能为x=0,x=1,2bx =-三种情况,再根据对称轴2b x =-在不同位置进行讨论即可. 【详解】解:(1)由此抛物线顶点为P (4,-1),所以y =a (x-4)2-1=ax 2-8ax +16a -1,即16a -1=3,解得a=14, b=-8a=-2 所以抛物线解析式为:21234y x x =-+; (2)由此抛物线经过点C (4,-1),所以 一1=16a +4b +3,即b =-4a -1.因为抛物线2(41)3=-++y ax a x 的开口向上,则有0a > 其对称轴为直线412+=a x a ,而4112222a +==+>a x a 所以当-1≤x≤2时,y 随着x 的增大而减小当x =-1时,y=a+(4a+1)+3=4+5a当x =2时,y=4a-2(4a+1)+3=1-4a所以当-1≤x≤2时,1-4a≤y≤4+5a ;(3)当a =1时,抛物线的解析式为y =x 2+bx +3∴抛物线的对称轴为直线2b x =- 由抛物线图象可知,仅当x =0,x =1或x =-2b 时,抛物线上的点可能离x 轴最远 分别代入可得,当x =0时,y=3当x=1时,y =b +4当x=-2b 时,y=-24b +3 ①当一2b <0,即b >0时,3≤y≤b+4, 由b +4=6解得b =2 ②当0≤-2b ≤1时,即一2≤b≤0时,△=b 2-12<0,抛物线与x 轴无公共点 由b +4=6解得b =2(舍去); ③当b 12-> ,即b <-2时,b +4≤y≤3, 由b +4=-6解得b =-10综上,b =2或-10【点睛】本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x 轴距离的最大值的点不同.。
(完整版)2019年东营市中考数学试题、答案(解析版)
2019年东营市中考数学试题、答案(解析版)(总分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.2019-的相反数是( )A .2019-B .2019C .12019- D .120192.下列运算正确的是( )A .3335=2--x x xB .384=2÷x x xC .2=--xy x xy y x yD =3.将一副三角板(30∠︒=A ,45∠︒=E )按如图所示方式摆放,使得BAEF ∥,则∠AOF 等于( )A .75︒B .90︒C .105°D .115︒ 4.下列图形中,是轴对称图形的是( )ABCD5.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为 ( )A .10216+=⎧⎨+=⎩x y x yB .10216+=⎧⎨-=⎩x y x yC .10216+=⎧⎨-=⎩x y x yD .10216+=⎧⎨+=⎩x y x y6.从1,2,3,4中任取两个不同的数,分别记为a 和b ,则2219+>a b 的概率是 ( ) A .12B .512C .712D .137.如图,在△Rt 中,90∠︒=ACB ,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于、D E 两点,作直线DE 交AB 于点F ,交BC 于点G ,连结CF .若3=AC ,2=CG ,则CF 的长为 ( )A .52B .3C .2D .728.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A .乙队率先到达终点B .甲队比乙队多走了126米C .在47.8秒时,两队所走路程相等D .从出发到13.7秒的时间段内,乙队的速度慢9.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为( )A .B C .3 D .10.如图,在正方形ABCD 中,点O 是对角线、AC BD 的交点,过点O 作射线、OM ON 分别交、BC CD 于点、E F ,且90∠︒=EOF ,、OC EF 交于点G .给出下列结论:①COE DOF △≌△;②OGE FGC △∽△;③四边形CEOF 的面积为正方形ABCD 面积的14;④22•+=DF BE OG OC .其中正确的是( )A .①②③④B .①②③C .①②④D .③④第Ⅰ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20 000吨,20 000用科学记数法表示为 . 12.因式分解:33--+()=x x x .13.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是 .时间(小时) 0.5 1 1.5 2 2.5 人数(人)1222105314.已知等腰三角形的底角是30︒,腰长为则它的周长是 .15.不等式组3(2)421152-->⎧⎪-+⎨≤⎪⎩x x x x 的解集为 .16.如图,AC 是e O 的弦,5=AC ,点B 是e O 上的一个动点,且45∠︒=ABC ,若点、M N 分别是、AC BC 的中点,则MN 的最大值是 .17.如图,在平面直角坐标系中,△ACE 是以菱形ABCD 的对角线AC 为边的等边三角形,2=AC ,点C 与点E 关于x 轴对称,则点D 的坐标是 .18.如图,在平面直角坐标系中,函数y和y 的图象分别为直线1l ,2l ,过1l上的点11(A 作x 轴的垂线交2l 于点2A ,过点2A 作y 轴的垂线交1l 于点3A ,过点3A 作x 轴的垂线交2l 于点4A ,…依次进行下去,则点2019A 的横坐标为 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分,第(1)小题4分,第(2)小题4分)(1)计算:101 3.142sin452019|π-+-++︒-()()(2)化简求值:22222+b a+-÷--()a b a ab a b a ab ,当1=-a 时,请你选择一个适当的数作为b 的值,代入求值.20.(本题满分8分)为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.________________ _____________21.(本题满分8分)如图,AB是e O的直径,点D是AB延长线上的一点,点C在e O上,且=AC CD, 120∠︒=ACD.(1)求证:CD是e O的切线;(2)若e O的半径为3,求图中阴影部分的面积.22.(本题满分8分)如图,在平面直角坐标系中,直线=y mx与双曲线=nyx 相交于()2,-A a、B两点,⊥BC x轴,垂足为C,△AOC的面积是2.(1)求、m n的值;(2)求直线AC的解析式.23.(本题满分8分)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32 000元?24.(本题满分10分)如图1,在△Rt ABC 中,90∠︒=B ,4=AB ,2=BC ,点、D E 分别是边、BC AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现 ①当0︒=α时,=AE BD ;②当180︒=α时,=AEBD. (2)拓展探究试判断:当0360︒≤︒<α时,AEBD的大小有无变化?请仅就图2的情形给出证明. (3)问题解决CDE △绕点C 逆时针旋转至、、A B E 三点在同一条直线上时,求线段BD 的长.25.(本题满分12分)已知抛物线24+-=y ax bx 经过点()()2,04,0-、A B ,与y 轴交于点C . (1)求这条抛物线的解析式;(2)如图1,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标;(3)如图2,线段AC 的垂直平分线交x 轴于点E ,垂足为D ,M 为抛物线的顶点,在直线DE 上是否存在一点G ,使CMG △的周长最小?若存在,求出点G 的坐标;若不存在,请说明理由.2019年东营市中考数学答案与解析第Ⅰ卷(选择题 共30分)一、选择题 1.【答案】B【解析】2019-的相反数是:2019.故选:B . 2.【答案】C【解析】A 、333352--x x x =,故此选项错误;B 、32842÷x x x =,故此选项错误;C 、2xy --xxy y x y=,正确;D 无法计算,故此选项错误.故选:C .3.【答案】A 【解析】Q BA EF ∥,30∠︒A=,30∴∠∠︒FCA A ==. 45∠∠︒Q F E ==,304575∴∠∠+∠︒+︒︒AOF FCA F ===.故选:A .4.【答案】D【解析】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D . 5.【答案】A【解析】设这个队胜x 场,负y 场,根据题意,得10216+=⎧⎨+=⎩x y x y .故选:A .6.【答案】D【解析】画树状图得:Q 共有12种等可能的结果,任取两个不同的数,2219+a b >的有4种结果,2219∴+a b >的概率是41123=,故选:D . 7.【答案】A【解析】由作法得GF 垂直平分BC ,∴FB FC =,2CG BG ==,⊥FG BC ,90∠︒Q ACB =,∴FG AC ∥,∴BF CF =,∴CF 为斜边AB 上的中线,5Q AB ,1522∴CF AB ==.故选:A . 8.【答案】C【解析】A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均无174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选:C . 9.【答案】D【解析】如图将圆锥侧面展开,得到扇形'ABB ,则线段BF 为所求的最短路程.设∠'︒BAB n =.64180⋅=Q n ππ,120∴n =即120∠'︒BAB =.Q E 为弧'BB 中点,90∴∠︒AFB =,60∠︒BAF =,•6∴∠BF AB sin BAF ==∴最短路线长为D .10.【答案】B【解析】①Q 四边形ABCD 是正方形,45∴⊥∠∠︒OC OD AC BD ODF OCE =,,==,90∠︒Q MON =,∴∠∠COM DOF =,∴COE DOFASA △≌△(),故①正确; ②90∠∠︒Q EOF ECF ==,∴点O E C F 、、、四点共圆,∴∠∠∠∠EOG CFG OEG FCG =,=,∴OGE FGC △∽△,故②正确;③Q COE DOF △≌△,∴COE DOF S S △△=,1=4∴OCD ABCD CEOF S S S △正方形四边形=,故③正确;④Q COE DOF △≌△,∴OE OF =,又90∠︒Q EOF =,∴EOF △是等腰直角三角形,45∴∠∠︒OEG OCE ==,∠∠Q EOG COE =,∴OEG OCE △∽△,∴OE OC OG OE :=:,2•∴OG OC OE =,12Q OC AC =,2OE EF ,2•∴OG AC EF =,Q CE DF BC CD =,=,∴BE CF =,又Q Rt CEF △中,222+CF CE EF =,222∴+BE DF EF =,22•∴+OG AC BE DF =,故④错误,故选:B . 二、填空题 11.【答案】4210⨯【解析】20 000用科学记数法表示为4210⨯. 12.【答案】(1)(3)--x x【解析】原式=(3)(3)(1)(3)-----x x x x x =. 13.【答案】1 【解析】由统计表可知共有:1222105352++++=人,中位数应为第26与第27个的平均数, 而第26个数和第27个数都是1,则中位数是1.14.【答案】6+【解析】作⊥AD BC 于D ,Q AB AC =,∴BD DC =,在Rt ABD △中,30∠︒B =,12∴AD AB =由勾股定理得,3BD ,26∴BC BD ==,∴ABC △的周长为:66++15.【答案】71≤x ﹣<【解析】解不等式324--x x ()>,得:1x <,解不等式2x 1122-+≤x ,得:7≥-x ,则不等式组的解集为71-≤x <.16.【答案】2【解析】Q 点M N ,分别是BC AC ,的中点,12∴MN AB=,∴当AB取得最大值时,MN就取得最大值,当AB是直径时,AB最大,连接AO并延长交e O于点'B,连接'CB,'Q AB是e O的直径,90∴∠'︒ACB=.45∠︒Q ABC=,5AC=,45∴∠'︒AB C=,52sin452∴'︒ACAB===,52∴MN最大=.17.【答案】3(,)【解析】如图,Q ACE△是以菱形ABCD的对角线AC为边的等边三角形,2AC=,1∴CH=,3∴AH=,30∠∠︒Q ABO DCH==,33∴DH AO==,3333333∴--OD==,∴点D的坐标是3(,).18.【答案】10093-【解析】由题意可得,131,3⎛⎫⎪⎪⎝⎭A,2(1,3)-A,3(3,3)--A,4(3,33)-A,5(9,33)A,6(9,93)-A,…,可得21+nA的横坐标为3-n()2019210091⨯+Q=,∴点2019A的横坐标为:1009100933--()=,三、解答题19.【答案】(1)2020(2)1+a b,1【解析】(1)原式2201912322232++-+⨯-=2020232223+-+-=2020=;(2)原式()()222a•--+b aa ab a b=()()()()2•-+-+a b a b aa ab a b=1+a b=, 当1a =-时,取2b =, 原式1112-+==. 20.【答案】(1)200 (2)(3)126°(4)14【解析】(1)Q 被抽到的学生中,报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,∴在这次调查中,一共抽取了学生为:2010%200÷=(人);(2)被抽到的学生中,报名“绘画”类的人数为:20017.5%35⨯=(人),报名“舞蹈”类的人数为:20025%50⨯=(人);补全条形统计图如下:(3)被抽到的学生中,报名“声乐”类的人数为70人,∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:70360126200︒︒⨯=; (4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A B C D 、、、,画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,∴小东和小颖选中同一种乐器的概率为41164=. 21.【答案】(1)见解析(2【解析】(1)证明:连接OC .Q AC CD =,120∠︒ACD =,30∴∠∠︒A D ==.Q OA OC =,30∴∠∠︒ACO A ==.90∴∠∠∠︒OCD ACD ACO =﹣=.即⊥OC CD ,∴CD 是e O 的切线.(2)30∠︒Q A =,260∴∠∠︒COB A ==.260333602⋅∴=BOC S ππ扇形=, 在Rt OCD △中,CD OC tan 60︒=⋅=11S 32∴=⋅=⨯⨯OCD OC CD △∴-=OCD BOC S S △扇形, ∴. 22.【答案】(1)=1=4m n -,-(2)112=-+y x 【解析】(1)Q 直线y mx =与双曲线=n y x相交于2A a B (-,)、两点, ∴点A 与点B 关于原点中心对称,2∴B a (,-), 20∴C (,); 2Q AOC S △=,1222∴⨯⨯a =,解得2a =, 22∴A (-,), 把22∴A (-,)代入y mx =和=n y x 得22-m =,n 22=-,解得14m n =-,=-; (2)设直线AC 的解析式为+y kx b =,Q 直线AC 经过A C 、,2220-+=⎧∴⎨+=⎩k b k b ,解得1k 2b 1⎧=-⎪⎨⎪=⎩ ∴直线AC 的解析式为112=-+y x . 23.【答案】电子产品降价后的销售单价为180元时,公司每天可获利32 000元.【解析】设降价后的销售单价为x 元,则降价后每天可售出3005200[]+-x ()个, 依题意,得:10030052003]200[0-+-x x ()()=,整理,得:2360324000-+x x =,解得:12180x x ==. 180200<,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.24.【答案】(1(2)当0360︒≤︒α<时,AF BD 的大小没有变化(3【解析】(1)①当0︒α=时,Q Rt ABC △中,90∠︒B =,∴==ACQ 点D E 、分别是边BC AC 、的中点,11122∴===AE AC BD BC ,∴=AE BD. ②如图1﹣1中,当180︒α=时,可得AB DE ∥, =Q AC BC AE BD,∴=AE AC BD BC(2)如图2,当0360︒≤︒α<时,AF BD 的大小没有变化, ∠∠Q ECD ACB =,∴∠∠ECA DCB =,又AC BC==Q EC DC ∴ECA DCB △∽△,∴=AE EC BD DC(3)①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE △中,2==CE BC ,1∴=BE ,5∴+AE AB BE ==,=QAE BD,∴==BD . ②如图3﹣2中,当点E 在线段AB 上时,易知1413-BE AE =,==,=Q AE BD,∴=BD , 综上所述,满足条件的BD. 25.【答案】(1)2142=--y x x (2)24(-,-)(3)315,48⎛⎫- ⎪⎝⎭G 【解析】(1)Q 抛物线4+-y ax bx =经过点2040A B (-,),(,), 424016440+-=⎧∴⎨--=⎩a b a b , 解得1a 2b 1⎧=⎪⎨⎪=⎩,∴抛物线解析式为2142=--y x x ; (2)如图1,连接OP ,设点21,42⎛⎫+- ⎪⎝⎭P x x x ,其中40-x <<,四边形ABPC 的面积为S,由题意得04C (,-),∴++AOC OCP OBP S S S S △△△= 21111244(x)4x x 42222⎛⎫=⨯⨯+⨯⨯-⨯⨯--+ ⎪+⎝⎭, 24228---+x x x =,2412--+x x =,2216-++x =().10-Q <,开口向下,S 有最大值,∴当2x =-时,四边形ABPC 的面积最大,此时,4y =-,即24--P (,). 因此当四边形ABPC 的面积最大时,点P 的坐标为24--(,). (3)221194(1)222=+-=+-y x x x , ∴顶点912--M (,). 如图2,连接AM 交直线DE 于点G ,此时,CMG △的周长最小. 设直线AM 的解析式为y kx =,且过点92012--A M (,),(,),2092+=⎧⎪∴⎨-+=-⎪⎩k b k b , ∴直线AM 的解析式为332=-y x . 在Rt AOC △中,==AC Q D 为AC 的中点,12∴==AD AC Q ADE AOC △∽△,∴=AD AF AC, 22∴=A , 5∴AE =,523∴--OE AE AO ===,30∴E (-,),由图可知12D (,-)设直线DE 的函数解析式为+y mx n =, 230+=-⎧⎨-+=⎩m n m n , 解得:1232⎧=-⎪⎪⎨⎪=-⎪⎩m n , ∴直线DE 的解析式为1322=--y x . 1322332⎧=-⎪⎪⎨⎪=-⎪⎩y x y x , 解得:34158⎧=⎪⎪⎨⎪=⎪⎩x y , 315,48⎛⎫∴- ⎪⎝⎭G .。
2019年山东省东营中考数学试卷及答案解析
山东省东营市2019年初中学业水平考试数 学(总分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.2019-的相反数是( )A.2019-B.2019C.12019- D.120192.下列运算正确的是( )A.3335=2--x x xB.384=2÷x x xC.2=--xy x xy y x y=3.将一副三角板(30∠︒=A ,45∠︒=E )按如图所示方式摆放,使得BA EF ∥,则∠AOF等于( )A.75︒B.90︒C.105°D.115︒ 4.下列图形中,是轴对称图形的是( )ABCD5.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为 ( )A.10216+=⎧⎨+=⎩x y x yB.10216+=⎧⎨-=⎩x y x yC.10216+=⎧⎨-=⎩x y x yD.10216+=⎧⎨+=⎩x y x y6.从1,2,3,4中任取两个不同的数,分别记为a 和b ,则2219+>a b 的概率是 ( ) A.12B.512C.712D.137.如图,在△Rt 中,90∠︒=ACB ,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于、D E 两点,作直线DE 交AB 于点F ,交BC 于点G ,连结CF .若3=AC ,2=CG ,则CF 的长为( )A.52B.3C.2D.728.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢9.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为( )毕业学校_____________ 姓名________________ 考生号________________________________ _____________A.C.3D.10.如图,在正方形ABCD 中,点O 是对角线、AC BD 的交点,过点O 作射线、OM ON分别交、BC CD 于点、E F ,且90∠︒=EOF ,、OC EF 交于点G .给出下列结论:①COE DOF △≌△;②OGE FGC △∽△;③四边形CEOF 的面积为正方形ABCD 面积的14;④22•+=DF BE OG OC .其中正确的是 ( )A.①②③④B.①②③C.①②④D.③④第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20 000吨,20 000用科学记数法表示为 . 12.因式分解:33--+()=x x x .13.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是 .时间(小时) 0.5 11.5 22.5 人数(人)12 22 10 5314.已知等腰三角形的底角是30︒,腰长为,则它的周长是 .15.不等式组3(2)421152-->⎧⎪-+⎨≤⎪⎩x x x x 的解集为 .16.如图,AC 是e O 的弦,5=AC ,点B 是e O 上的一个动点,且45∠︒=ABC ,若点、M N 分别是、AC BC 的中点,则MN 的最大值是 .17.如图,在平面直角坐标系中,△ACE 是以菱形ABCD 的对角线AC 为边的等边三角形,2=AC ,点C 与点E 关于x 轴对称,则点D 的坐标是 .18.如图,在平面直角坐标系中,函数3=y x和y 的图象分别为直线1l ,2l ,过1l上的点11(A 作x 轴的垂线交2l 于点2A ,过点2A 作y 轴的垂线交1l 于点3A ,过点3A 作x 轴的垂线交2l 于点4A ,…依次进行下去,则点2019A 的横坐标为 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分8分,第(1)小题4分,第(2)小题4分)(1)计算:101 3.142sin452019|π-+-++︒()()(2)化简求值:22222+b a+-÷--()a b a ab a b a ab ,当1=-a 时,请你选择一个适当的数---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------作为b 的值,代入求值.20.(本题满分8分)为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.21.(本题满分8分)如图,AB 是e O 的直径,点D 是AB 延长线上的一点,点C 在e O 上,且=AC CD ,120∠︒=ACD .(1)求证:CD 是e O 的切线;(2)若e O 的半径为3,求图中阴影部分的面积.22.(本题满分8分)如图,在平面直角坐标系中,直线=y mx 与双曲线=n y x相交于()2,-A a 、B 两点,⊥BC x 轴,垂足为C ,△AOC 的面积是2.(1)求、m n 的值; (2)求直线AC 的解析式.23.(本题满分8分)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32 000元?24.(本题满分10分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________如图1,在△Rt ABC 中,90∠︒=B ,4=AB ,2=BC ,点、D E 分别是边、BC AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α. (1)问题发现 ①当0︒=α时,=AE BD ;②当180︒=α时,=AEBD. (2)拓展探究试判断:当0360︒≤︒<α时,AEBD的大小有无变化?请仅就图2的情形给出证明. (3)问题解决CDE △绕点C 逆时针旋转至、、A B E 三点在同一条直线上时,求线段BD 的长.25.(本题满分12分)已知抛物线24+-=y ax bx 经过点()()2,04,0-、A B ,与y 轴交于点C . (1)求这条抛物线的解析式;(2)如图1,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标;(3)如图2,线段AC 的垂直平分线交x 轴于点E ,垂足为D ,M 为抛物线的顶点,在直线DE 上是否存在一点G ,使CMG △的周长最小?若存在,求出点G 的坐标;若不存在,请说明理由.山东省东营市2019年初中学业水平考试数学答案与解析第Ⅰ卷(选择题 共30分)一、选择题 1.【答案】B【解析】2019-的相反数是:2019.故选:B . 2.【答案】C【解析】A 、333352--x x x =,故此选项错误;B 、32842÷x x x =,故此选项错误;C 、2xy --xxy y x y =,正确;D无法计算,故此选项错误.故选:C .3.【答案】A 【解析】Q BA EF ∥,30∠︒A=,30∴∠∠︒FCA A ==. 45∠∠︒Q F E ==,304575∴∠∠+∠︒+︒︒AOF FCA F ===.故选:A .4.【答案】D【解析】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D . 5.【答案】A【解析】设这个队胜x 场,负y 场,根据题意,得10216+=⎧⎨+=⎩x y x y .故选:A .6.【答案】D【解析】画树状图得:Q 共有12种等可能的结果,任取两个不同的数,2219+a b >的有4种结果,2219∴+a b >的概率是41123=,故选:D . 7.【答案】A【解析】由作法得GF 垂直平分BC ,∴FB FC =,2CG BG ==,⊥FG BC ,90∠︒Q ACB =,∴FG AC ∥,∴BF CF =,∴CF 为斜边AB 上的中线,5Q AB ,1522∴CF AB ==.故选:A .8.【答案】C【解析】A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均无174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选:C . 9.【答案】D【解析】如图将圆锥侧面展开,得到扇形'ABB ,则线段BF 为所求的最短路程. 设∠'︒BAB n =.64180⋅=Qn ππ,120∴n =即120∠'︒BAB =.Q E 为弧'BB 中点,90∴∠︒AFB =,60∠︒BAF =,•6∴∠BF AB sin BAF ==,∴最短路线长为D .10.【答案】B【解析】①Q 四边形ABCD 是正方形,45∴⊥∠∠︒OC OD AC BD ODF OCE =,,==,90∠︒Q MON =,∴∠∠COM DOF =,∴COE DOFASA △≌△(),故①正确; ②90∠∠︒Q EOF ECF ==,∴点O E C F 、、、四点共圆,∴∠∠∠∠EOG CFG OEG FCG =,=,∴OGE FGC △∽△,故②正确;③Q COE DOF △≌△,∴COE DOF S S △△=,1=4∴OCD ABCD CEOF S S S △正方形四边形=,故③正确; ④Q COE DOF △≌△,∴OE OF =,又90∠︒Q EOF =,∴EOF △是等腰直角三角形,45∴∠∠︒OEG OCE ==,∠∠Q EOG COE =,∴OEG OCE △∽△,∴OE OC OG OE :=:,2•∴OG OC OE =,12Q OC AC =,OE ,2•∴OG AC EF =,Q CE DF BC CD =,=,∴BE CF =,又Q Rt CEF △中,222+CF CE EF =,222∴+BE DF EF =,22•∴+OG AC BE DF =,故④错误,故选:B . 二、填空题 11.【答案】4210⨯【解析】20 000用科学记数法表示为4210⨯. 12.【答案】(1)(3)--x x【解析】原式=(3)(3)(1)(3)-----x x x x x =. 13.【答案】1【解析】由统计表可知共有:1222105352++++=人,中位数应为第26与第27个的平均数,而第26个数和第27个数都是1,则中位数是1.14.【答案】643+【解析】作⊥AD BC 于D ,Q AB AC =,∴BD DC =,在Rt ABD △中,30∠︒B =,132∴AD AB ==,由勾股定理得,223-BD AB AD ==,26∴BC BD ==,∴ABC △的周长为:62323643+++=.15.【答案】71≤x ﹣<【解析】解不等式324--x x ()>,得:1x <,解不等式2x 1122-+≤x ,得:7≥-x ,则不等式组的解集为71-≤x <. 16.【答案】52【解析】Q 点M N ,分别是BC AC ,的中点,12∴MN AB =,∴当AB 取得最大值时,MN 就取得最大值,当AB 是直径时,AB 最大,连接AO 并延长交e O 于点'B ,连接'CB ,'Q AB 是e O 的直径,90∴∠'︒ACB =.45∠︒Q ABC =,5AC =,45∴∠'︒AB C =,52sin 4522∴'︒AC AB ===,52∴MN 最大=.17.【答案】303(,)【解析】如图,Q ACE △是以菱形ABCD 的对角线AC 为边的等边三角形,2AC =,1∴CH =,3∴AH =,30∠∠︒Q ABO DCH ==,3∴DH AO ==,3333333∴--OD ==,∴点D 的坐标是303(,).18.【答案】10093-【解析】由题意可得,131,3⎛⎫ ⎪ ⎪⎝⎭A ,2(1,3)-A ,3(3,3)--A ,4(3,33)-A ,5(9,33)A ,6(9,93)-A ,…,可得21+n A 的横坐标为3-n()2019210091⨯+Q =,∴点2019A 的横坐标为:1009100933--()=, 三、解答题 19.【答案】(1)2020(2)1+a b,1 【解析】(1)原式2201912322232++-+⨯-= 2020232223+-+-=2020=;(2)原式()()222a •--+b aa ab a b =()()()()2•-+-+a b a b aa ab a b =1+a b=, 当1a =-时,取2b =,原式1112-+==.20.【答案】(1)200(2)(3)126° (4)14 【解析】(1)Q 被抽到的学生中,报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,∴在这次调查中,一共抽取了学生为:2010%200÷=(人); (2)被抽到的学生中,报名“绘画”类的人数为:20017.5%35⨯=(人),报名“舞蹈”类的人数为:20025%50⨯=(人);补全条形统计图如下:(3)被抽到的学生中,报名“声乐”类的人数为70人,∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:70360126200︒︒⨯=; (4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A B C D 、、、,画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,∴小东和小颖选中同一种乐器的概率为41164=.21.【答案】(1)见解析(2【解析】(1)证明:连接OC .Q AC CD =,120∠︒ACD =,30∴∠∠︒A D ==. Q OA OC =, 30∴∠∠︒ACO A ==. 90∴∠∠∠︒OCD ACD ACO =﹣=.即⊥OC CD , ∴CD 是e O 的切线. (2)30∠︒Q A =, 260∴∠∠︒COB A ==.260333602⋅∴=BOC S ππ扇形=, 在Rt OCD △中,CD OC tan 60︒=⋅=11S 32∴=⋅=⨯⨯=OCD OC CD △∴-OCD BOC S S △扇形, ∴图中阴影部分的面积为32π.22.【答案】(1)=1=4m n -,-(2)112=-+y x【解析】(1)Q 直线y mx =与双曲线=ny x相交于2A a B (-,)、两点,∴点A 与点B 关于原点中心对称,2∴B a (,-), 20∴C (,); 2Q AOC S △=, 1222∴⨯⨯a =,解得2a =, 22∴A (-,), 把22∴A (-,)代入y mx =和=n y x 得22-m =,n22=-,解得14m n =-,=-;(2)设直线AC 的解析式为+y kx b =, Q 直线AC 经过A C 、,2220-+=⎧∴⎨+=⎩k b k b ,解得1k 2b 1⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为112=-+y x .23.【答案】电子产品降价后的销售单价为180元时,公司每天可获利32 000元. 【解析】设降价后的销售单价为x 元,则降价后每天可售出3005200[]+-x ()个, 依题意,得:10030052003]200[0-+-x x ()()=,整理,得:2360324000-+x x =, 解得:12180x x ==. 180200<,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元. 24.【答案】(1(2)当0360︒≤︒α<时,AFBD的大小没有变化 (3【解析】(1)①当0︒α=时, Q Rt ABC △中,90∠︒B =,∴==AC Q 点D E 、分别是边BC AC 、的中点,11122∴====AE AC BD BC ,∴AE BD②如图1﹣1中,当180︒α=时, 可得AB DE ∥,=QAC BCAE BD,∴==AE ACBD BC(2)如图2,当0360︒≤︒α<时,AFBD的大小没有变化, ∠∠Q ECD ACB =, ∴∠∠ECA DCB =,又AC BC==Q EC DC∴ECA DCB △∽△,∴=AE EC BD DC(3)①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE △中,2==CE BC ,1∴===BE , 5∴+AE AB BE ==,Q AE BD,∴==BD .②如图3﹣2中,当点E 在线段AB 上时,易知1413-BE AE =,==,QAEBD∴=BD , 综上所述,满足条件的BD的长为5. 25.【答案】(1)2142=--y x x (2)24(-,-)(3)315,48⎛⎫- ⎪⎝⎭G【解析】(1)Q 抛物线4+-y ax bx =经过点2040A B (-,),(,), 424016440+-=⎧∴⎨--=⎩a b a b , 解得1a 2b 1⎧=⎪⎨⎪=⎩,∴抛物线解析式为2142=--y x x ; (2)如图1,连接OP ,设点21,42⎛⎫+- ⎪⎝⎭P x x x ,其中40-x <<,四边形ABPC 的面积为S ,由题意得04C (,-),∴++AOC OCP OBP S S S S △△△=21111244(x)4x x 42222⎛⎫=⨯⨯+⨯⨯-⨯⨯--+ ⎪+⎝⎭, 24228---+x x x =, 2412--+x x =,2216-++x =().10-Q <,开口向下,S 有最大值,∴当2x =-时,四边形ABPC 的面积最大, 此时,4y =-,即24--P (,). 因此当四边形ABPC 的面积最大时,点P 的坐标为24--(,). (3)221194(1)222=+-=+-y x x x , ∴顶点912--M (,). 如图2,连接AM 交直线DE 于点G ,此时,CMG △的周长最小.设直线AM 的解析式为y kx =,且过点92012--A M (,),(,),2092+=⎧⎪∴⎨-+=-⎪⎩k b k b ,∴直线AM 的解析式为33=-y x . 在Rt AOC △中,==AC Q D 为AC 的中点,12∴=AD ACQ ADE AOC △∽△, ∴=AD AFAC , 22=A , 5∴AE =,523∴--OE AE AO ===,30∴E (-,), 由图可知12D (,-)设直线DE 的函数解析式为+y mx n =,230+=-⎧⎨-+=⎩m n m n , 解得:1232⎧=-⎪⎪⎨⎪=-⎪⎩m n ,∴直线DE 的解析式为1322=--y x .1322332⎧=-⎪⎪⎨⎪=-⎪⎩y x y x , 解得:34158⎧=⎪⎪⎨⎪=⎪⎩x y ,315,48⎛⎫∴- ⎪⎝⎭G .。
2019年中考东营黑白模拟试题黑试题答案
3
相乘 指数相加 是正整数)
题
仍会在第 1题考查实数的相关概念.
同底数幂 底数不变, am ÷an=am-n(a≠0,m、n
櫲櫲櫲櫲櫲毴
櫲櫲拓展櫲训櫲练櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲櫲毴
相除 指数相减 都是正整数,且 m>n)
櫲櫲櫲櫲櫲毴
1.槡64的立方根是
( )
底数不变, (am)n=amn(m、n都是 幂的乘方
D.若一个多边形的一个外角等于 72°,则
这个多边形的边数一定是 5
5.B 【解析】∵ |a-2|+(b+3)2 =0,∴a-2=0,b+
3=0,∴a=2,b=-3,∴(a+b)3=(-1)3=-1.
6.A 【解析】甲 乙 两 班 的 平 均 数 相 同,故 甲 乙 两 班 的
(2)角的相关性质:①对顶角相等;②互余的两角和
为 90°;③互补的两角和为 180°;④一个角被角平分
线分成的两个角相等,度数都等于这个角的一半.
移项、合并同类项,得 2x=1,解得 x=1 2,检验:当 x =1 2时,x+1= 3 2≠0,x+2= 5 2≠0,∴ x= 12是 原
2题考查;考 查 内 容:合 并 同 类 项、同 底 数 幂 的 乘 角度.
(除)法、幂 的 乘 方、积 的 乘 方、平 方 差 公 式、完 全 平
【知识储备】利用平行线的性质求角度,需要掌握以
方公式、二次根式的运算、实数的运算、去括号;预 下知识:
计 2019年仍会在第 2题考查整式运算.
为等腰直角三角形,另一个锐角也是 45°.
平分线,AB=BC,∴ AD=BD,∴ BC=BD+CD=AD +CD.∵△ABC的周长为 16,∴AB+BC+AC=16. ∵△ACD的周长为 10,∴AC+AD+CD=10,即 AC
2019年山东省东营市中考数学试卷(含解析)完美打印版
2019年山东省东营市中考数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣2019的相反数是()A.﹣2019B.2019C.﹣D.2.(3分)下列运算正确的是()A.3x3﹣5x3=﹣2x B.8x3÷4x=2xC.=D.+=3.(3分)将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF等于()A.75°B.90°C.105°D.115°4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为(A.B.C.D.6.(3分)从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.B.C.D.7.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF 的长为()A.B.3C.2D.8.(3分)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢9.(3分)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.310.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3分)2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20000吨,20000用科学记数法表示为.12.(3分)因式分解:x(x﹣3)﹣x+3=.13.(3分)东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是.14.(3分)已知等腰三角形的底角是30°,腰长为2,则它的周长是.15.(4分)不等式组的解集为.16.(4分)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N分别是AC、BC的中点,则MN的最大值是.17.(4分)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是.18.(4分)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过l1上的点A1(1,)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:()﹣1+(3.14﹣π)0+|2﹣|+2sin45°﹣;(2)化简求值:(﹣)÷,当a=﹣1时,请你选择一个适当的数作为b的值,代入求值.20.(8分)为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.21.(8分)如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC=CD,∠ACD =120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求图中阴影部分的面积.22.(8分)如图,在平面直角坐标系中,直线y=mx与双曲线y=相交于A(﹣2,a)、B两点,BC⊥x 轴,垂足为C,△AOC的面积是2.(1)求m、n的值;(2)求直线AC的解析式.23.(8分)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?24.(10分)如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.25.(12分)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.2019年山东省东营市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣2019的相反数是()A.﹣2019B.2019C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2019的相反数是:2019.故选:B.2.(3分)下列运算正确的是()A.3x3﹣5x3=﹣2x B.8x3÷4x=2xC.=D.+=【分析】直接利用合并同类项法则以及单项式除以单项式、分式的约分、二次根式的加减运算法则分别化简得出答案.【解答】解:A、3x3﹣5x3=﹣2x3,故此选项错误;B、8x3÷4x=2x2,故此选项错误;C、=,正确;D、+无法计算,故此选项错误.故选:C.3.(3分)将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF等于()A.75°B.90°C.105°D.115°【分析】依据AB∥EF,即可得∠FCA=∠A=30°,由∠F=∠E=45°,利用三角形外角性质,即可得到∠AOF=∠FCA+∠F=30°+45°=75°.【解答】解:∵BA∥EF,∠A=30°,∴∠FCA=∠A=30°.∵∠F=∠E=45°,∴∠AOF=∠FCA+∠F=30°+45°=75°.故选:A.4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.5.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为(A.B.C.D.【分析】设这个队胜x场,负y场,根据在10场比赛中得到16分,列方程组即可.【解答】解:设这个队胜x场,负y场,根据题意,得.故选:A.6.(3分)从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与a2+b2>19的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,a2+b2>19的有4种结果,∴a2+b2>19的概率是=,故选:D.7.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF 的长为()A.B.3C.2D.【分析】利用线段垂直平分线的性质得到FB=FC,CG=BG=2,FG⊥BC,再证明BF=CF,则CF 为斜边AB上的中线,然后根据勾股定理计算出AB,从而得到CF的长.【解答】解:由作法得GF垂直平分BC,∴FB=FC,CG=BG=2,FG⊥BC,∵∠ACB=90°,∴FG∥AC,∴BF=CF,∴CF为斜边AB上的中线,∵AB==5,∴CF=AB=.故选:A.8.(3分)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢【分析】根据函数图象所给的信息,逐一判断.【解答】解:A、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C、由函数图象可知,在47.8秒时,两队所走路程相等,均无174米,本选项正确;D、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选:C.9.(3分)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.3【分析】将圆锥的侧面展开,设顶点为B',连接BB',AE.线段AC与BB'的交点为F,线段BF是最短路程.【解答】解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∵=4π,∴n=120即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,∴BF=AB•sin∠BAF=6×=3,∴最短路线长为3.故选:D.10.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④【分析】①由正方形证明OC=OD,∠ODF=∠OCE=45°,∠COM=∠DOF,便可得结论;②证明点O、E、C、F四点共圆,得∠EOG=∠CFG,∠OEG=∠FCG,进而得OGE∽△FGC便可;③先证明S△COE=S△DOF,∴便可;④证明△OEG∽△OCE,得OG•OC=OE2,再证明OG•AC=EF2,再证明BE2+DF2=EF2,得OG•AC =BE2+DF2便可.【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF=∠ECF=90°,∴点O、E、C、F四点共圆,∴∠EOG=∠CFG,∠OEG=∠FCG,∴OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴,故③正确;④)∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=∠OCE=45°,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=AC,OE=EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故④错误,故选:B.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3分)2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20000吨,20000用科学记数法表示为2×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:20000用科学记数法表示为2×104.故答案是:2×104.12.(3分)因式分解:x(x﹣3)﹣x+3=(x﹣1)(x﹣3).【分析】原式变形后,提取公因式即可.【解答】解:原式=x(x﹣3)﹣(x﹣3)=(x﹣1)(x﹣3),故答案为:(x﹣1)(x﹣3)13.(3分)东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是1.【分析】由统计表可知总人数为52,得到中位数应为第26与第27个的平均数,而第26个数和第27个数都是1,即可确定出中位数为1.【解答】解:由统计表可知共有:12+22+10+5+3=52人,中位数应为第26与第27个的平均数,而第26个数和第27个数都是1,则中位数是1.故答案为:1.14.(3分)已知等腰三角形的底角是30°,腰长为2,则它的周长是6.【分析】作AD⊥BC于D,根据直角三角形的性质求出AD,根据勾股定理求出BD,根据三角形的周长公式计算即可.【解答】解:作AD⊥BC于D,∵AB=AC,∴BD=DC,在Rt△ABD中,∠B=30°,∴AD=AB=,由勾股定理得,BD==3,∴BC=2BD=6,∴△ABC的周长为:6+2+2=6+4,故答案为:6+4.15.(4分)不等式组的解集为﹣7≤x<1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣3(x﹣2)>4,得:x<1,解不等式≤,得:x≥﹣7,则不等式组的解集为﹣7≤x<1,故答案为:﹣7≤x<1.16.(4分)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N分别是AC、BC的中点,则MN的最大值是.【分析】根据中位线定理得到MN的长最大时,AB最大,当AB最大时是直径,从而求得直径后就可以求得最大值.【解答】解:∵点M,N分别是BC,AC的中点,∴MN=AB,∴当AB取得最大值时,MN就取得最大值,当AB是直径时,AB最大,连接AO并延长交⊙O于点B′,连接CB′,∵AB′是⊙O的直径,∴∠ACB′=90°.∵∠ABC=45°,AC=5,∴∠AB′C=45°,∴AB′===5,∴MN最大=.故答案为:.17.(4分)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是().【分析】设CE和x轴交于H,根据等边三角形的性质可知CH=1,根据勾股定理即可求出AH的长,再根据菱形的性质和含30°的直角三角形的性质可求DH、AO的长,所以OD可求,又因为D在x轴上,纵坐标为0,问题得解.【解答】解:如图,∵△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,∴CH=1,∴AH=,∵∠ABO=∠DCH=30°,∴DH=AO=,∴OD=﹣﹣=,∴点D的坐标是(,0).故答案为:(,0).18.(4分)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过l1上的点A1(1,)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为﹣31009.【分析】根据题意可以发现题目中各点的坐标变化规律,每四个点符号为一个周期,依此规律即可得出结论.【解答】解:由题意可得,A1(1,),A2(1,﹣),A3(﹣3,﹣),A4(﹣3,3),A5(9,3),A6(9,﹣9),…,可得A2n+1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:()﹣1+(3.14﹣π)0+|2﹣|+2sin45°﹣;(2)化简求值:(﹣)÷,当a=﹣1时,请你选择一个适当的数作为b的值,代入求值.【分析】(1)分别计算负指数幂、零次幂、绝对值、三角函数值、二次根式,然后算加减法;(2)先化简分式,然后将x的值代入计算即可.【解答】解:(1)原式=2019+1++2×﹣2=2020+2﹣+﹣2=2020;(2)原式=•==,当a=﹣1时,取b=2,原式==1.20.(8分)为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.【分析】(1)根据抽取的报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,得出算式即可得出结果;(2)由抽取的人数乘以报名“绘画”类的人数所占的比例得出报名“绘画”类的人数;补全条形统计图即可;(3)用360°乘以“声乐”类的人数所占的比例即可;(4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A、B、C、D,画出树状图,即可得出答案.【解答】解:(1)∵被抽到的学生中,报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,∴在这次调查中,一共抽取了学生为:20÷10%=200(人);(2)被抽到的学生中,报名“绘画”类的人数为:200×17.5%=35(人),报名“舞蹈”类的人数为:200×25%=50(人);补全条形统计图如下:(3)被抽到的学生中,报名“声乐”类的人数为70人,∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:×360°=126°;(4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A、B、C、D,画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,∴小东和小颖选中同一种乐器的概率为=.21.(8分)如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC=CD,∠ACD =120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求图中阴影部分的面积.【分析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【解答】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠ACO=∠A=30°.∴∠OCD=∠ACD﹣∠ACO=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠COB=2∠A=60°.∴S扇形BOC=,在Rt△OCD中,CD=OC,∴,∴,∴图中阴影部分的面积为.22.(8分)如图,在平面直角坐标系中,直线y=mx与双曲线y=相交于A(﹣2,a)、B两点,BC⊥x 轴,垂足为C,△AOC的面积是2.(1)求m、n的值;(2)求直线AC的解析式.【分析】(1)根据反比例函数的对称性可得点A与点B关于原点中心对称,则B(2,a),由于BC⊥x 轴,所以C(2,0),先利用三角形面积公式得到×2×a=2,解得a=2,则可确定A(﹣2,2),然后把A点坐标代入y=mxy=mx和y=中即可求出m,n;(2)根据待定系数法即可得到直线AC的解析式.【解答】解:(1)∵直线y=mx与双曲线y=相交于A(﹣2,a)、B两点,∴点A与点B关于原点中心对称,∴B(2,﹣a),∴C(2,0);∵S△AOC=2,∴×2×a=2,解得a=2,∴A(﹣2,2),把A(﹣2,2)代入y=mx和y=得﹣2m=2,2=,解得m=﹣1,n=﹣4;(2)设直线AC的解析式为y=kx+b,∵直线AC经过A、C,∴,解得∴直线AC的解析式为y=﹣x+1.23.(8分)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【分析】设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,依题意,得:(x﹣100)[300+5(200﹣x)]=32000,整理,得:x2﹣360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.24.(10分)如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E 分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据=,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据==,判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情形:①如图3﹣1中,当点E在AV的延长线上时,②如图3﹣2中,当点E在线段AB 上时,分别求解即可.【解答】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC===2,∵点D、E分别是边BC、AC的中点,∴AE=AC=,BD=BC=1,∴=.②如图1﹣1中,当α=180°时,可得AB∥DE,∵=,∴==.故答案为:①,②.(2)如图2,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵==,∴△ECA∽△DCB,∴==..(3)①如图3﹣1中,当点E在AB的延长线上时,在Rt△BCE中,CE=,BC=2,∴BE===1,∴AE=AB+BE=5,∵=,∴BD==.②如图3﹣2中,当点E在线段AB上时,易知BE=1,AE=4﹣1=3,∵=,∴BD=,综上所述,满足条件的BD的长为或.25.(12分)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.【分析】(1)把点A、B的坐标代入抛物线解析式,利用待定系数法求函二次数解析式解答;(2)连接OP,由S=S△AOC+S△OCP+S△OBP,可得出关于P点横坐标的表达式,然后利用二次函数的最值问题求出点P的坐标;(3)连接AM交直线DE于点G,此时,△CMG的周长最小.求出直线AM的解析式,再由△ADE∽△AOC,求出点E的坐标,求出直线DE的解析式,则由AM、DE两直线的交点可求得G点坐标.【解答】解:(1)∵抛物线y=ax+bx﹣4经过点A(2,0),B(﹣4,0),∴,解得,∴抛物线解析式为y=x2+x﹣4;(2)如图1,连接OP,设点P(x,),其中﹣4<x<0,四边形ABPC的面积为S,由题意得C(0,﹣4),∴S=S△AOC+S△OCP+S△OBP=+,=4﹣2x﹣x2﹣2x+8,=﹣x2﹣4x+12,=﹣(x+2)2+16.∵﹣1<0,开口向下,S有最大值,∴当x=﹣2时,四边形ABPC的面积最大,此时,y=﹣4,即P(﹣2,﹣4).因此当四边形ABPC的面积最大时,点P的坐标为(﹣2,﹣4).(3),∴顶点M(﹣1,﹣).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2,0),M(﹣1,﹣),∴,∴直线AM的解析式为y=﹣3.在Rt△AOC中,=2.∵D为AC的中点,∴,∵△ADE∽△AOC,∴,∴,∴AE=5,∴OE=AE﹣AO=5﹣2=3,∴E(﹣3,0),由图可知D(1,﹣2)设直线DE的函数解析式为y=mx+n,∴,解得:,∴直线DE的解析式为y=﹣﹣.∴,解得:,∴G().。
山东省东营市2019-2020学年中考数学一模考试卷含解析
山东省东营市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算211a a a ---的结果是( ) A .1 B .-1 C .11a - D .2211+-a a 2.下列运算结果正确的是( )A .x 2+2x 2=3x 4B .(﹣2x 2)3=8x 6C .x 2•(﹣x 3)=﹣x 5D .2x 2÷x 2=x3.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )A .9πB .10πC .11πD .12π4.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ).A .32824x x =- B .32824x x =+ C .2232626x x +-=+ D .2232626x x +-=- 5.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <26.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( )A .B .2C .D .7.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠8.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )A .16B .13C .12D .23 9.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A .众数是5B .中位数是5C .平均数是6D .方差是3.610.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80 11.在同一坐标系中,反比例函数y =k x与二次函数y =kx 2+k(k≠0)的图象可能为( ) A . B .C .D .12.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A.5B.3C.5+1 D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2(3)--+(|﹣3|)0=_____.14.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.15.因式分解:2312x-=____________.164x-x的取值范围为_____.17.反比例函数y=2mx-的图象是双曲线,在每一个象限内,y随x的增大而减小,若点A(–3,y1),B(–1,y2),C(2,y3)都在该双曲线上,则y1、y2、y3的大小关系为__________.(用“<”连接)18.已知三个数据3,x+3,3﹣x的方差为23,则x=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.20.(6分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21.(6分)如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).求k 、m 的值;已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x=> 的图象于点N. ①当n=1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN≥PM ,结合函数的图象,直接写出n 的取值范围.22.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A 、B 两种营销方案方案A :该文具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由23.(8分)如图,已知直线AB 经过点(0,4),与抛物线y=14x 2交于A ,B 两点,其中点A 的横坐标是2-.求这条直线的函数关系式及点B 的坐标.在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在请说明理由.过线段AB 上一点P ,作PM ∥x 轴,交抛物线于点M ,点M 在第一象限,点N (0,1),当点M 的横坐标为何值时,MN+3MP 的长度最大?最大值是多少?24.(10分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.25.(10分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为,并补全条形统计图;该区今年共种植月季8000株,成活了约株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.26.(12分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.(1)求点D的坐标.(2)求点M 的坐标(用含a 的代数式表示).(3)当点N 在第一象限,且∠OMB=∠ONA 时,求a 的值.27.(12分)(1)计算:|﹣3|162sin30°+(﹣12)﹣2 (2)化简:22222()x x y x y x y x y x y +--÷++-.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】 解:()()22111=111a a a a a a a a +-------=2211a a a -+-=11a -, 故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.2.C【解析】【分析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A 选项:x 2+2x 2=3x 2,故此选项错误;B 选项:(﹣2x 2)3=﹣8x 6,故此选项错误;C 选项:x 2•(﹣x 3)=﹣x 5,故此选项正确;D 选项:2x 2÷x 2=2,故此选项错误.故选C .【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键.3.B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B .【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.4.A【解析】【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可.【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.5.C【解析】【分析】一次函数y 1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.6.D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12.7.A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.8.B【解析】试题解析:∵转盘被等分成6个扇形区域,而黄色区域占其中的一个,∴指针指向黄色区域的概率=16.故选A.考点:几何概率.9.D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.10.C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.11.D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.12.C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则=;∴AC+BC=(m.答:树高为(1+5)米. 故选C. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.43【解析】原式=()211411333+=+=- . 14.13【解析】试题分析:上方的正六边形涂红色的概率是,故答案为.考点:概率公式.15.3(x-2)(x+2)【解析】【分析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.【详解】原式=3(x 2﹣4)=3(x-2)(x+2).故答案为3(x-2)(x+2).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.16.x≤1【解析】【分析】根据二次根式有意义的条件可求出x 的取值范围.【详解】由题意可知:1﹣x≥0,∴x≤1故答案为:x≤1.【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.17.y 2<y 1<y 1.【解析】先根据反比例函数的增减性判断出2-m的符号,再根据反比例函数的性质判断出此函数图象所在的象限,由各点横坐标的值进行判断即可.【详解】∵反比例函数y=2-mx的图象是双曲线,在每一个象限内,y随x的增大而减小,∴2−m>0,∴此函数的图象在一、三象限,∵−1<−1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案为y2<y1<y1.【点睛】本题考查的知识点是反比例函数图像上点的坐标特征,解题的关键是熟练的掌握列反比例函数图像上点的坐标特征.18.±1【解析】【分析】先由平均数的计算公式求出这组数据的平均数,再代入方差公式进行计算,即可求出x的值.【详解】解:这三个数的平均数是:(3+x+3+3-x)÷3=3,则方差是:13[(3-3)2+(x+3-3)2+(3-x-3)2]=23,解得:x=±1;故答案为:±1.【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.吉普车的速度为30千米/时.【解析】【分析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案.【详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:1515151.560 x x-=.经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.20.(1)50;(2)16;(3)56(4)见解析【解析】【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D 等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【详解】(1)10÷20%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21 126.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.【解析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=kx,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=3x,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.22.(1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;(3) A方案利润更高.【解析】【分析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:10x50010x2025-+≥⎧⎨-≥⎩,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A 方案利润更高23.(1)直线y=32x+4,点B 的坐标为(8,16);(2)点C 的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M 的横坐标为6时,MN+3PM 的长度的最大值是1.【解析】【分析】(1)首先求得点A 的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若∠BAC=90°,则AB 2+AC 2=BC 2;若∠ACB=90°,则AB 2=AC 2+BC 2;若∠ABC=90°,则AB 2+BC 2=AC 2三种情况求得m 的值,从而确定点C 的坐标;(3)设M (a ,14a 2),得MN=14a 2+1,然后根据点P 与点M 纵坐标相同得到x=2166a -,从而得到MN+3PM=﹣14a 2+3a+9,确定二次函数的最值即可. 【详解】(1)∵点A 是直线与抛物线的交点,且横坐标为-2, 21(2)14y =⨯-=,A 点的坐标为(-2,1), 设直线的函数关系式为y=kx+b ,将(0,4),(-2,1)代入得421b k b =⎧⎨-+=⎩解得324k b ⎧=⎪⎨⎪=⎩∴y =32x +4 ∵直线与抛物线相交,231424x x ∴+= 解得:x=-2或x=8,当x=8时,y=16,∴点B 的坐标为(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB 2=22(82)(161)++-=325.设点C(m ,0),同理可得AC 2=(m +2)2+12=m 2+4m +5,BC 2=(m -8)2+162=m 2-16m +320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-12;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴点C的坐标为(-12,0),(0,0),(6,0),(32,0)(3)设M(a,14a2),则MN=2222111144a a a⎛⎫+-=+⎪⎝⎭,又∵点P与点M纵坐标相同,∴32x+4=14a2,∴x=2166a-,∴点P的横坐标为2166a-,∴MP=a-2166a-,∴MN+3PM=14a2+1+3(a-2166a-)=-14a2+3a+9=-14(a-6)2+1,∵-2≤6≤8,∴当a=6时,取最大值1,∴当M的横坐标为6时,MN+3PM的长度的最大值是124.(1)50;(2)108°;(3)12.【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C 组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=61 122=.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.25.(1)72°,见解析;(2)7280;(3).【解析】【分析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.【详解】(1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°月季的株数为2000×90%-380-422-270=728(株),补全条形统计图如图所示:(2)月季的成活率为所以月季成活株数为8000×91%=7280(株).故答案为:7280.(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.∴P(恰好选到成活率较高的两类花苗)【点睛】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.26.(1)D (2,2);(2)22,0M a ⎛⎫-⎪⎝⎭;(3)1 【解析】【分析】 (1)令x=0求出A 的坐标,根据顶点坐标公式或配方法求出顶点B 的坐标、对称轴直线,根据点A 与点D 关于对称轴对称,确定D 点坐标.(2)根据点B 、D 的坐标用待定系数法求出直线BD 的解析式,令y=0,即可求得M 点的坐标.(3)根据点A 、B 的坐标用待定系数法求出直线AB 的解析式,求直线OD 的解析式,进而求出交点N 的坐标,得到ON 的长.过A 点作AE ⊥OD ,可证△AOE 为等腰直角三角形,根据OA=2,可求得AE 、OE 的长,表示出EN 的长.根据tan ∠OMB=tan ∠ONA ,得到比例式,代入数值即可求得a 的值.【详解】(1)当x=0时,2y =,∴A 点的坐标为(0,2)∵()222212y ax ax a x a =-+=-+-∴顶点B 的坐标为:(1,2-a ),对称轴为x= 1,∵点A 与点D 关于对称轴对称∴D 点的坐标为:(2,2)(2)设直线BD 的解析式为:y=kx+b把B (1,2-a )D (2,2)代入得: 2{22a k bk b -=+=+ ,解得:{22k ab a ==-∴直线BD 的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=22a -∴M 点的坐标为:22,0a ⎛⎫- ⎪⎝⎭(3)由D(2,2)可得:直线OD 解析式为:y=x设直线AB 的解析式为y=mx+n,代入A(0,2)B (1,2-a )可得:2{2n m n a =+=- 解得:{2m an =-=∴直线AB 的解析式为y= -ax+2联立成方程组:{2y x y ax ==-+ ,解得:21{21x a y a =+=+ ∴N 点的坐标为:(2211a a ++,)21a +) 过A 点作AE ⊥OD 于E 点,则△AOE 为等腰直角三角形. ∵OA=2∴,21a +)12(1a a -+) ∵M 22,0a ⎛⎫- ⎪⎝⎭,C(1,0), B (1,2-a ) ∴MC=2221a a a---=,BE=2-a ∵∠OMB=∠ONA∴tan ∠OMB=tan ∠ONA ∴AE BE EN CM =221a a a a -=-⎪+⎭解得:a=1a 1=-∵抛物线开口向下,故a<0,∴a=1+a 1=-【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.27.(1)2;(2) x﹣y.【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.。
2019年山东省东营市东营区胜利一中中考数学模拟试卷(5月份)
2019年山东省东营市东营区胜利一中中考数学模拟试卷(5月份)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃2.(3分)下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn3.(3分)如图所示的几何体,它的俯视图是()A.B.C.D.4.(3分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°5.(3分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.6.(3分)如果关于x的分式方程=1无解,那么m的值为()A.4B.﹣4C.2D.﹣27.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.8.(3分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≤﹣2时,y随x的增大而减小,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2B.1C.D.﹣或9.(3分)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠DCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A.B.C.D.10.(3分)如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3分)《东营市2019年国民经济和社会发展计划》指出:2018年东营市入选全球首批国际湿地城市,修复自然保护区湿地1.1万亩.将1.1万用科学记数法表示为.12.(3分)分解因式:x3﹣4xy2=.13.(3分)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.14.(3分)如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为.15.(4分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有条.16.(4分)如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点坐标为.17.(4分)如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,(Ⅰ)AC的长=;(Ⅱ)BD+DC的最小值是.18.(4分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2019的坐标为.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7分)(1)计算:;(2)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)①写出解答过程第一步的依据;②该同学解答过程从第几步开始出错,错误原因是什么?③写出此题正确的答案.20.(8分)为了解学生对传统节目的喜爱情况,某学校随机抽取了部分学生进行调查,被调查的学生必须从《我是演说家》(记为A)、《中国诗词大会》(记为B)、《朗读者》(记为C)中选择自己最喜爱的一个栏目,.根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将统计图补充完整,并求出扇形统计图中“C”所在扇形圆心角的度数;(3)张老师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,若再从这4人中随机抽取2人,请用画树状图或列表法求出全是B类学生的概率.21.(8分)如图,在足够大的空地上有一段长为a米的旧墙MN,小明利用旧墙和长为100米的木栏围成中间有一道木栏的长方形菜园ABCD,其中AD≤MN,a<100,已知长方形菜园的一边靠墙,设菜园的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式,并确定x的取值范围;(2)若a=40,所围成的长方形菜园的面积为700平方米,求所利用旧墙AD的长.22.(8分)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.(1)求证:P A•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.23.(9分)“十三五”期间,昆明市每年推进200个美丽乡村建设.为加快建设全城美丽乡村,某县对A,B两地间的公路进行改建,如图A,B两地之间有一座山,汽车原来从A 地到B地需途经C地沿路线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约少走多少千米?(结果精确到0.1千米,参考数据:≈1.41,≈1.73)24.(10分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt △ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CP,由于CP=AB,易得结论:①△ACP为等边三角形;②BP与CP之间的数量关系为;(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明;(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论;拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣3,),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.25.(12分)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形P AOC的周长最小?若存在,求出四边形P AOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.。
卓顶精文2019东营市中考数学试题-全真模拟.doc
2019东营市中考数学试题全真模拟(总分120分考试时间120分钟)二、填空题:(本大题、共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.)11.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,204000这个数用科学记数法表示为________.12、因式分解:x 2-2x +(x -2)=________.13.若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1x +3y =3的解满足x +y>0,则m 的取值范围是________.一、选择题:(本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共计30分。
)1.计算:|-13|的倒数是( )A.13B.-13C.3D.-32、下列计算正确的是( )A.5-2=3B.(a +b )2=a 2+b 2C.x 6÷x 2=x 3D.2x 2·3x 4=6x 63.如图,直线a ∥b ,直线c 与直线a ,b 分别交于点D ,E ,射线DF ⊥直线c ,则图中与∠1互余的角有( )A.4个B.3个C.2个D.1个3题图4题图6题图4.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A.6个B.7个C.8个D.9个 5.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m >2且m ≠3D . m ≥2且m ≠3 6、如图,从一块圆形纸片上剪出一个圆心角为的扇形ABC,使点A 、B 、C 在圆周上,将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为()A 、12cmB 、20cmC 、24cmD 、28cm 7、下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等或互补②若点A 在y=2x ﹣3上,且点A 到两坐标轴的距离相等,则点A 在第一象限 ③半径为5的圆中,弦AB=8,则圆周上到直线AB 的距离为2的共有四个 ④如果AD 是△ABC 的高,∠CAD=∠B ,那么△ABC 是直角三角形正确命题有( )A .0个B .1个C .2个D .3个8、今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )种A 、6B 、5C 、4D 、3(第一页)9、如图,已知△ABC 中,∠C=90°,AC=BC=√2,将△ABC 绕点A 顺时针方向旋转60°到的位置,连接,则的长为()。
山东省东营市中考一模数学考试试卷
山东省东营市中考一模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·鞍山期末) 下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A . 1个B . 2个C . 3个D . 4个2. (2分) 2002年5月15日,我国发射的海洋Ⅰ号气象卫星,进入预定轨道后,若地球运行的速度为7.9×103米/秒,则运行2×102秒走过的路程是(用科学记数法表示)()A . 15.8×105米B . 1.58×105米C . 0.158×107米D . 1.58×106米3. (2分)一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的()A . ①②B . ③②C . ①④D . ③④4. (2分)(2019·信阳模拟) 郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数23245211则下列叙述正确的是()A . 这些运动员成绩的众数是5B . 这些运动员成绩的中位数是2.30C . 这些运动员的平均成绩是2.25D . 这些运动员成绩的方差是0.07255. (2分)(2016·漳州) 下列方程中,没有实数根的是()A . 2x+3=0B . ﹣1=0C .D . +x+1=06. (2分) (2015八上·重庆期中) 如图,已知AB∥CD,若∠E=15°,∠C=55°,则∠A的度数为()A . 25°B . 40°C . 35°D . 45°7. (2分)不等式2x<4的解集是()A . x<2B . x<C . x>2D . x>8. (2分)下列各运算中,正确的是()A . a2+a3=a5B . (a+1)2=a2+1C .D . +=9. (2分)如图,平行四边形ABCD中,E是CD的延长线上一点,CD=2DE,BE与AD交于点F,若△DEF的面积为1,则平行四边形ABCD的面积为()A . 8B . 10C . 12D . 1410. (2分) (2017八下·大庆期末) 汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q(升)与行驶时间(t小时)之间的函数关系图象是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=________12. (1分)(2017·磴口模拟) 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32°,则∠2=________度.13. (1分)小明有三件上衣,五条长裤,则他有________种不同的穿法.14. (1分)已知y与2x﹣1成反比例,且当x=1时,y=2,那么当x=0时,y=________.15. (1分) (2017七上·闵行期末) 如图所示,把△ABC沿直线DE翻折后得到△A′DE,如果∠A′EC=32°,那么∠A′ED=________.三、解答题 (共8题;共66分)16. (5分)已知 , ,其中c≠0,求的值.17. (7分) (2018九上·金华期中) 若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:“奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形________“奇妙四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是“奇妙四边形”,若⊙O的半径为6,∠BCD=60°.“奇妙四边形”ABCD的面积为________;(3)如图3,已知⊙O的内接四边形ABCD是“奇妙四边形”,作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.18. (12分)(2017·黑龙江模拟) 为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题:(1)这次被抽查的学生共有________人,扇形统计图中,“B组”所对应的圆心角的度数为________;(2)补全条形统计图;(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?19. (5分)如图,为了测出某塔BC的高度,在塔前的平地上选择一点A,用测角仪测得塔顶B的仰角为30°,在A、C之间选择一点D(A、D、C三点在同一直线上),用测角仪测得塔顶B的仰角为75°,且A、D间的距离为36m.求塔高BC(结果用根号表示).20. (10分) (2017八下·泉山期末) 如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).(1)求和的值;(2)过点作直线平行轴交轴于点,连结AC,求△ 的面积.21. (10分)(2018·新乡模拟) 某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。
2019年山东省东营市垦利区中考数学一模试卷
2019年山东省东营市垦利区中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
一、选择题1、下列实数中,属于有理数的是()A. B.C. πD.2、下列计算正确的是()A. =-1B. (-a2)3=a6C. =-2D. (a-b)2 =a2-b23、如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A. 28°B. 38°C. 48°D. 88°4、不等式组的解集在数轴上表示正确的是()A. B.C. D.5、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=()A. 1B. 2C. 3D. 46、假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A. B.C. D.7、下列命题中是真命题的是()A. 相等的圆心角所对的弧相等B. 对角线互相垂直且相等的四边形是正方形C. 旋转对应点与旋转中心所连线段的夹角等于旋转角D. 圆的任意一条直径都是它的对称轴8、锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,MP⊥BC,NQ⊥BC得矩形MPQN,设MN的长为X,矩形MPQN的面积为Y,则y关于x的函数图象大致形状是()A. B.C. D.9、已知关于x的方程mx2+2x-1=0有实数根,则m的取值范围是()A. m≥-1B. m≤1C. m≥-1且m≠0D. m≤1且m≠010、如图,已知CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE 于点Q,得出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC.其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题1、每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为______.2、分解因式:3a2-12ab+12b2=______.3、某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,1 7岁的有2人,则这个班同学年龄的中位数是______岁.4、如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=______.5、如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、B在同一水平直线上,则A、B两点间的距离是______米.(结果保留根号)6、如图,从一块直径为2米的圆形铁皮上剪出一个圆心角为90°的扇形.则用剪成的这个扇形围成圆锥的底面圆的半径为______.(剪成的扇形的面积正好等于围成的圆锥的侧面积)7、如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是______.8、如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-x上,依次进行下去…若点B的坐标是(0,1),则点O12的横坐标为______.三、计算题1、(1)计算:(-)-1+-2cos30°+(7-)0-|5-3|(2)解方程+=1______四、解答题1、某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=______,b=______;(2)“D”对应扇形的圆心角为______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.______2、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.______3、在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.______4、快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?______5、(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为______;②∠AMB的度数为______.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB =,请直接写出当点C与点M重合时AC的长.______6、如图,已知抛物线y=ax2+bx-3(a≠0)经过点A(3,0),B(-1,0).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.______2019年山东省东营市垦利区中考数学一模试卷参考答案一、选择题第1题参考答案: D解:A、-是无理数,故A错误;B、是无理数,故B错误;C、π是无理数,故C错误;D、是有理数,故D正确;故选:D.根据有理数是有限小数或无限循环小数,可得答案.本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: C解:A、=1,故此选项错误;B、(-a2)3=-a6,故此选项错误;C、=-2,正确;D、(a-b)2 =a2-2ab+b2,故此选项错误;故选:C.直接利用分式的性质以及立方根的定义和积的乘方运算法则分别化简得出答案.此题主要考查了约分以及立方根的定义和积的乘方运算,正确掌握相关运算法则是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: C解:如图,∵AB∥C D,∴∠1=∠B=68°,∵∠E=20°,∴∠D=∠1-∠E=48°,故选:C.根据平行线的性质得到∠1=∠B=68°,由三角形的外角的性质即可得到结论.本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: A解:,由①得:x<3,由②得:x≥-1,∴不等式组的解集为:-1≤x<3,在数轴上表示为:.故选:A.首先求不等式组中每个不等式的解集,再利用解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到,找到不等式组的公共解集,再用数轴表示公共部分.此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: B解:AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE-CD=3-1=2,故选:B.根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: B解:画树状图,如图所示:所有等可能的情况数有8种,其中三只雏鸟中恰有两只雌鸟的情况数有3种,则P=.故选:B.画树状图得出所有等可能的情况数,找出恰有两只雌鸟的情况数,即可求出所求的概率.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: C解:A、在等圆或同圆中,相等的圆心角所对的弧相等,是假命题;B、对角线互相平分、垂直且相等的四边形是正方形,是假命题;C、旋转对应点与旋转中心所连线段的夹角等于旋转角,是真命题;D、圆的任意一条直径所在的直线都是它的对称轴,是假命题;故选:C.分别利用圆心角、正方形、旋转的性质、圆的概念分析得出即可.此题主要考查了命题与定理,熟练掌握相关定理与判定方法是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: B解:作AD⊥BC于点D,交MN于点E,如下图所示,∵锐角△ABC中,BC=6,S△ABC=12,∴,解得,AD=4,∵两动点M,N分别在边AB,AC上滑动,且MN∥BC,MP⊥BC,NQ⊥BC得矩形MPQN,∴MP=ED,△AMN∽△ABC,∴又∵MN的长为x,矩形MPQN的面积为y,∴解得,AE=,∴ED=AD-AE=4-,∴MP=,∴矩形的面积y=x()==,∴y关于x的函数图象是二次函数,顶点坐标是(3,6),故选:B.根据题意可以表示出矩形的面积y与自变量x之间的函数关系式,从而可以得到y关于x的函数图象,本题得以解决.本题考查动点问题的函数图象,解题的关键是明确题意,可以列出相应的函数关系式,得到相应的函数的图象.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第9题参考答案: A解:当m=0时,方程为2x-1=0,此方程的解是x=0.5,当m≠0时,当△=22-4m×(-1)≥0时,方程有实数根,解得:m≥-1,所以当m≥-时,方程有实数根,故选:A.分为两种情况,方程为一元一次方程和方程为一元二次方程,分别求出即可.本题考查了根的判别式和一元二次方程的定义,能熟记根的判别式的内容是解此题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第10题参考答案: D解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,故①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,故②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,故③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,故④正确;故选:D.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB=FB•F G=S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.二、填空题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 1.05×10-5解:杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为1.05×10-5.故答案为:1.05×10-5.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 3(a-2b)2解:3a2-12ab+12b2=3(a2-4ab+4b2)=3(a-2b)2.故答案为:3(a-2b)2.先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 15解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数,∵15岁的有21人,∴这个班同学年龄的中位数是15岁;故答案为:15.根据中位数的定义找出第20和21个数的平均数,即可得出答案.此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: 105°解:如图所示:∵MN垂直平分BC,∴CD=BD,∴∠DBC=∠DCB∵CD=AC,∠A=50°,∴∠CDA=∠A=50°,∵∠CDA=∠DBC+∠DCB,∴∠DCB=∠DBC=25°,∠DCA=180°-∠CDA-∠A=80°,∴∠ACB=∠CDB+∠ACD=25°+80°=105°.故答案为:105°.根据要求先画出图形,利用等腰三角形的性质以及三角形外角定理求出∠CDB和∠ACD即可.本题考查基本作图、垂直平分线的性质、三角形的外角定理、等腰三角形的性质等知识,解题的关键是灵活应用这些性质解决问题,属于中考常考题型.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 100(1+)解:如图,∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.故答案为100(1+).如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD= 100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可.本题考查了解直角三角形的应用-仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案:解:连接AB,∵∠ACB=90°,∴AB为圆的直径,∴AC=BC=,∴的长==,设圆锥的底面圆的半径为r,由题意得,2πr=,解得,r=,即圆锥的底面圆的半径为,故答案为:.连接AB,根据圆周角定理得到AB为圆的直径,求出AC,根据弧长公式求出的长,根据圆锥的侧面展开图计算.本题考查的是圆锥的计算,掌握圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: 1解:如图,连接DE.设AC=x,则BC=2-x,∵△AC D和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=,CE=(2-x),∴∠DCE=90°,故DE2=DC2+CE2=x2+(2-x)2=x2-2x+2=(x-1)2+1,当x=1时,DE2取得最小值,DE也取得最小值,最小值为1.故答案为:1.设AC=x,则BC=2-x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出DE 长度的表达式,利用函数的知识进行解答即可.此题考查了二次函数最值及等腰直角三角形,难度不大,关键是表示出DC、CE,得出DE的表达式,还要求我们掌握配方法求二次函数最值.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: -9-9解:观察图象可知,O12在直线y=-x上时,OO12=6•OO2=6(1++2)=18+6,∴O12的横坐标=-(18+6)•cos30°=-9-9,故答案为-9-3.观察图象可知,O12在直线y=-x上时,OO12=6•OO2=6(1++2)=18+6,由此即可解决问题.本题考查坐标与图形的变化、规律型:点的坐标、一次函数的性质等知识,解题的关键是学会从特殊到一般的探究方法,属于中考常考题型.三、计算题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:(1)原式=-2019+4-+1-3+5=-2013;(2)去分母得:3-2x=2x-4,解得:x=,经检验x=是分式方程的解.(1)原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.四、解答题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 80 0.20 36解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°,故答案为:36;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);(4)列表格如下:共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.(1)根据题意列出算式,再求出即可;(2)根据题意列出算式,再求出即可;(3)根据题意列出算式,再求出即可;(4)先列出表格,再根据题意列出算式,再求出即可.本题考查了列表法或树形图、用样本估计总体、频数分布表、扇形统计图等知识点,能根据题意列出算式是解此题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: (1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠CBO=∠BOP,∵OC=OB,∴∠C=∠CBO,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠B AC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 解:(1)由OH=3,tan∠AOH=,得AH=4.即A(-4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=-4×3=-12,反比例函数的解析式为y=;当y=-2时,-2=,解得x=6,即B(6,-2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=-x+1.(1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;(2)根据待定系数法,可得函数解析式.本题考查了反比例函数与一次函数的交点问题,利用待定系数法是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: 解:(1)设甲型机器人每台价格是x万元,乙型机器人每台价格是y万元,根据题意得解这个方程组得:答:甲、乙两种型号的机器人每台价格分别是6万元、4万元(2)设该公可购买甲型机器人a台,乙型机器人(8-a)台,根据题意得解这个不等式组得∵a为正整数∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台购买甲型机器人4台,乙型机器人4台设该公司的购买费用为w万元,则w=6a+4(8-a)=2a+32∵k=2>0∴w随a的增大而增大当a=2时,w最小,w最小=2×2+32=36(万元)∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.(1)利用二元一次方程组解决问题;(2)用不等式组确定方案,利用一次函数找到费用最低值.本题是一次函数综合题,考查列一次函数解析式、一次函数增减性、二元一次方程组和不等式组的应用.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 1 40°解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x-2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x-6=0,(x+3)(x-2)=0,x1=-3,x2=2,综上所述,AC的长为3或2.(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: 解:(1)∵抛物线y=ax2+bx-3(a≠0)经过点A(3,0),B(-1,0).∴,解得:;,∴该抛物线解析式为y=x2-2x-3;(2)若以点A为圆心的圆与直线BC相切于点M,则AM⊥BC,如图,过点A作AM⊥BC,垂足为点M,交y轴与点N.把x=0代入y=x2-2x-3得,y=-3,∴C(0,-3),∵A(3,0),B(-1,0),∴OA=OC,OB=1,∵AM⊥BC,∴∠AMB=∠AON=∠BOC=90°,∴∠BAM+∠OBC=∠BAM+∠ONA=90°,∴∠ONA=∠OBC,∴△AON≌△COB(AAS),∴N(0,-1),设直线AM解析式为y=k1x+b1,把A(3,0),N(0,-1)分别代入得,解得:,∴直线AM解析式为y=x-1…①,设直线BC解析式为y=k2x+b2,同理可得:直线BC解析式为y=-3x-3…②,联立①②并解得:,则M(-,-);(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,①当BC为平行四边形的一条边时,如图BCP′Q′,点C(0,-3)向上3个单位、向左1个单位得到点B(-1,0),同理点Q′(m,0)向上3个单位、向左1个单位得到点P′(m-1,3),将点P′坐标代入二次函数表达式并解得:x=2,故点P′坐标为(1+,3)或(1-,3);②当BC为平行四边形的对角线时,如图CPBQ,点P的坐标为(2,-3);P的坐标为(1+,3)或(1-,3)或(2,-3).(1)把点A(3,0),B(-1,0)代入二次函数表达式,即可求解;(2)利用△AON≌△COB(AAS),求出N(0,-1),即可求解;(3)分BC为平行四边形的一条边、BC为平行四边形的对角线两种情况,求解即可.本题主要考查的是二次函数综合运用,涉及到一次函数、平行四边形基本知识、圆的基本知识等,其中(3),要分类求解,避免遗漏.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.﹣8的绝对值的倒数是()
A.﹣8 B.C.8 D.﹣
2.如图所示的几何体的主视图是()
A.B. C.D.
3.在下列的计算中,正确的是()
A.m3+m2=m5 B.m5÷m2=m3C.(2m)3=6m3 D.(m+1)2=m2+1
4.如图,直线,若,,则的度数为()
A. B. C. D.
4. 7. 8. 9.
5.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是=﹣5(x+5)2+3 =﹣5(x+5)2-3 =﹣5(x-5)2+3 =﹣5(x-5)2-3
6.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1 B.0 C.1 D.2
7.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()
A.85°B.70°C.75°D.60°
8.如图,在平面直角坐标系中,已知⊙A经过点E、B、O.C且点O为坐标原点,点C在y轴上,点E在x轴上,A(﹣3,2),则cos∠OBC的值为()
A.B.C.D.
9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()
A.B.C.D.
10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时
停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()
A .
B .
C .
D .
11. 2019年政府工作报告指出,国内生产总值预计比去年增长6%%达到万亿元,稳居世界第二.其中万亿用科学记数法表示为元
12.因式分解:a2(a ﹣b)﹣4(a﹣b)= .
13.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼条.14.用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为
cm.
15.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直
于AD,垂足为P,若BC=10,则PQ的长为 .
15题
16.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.17.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A 相交于点F.若的长为,则图中阴影部分的面积为.
18.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE 折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.
19.计算和化简求值
(1)2sin30°﹣(π﹣)0+|﹣1|+()﹣1
(2)先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.
20.文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.
请根据图中信息解答下列问题:
(1)在这项调查中,共调查了多少名学生
(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;
(3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.
21.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.
(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克
(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元
22.如图,一次函数的图象与反比例函数(为常数且)
的图象交于,两点,与轴交于点.
(1)求此反比例函数的表达式;
(2)若点在轴上,且,求点的坐标.
23.如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.
(1)求证:PB是⊙O的切线;
(2)若OC=3,AC=4,求sinE的值.
24.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.
(1)填空:∠OBC= °;
(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;
(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为单位/秒,点N的运动速度为1单位/秒,设运动时间为x 秒,△OMN的面积为y,求当x为何值时y取得最大值最大值为多少
25.如图,已知抛物线与轴交于点和点,交轴于点.过点作
轴,交抛物线于点.
(1)求抛物线的解析式;
(2)若直线与线段、分别交于、两点,过点作轴于点,过点作轴于点,求矩形的最大面积;
(3)若直线将四边形分成左、右两个部分,面积分别为、,且,求
的值.。