液压过滤器选型设计
液压过滤器的选型设计与分析
型 经验 ,介 绍 了过滤 器 的选 型 方法 和设 计原 则 ,详 细 阐述 了过 滤精 度 、压 降 、纳污 容量 和 流通 能
力等 主要 性 能参数 ,绘 制 出过 .并综合
设 计 、成本 、生 产 实践 等 方 面对过 滤 器各重要 参 数进 行 了全 面深入 的分 析 。结果表 明 .在 液压 系
根 据 过滤 器在 液压 系 统 中 的作 用 .主要 包 括 泵 人 口的吸 油过 滤 器 、泵 出 口的高 压 过 滤 器 、回 油 管 路 上 的低 压 过 滤 器 以及 循 环 冷 却 回路 中 的 低 压过 滤器 1.1.2 工 作 介 质 的 种 类
根 据 冶 金行 业 润 滑油 的使 用情 况 .液 压 油使 用最 多 的是 普 通 矿物 油 、水 一乙二 醇 和脂 肪 酸 酯 三大 类 工作 介 质必 须与 过滤 器 的密封 件 材质 相 容 .不 同 的工 作介 质 对 过滤 器 密 封件 材 质 要 求 不 一 样 .否 则 介 质 中 的添 加剂 会 引起 化 学 腐 蚀 。 如 果工作 介质是 水一乙二醇 ,在订货 时需特 殊说 明[引。
2016 Vo1.26 No.2
过 滤与分 离 Jour nal of Filtration& Separation
· 17 ·
液压过滤 器的选 型设 计与分析
汪 龙
(中冶 南 方 工 程 技术 有 限公 司炼 钢 分 公 司 .湖北 武 汉 430223)
摘 要 :以 液压 过滤 器的性 能 指标 为研 究对 象 .结 合 工程 中大型 液压 系统 过 滤 器的设 计 选
中图 分 类 号 :TH137.8+1
文 献 标识 码 :A
文 章 编 号 :1005—8265(2016)02一O017--05
伺服液压系统选型计算说明
伺服液压系统选型计算说明一、选型计算的目的和意义伺服液压系统选型计算是根据设备或机械的工作要求,确定适合的液压泵、液压马达、液压阀、液压缸等液压元件的型号和规格,以满足设备和机械的工作性能要求。
正确的选型计算可以确保伺服液压系统的性能稳定、工作可靠,并提高系统的工作效率和使用寿命。
二、选型计算步骤(一)确定工作要求和参数在进行伺服液压系统选型计算之前,必须明确设备或机械的工作要求和参数,包括但不限于以下几个方面:1.工作负载和力矩要求:根据设备或机械的工作情况,确定其所需的负载和力矩要求。
2.工作速度和加速度要求:根据设备或机械的工作要求,确定其所需的工作速度和加速度。
3.系统压力要求:根据设备或机械的工作要求,确定其所需的工作压力范围。
4.工作循环和周期要求:根据设备或机械的工作情况,确定其所需的工作循环和周期要求。
(二)液压驱动元件选型计算1.液压泵的选型计算:根据设备或机械的工作要求和参数,通过计算来确定所需的液压泵的流量和压力。
液压泵的选型计算公式为:流量(Q)=负载(q)/工作速度(v)压力(P)=最大工作压力+泄露压力+额外压力其中,最大工作压力为设备或机械工作过程中所需的最大压力,泄露压力为液压系统中由于密封问题引起的泄露压力,额外压力为考虑系统的安全因素和冗余设计等所需的压力。
2.液压马达的选型计算:根据设备或机械的工作要求和参数,通过计算来确定所需的液压马达的扭矩和转速。
液压马达的选型计算公式为:扭矩(T)=负载(F)×杠杆臂长度(r)转速(N)=负载(F)×杠杆臂长度(r)/液压马达流量(Q)其中,负载为设备或机械工作过程中所承受的力或力矩,杠杆臂长度为负载施加在设备或机械上的杠杆臂长度。
(三)液压控制元件选型计算根据设备或机械的工作要求和参数,确定所需的液压控制元件的型号和规格。
通常液压控制元件包括液压阀、液压缸等。
液压阀的选型计算主要考虑流量和压力的要求,液压缸的选型计算主要考虑工作负载和速度。
液压缸密封件的选型设计指南
液压缸密封件的选型设计指南1、明确各密封的名称(1)防尘圈:用于活塞杆,主要作用是去除活塞缸体外部表面附着的尘土,防止沙粒、水以及污染物进入密封的缸体。
常用型号材料工作温度速度H38(优选) 热塑性弹性体-40~120℃4米每秒K06N 丁腈橡胶-30~105℃1米每秒K06P :聚氨酯-30~100℃1米每秒(2)拉杆封:用于导向套:C146;聚四氟乙烯+青铜;-30至110℃;400bar; ≤15米每秒(3)U型封:a.用于导向套常用型号材料工作温度工作压力H605(优选)聚氨酯-45~100℃160barH652聚氨酯+聚甲醛-45~110℃250barC173聚氨酯95A丁腈橡胶聚甲醛-45~110℃160barb.用于活塞常用型号材料工作温度工作压力-45~110℃160bar聚氨酯POMC251聚甲醛聚氨酯-45~110℃160bar,使用承托环700barH601(4)活塞封:常用型号材料工作温度工作压力聚氨酯-30~110℃400barC386聚四氟乙烯加青铜-30~110℃400barC345-40~110℃100bar热塑性弹性体丁腈H754橡胶聚四氟乙烯加青铜-30~110℃400barC246(5)耐磨带(耐磨环):H506:聚酯夹织物;-40至120℃;(6)承托环:C663(聚氨酯、聚四氟乙烯、聚四氟乙烯加青铜);(-45至110℃、-60至260℃、-60至260℃)(7)O型圈:海洋环境选用NBR-70;2、导向套密封组合形式(1)和活塞杆接触(防尘圈、U型圈、拉杆封、耐磨带);(2)和缸筒接触(O型圈或承托环加O型圈);3、活塞密封组合形式(1)少于16MPa(U型圈、耐磨带、U型圈);(2)大于16MPa,耐磨带加双向活塞封加耐磨带(经济);(3)耐磨带加拉杆封加耐磨带(常用);注意:以磷酸酯抗燃油、磷酸酯液压油为工作介质的液压缸不应使用氯丁橡胶,丁晴橡胶材料的密封圈。
机械设计基础液压与气动元件的选型与应用
机械设计基础液压与气动元件的选型与应用液压与气动系统是机械设计中常用的动力传输和控制系统。
在机械设计中选择合适的液压与气动元件对于确保系统的正常运行至关重要。
本文将就液压与气动元件的选型与应用进行探讨,以帮助机械设计师更好地理解和应用这两种元件。
一、液压元件的选型与应用(1)液压系统的基本构成液压系统主要由液压源、执行元件、控制元件和辅助装置等组成。
液压源可以是液压泵、液压站等;执行元件包括液压缸、液压马达等;控制元件有液控阀、电液比例阀等;辅助装置主要指液压油箱、管路和油位指示器等。
(2)液压元件的选型原则在选择液压元件时,需要考虑以下几个原则:- 承载能力:根据系统的需求来选择具有足够承载能力的液压元件,以确保系统正常运行;- 稳定性:选用具有良好稳定性的液压元件,能够在高负荷和恶劣环境下稳定工作;- 尺寸和重量:要选择尺寸和重量适中的液压元件,以便于系统的安装和维护;- 可靠性:选择可靠性高的液压元件,能够延长系统的使用寿命;- 经济性:在满足系统需求的前提下,选择价格合理的液压元件。
(3)常用液压元件的应用液压系统中常用的液压元件有液压缸、液压泵、液压阀等。
- 液压缸:液压缸通过液压能将液体的压力转换成机械能,广泛应用于各种液压传动系统中;- 液压泵:液压泵是液压系统的动力源,能够将机械能转换成液体压能;- 液压阀:液压阀用于控制液压系统的流量和压力,是液压系统中的关键元件。
二、气动元件的选型与应用(1)气动系统的基本构成气动系统主要由气源、执行元件、控制元件和辅助装置等组成。
气源一般为压缩空气或惰性气体,执行元件有气缸、电磁阀等;控制元件有手动阀、电液比例阀等;辅助装置包括滤清器、压力表等。
(2)气动元件的选型原则在选择气动元件时,需要遵循以下几个原则:- 输出力和速度:根据系统的要求选择适当的输出力和速度的气动元件;- 稳定性:要选择具有良好稳定性的气动元件,以确保系统的稳定运行;- 维护性:选择易于维护和保养的气动元件,以降低系统的维护成本;- 耐用性:选用耐用且寿命较长的气动元件,能够延长系统的使用寿命;- 经济性:在满足系统需求的前提下,选择价格适中的气动元件。
液压润滑油过滤器的设计与制造
液压润滑油过滤器的设计与制造首先,液压润滑油过滤器的材料需要具有良好的耐腐蚀性和耐高压性能。
通常采用不锈钢作为过滤器的材料,以确保其在高压和恶劣工作环境下的稳定性。
其次,液压润滑油过滤器的结构设计需要合理。
常见的结构包括筒式和面式过滤器。
筒式过滤器的优点是具有较大的过滤面积,能够处理更多的油液;而面式过滤器适用于空间有限的环境,可以实现更高的过滤效率。
过滤精度也是液压润滑油过滤器设计的重要考虑因素。
液压系统中的颗粒物通常分为粗颗粒和细颗粒,因此过滤器需要具备不同的过滤级别。
一般来说,过滤器的过滤精度应该在3μm至50μm之间,以保证液压系统中的油液能够达到所需的清洁度标准。
另外,液压润滑油过滤器的性能也需要考虑。
一方面,过滤器需要具备足够的流量和压力损失小的特点,以确保液压系统的正常运行。
另一方面,过滤器还需要具备自清洗功能或定期清洗功能,以延长过滤器的使用寿命。
在制造液压润滑油过滤器时,需要采用先进的设备和工艺,确保过滤器的质量和可靠性。
其中,关键的制造步骤包括材料选择、加工制造、密封性能测试等。
材料选择需要考虑到材料的强度、硬度、可焊性和耐蚀性等因素,以确保过滤器在高压和腐蚀环境下的可靠性。
加工制造包括切割、焊接、抛光等步骤,需保证过滤器的加工质量和精度。
密封性能测试是测试过滤器密封性能的关键步骤,折射率、压力、温度等参数都需要进行测试,以确保过滤器的密封性能达到要求。
总的来说,液压润滑油过滤器的设计与制造需要综合考虑材料、结构、过滤精度、性能以及制造工艺等因素,以满足液压系统清洁度的要求,并确保过滤器的可靠性和稳定性。
过滤器设计标准
过滤器设计标准通常取决于应用场景和要解决的问题。
过滤器被用于各种领域,包括信号处理、图像处理、通信系统、电子电路等。
以下是一些设计过滤器时可能需要考虑的一般性标准和原则:频率响应:用于信号处理和通信系统的滤波器通常需要具有特定的频率响应。
这包括低通、高通、带通或带阻滤波器,具体取决于应用的需求。
群延迟:群延迟是信号在通过滤波器时引起的相对时间延迟。
在一些应用中,特别是音频和通信系统中,低群延迟是至关重要的。
阶数:滤波器的阶数决定了其对信号的响应速度。
更高阶数的滤波器可能对高频信号具有更好的截止特性,但也可能引入更多的相位失真。
过渡带宽:过渡带宽是指在通带和阻带之间的频率范围。
设计时需要平衡通带的信号保留和阻带的信号抑制。
稳定性:滤波器在各种条件下都应保持稳定。
稳定性与滤波器的极点和零点分布有关。
波纹:一些应用对滤波器在通带内引入的振荡或波纹非常敏感。
因此,需要考虑波纹的大小和位置。
相位响应:在某些应用中,特别是音频处理中,相位响应对信号的时域特性至关重要。
设计时需要注意相位失真的控制。
实现复杂度:滤波器的实现可能涉及到模拟电路、数字电路、软件算法等。
实现复杂度的选择取决于应用的要求和可用的技术。
抗混淆性能:在通信系统中,抗混淆性能是指滤波器对于其他频率的干扰的抵抗能力。
适应性:一些应用可能需要自适应滤波器,能够根据输入信号的变化调整其参数。
这些标准和原则是设计滤波器时通常要考虑的一些重要因素。
具体的设计要求将取决于应用的特性和性能要求。
液压过滤器选型设计
液压过滤器选型设计液压过滤器是一种常用于液压系统中的设备,用于排除液压系统中的杂质和污染物,保证系统的正常运行。
液压过滤器选型设计的目的是根据系统的工作条件和要求,选择合适的过滤器型号和规格,以达到满足系统效果和性能的目标。
在液压过滤器选型设计过程中,需要考虑以下几个方面:1.工作条件和要求:液压系统的工作条件和要求是选型设计的重要依据。
需要确定液压系统的工作压力、流量、温度等参数,并确定对系统中的杂质和污染物的过滤要求,如颗粒大小和过滤效率等。
2.过滤器类型:液压过滤器有许多不同的类型,如油泵入口过滤器、油泵出口过滤器、回油过滤器等。
根据系统的具体情况和要求,选择合适的过滤器类型。
3.过滤器材质:液压过滤器的材质选择直接影响其使用寿命和过滤效果。
常见的过滤器材质有金属、纸质和合成材料等。
根据液压油的特性和系统环境条件,选择合适的材质。
4.过滤器规格:液压过滤器的规格包括过滤精度、流量等参数。
根据系统要求和液压油的特性,确定过滤精度和流量范围,并选择合适的规格。
5.安装位置和方式:液压过滤器的安装位置和方式也需要考虑。
通常情况下,过滤器应当安装在液压系统的高压管道中,以便有效过滤液压油中的杂质。
过滤器的连接方式可以是螺纹连接或法兰连接等,根据系统需求选择合适的方式。
6.维护和更换周期:液压过滤器的维护和更换周期也需要考虑。
根据过滤器的寿命和使用情况,制定相应的维护计划和更换周期,以保证过滤器的正常运行和过滤效果。
液压过滤器选型设计的过程是一个综合考虑各个因素的过程,需要涉及液压系统的工作条件、要求、过滤器类型、材质、规格、安装和维护等方面。
只有合理选择和设计液压过滤器,才能确保系统的正常运行和提高系统的可靠性和效率。
过滤器的概念、分类和选型
过滤器的概念、分类和选型Ix定义:过滤器(filter)是输送介质管道上不可缺少的一种装置,通常安装在减压阀、泄压阀、定水位阀方工过滤器其它设备的进口端设备。
过滤器由筒体、不锈钢滤网、排污部分、传动装置及电气控制部分组成。
待处理的水经过过滤器滤网的滤筒后,其杂质被阻挡,当需要清洗时,只要将可拆卸的滤筒取出,处理后重新装入即可,因此,使用维护极为方便。
2、工作原理:过滤器工作时,待过滤的水由水口进入,流经滤网,通过出口进入用户所须的管道进行工艺循环,水中的颗粒杂质被截留在滤网内部。
如此不断的循环,被截留下来的颗粒越来越多,过滤速度越来越慢,而进口的污水仍源源不断地进入,滤孔会越来越小,由此在进、出口之间产生压力差,当大度差达到设定值时,差压变送器将电信号传送到控制器,控制系统启动驱动马达通过传动组件带动轴转动,同时排污口打开,由排污口排出,当滤网清洗完毕后,压差降到最小值,系统返PI到初始过滤状,系统正常运行。
过滤器由壳体、多元滤芯、反冲洗机构、和差压控制器等部分组成。
壳体内的横隔板将其内腔分为上、下两腔,上腔内配有多个过滤芯,这样充分了过滤空间,显着缩小了过滤器的体积,下腔内安装有反冲洗吸盘。
工作时,浊液经入口进入过滤器下腔,又经隔板孔进入滤芯的内腔。
大于过滤芯缝隙的杂质被截留,净液穿过缝隙到达上腔,最后从出口送出。
过滤器采用高强度的楔形滤网,通过压差控制、定时控制自动清洗滤芯。
当过滤器内杂质积聚在滤芯表面引起进出口压差增大到设定值,或定时器达到预置时间时,电动控制箱发出信号,驱动反冲洗机构。
当反冲洗吸盘口与流芯进口正对时,排污阀打开,此时系统泄压排水,吸盘与滤芯内侧出现一个相对压力低于淀芯外侧水压的负压区,迫使部分净循环水从滤芯外侧流入滤芯内侧,吸附在滤芯内内壁上的杂质微粒随水流进穰盘内并从排污阀排出。
特殊设计的滤网使得滤芯内部产生喷射效果,任何杂质都将被从光滑的内壁上冲走。
当过滤器进出口压差恢复正常或定时器设定时间结束,整个过程中,物料不断流,反洗耗水量少,实现了连续化,自动化生产。
液压系统的选型
式中L——液压缸的最大行程;
D——液压缸的内径。
取H=30mm。
活塞的宽度B一般取 ;取
缸盖滑动支承面的长度 ,根据液压缸的内径D而定;
当 ;
。
则 。
为保证最小导向长度H,若过大增大 和B都是不适宜的,必要时可在缸盖与活塞之间增加一隔套K来增加H的值。隔套的长度C由需要的最小的导向长度H决定,即
一、(1)
取活塞堵头的直径d=56mm,检测的空气压力为6bar,取液压缸的工作压力为p1=5bar,液压缸的背压为p2=3bar,。
作用在活塞杆上的力F=nPS=0.75 5×105 (56/2)2 10(-6)=923.63N
根据上面的图形来计算液压缸的直径D。
代入数据得;
D=0.0787m=78.7mm
液压泵的最大流量应为:
式中 ——液压泵的最大流量
——同时动作的各执行所需要的流量之和的最大值
——系统泄漏洗漱,一般取 =1.1~1.3,现取 =1.1。
可以选取的液压缸为CX系列薄型液压缸,MCX-SD 。
根据液压缸的直径可以求出面积:
(2)液压缸所需的实际流量计算
①工作液压缸快速空程时所需流量:
——液压缸的工作容积效率,取 =0.96;
——快速空程时的速度,取 =0.06m/s
②工作刚压制时所需要的流量:
取 =0.01m/s
③工作刚回程时所需要的流量:
设计计算过程
(1)缸体与缸盖的连接形式
缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。
本次设计中采用法兰连接,如下图所示:
优点:
1结构简单、成本低;
2容易加工、便于装拆;
液压系统的优化设计
液压系统的优化设计液压系统在现代工程中扮演着重要角色,广泛应用于机械设备、航空、汽车、工程机械等行业。
优化液压系统设计可以提高系统的效率、可靠性和经济性。
本文将探讨液压系统优化设计的一些关键要素和方法。
1. 设备选型在液压系统的设计中,合理的设备选型是关键的一步。
选择合适的液压泵、液压马达、液压缸等设备,能够提高系统的工作效率。
关注设备的额定工作压力、流量、容量以及质量和可靠性。
同时,对于长时间工作的设备,寿命和维护成本也是需要考虑的因素。
2. 系统布局液压系统的布局对系统的效率和性能有重要影响。
合理的布局可以提高系统的能量利用率、减少能量损失和压力损失。
布局时应考虑系统的整体结构和关键组件的相对位置,减少管道长度和管道弯曲,确保流体的快速流动和正常运行。
3. 控制阀选型液压系统中的控制阀起着关键作用,决定了液压系统的动作和性能。
选用合适的控制阀能够实现系统的自动化、高效率和精确控制。
在选型时应注意控制阀的类型,如单向阀、节流阀、溢流阀等,以及阀的额定工作压力、流量和响应速度等参数。
4. 液压油选择液压油是液压系统中传递能量和润滑的介质,对系统的正常运行起着关键作用。
优化液压油的选择可以提高系统的效率和寿命。
选用合适的液压油,考虑其黏度、粘度指数、抗氧化性、抗磨性和防腐性等性能。
此外,定期检查和更换液压油是保障系统稳定性的重要操作。
5. 噪音与振动控制液压系统在工作过程中常常伴随着噪音和振动。
优化设计可以减少系统的噪音和振动,提高设备的工作环境和可靠性。
通过合理的管道布局、隔振措施和吸声材料的使用,可以降低噪音和振动对周围环境和操作人员的影响。
6. 故障诊断与维护液压系统的故障诊断与维护是优化设计的重要环节。
采用先进的故障诊断技术和设备,及时发现和排除系统中的故障,可以减少停机时间和损失。
定期维护和保养液压系统,对系统的各个组件进行检查、清洁和润滑,延长系统的使用寿命。
7. 系统集成与自动化随着科技的发展,液压系统的集成与自动化正在成为趋势。
液压过滤器的选型设计与分析
液压过滤器的选型设计与分析汪龙【摘要】以液压过滤器的性能指标为研究对象,结合工程中大型液压系统过滤器的设计选型经验,介绍了过滤器的选型方法和设计原则,详细阐述了过滤精度、压降、纳污容量和流通能力等主要性能参数,绘制出过滤器压差流量特性与规格、过滤精度、温度和粘度的曲线,并综合设计、成本、生产实践等方面对过滤器各重要参数进行了全面深入的分析.结果表明,在液压系统工况条件和滤芯一定时,过滤器规格大小与纳污容量成正比,与压降成反比;过滤精度与压降成正比,与流通能力成反比,与纳污容量成反比;过滤器压降与温度成正比,与粘度成反比.【期刊名称】《过滤与分离》【年(卷),期】2016(026)002【总页数】5页(P17-21)【关键词】过滤器;过滤精度;纳污容量;压降;压差流量特性【作者】汪龙【作者单位】中冶南方工程技术有限公司炼钢分公司,湖北武汉 430223【正文语种】中文【中图分类】TH137.8+1随着液压技术的发展,液压油的污染度控制也越来越受到重视。
过滤器是液压系统中重要的辅助元件,它可以清除油液中的污染物,保持油液清洁度,确保液压元件工作的可靠性,因此在液压系统有着广泛的应用[1]。
由于过滤器只是作为液压系统辅助元件,一直不被重视,目前关于这方面的书籍和研究资料相当少。
其中少部分研究是关于过滤器滤芯材料的选择和维护,如不同回路中滤芯材料和强度的关系、过滤器在系统中的故障等[2-3],这些对具体液压系统过滤器选型设计都不具有指导性意义,因为过滤器选型不仅与元件本身有关系,还与整个液压系统有关系。
由于关于大型液压系统过滤器的重要参数选型原则和理论研究非常少,本文结合工程实际,详尽阐述了过滤器选择方法和性能指标参数,最后用仿真和数据研究了过滤器各参数的关系。
在选择过滤器时,需要考虑的因素非常多,归纳起来主要包括两方面:整个液压系统的设计要求和对过滤器元件的要求。
1.1 液压系统对过滤器要求由于过滤器是安装在液压系统中的各个回路中,要使过滤器发挥高效可靠的作用,必须从各方面综合考虑。
液压系统设计简明手册
液压系统设计简明手册液压系统是一种重要的机电一体化系统,在工业自动化中起着重要的作用。
它具有能量传递稳定、动作平稳等优点,因此在机械、航空、军事、船舶、工程机械、煤矿机械等领域得到广泛应用。
本手册旨在为初学者提供液压系统设计方面的指导,包括系统框架、元件选型、系统设计、系统调试等内容。
一、系统框架液压系统的框架包括液压源、液压执行机构和控制部件三部分。
其中,液压源是液压系统的能量转换部分,它将机械能、电能或化学能转换为液压能,为整个系统提供动力。
液压执行机构是液压系统的动作执行部分,它根据控制信号从液压源中获取液压能,完成相应的机械动作。
控制部件是液压系统的控制部分,它根据设定的机械位置或力矩要求,控制液压源和液压执行机构之间的能流量和流向,实现液压系统的自动化控制。
二、元件选型液压系统的元件种类繁多,选型时需要根据需要考虑相应的参数和特性。
例如,液压泵的选型需要考虑流量、压力等参数,液压缸的选型需要考虑活塞直径、行程等参数,比例阀的选型需要考虑流量范围、响应速度等参数。
液压系统中常用的元件有液压泵、液压缸、液压马达、油缸、油泵、过滤器、阀门等。
其中,液压泵是将机械能转换为液压能的核心部件,它根据压力和流量来分类,包括齿轮泵、齿轮泵、柱塞泵等几种。
液压缸是液压系统的执行部件,它按照作用方式和结构形式等多种分类方式来划分,如单作用液压缸、双作用液压缸、活塞式液压缸、管式液压缸、转子式液压缸等。
三、系统设计液压系统的设计需要考虑多方面的因素,例如系统压力、流量、温度、噪音、密封等。
系统压力是设计液压系统时需要考虑的重要因素,决定了系统的负荷能力和选用的元件类型。
流量则决定液压泵和液压缸的选型,通常采用管路截面积和流速等参数计算。
液压系统的温度对系统性能和寿命有着重要的影响,通常在设计时需要考虑冷却系统、温度传感器、控温阀等元件。
液压系统的噪音也是被广泛关注的方面,系统设计时需要采用噪音低的元件、安装隔音设施等措施来避免噪音污染。
液压系统设计元器件选型手册
2
54.087
54.217
54.347
nonnorm al distributions. Computational Statistics & Data Analysis.
3
3
54.065
54.217
54.369
2006.50:75 —82
4
54.073
54.217
54.361
2
3
54.146
54.2l7
54.288
lengths and tolerances.Journal of Quality Technology,1994,26:54—63
4
54.1o9
54.217
54.325
9 Franklin L A.Sample size determ ination for lower confidence limits for
5
54.110
54.217
54.324
estimating process capability indices.Computers& Industrial Engineer-
ing,1999,36:3— 14
1
54.059
54.217
54.375
10 Bonett D G.Approximate confi dence interval for standard deviation of
1
3
54.033
54.217
54.40l
of a location parameter.Proceedings of the Computer Science and Statis—
液压缸选型设计与强度校核
液压缸选型设计与强度校核液压缸的基本参数选择1. 设计土压力选择在以输出力为主的设计中,首先要选择设计(额定)工作压力。
不同的液压设备或不同负载下设计参考压力如表4-4和表4-5所列。
选择的设计压力应符合国家标准(见表4-6)。
表4-4 各类液压缸设备常用的设计压力(资料来源:液压传动) 表4-5 不同负载下的设计参数压力(资料来源:液压传动)表4-6 液压缸的公称压力Pn (GB7938--1987)2. 液压缸内径D 与活塞杆直径d 的选择在选定适当的工作压力后,对于有杆腔(输出力为拉力),液压缸的内径D 为D =√4FL πpηM +d 2 (4.7.1)D=98.375根据式(4.7.1)计算出D后,可根据速度的要求确定活塞杆直径d。
速度比φ的含义是φ=u2u1=Q A2⁄Q A1⁄=A1A2=D2D2−d2(4.7.2)根据式(7.72)有d=D√1−φ−1 (4.7.3)d=73.782在式(4.71)中,应根据速度比要求,将式(4.7.3)代入D,进而求出d,液压缸速比φ取值应符合国家标准规定GB/2348—1993的规定(φ=1.06,1.12,1.25,1.33,1.46,2,2.25),同时还要参考工作压力进行选择,如表4-7所列。
表4-7 液压缸速度比与工作压力的关系根据计算而选择的液压缸内径D与活塞杆直径d应圆整到国家技术标准之规定,如表4-8和表4-9所列。
表4-8 液压缸内径的系列尺寸(GB/T2348—1993)表4-9 液压缸活塞杆系列尺寸(GB/T2348--1993)根据表4-8,4-9选液压缸内径D=100mm与活塞杆直径d=80mm进行液压缸的结构设计。
在设计过程中,确定其他参数,同时记性强度校核和缸体校核。
缸筒的设计与校核1.缸筒材料壁厚的选择与校核缸筒应尽量选择冷拔与热轧无缝钢管;缸筒材料选用45号钢。
参考类似液压缸选择缸筒的壁厚δ按下式校核:δ≥P y D2[σ](4.7.6)式中P y----液压缸实验压力,MPa。
液压过滤器选型设计
液压过滤器选型设计指南1 范围本指南规定了液压过滤器的设计原则、注意事项、液压过滤器各项参数的选择,以及例举了液压过滤器选型设计的案例。
2 规范性引用文件下列文件的条款通过本规范的引用而成为本规范的条款。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 20079 液压过滤器技术条件Q/SY 012 015 液压过滤器选用规范3 术语、符号及定义GB/T 20079确定的术语、符号和定义适用于本文件。
3.1过滤精度指油液通过过滤器时,能够穿过滤芯的球形污染物的最大直径,以微米(μm)表示。
3.2过滤器最大流量由制造商所推荐的在规定运动粘度下通过被试过滤器的最大流量,以单位L/min表示。
3.3纳污容量指过滤器的压力降达到极限值时,滤芯所容纳的污染物重量,以单位kg表示。
3.4过滤比过滤器上游大于等于某一给定尺寸χ的颗粒污染物数量与下游大于等于同一给定尺寸的颗粒污染物数量之比,用βχ表示。
3.5洁净过滤器总成压降△P总被试元件为装有洁净滤芯的洁净过滤器,其测得的入口与出口压力之差。
3.6壳体压降△P壳体过滤器不装滤芯时的压降。
3.7洁净滤芯压降△P滤芯洁净滤芯所产生的压降,其值等于洁净过滤器总成压降减少壳体压降。
4 工作原理与结构型式4.1 过滤器的工作原理与结构过滤器的典型结构见图1。
图1 液压过滤器典型结构油液从进油口进入过滤器,沿滤芯的径向由外向内通过滤芯,油液中颗粒被滤芯中的过滤层滤除,进入滤芯内部的油液即为洁净的油液。
过滤后的油液从过滤器的出油口排出。
4.2 过滤器的分类过滤器按其用途及安装部位,可分为如图2所示的5种不同类型。
图2 过滤器安装位置示意图设计系统时采用哪种或哪几种过滤方式的组合应根据系统液压元件类型,工况,成本和整机布置综合考虑,可参考表1所示优缺点设计最优的系统过滤方案,其中,吸油过滤容易导致液压泵吸空,建议尽量不采用高精度吸油过滤方案。
液压滤清器技术要求
液压滤清器技术要求
液压滤清器是一种用于去除液压系统中固体杂质的设备,其性
能直接影响到液压系统的工作效率和寿命。
为了确保液压系统的正
常运行,液压滤清器需要满足一定的技术要求。
首先,液压滤清器需要具有良好的过滤效率。
它应该能够有效
地过滤掉液压油中的固体颗粒、悬浮物和水分,以保持液压油的清
洁度。
过滤器的过滤精度通常以微米(μm)为单位,常见的要求包
括5μm、10μm、20μm等。
过滤器的选择应根据液压系统的工作环
境和要求来确定。
其次,液压滤清器需要具有较大的容积和流量。
较大的容积可
以保证液压油在滤芯中停留的时间足够长,从而提高过滤效率。
而
较大的流量则可以保证液压系统在工作时不会受到流量的限制,保
证系统的稳定性和可靠性。
此外,液压滤清器还需要具有较高的耐压性能。
液压系统中的
工作压力通常较高,因此液压滤清器需要能够承受较高的工作压力,以保证其在工作过程中不会发生破裂或泄漏。
最后,液压滤清器还需要具有较长的使用寿命和易于维护。
滤芯的更换和维护对于液压滤清器来说是非常重要的,因此滤清器的设计应该考虑到易于更换滤芯和维护,以减少维护成本和工作停机时间。
总之,液压滤清器技术要求涉及到过滤效率、容积和流量、耐压性能以及使用寿命和维护等方面。
只有满足了这些技术要求,液压滤清器才能够有效地保护液压系统,确保其正常运行。
Y型管道过滤器设计选型原则
Y型管道过滤器设计选型原则Y型管道过滤器设计选型原则Y型过滤器是现在很多工业管道系统都需要用到的设备,甚至可以说,在城市中有需求供水的地方基本都是需要使用Y型过滤器的,所以对于Y型过滤器的选型是特别紧要的。
从原则上来说,Y 型过滤器的通径是要和相配套的泵阀相像的,而现在基本的Y型过滤器在选型时的要求都是相同的通径。
其次则是Y型过滤器的压力等级,这个要考虑管道系统中可能显现的高压情况进行判定。
需要对过滤管道有着清楚的认得,依据其压力情况来确定选择的Y型过滤器的压力等级。
Y型过滤器是液压系统中常见的设备,在液压系统中能否正确选型和使用过滤器,是液压系统污染掌控的关键,也是系统安全运行的牢靠保证。
为了让系统和元件有一个理想的工作寿命,必需对油液进行污染掌控,配置合理的不同类型的Y型过滤器,以达到的效果。
一、Y型管道过滤器设计选型原则设计选型前应明确的工况条件同全部机械一样,设计选型前必需明确设备使用的工况条件,在相关流程中的工艺位置,就过滤而言,必需明确以下几点:(1)过滤器前端和后端的设备类型,特别是要明确过滤器后端的设备对过滤后介质清洁程度的要求;(2)被过滤介质的类别、物理性质、化学性质,特别要明确介质的粘度和其中可能的杂物的类别;(3)过滤器使用的场所和环境、介质温度、工作压力;(4)过滤器的工艺连接标准和形式;二、Y型管道过滤器设计选型原则设计选型的一般方法(1)确定进出口通径过滤器的进出口通径不应小于其后端被保护设备的进口通径,一般应和设备通径一致。
(2)确定公称压力原则上应按过滤器所在的工艺管线可能显现的最高压力来确定过滤器的压力等级,但是,通常过滤器所保护的设备在设计和选型时已全面考虑了系统的压力界限,所以,可将过滤器的压力等级视为和被保护设备的压力等相同。
对设计人员,设备承压的计算与校核,在此有必要给出过滤器最高压力的计算方法:首先应明确,金属材料的机械强度和其所受温度是关联的,随着温度的上升,金属材料的承压本领会下降,过滤器安全运行的最高压力与温度的关系可用下式计算:Pmax=Pn—K△T)(1)Pmax———过滤器所能承受的最高工作压力 MpaPn ———过滤器的公称压力 MpaT ———过滤器使用的最高工作温度℃△T———温度差值℃K———强度衰变系数Mpa/℃K值可按以下阅历值选取(a)当作温度200℃时 K=0(b)当为铸铁过滤器,工作温度在202300℃时 K=0—0.004 (c)当为碳钢过滤器,工作温度在202300℃时 K=0.0016——0.008 d)当为合金钢过滤器,工作温度在202300℃时 K=0.0006——0.006 e)当为不锈刚过滤器,工作温度在202300℃时K=0.00018——0.006温度在200—400℃之间可用内差值法确定K值,但在这个区间内K值变化很小,所以通常当温度较高时K值取上限,当温度较低时K值取下限。
液压过滤器选型指南及案例
液压过滤器选型指南及案例液压过滤器是液压系统中的重要组件,其作用是过滤液压油中的杂质,保持油液的清洁,提高液压系统的工作效率和寿命。
正确选择和使用液压过滤器对于液压系统的正常运行至关重要。
本文将介绍液压过滤器的选型指南,并提供一个实际应用案例。
1.确定系统的液压油流量:根据液压系统的设计要求,确定系统的液压油流量,通常以升/分钟为单位。
液压过滤器的选型应能满足系统流量要求。
2.确定过滤精度:根据系统的使用环境和工作要求,确定过滤精度,常见的过滤精度有10μm、20μm、40μm等。
过滤精度越高,过滤效果越好,但阻力也会增加,需要综合考虑。
3.确定过滤器类型:根据液压系统的压力和流量要求,选择适当的过滤器类型。
常见的液压过滤器类型有吸入过滤器、压力过滤器、回流过滤器等。
4.确定过滤器的材质和密封材料:根据液压系统中液压油的性质,选择适当的过滤器材质和密封材料,以防止材料的腐蚀和泄漏。
5.确定过滤器的寿命和维护周期:根据系统的工作环境和使用条件,选择具有较长寿命和较长维护周期的过滤器,以减少维护成本和停机时间。
案例:工业设备中液压系统的工作压力为20MPa,流量为50L/min,要求过滤器的过滤精度为20μm,寿命为3000小时。
根据以上选型指南,我们可以进行如下选择:1. 确定系统的液压油流量:50L/min;2.确定过滤精度:20μm;3.确定过滤器类型:根据工作压力和流量要求,选择压力过滤器;4.确定过滤器的材质和密封材料:根据液压油的性质,选择耐腐蚀材料和可靠的密封材料;5.确定过滤器的寿命和维护周期:选择具有3000小时寿命的过滤器,并在必要时进行维护和更换。
通过以上选型指南,我们可以选择适合该液压系统的过滤器。
选择合适的过滤器可以有效提高液压系统的工作效率和寿命,减少因杂质造成的故障和损坏,提高设备的可靠性和稳定性。
总结:液压过滤器是液压系统中必不可少的组件,正确选择和使用过滤器对于液压系统的正常运行至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压过滤器选型设计指南
1范围
本指南规定了液压过滤器的设计原则、注意事项、液压过滤器各项参数的选择,以及例举了液压过滤器选型设计的案例。
2规范性引用文件
下列文件的条款通过本规范的引用而成为本规范的条款。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 20079 液压过滤器技术条件
Q/SY 012 015 液压过滤器选用规范
3术语、符号及定义
GB/T 20079确定的术语、符号和定义适用于本文件。
3.1
过滤精度
指油液通过过滤器时,能够穿过滤芯的球形污染物的最大直径,以微米(μm)表示。
过滤器最大流量
由制造商所推荐的在规定运动粘度下通过被试过滤器的最大流量,以单位L/min表示。
纳污容量
指过滤器的压力降达到极限值时,滤芯所容纳的污染物重量,以单位kg表示。
过滤比
过滤器上游大于等于某一给定尺寸χ的颗粒污染物数量与下游大于等于同一给定尺寸的颗粒污染物数量之比,用βχ表示。
洁净过滤器总成压降△P总
被试元件为装有洁净滤芯的洁净过滤器,其测得的入口与出口压力之差。
壳体压降△P壳体
过滤器不装滤芯时的压降。
洁净滤芯压降△P滤芯
洁净滤芯所产生的压降,其值等于洁净过滤器总成压降减少壳体压降。
4工作原理与结构型式
4.1过滤器的工作原理与结构
过滤器的典型结构见图1。
图1液压过滤器典型结构
油液从进油口进入过滤器,沿滤芯的径向由外向内通过滤芯,油液中颗粒被滤芯中的过滤层滤除,进入滤芯内部的油液即为洁净的油液。
过滤后的油液从过滤器的出油口排出。
4.2过滤器的分类
过滤器按其用途及安装部位,可分为如图2所示的5种不同类型。
图2过滤器安装位置示意图
设计系统时采用哪种或哪几种过滤方式的组合应根据系统液压元件类型,工况,成本和整机布置综合考虑,可参考表1所示优缺点设计最优的系统过滤方案,其中,吸油过滤容易导致液压泵吸空,建议尽量不采用高精度吸油过滤方案。
表1不同过滤方式的优缺点
优点缺点
压油过滤1)安装于泵出口,直接保护下游精密液压元件;
2)对压降相对来说不太敏感,因此过滤器体积可
做的比较小;
1)要求过滤耐高压,价格贵;
2)泵未受保护;
3)控制、执行元件磨损污染物直接回油箱;
回油过滤1)液压系统回油过滤后回油箱,油箱油液清洁;
2)压力等级低,价格偏移;
1)在精密液压元件上游须单独另加压油过滤器保护;
2)回油脉动大,影响过滤精度,并使滤芯容易损坏;
5主参数及设计要求
5.1过滤精度
过滤器的精度等级应根据系统液压元件类型来确定。
表2过滤器精度选择
5.2公称压力
公称压力指过滤器工作中所允许的最大工作压力,与滤器的壳体及元件的耐压有关,过滤器的公称压力应大于等于实际应用压力。
5.3过滤效率
为提高过滤效率,必须提高过滤器的过滤比,并保证其压降在允许范围内。
5.4过滤能力
过滤能力指一定压力降下允许通过过滤器的最大流量,一般用过滤器的有效过滤面积(滤芯上能通过油液的总面积)来表示。
过滤器的过滤能力还应根据过滤器在液压系统中的安装位置来考虑,如过滤器安装在吸油管路上时,其过滤能力应为泵流量的两倍以上。
5.5使用寿命
过滤器滤芯应有较大的纳污容量,良好的抗腐蚀性能,并能在规定的温度持久地工作。
5.6维护性能
滤芯要利于清洗和更换,便于拆装和维护。
6过滤器选型步骤
1)明确设计要求:明确系统压力、流量、液压油牌号、工作温度、系统需求的油液精度NAS等级;
2)根据表1确定系统需要的过滤精度等级;
3)根据过滤器在液压回路中的安装位置(图2所示)和使用压力确定过滤器的类型;
4)确定规格大小:先根据经验或预选列线图(如图)预选,然后计算核算其初始压降,若大于前述推荐值则需重新选择更大流量规格的过滤器;
5)确定过滤器的污染发讯方式、旁通等。
7 过滤器压降计算
洁净过滤器总成压降△P 总等于过滤器壳体压降△P 壳体与洁净滤芯压降△P 滤芯之和,即:
总P ∆=壳P ∆+滤芯P ∆
△P 壳体与液压油密度成正比,附录A 给出了液压油密度为X kg/cm 3(一般为860 kg/cm 3或900 kg/cm 3)的某型号过滤器壳体压降——流量曲线,从流量曲线中可查出过滤器实际使用流量下的压降值,△P
壳
体计算方法:
所查值液压油实际密度
=
壳体⨯∆X
P
由于液压油密度变化不大,一般可以取△P 壳体=所查值
△P 滤芯与液压油粘度成正比,附录A 给出了液压油运动粘度为Y mm 2/s(cSt)(一般为30mm 2/s(cSt))的某型号过滤器滤芯压降——流量曲线,从流量曲线中可查出过滤器实际使用流量下的压降值,滤芯P ∆计算方法:
所查值液压油实际运动粘度
=
滤芯⨯∆Y
P
洁净过滤器总成压降总P ∆应满足以下要求: 压油过滤器:△P 总≤1bar ; 回油过滤器:△P 总≤;
吸油过滤器:△P 总≤;
吸回油过滤器的△P 总按回油过滤器进行计算,但吸回油过滤器具有约~)bar 背压,总P ∆=所查值-~bar 。
8 注意事项
8.1 过滤器不能反向通油,应制定可靠措施确保工人不会接错。
8.2 滤芯被污染后,流经过滤器的压差可能将旁通阀打开,导致油液未全流量过滤,甚至压溃滤网,因此,过滤器必须设置目视或电气报警,提供关于是否需要更换滤芯的准确而可靠的指示。
对于安装位置不便于操作手观测的过滤器,优先采用电发讯报警方式。
8.3 推荐选用带冷起动阀的过滤器。
8.4 因滤芯属易损件,设计时应留出维修换件时的滤芯更换空间。
8.5 钢质滤芯能重复使用,但考虑到清洗后的滤芯清洁度难以达标,建议选用一次性的纸质滤芯。
8.6 对于采用单活塞杆液压缸的系统,计算时要注意活塞外伸和内缩时的回油流量的不同:内缩时无杆腔回油与外伸时有杆腔回油的流量之比,与两腔有效工作面积之比相等。
8.7 对于采用吸回油过滤器的系统,其回油流量应比吸油流量大20%,避免瞬时回油不足,系统直接从油箱吸油未经过滤。
附 录 A (资料性附录)
液压过滤器设计选型案例
A.1 选型案例 A.1.1 设计要求
过滤方式:回油过滤
过滤器处最高工作压力:15bar 液压系统类型:伺服系统 泵输出流量p Q =min
液压油:ISO VG 46 工作温度:40℃
液压缸两腔有效工作面积比A1/A2=2/1 A.1.2 确定过滤精度
由表1可知,伺服系统液压油精度等级为NAS7,确定滤芯绝对过滤精度为5μ。
A.1.3 初定过滤器类型
系统设计采用回油过滤方式,通过过滤器的实际流量55L/min 25.272/1=⨯=⨯=A A Q Q p ,系统最高工作压力15bar ,根据经验初选回油过滤器:RF BN/HC 110 G 005 C 。
A.1.4 计算初始压降
由图查得RF110过滤器壳体在55L/min 流量下的压降为,由图查得RF110过滤器洁净滤芯在55L/min 流量下的压降为(粘度为30mm 2/s 时)。
过滤器总成初始压降:
总P ∆=壳P ∆+滤芯P ∆=+×46/30=
可见,若选用RF110过滤器其初始压降大于允许值,必须选用更大流量规格的过滤器。
图 RF110过滤器滤壳初始压降曲线 图 RF110过滤器滤芯初始压降曲线
A.1.5 确定过滤器规格
根据前述计算结果将过滤器型号修正为:RF BN/HC 240 G 005 C ,查该型号过滤器的对应曲线并重复的计算过程(此处从略),得出其总成初始压降能满足设计要求。
为阐述选型过程和强调过滤器压降的校核,初选时本例故意选了一个小型号过滤器,事实上,根据图给出的预选列线图可以确定满足前述设计要求的过滤器规格应为240。
A.1.6根据预选列线图初选过滤器方法介绍
根据预选列线图确定过滤器规格,图给出的是液压油粘度为30mm2/s时的曲线,此系统液压油粘度为46mm2/s,换算流量Q=55×46/30=84L/min。
根据图查得流量84L/min和过滤精度5μ时的过滤器规格为240。
确定过滤器型号为:回油过滤器RF BN/HC 240 G 005 C 。
图RF110过滤器预选列线图
A.1.7其他附件
确定过滤器污染发讯方式,旁通等,此处从略。
A.1.8备注
为在有限篇幅内强调油缸对回油流量的影响,本案例选用回油过滤器来阐述选型校核过程,事实上,对于高精度伺服系统,一般应选用压油过滤其在伺服阀进口过滤。