正比例应用题教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例应用题教学设计
一、教学内容:课本第78页、《作业本》第35页。
二、教学目标:
1、掌握用正比例的方法解答相关应用题;
2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;
3、培养学生分析问题、解决问题的能力;
4、发展学生综合运用知识解决简单实际问题的能力。
教学重点:掌握用正比例的方法解答应用题
三、教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
四、教学过程:
一、谈话导入:
1、在上新课之前,先考考大家,你知道世界最高的建筑物是什么?它位于何处?
2、对于这座世界最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?刚才同学们想出了很多的方法去测量台北 101的大概高度。今天我们学习一种新的方法──正比例应用题,学完后,我们试着用这种方法去计算台北 101的大概高度。看谁学得最棒。
二、新课教学:
1、出示图片,提出问题。(秦山镇和海盐县图片)
找找我们学校在哪?今天孙老师要从学校回家。但有一个问题?你能解决吗?
汽车12分钟行驶10千米,照这样的速度,从秦山到石泉行驶30分钟。秦山与石泉之间的路程是多少千米?
2、分析解答应用题
(1)请你先用以前学过的方法解答一下?
(2) 让学生自己解答,边板书:(可能出现情况)
10÷12×30 30÷(12÷10)(归一应用题)
30÷12×10 (倍比应用题)
3、激励引新
这两种方法都合理,我们已经学习了比例的知识,这道题还可以用比例的方法解答。这节课就共同研究。
三、探讨新知
(一)合作讨论探究解法:
1、提出问题
师:请同学们结合题目,讨论以下问题。
(1) 题目中相关联的两种量是________和________。
(2) ________一定,_________和_________成_______比例关系。
(3) ______行驶的_____ 和 _____的 ________相等。
2、合作研究。
独立思考后,学生小组讨论。
3、组间交流:小组代表把讨论结果在班内交流
4、学生尝试解答。
(二)交流与评价:
1、哪个小组愿意把研究的过程和结果和大家交流交流?(小组内其他学生可以补充)
2、学生汇报:
3、生质疑与评价。
师:你还有什么问题?(可能提出如下问题:)
⑴为什么两种相关联的量成正比例?
⑵谁和谁对应?
⑶为什么用“=”连接?
4、师:怎么样检验?(生口头检验)
(三)、概括总结
(1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。
(2) 明确解题步骤。(演示)
用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。
1.分析判断
2.找出列比例式所需的相等关系
3.设未知数列等式
4.求解
5.检验写答语
(四)改编应用题
出示图片:星期天孙老师要从海盐回家,问题又来了?(显示图片)汽车12分钟行驶10千米,照这样的速度,从海盐到石泉路程为24千米,我回家需要多少时间?(你能帮我算一算吗?)
①让学生解答改编后的应用题,集体订正。
②小结:比较一下改编后的题和前面的题目有什么联系和区别?
前面的题目的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的时间数为x,列出的等式是: 10/12=24/x
(五)尝试练习
师:孙老师回到家以后又遇到一个难题,你有信心解决吗?
出示题目:
用90千克稻谷可以碾出大米72千克,照这样计算,用10吨稻谷能碾出大米多少吨?
(1)、学生独立思考、解答。
(2)、四人小组合作交流:“题中有哪两种量?这两种量成什么比例关系?为什么?”列出关系式。
得出:因为“照这样计算”说明小麦的出粉率是一定的,所以小麦的质量和面粉的质量正比例关系。
面粉的质量÷小麦的质量=出粉率(一定)
(3)集体交流反馈:“吨”要不要化成“千克”?为什么?
讲评:两种相对应的量单位相同不需要“转化”。如上题的“50吨”与问题的单位相同,不必把50吨化成千克;也可以这样认为,同种量相同也不必化的,如前后的面粉量单位一样,(或小麦量的单位一样)。
四、实践体验。
1、通过刚才的学习,你们不仅用旧知识解决了问题,而且还学会了用新的知识解决问题。
请看屏幕。屏幕出示:
(1)、图片文字式
小红:我5分钟打150个字。
小刚:我也照你这样打,9分钟打()字。
(2)、语音对话式
我国发射的科学实验人造地球卫星,在空中绕地球运行6周需行10.6小时,运行14周要用多少小时?
2、层次练习。
(1)、把一根1.8米的木棒直立在地上,量的它的影长是2米,同时量得学校旗杆的影长是10.8米,求旗杆的高是多少米?
(2)、用一台织布机3小时织布84米,照这样计算,再织布5小时,共可以织布多少米?
(3)、一根圆钢,把它锯成5段要用20分钟,照这样计算,如果把这根圆钢锯成10段,需要多少分钟?
五、实践运用
师:前面我们讲的台北101大楼如何测量它的高度?
(1)、学生讨论策略。(用工具能测量但不好测量)
教师提供数据:
同时同地
竹竿的高度2米,影长1.8 米
(2)、通过教师提供的数据,你有什么办法知道101大楼的高度?(生:大楼的影长可以测量,大楼的高度可以求出来)
(3)、屏幕出示:大楼的影长457.2米,高度是()米
六、机动题。
修一条1400米的水渠,工程队前5天完成任务的25%,照这样计算,余下的任务还要多少天完成?
师:今天我们要比一比谁的解答方法最多,谁是我们班最聪明的学生。
五、总结
今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?