北京理工大学级数学专业最优化方法期末试卷试题A卷MT.doc
最优化期末考试题及答案
最优化期末考试题及答案一、选择题(每题2分,共20分)1. 最优化问题中的“最优解”指的是:A. 唯一的解B. 可行域中的任意解C. 使目标函数达到最大或最小值的解D. 任意解2. 线性规划问题中,目标函数和约束条件都是:A. 线性的B. 非线性的C. 部分线性,部分非线性D. 指数形式的3. 下列哪个不是线性规划的解的性质?A. 可行解B. 局部最优解C. 全局最优解D. 无界解4. 单纯形法是解决哪种类型问题的算法?A. 非线性规划问题B. 线性规划问题C. 动态规划问题D. 整数规划问题5. 拉格朗日乘数法主要用于解决:A. 线性规划问题B. 无约束优化问题C. 约束优化问题D. 多目标优化问题二、填空题(每空2分,共20分)6. 在最优化问题中,目标函数是我们要______的函数。
7. 可行域是指所有满足______条件的解的集合。
8. 单纯形法的每一步都通过______来寻找下一个基可行解。
9. 拉格朗日乘数法中,拉格朗日函数是原目标函数和约束条件的______。
10. 在多目标优化中,通常需要考虑目标函数之间的______。
三、简答题(每题10分,共20分)11. 简述单纯形法的基本步骤。
12. 解释拉格朗日乘数法的基本原理。
四、计算题(每题15分,共40分)13. 给定线性规划问题:最大化目标函数 \( z = 3x_1 + 2x_2 \) ,约束条件为 \( x_1 + x_2 \leq 10 \) , \( x_1 \geq 0 \) ,\( x_2 \geq 0 \) 。
请使用单纯形法求解。
14. 给定约束优化问题:最小化目标函数 \( f(x, y) = x^2 + y^2 \) ,约束条件为 \( g(x, y) = x + y - 10 = 0 \) 。
请使用拉格朗日乘数法求解。
五、论述题(每题10分,共10分)15. 论述最优化理论在实际工程问题中的应用及其重要性。
答案一、选择题1. C2. A3. D4. B5. C二、填空题6. 最大化或最小化7. 约束8. 选择进入基和离开基的变量9. 线性组合10. 权衡三、简答题11. 单纯形法的基本步骤包括:(1)构造初始可行基;(2)计算目标函数的值;(3)选择进入基的变量;(4)选择离开基的变量;(5)进行基变换;(6)重复步骤(2)至(5),直到目标函数达到最优。
北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)
1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷)一. 填空题(每小题2分, 共10分)1. 设⎪⎩⎪⎨⎧<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________.2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________.3. 已知),(cos 4422x o bx ax ex x ++=- 则_,__________=a .______________=b 4. 微分方程1cos2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________.二. (9分) 求极限 210)sin (cos lim xx x x x +→.三. (9分) 求不定积分⎰+dx e xx x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值.五. (8分) 判断212arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dxy d dx dy . 七. (10分) 求下列反常积分. (1);)1(122⎰--∞+x x dx (2) .1)2(10⎰--x x dx八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受到的水压力. (要求画出带有坐标系的图形)九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解.十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f xa +=+⎰)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线)(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,67π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(121=⎰xdx x f 证明在)2,0(内存在ξ 使.1)(='ξf。
北京理工大学数学专业最优化方法期末试题级A卷级B卷MTH
课程编号:MTH17171北京理工大学2014-2015学年第二学期2013级最优化方法期末试题A 卷一、(10分)设()f x 是凸集nS R ⊆上的凸函数,对12,x x S ∈,实数[]0,1α∉,令()121z x x ααα=+-,若z S α∈,证明()()()121f z f x x ααα≥+-。
二、(10分)设数列{}k x 的通项为:22121,2,0,1,!ii i x x x i i +===L , 证明:(1){}k x 收敛于*0x =; (2)令1,0,1,k k k xx d k +=+=L ,则*lim1k kk x x d →∞-=;(3){}k x 不是超线性收敛于*x 的。
三、(10分)求解整数规划问题:1212121212min ..14951631,0,,z x x s t x x x x x x x x =-++≤-+≤≥∈Z。
(图解法,割平面法,分枝定界法均可)四、(10分)设f 连续可微有下界,且f ∇Lipschitz 连续,即:存在常数0L > ,使得,n x y R ∀∈,()()f x f y L x y ∇-∇≤-,设{}k x 由Wolfe-Powell 型搜索产生,k d 为下降方向,()()cos T k k k kkf xdf x dθ∇=-∇⋅,证明:(1)()220cos kk k f x θ∞=∇<∞∑;(2)若0δ∃>,使得k ∀,cos k θδ≥,则()lim 0k k f x→∞∇=。
五、(10分)设f 连续可微,序列{}k x 由最速下降法解()min f x ,并做精确搜索产生,证明:0,1,k ∀=L ,()()10Tk k f xf x +∇∇=。
六、(10分)已知线性规划:1234123412341234max 2347..23482673,,,0z x x x x s t x x x x x x x x x x x x =++++--=-+-=-≥。
北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)
北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)课程编号:MTH17014 北京理工大学2011-2012学年第一学期2011级本科生解析几何期末试题A 卷姓名--------------,班级------------,学号--------------,题目一 二三四五六总分得分一,单选题(30分)1,已知空间三点A,B,C,下面哪个条件能确定A,B,C 四点共面( ) (a),空间任意一点O,三点满足 (b),空间任意一点O,三点满足(c),空间任意一点O,三点满足(d),空间任意一点O,三点满足2, 已知三向量满足下面哪个条件说明这三向量共面( )(a), , (b),, (c), , (d), .3,在一仿射坐标系中,平面,点A(1,-2,-1)和点B(2,-1,3).则下面说法正确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧;(c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线和直线,则下面说法正确的是( ).OA OB OC =+ 11.22OA OB OC =+0.OA OB OC ++= 110.23OA OB OC ++=,,,αβγ()0αβγ⋅=0.αββγγα⨯+⨯+⨯=()0αβγ⨯⨯=()()αβγβγα⨯∙=⨯∙:2430x y z π+++=2103260x z x y ++=⎧⎨+-=⎩2102140x y z x z +--=⎧⎨+-=⎩(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5, 在仿射坐标系中,已知平面和直线,则下面说法正确的是( )(a)直线和平面平行; (b)直线和平面相交; (c)直线在平面上; (d)直线和平面垂直.6,在平面仿射坐标中,直线与轴相交,则( )(a),(b),(c),(d)7,在空间直角坐标系下,方程的图形是( )(a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。
北京理工大学数学专业数理统计期末试题(07000233)
北京理⼯⼤学数学专业数理统计期末试题(07000233)课程编号:07000233 北京理⼯⼤学2011-2012学年第⼆学期2010级数理统计期末试题A 卷⼀、设总体()20,X N σ,12,,,m n X X X +是抽⾃总体X 的简单随机样本,求常数c 使得随机变量2221222212mm m m n X X X Y c X X X ++++++=?+++服从F 分布,指出分布的⾃由度并证明。
⼆、设总体()2,X N µσ,其中220σσ=为已知常数,R µ∈为未知参数。
12,,,nX X X 是抽⾃总体X 的简单随机样本,12,,,n x x x 为相应的样本观测值。
1.求参数µ的矩估计;2.求参数µ和2EX 的极⼤似然估计;3.证明1n i i i X X α='=∑,其中11ni i α==∑和11ni i X X n ==∑都是µ的⽆偏估计;4.⽐较两个⽆偏估计X '和X 的有效性并解释结果。
三、设总体X 服从泊松分布()P λ,123,,X X X 是抽⾃总体X 的简单随机样本,设假设检验问题011:3;:3H H λλ==的否定域为(){}123,,0.5D X X XX =≤。
1.求该检验问题犯第⼀类错误的概率;2.求该检验问题犯第⼆类错误的概率和在1H 下的功效函数。
四、设总体X 的概率密度函数为()32,0,20,0xx e x f x x θθθ-?>?=??≤?,其中0θ>为未知参数,12,,,n X X X 是抽⾃总体X 的简单随机样本。
1.验证样本分布族是指数族,并写出其⾃然形式(标准形式);2.证明()1nii T X X==∑是充分完全(完备)统计量,并求()ET X ;3.利⽤充分完全统计量法和Cramer-Rao 不等式⽅法证明113n i i X n =∑是1θ的⼀致最⼩⽅差⽆偏估计。
北京理工大学《高等数学》历年期末考试试题及答案解析(精编版)
x = (t − 1)et 八. 设曲线 C 的方程为 y = 1 − t4
求
dy dx
,
d2y dx2
及曲线
C
在参数
t
=
0
对应点处
–2/48–
第 1 部分 北京理工大学试题集
的曲率半径.
九. 设 f ′(x).
f (x)
=
1 x
−
ex
1 −
1,
x
<
0
1
−
1 c2os x
x
,
, x
x= >0
等于
mg k
.
∫1
十一. 设 f (x) 在 [0, 1] 上连续, 在 (0, 1) 内可导, 且满足 f (1) = 2 2 xe1−x f (x)dx, 证明:
0
至少存在一点 ξ, 使得 f ′(ξ) = (1 − ξ−1) f (ξ).
1.2 2011 级秋季学期期末试卷
一. 填空题
1. 极限 lim
x→0
x
− ln(1 x2
+
x)
=
2. 设 y
=
x2 + ln x, 则
dx dy
=
dy =
∫∞
3. 广义积分
e
dx x ln2
x
=
4.
微分方程
y′′
=
1
1 + x2
的通解为
; lim
1
∫
x
(1
+
sin
2t)
1 t
dt
=
.
x→0 x 0
√ ; 设 f 可导,y = f (tan x) + 1 − x2, 则
最优化方法习题1
《最优化方法》期末考试练习题声明:仅供复习时参考。
实际考试题型类似,题量小于本练习。
一. 选择题:略第一题主要考察基本概念、定理,算法的基本思想和matlab 命令。
二.简答题1. 写出线性规划问题;0, ,94 3 ,5 32 4 s.t. ,823 max 21321321321≥≥-+-≥+-+-x x x x x x x x x x x 的对偶规划。
2.如果求解某整数规划问题的松弛问题得到如下的最优单纯形表:求以1x ,2x 为源行生成的割平面方程。
3.在区间[0,3]上用黄金分割法求函数12)(3+-=t t t ϕ的极小点,只要求求出 初始的迭代点和保留区间及此时的近似最优解。
4. 用tx ex y 21-=拟合下列数据1.0,24.0,11,07.2,1=======-=y t y t y t y t写出非线性最小二乘问题三.计算题1.分别用最速下降方法和修正的牛顿法求解无约束问题 22214)(min x x x f +=。
取初始点()()Tx2,21=,.1.0=ε2.讨论约束极值问题⎪⎪⎩⎪⎪⎨⎧≥≥≤-≤++--+=0004..866)(min212121212221x x x x x x t s x x x x x f 的Kuhn-Tucker 点。
3.用外点法(外部惩罚函数法)求解2s.t.)3()1()(min 212221≤-+-+-=x x x x x f4.用内点法求解非线性规划03)( 03)( s.t. 296)(min 22112121≥-=≥-=++-=x x g x x g x x x x f5.用乘子法求解1s.t.6121)(min 212221=++=x x x x x f 6.用表格单纯形法求解线性规划⎪⎪⎩⎪⎪⎨⎧≥≥-≥-≤++++=0,,34623max 3213231321321x x x x x x x x x x x x x Z并根据最优单纯形表格写出该线性规划的最优基和最优基的逆。
最优化方法试卷及答案5套.docx
《最优化方法》1一、填空题:1. _______________________________________________________ 最优化问题的数学模型一般为:_____________________________________________ ,其中___________ 称为目标函数,___________ 称为约束函数,可行域D可以表示为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。
2.设f(x)= 2斤+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿方向d的一阶方向导数为___________ ,几何意义为_____________________________________ ,二阶方向导数为____________________ ,几何意义为_____________________________3.设严格凸二次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中子(兀)为严格凸函数,D 是凸集)的最优解是唯一的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可行点,若在元处 d 满足巧(计<0,VC,(元)(可则d 是元处的可行下降方向。
北京理工大学数学专业操作系统期末试题
课程编号:MTH17067 北京理工大学2013-2014学年第1学期理工大学数学与统计学院2011级操作系统终考试卷(A卷)班级___________ 学号___________ 姓名___________ 成绩___________ (所有答案都应写在答题纸上,不要写在题目处,答题时请标明题号。
)一、单项选择题(共15分,每题3分。
)1.Unix操作系统是一个()。
A.交互式分时操作系统B.多道批处理操作系统C.实时操作系统D.分布式操作系统2.进程有三种基本状态,可能的状态转换是()。
A.就绪→运行,等待→就绪,运行→等待B.就绪→运行,就绪→等待,等待→运行C.就绪→运行,等待→就绪,等待→运行D.运行→就绪,就绪→等待,等待→运行3.处理器不能直接访问的存储器是()。
A.寄存器B.高速缓冲存储器C.主存储器D.辅助存储器4.通道在输入输出操作完成或出错时,就形成()。
A.硬件故障中断B.程序中断C.外部中断D.I/O中断5.磁盘上的每一个物理块要用三个参数来定位,首先要把移动臂移动并定位到不同盘面上具有相同编号的磁道位置,表示该位置的参数称()。
A.柱面B.盘面C.扇区D.磁头二、填空题(共20分,每空2分。
)6.Linux系统一般用________________命令复制文件,用_______________命令终止某一个进程,用_______________命令查看网络接口。
7.CPU的工作状态分为________________和目态两种。
8.进程实体是由________________,________________和________________这三部分组成。
9.进程有三个特性,它们是动态性、并发性和________________。
10.把逻辑地址转换成绝对地址的工作称为________________。
11.操作系统提供给编程人员的唯一接口是________________。
北京理工大学2010-2011学年第二学期工科数学分析期末试题(A卷)
课程编号:MTH17004, MTH17006北京理工大学2010-2011学年第二学期工科数学分析期末试题(A 卷)班级_______________ 学号_________________ 姓名__________________(本试卷共6页, 十一个大题,试卷后面空白纸撕下作草稿纸)一. 填空题(每小题2分, 共10分)1. 已知3||=a ,26||=b ,72||=⨯b a,且a 与b 的夹角是钝角,则=⋅b a ______。
2. 设x yz ye y x u z ln 2++=,则=)1,1,1()grad (div u ______________。
3. 已知向量c b a,,不共面,但向量c a c b b a +++λ,,2共面,则=λ _________。
4. 设L 是曲线1,,3===z t y t x 上从)1,0,0(A 到)1,8,2(B 的一段,若将⎰++=Lzdz ydy dx x I 2化成第一类曲线积分,则有=I _________________________。
5. 变量替换x y v x u ==,可将微分方程z yzy x z x =∂∂+∂∂化成 ________________________。
二. (9分) 交换积分次序并计算⎰⎰=yyxdx xe dy I 1。
三. (9分) 求函数y y y x y x f -+=2221),(的极值和极值点。
四. (9分)设方程523=+-y xz z 确定函数),(y x z z =,求yx z∂∂∂2。
五. (9分) 在曲面xy z =上求一点,使曲面在此点处的切平面垂直于直线13211zy x =-=+,并写出切平面方程。
六. (8分) 证明方程0ln 1=+-xdy x dx yx y y 是全微分方程,并求出通解。
七. (10分) 求幂级数∑∞=-+11)1(n n x n n 的收敛域及和函数。
最新北京理工大学数学专业模糊数学期末试题(MTH17077)
课程编号:MTH17077 北京理工大学2013-2014学年第二学期2011级模糊数学期末试题(本卷推断为2011级试题)一、(15分)设论域为实数集,(),A B F ∈,()(),011,122,12,3,230,0,x x x x A x x x B x x x ≤≤-≤≤⎧⎧⎪⎪=-≤≤=-≤≤⎨⎨⎪⎪⎩⎩其它其它,(1)写出0.60.7,A A ∙;(2)求,c AB A 的隶属函数;(3)求A 与B 的内积,外积,格贴近度。
二、(10分)设H 是实数集R 上的集合套,已知()(),0,1H λλ⎡=∈⎣,令()[]0,1A H λλλ∈=。
(1)求ker ,A SuppA ;(2)求A 的隶属函数()A x 。
三、(10分)设余三角范式S 的表达式为(),S a b a b ab =+-,求与S 对偶的三角范式T 的表达式(),T a b 。
四、(15分)已知{}123456,,,,,X x x x x x x =,R 是X 上的模糊关系。
110.70.40.60.60.610.60.40.60.60.70.710.40.60.60.60.60.610.60.60.610.60.410.60.60.70.60.40.61R ⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, (1)判断R 是否是模糊拟序矩阵,说明理由;(2)依据R 对X 进行分类(要求写出对应各阈值λ的分类以及类间偏序关系)。
五、(10分)设{}{}1231234,,,,,,X x x x Y y y y y ==,R 是X 到Y 的模糊关系,0.70.510.90.20.40.60.810.20.60R ⎛⎫⎪= ⎪ ⎪⎝⎭。
(1)求R 在X 中的投影X R ,R 在3x 处的截影3x R ;(2)设R T 为R 诱导的模糊变换,{}23,A x x =,求()R T A 。
六、(15分)设论域为实数集R ,已知()()()2,,,x f x x A F A x e x -=∈=∈。
北京理工大学数学专业操作系统期末试题
课程编号:MTH17067 北京理工大学2013-2014学年第1学期理工大学数学与统计学院2011级操作系统终考试卷(A卷)班级___________ 学号___________ 姓名___________ 成绩___________ (所有答案都应写在答题纸上,不要写在题目处,答题时请标明题号。
)一、单项选择题(共15分,每题3分。
)1.Unix操作系统是一个()。
A.交互式分时操作系统B.多道批处理操作系统C.实时操作系统D.分布式操作系统2.进程有三种基本状态,可能的状态转换是()。
A.就绪→运行,等待→就绪,运行→等待B.就绪→运行,就绪→等待,等待→运行C.就绪→运行,等待→就绪,等待→运行D.运行→就绪,就绪→等待,等待→运行3.处理器不能直接访问的存储器是()。
A.寄存器B.高速缓冲存储器C.主存储器D.辅助存储器4.通道在输入输出操作完成或出错时,就形成()。
A.硬件故障中断B.程序中断C.外部中断D.I/O中断5.磁盘上的每一个物理块要用三个参数来定位,首先要把移动臂移动并定位到不同盘面上具有相同编号的磁道位置,表示该位置的参数称()。
A.柱面B.盘面C.扇区D.磁头二、填空题(共20分,每空2分。
)6.Linux系统一般用________________命令复制文件,用_______________命令终止某一个进程,用_______________命令查看网络接口。
7.CPU的工作状态分为________________和目态两种。
8.进程实体是由________________,________________和________________这三部分组成。
9.进程有三个特性,它们是动态性、并发性和________________。
10.把逻辑地址转换成绝对地址的工作称为________________。
11.操作系统提供给编程人员的唯一接口是________________。
《最优化方法》考试试卷
密 封线《最优化方法》考试试卷考试时间 100 分钟一、填空题(每题1、若存在*x D ∈(可行域),并对x D ∀∈有*()()f x f x ≤,则称*x 为最优化问题(M P )的 解。
2、若在最大化问题中,对于某个基可行解,所有的 ,则这个基可行解是最优解。
3、建立优化模型的三大要素:确定 决策变量、确定 和确定约束条件。
4、设序列{}k x 收敛于*x ,若对于1p ≥有(1)*()*lim,0k pk k x xxxββ+→∞-=<<+∞-则称序列{}k x 是 收敛的。
5、若线性规划问题有最优解,则一定存在一个 是最优解。
6、设nR S ⊂是非空凸集,1:R S f →,如果对任意的)1,0(∈α有)))1((Y X f αα-+ )()1()(Y f X f αα-+∀S Y X ∈,则称f 是S 上的凸函数。
7、一维牛顿法的基本思想是在极小点附近用 多项式近似目标函数()f x ,进而求出极小点的估计值。
8、惩罚函数法主要有外惩罚函数法和 两种形式。
9、在黄金分割法中,在],[b a 内任取21x x <,若____ ,则],[2*x a x ∈,即向左搜索;若 )()(21x f x f ≥,则 ,即向右搜索。
二、简答题(每题7分,共21分)适用专业年级(方向):考试方式及要求:1、写出下列问题的Matlab 调用代码1212121212m ax 2..5,0,6221,,0.x x s t x x x x x x x x ++≤-≥+≤≥2、写出用两阶段法求解下列问题的第一阶段的线性规划问题121212112m in 2..2,1,3,,0.x x s t x x x x x x x -++≥-≥≤≥3、写出下列问题的Lagrange 函数及该问题的K-T 条件221212112122121312211212m in (,)(1)(2)..(,)20(,)0(,)0(,)10f x x x x s tg x x x x g x x x g x x xh x x x x =-+-=+-≤=≥=-≤=-+-=密 封线三、建模题(7分)某城市要建设一个自来水供应中心,该中心向城市中n 个用户(用户位置固定)提供输送自来水的服务。
北京理工大学数学专业最优化方法期末试题级A卷级B卷MTH
课程编号:MTH17171北京理工大学2014-2015学年第二学期2013级最优化方法期末试题A 卷一、(10分)设()f x 是凸集nS R ⊆上的凸函数,对12,x x S ∈,实数[]0,1α∉,令()121z x x ααα=+-,若z S α∈,证明()()()121f z f x x ααα≥+-。
二、(10分)设数列{}k x 的通项为:22121,2,0,1,!ii i x x x i i +===L , 证明:(1){}k x 收敛于*0x =; (2)令1,0,1,k k k xx d k +=+=L ,则*lim1k kk x x d →∞-=;(3){}k x 不是超线性收敛于*x 的。
三、(10分)求解整数规划问题:1212121212min ..14951631,0,,z x x s t x x x x x x x x =-++≤-+≤≥∈Z。
(图解法,割平面法,分枝定界法均可)四、(10分)设f 连续可微有下界,且f ∇Lipschitz 连续,即:存在常数0L > ,使得,n x y R ∀∈,()()f x f y L x y ∇-∇≤-,设{}k x 由Wolfe-Powell 型搜索产生,k d 为下降方向,()()cos T k k k kkf xdf x dθ∇=-∇⋅,证明:(1)()220cos kk k f x θ∞=∇<∞∑;(2)若0δ∃>,使得k ∀,cos k θδ≥,则()lim 0k k f x→∞∇=。
五、(10分)设f 连续可微,序列{}k x 由最速下降法解()min f x ,并做精确搜索产生,证明:0,1,k ∀=L ,()()10Tk k f xf x +∇∇=。
六、(10分)已知线性规划:1234123412341234max 2347..23482673,,,0z x x x x s t x x x x x x x x x x x x =++++--=-+-=-≥。
北京理工大学2011-2012学年第一学期工科数学分析期末试题
e4 1 4
二.
1 1 x2 3x 2
2
lim
x 0
x arcsin x e
x3
1
lim
x 0
x arcsin x x3
…………………
1 lim
x 0
……………………
1 ( x 2 ) 1 x 1 lim lim 2 2 2 x0 x0 3x 1 x 3x 2 1 x 2 1 6
0 x 4 x
3 ( x, y )
y
dW xgy 2 dx gx (3 W gx (3
0 4
4 0
9 g (16 x 8 x 2 x 3 )dx 16
3 2 x) dx 4
3 2 x) dx ……………(4 分) 4
……பைடு நூலகம்…………..(6 分)
12g 12000g (J)
令 f ( x) 0 得 x
2 2 f ( x) 在 (0, ) , ( , ) , ( , ) 内单调 3 3 3 3
f ( 0) a 0 f ( ) a 0 f( 2 3 3 ) a 0 3 16
3
x
2 3
3 3 f( ) a 3 16
…………………..(7 分)
10
2 (1
3 e) 5
x 0
………………….(11 分) …………………….(2 分)
十.
令xt u
x 0
g ( x t )dt g (u )du
9
f ( x) 2 x 2 g (u )du
0
x
f ( x) 4 x g ( x)
北京理工大学2013-2014学年第一学期《数学分析》期末测试卷(A卷)(附参考答案)
课程编号:MTH17003 北京理工大学2013-2014学年第一学期工科数学分析期末试题(A 卷)班级_______________ 学号_________________ 姓名__________________(本试卷共6页, 十一个大题. 解答题必须有解题过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.)一. 填空题(每小题2分, 共10分)1. 设)(x p 是多项式, 且,2)(lim 23=-∞→x x x p x ,3)(lim 0=→xx p x ,则=)(x p ____________________.2. 曲线θρcos 1-=在4πθ=处的切线斜率等于__________________.3. 已知点)3,1(为曲线23bx ax y +=的拐点, 则_,__________=a .______________=b4. 设⎰⋅+-=102)(arctan 1)(dt t f x x x f , 则=)(x f _________________________________.5. 质量为m 的降落伞从跳伞塔下落, 所受空气阻力与速度成正比(比例系数为0>k ), 则降落伞的位移)(t y 所满足的微分方程为___________________________________. 二. (8分) 求极限 .1)1ln(lim2tan 0--+→xx ex x三. (8分) 设e xy e y=-确定函数)(x y y =, 求22,dxyd dx dy .四. (9分) 设⎰+∞∞→=⎪⎭⎫⎝⎛-+082lim dx e x a x a x x xx ),0(≠a 求常数a 的值.五. (9分) 求微分方程4yx ydx dy +=的通解.六. (9分) 已知x x a x f 3sin 31cos )(-=在3π=x 处取得极值, 求a 的值, 并判断)3(πf 是极大值还是极小值.七. (9分) 求曲线x y =2与直线2-=x y 所围成平面图形的面积A, 以及此平面图形绕y 轴旋转一周所得旋转体的体积V .八. (9分) 求不定积分.11⎰+dx xxx九. (9分) 一圆锥形贮水池, 深3m, 直径4m, 池中盛满了水, 如果将水抽空, 求所作的功. (要求画出带有坐标系的图形)十. (12分) 设0)()()(0=-++⎰-xx dt t f x t e x f , 其中)(x f 是连续函数, 求)(x f 的表达式.十一. (8分) 设)(x f 在]1,0[上非负连续, 试证存在)1,0(∈ξ, 使得区间]1,[ξ上以)(ξf 为高的矩形面积等于区间],0[ξ上以)(x f y =为曲边的曲边梯形的面积.(2013-2014)工科数学分析第一学期期末试题(A 卷)解答(2014.1)一.1. x x x 3223++2.12+3. ,23- 294. x x arctan 2ln 2412+-+-ππ5. dt dyk mg dt y d m -=22二. 原式 x x x x 20tan )1ln(lim-+=→20)1ln(lim xx x x -+=→ ……………..(2分) x x x 2111lim 0--+=→ ……………..(6分) )1(21lim0x x --=→ ……………..(7分)21-= ……………..(8分)三. 0=--dx dy x y dx dy e y……………..(3分) x e ydx dy y-= ……………..(4分) 222)()1()(x e dx dy e y x e dx dy dx y d y y y ----⋅= ……………..(6分) 2)()1()(x e x e y e y x e x e y y yyy y -----⋅-= ……………..(7分) 32)(22x e e y ye xy y yy --+-= ……………..(8分)四. x x a x a x ⎪⎭⎫⎝⎛-+∞→2lim a x axa a x x a x a --∞→-+=33])31[(lim ……………..(2分) a e 3= ……………..(3分)⎰+∞08dx ex x ⎰+∞-=08dx xe x ⎰+∞--=08xxde ……………..(4分) ⎰+∞-∞+-+-=088dx e xe x x ……………..(6分)880=-=+∞-xe ……………..(8分)83=a e 2ln =a ……………..(9分)五.31y x y dy dx += 31y x ydy dx =- ……………..(2分) )(131⎰⎰+⎰=---dy ey C ex dyy dyy……………..(4分))(ln 3ln ⎰-+=dy e y C e y y ……………..(6分) )1(3⎰+=dy yy C y ……………..(8分) 431y Cy += ……………..(9分) 六. x x a x f 3cos sin )(--=' ……………..(3分)由 0123)3(=+-='a f π 得 32=a ……………..(5分)x x a x f 3s i n 3c o s )(+-='' ……………..(7分)因为031)3(<-=''πf 故 )3(πf 是极大值 ……………..(9分)七.抛物线与直线的交点为)2,4(),1,1(- ……………..(1分)⎰--+=212])2[(dy y y A ……………..(3分)29)322(2132=-+=-y y y ……………..(5分)⎰--+=2142])2([dy y y V ππ ……………..(7分)ππ572]51)2(31[2153=-+=-y y ……………..(9分)八. 令 x x t +=1 即 112-=t x ……………..(2分) ⎰--=dt t t I 1222……………..(3分)⎰-+-=dt t )111(22 ……………..(4分) ⎰+--+-=dt t t )1211211(2 ……………..(6分)C t t t +--++-=1ln 1ln 2 ……………..(8分) C xx xx xx +-+-++++-=11ln11ln12 ……………..(9分)九. dx x gx dx x gx dx y g x dW 222)3(94)31(4-=-⋅=⋅=πμπμπμ ……..(3分)⎰-=302)3(94dx x gx w πμ ……………..(5分)⎰+-=3032)69(94dx x x x g πμ30432)41229(94x x x g +-=πμ ……………..(8分)g g ππμ30003==(J) ……………..(9分)十. ⎰⎰-+-=-xxx dt t tf dt t f x e x f 0)()()( ……………..(1分)⎰+='-xx dt t f e x f 0)()( ……………..(2分))()(x f e x f x +-=''- x e x f x f --=-'')()( ……………..(3分) 1)0(-=f 1)0(='f ……………..(5分) 012=-r 1±=r ……………..(6分) x x e C e C x f -+=21)( ……………..(7分)设 xA x e x f -=)(* ……………..(8分)代入微分方程得 1=A x xe x f -=1)(* ……………..(9分)通解为 xx x xe e C e C x f --++=21)(21 ……………..(10分) 由初值得 411-=C 432-=Cx x x xe e e x f --+--=214341)( ……………..(12分)十一. 令 ⎰-=tdx x f t t F 0)()1()( ……………..(2分)则)(t F 在]1,0[连续, 在)1,0(可导, 又 0)1()0(==F F由罗尔定理, )1,0(∈∃ξ, 使 0)(='ξF ……………..(6分)0)()1()(0=-+⎰ξξξf dx x f ……………..(7分)即 ⎰=-ξξξ0)()()1(dx x f f 得证 ……………..(8分)。
北京理工大学20052009级数学专业最优化方法期末试题A卷07000203,MTH17085
课程编号: 07000203 北京理工大学2007-2008学年第二学期2005级数学专业最优化方法终考试卷(A 卷)1.(20分)某化工厂有三种资源A 、B 、C,生产三种产品甲、乙、丙,设甲、乙、丙的产量分别为x 1,x 2,x 3,其数学模型为:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++++=0,,)(4204)(46023)(4302.523max 3212131321321x x x C x x B x x A x x x t s x x x z 资源限制资源限制资源限制 请回答如下问题:(1)给出最优生产方案;(2)假定市场信息表明甲产品利润已上升了一倍,问生产方案应否调整? (3)假定增加一种添加剂可显著提高产品质量,该添加剂的资源限制约束为:12328003xx x ++≤问最优解有何变化?2.(12分)用Newton 法求解2221212min ()42f x x x x x =+-,初始点取为0(1,1)Tx =,迭代一步。
3.(10分)用FR 共轭梯度法求解三个变量的函数()f x 的极小值,第一次迭代的搜索方向为0(1,1,2)Tp =-,沿0p 做精确线搜索,得1111123(,,)T x x x x =, 设111112()()2,2f x f x x x ∂∂=-=-∂∂,求从1x 出发的搜索方向1p 。
4.(15分) 给定下面的BFGS 拟Newton 矩阵修正公式:1()()T T TT k k k k k k k k T T T k k k k k ks y s y s s H I H I y s y s y s +=--+,其中11,k k k k k k s x x y g g ++=-=-用对应的拟Newton 法求解:1222121422)(min x x x x x x f -+-=,初始点取为0(0,0)T x =,0H I =。
5.(15分)写出问题21231232123min ()3..1f x x x x s t x x x x x x =-+-++≤-++=取得最优解的Kuhn-Tucker(K -T)必要条件,并通过K -T 条件求出问题K -T 点及相应Lagrange 乘子。
北京理工大学2017-2018学年工数上期末试题A及答案
课程编号:H0172103 北京理工大学2017-2018学年第一学期工科数学分析(上)期末试题(A 卷)座号 _______ 班级_____________ 学号_____________ 姓名_____________(试卷共6页,十个大题. 解答题必须有过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.)1.若 ex x kx x 1)2(lim =-∞→ ,则=k . 2.已知,arctan 2111ln 41x x x y --+=则=dxdy . 3. =-+⎰dx xe x e x x 102)1()1( . 4 .=⎰xdx x sin 2 .5. 设x y y cos =+',则=y .二、计算题(每小题5分,共20分)1.求极限 ).2sin 211(sin lim 3nn n n -∞→2. 设x x y x 2sin sin +=,求dy .3. 计算dx xx x x ⎰-++112211cos 2-.4.求)cos(y x dxdy+=的通解.三、(8分)已知0)-1(lim 2=-+-+∞→b ax x x x ,试确定常数a 和b 的值.四、(6分)已知,...).2,1)((21,0,011=+=>>+n b bb b b b nn n 证明: 数列{}n b 极限存在;并求此极限.五、(8分)求函数2)1(42-+=xx y 的单调区间和极值,凹凸区间和拐点,渐近线.y=围成一平面图形D.六、(8分)设曲线2xy=,x(1) 求平面图形D的面积;(2) 求平面图形D绕y轴旋转所得旋转体的体积.七、(8分)设一长为l的均匀细杆,线密度为μ,在杆的一端的延长线上有一质量为m的质点,质点与该端的距离为a.(1)求细杆与质点间的引力;(2)分别求如果将质点由距离杆端a 处移到b 处(b a >)与无穷远处时克服引力所做的功.八、(8分)设)(x f 在]1,1[-上具有三阶连续导数,且,0)0(,1)1(,0)1('===-f f f证明在开区间)1,1(-内至少存在一点ξ,使3)()3(=ξf .九、(8分)设⎰-+=xxdt t f t x xe x f 0)()()(, 其中)(x f 连续,求)(x f 的表达式.十、(6分)已知)(x f 在闭区间[]6,1上连续,在开区间)6,1(内可导,且,5)1(=f ,1)5(=f .12)6(=f证明:存在)6,1(∈ξ,使22)()(=-+'ξξξf f 成立.北京理工大学2017-2018学年第一学期《工科数学分析》(上)期末试题(A 卷)标准答案及评分标准 2018年1月12日一、填空(每小题4分,共20分)1.21 2.421x x -3. )(,不收敛+∞∞4 . C x x x x x +++-cos 2sin 2cos 2 5. x ce x x y -++=)cos (sin 21二、计算题(每小题5分,共20分)1. 解:)2sin 211(sin lim 3xx x x -∞→312sin 211sin lim x x x x -=∞→ xt 1=令 30)2sin(21sin limt t t t -=→ …………. 2分 20cos 1sin lim t t t t t -⋅=→21= …………. 4分21)2sin 211(sinlim 3=-∴∞→n n n n …………. 5分注:此题也可以用泰勒公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 程 编 号 : 0 7 0 0 0 2 0 3北 京 理 工 大 学 2 0 0 7 - 2 0 0 8 学 年 第 二 学 期2005 级数学专业最优化方法终考试卷( A 卷)1. (20 分 )某化工厂有三种资源 A 、 B 、 C ,生产三种产品甲、乙、丙,设甲、乙、丙的产量分别为x 1,x 2,x 3 ,其数学模型为:max z 3 x 1 2 x 2 5 x 312 x 23 430 ( A 资源限制 )x x3 x 1 2 x 3 460 ( B 资源限制 )s.t 4 x 2 420 (C 资源限制 )x x 1 , x 2 , x 3 0请回答如下问题: ( 1)给出最优生产方案; ( 2)假定市场信息表明甲产品利润已上升了一倍,问生产方案应否调整? (3)假定增加一种添加剂可显着提高产品质量,该添加剂的资源限制约束为:x 12x23x3800 问最优解有何变化?2. (12 分 )用 Newton 法求解 min f ( x )4 x 12 x 22 2 x 12 x 2 ,初始点取为 x 0 (1, 1)T ,迭代一步。
3.(10 分 )用 FR 共轭梯度法求解三个变量的函数 f ( x ) 的极小值,第一次迭代的搜索方向为 p 0 (1, 1,2)T ,沿 p 0 做精确线搜索,得 x 1( x 11 , x 21 , x 31 )T , 设 f ( x 1 )2,f ( x 1 )2 ,求从 x 1 出发的搜索方向 p 1 。
x 11x 214. (15 分 ) 给定下面的BFGS 拟 Newton 矩阵修正公式:Hk 1( I s k y k T )H k ( I s k y k T )Ts k s k T ,y k T s ky k T s k y k T s k其中 s kxk 1x k , y kgk 1g k用对应的拟 Newton 法求解: min f ( x ) x 122x 1 x 2 2 x 22 4 x 1 ,初始点取为 x 0 (0,0) T , H 0 I 。
5. (15 分 )写出问题 取得最优解的 Kuhn-Tucker ( K - T )必要条件,并通过 K - T 条件求出问题 K - T 点及相应 Lagrange 乘子。
6(12 分 ).求约束问题在 x(0,0) T 及 x 2 (1,0) T 处的下降方向集合、可行方向集合以及可行下降方向集合,并画图表示出来17( 8 分)考察优化问题min f ( x )s.t. x,D设 D 为凸集, f ( x ) 为 D 上凸函数,证明: f ( x) 在 D 上取得极小值的那些点构成的集合是凸集。
8( 8 分)设 minf ( x ) 1 x T Ax b T x c ,其中 A 为对称正定矩阵, x * 为 f ( x ) 的极小值点,又设 x 0 ( x*) 可表示为2x 0 x *p ,其中R 1, p 是 A 对应于特征值 的特征向量,证明:若从 x 0 出发,沿最速下降方向做精确一维搜索, 则一步达到极小值点。
课程编号 :07000203北京理工大学 2008-2009 学年第一学期2006 级数学专业最优化方法终考试卷( A 卷)1. (15 分 ) 用单纯形法求解线性规划问题2. (10 分 )写出线性规划问题的对偶问题并证明该对偶问题没有可行解。
3. (15 分 )考虑用最速下降法迭代一步 min f ( x) x 12 2x 22 , 初始点取为 x 0( 1, 1)T 。
( 1)采用精确一维搜索;( 2)采用 Wolfe 条件进行不精确一维搜索,其中 0.1, 0.9 。
4. (15 分 )用 DFP 拟牛顿法求解min f ( x)x 12 2x 22 初始点取为 x 01,初始矩阵 H 02 1 。
11 15. (15 分 )证明集合 S { x | x 1 2x 2 4, 2x 1x 2 6} 是凸集,并计算原点(0,0) 到集合 S 的最短距离。
6. (15 分 ?) 考虑问题(1)用数学表达式写出在点( 1 , 5)T处的下降可行方向集。
3 3( 2)假设当前点在 (0,0) T 处,求出用投影梯度法进行迭代时当前的下降可行方向(搜索方向)。
7( 7 分)证明:在精确一维搜索条件下,共轭梯度法得到的搜索方向是下降方向。
a 11x1a 12 x2L a 1 n x n b 1a 21 x 1a 22 x 2 L a 2n x nb 28( 8 分)已知线性不等式组.............................................其中b 1 , b 2 L , b m0 ,给出一种判断该不等式组是否相容(即a m 1 x 1 a m 2 x 2 L a mn x nb mx 1 , x 2 L , x n 0是否有解)的方法并说明理由。
课程编号 :07000203北京理工大学 2009-2010 学年第一学期2007 级数学专业最优化方法终考试卷( A 卷)1.( 8 分)将优化问题化为标准形式的线性规划问题。
2. (10 分 ) 给出一个判断任一线性不等式组是否相容(即是否有解)的一般条件,并利用其判断以下不等式组是否相容。
3. (12 分 )对于下面的线性规划(1)利用对偶单纯形法求解;(2)写出其对偶线性规划问题并利用对偶理论求出对偶问题的最优解。
4. (10 分 )考虑用最速下降法迭代一步 minf ( x) x 12 2 x 222x 1 x 2 ,初始点为 x 0 ( 1, 1)T 。
5. (15 分 )用 FR 共轭梯度法求解min f ( x )x 121 x 221x 32初始点取为 x 01,1,1T。
226. (10 分 ?) 考虑问题min f ( x ) ( x 1 1)2 x 22s.t . x 1x 22写出问题取得最优解的Kuhn-Tucker ( K - T )必要条件,并通过K - T 条件求出问题 K - T 点及相应 Lagrange 乘子。
min f ( x ) x 2x 2 2 x1 4 x2127. (15 分 ?) 用简约梯度法求解问题s.t . 2 x 1 x 2 1,,初始点取为 (0, 2)T 。
x 1 x 2 2,x 10, x 2 0.8( 10 分)基于单纯形算法,试给出一个判定线性规划问题具有唯一最优解的条件,并且举例说明之。
min f ( x)9(10 分 ).考虑优化问题Ax b, A R m n , x ,设 x k 为问题可行域中任一点,在 x k 处前 q 个约束为有效约束,记为s..t R nA q x k b q ,其中 A q 为行满秩矩阵,令 P I A T ( A A T ) 1 A ,证明:( 1) P q 为投影阵。
q q q q q(2)若 p k P q f (x k ) 0 ,则为问题的下降可行方向。
课程编号 :07000203北京理工大学 2010-2011 学年第一学期2008 级数学专业最优化方法终考试卷( A 卷)1(15 分 )求解线性规划2. (12 分 )给定一个线性规划问题(1)写出其对偶规划。
(2)假设已知该对偶规划的最优解为5 , 73 3T,试求出原始问题的最优解。
3. (15 分 )给定 Rosenbrock 函数 f ( x ) 100( x 2 x 12 )2(1 x 1 )2 (1) 求出 f ( x ) 的驻点,并判断驻点的最优性。
(2) 求出 f ( x ) 在点 x 1( 1, 2)T 处的最速下降方向4.(20 分 )无约束优化问题阻尼Newton 法迭代公式为 x k 1 x kkGK 1g k ,拟 Newton 法的思想可以是构造一个对称正定阵 B k近似替代 G k ,则搜索方向由 B p g k 求出。
初始 B0 I ,Bk 1 由 B k 修正得到, B k 1 要满足拟 Newton 方程 B sy k ,k kk 1 k其中 s k x k 1 x k , y kgk 1g k 。
假定正定阵 B k 是秩 2 修正的,即 B k 1 B kuu Tvv T , u, v R n ,试推导出, , u, v 的一种取法满足拟Newton 方程,并用相应拟Newton 法计算 min f ( x )3x 121x 22 x 1 x 2 2 x 1 初始点取为 x 0 (0, 0)T 。
225. (12 分 ?) 考虑问题Kuhn-Tucker ( K - T )必要条件,并通过 K - T 条件求出问题 K - T 点及相应 Lagrange 乘子。
写出问题取得最优解的6. (8 分 ?) 利用投影矩阵求出向量y(2, 5, 7)T 在超平面 H{ x | 2x 1 x 2 x 310} 上的投影向量。
7(10 分 )利用简约梯度法求解以下问题,初始点取为 (1,0) T ,迭代一步。
8( 8 分)证明:在拟牛顿法中,若矩阵 H k 正定,则拟牛顿法得到的搜索方向(非零向量)是下降方向。
课程编号 : MTH17085北京理工大学 2010-2011 学年第二学期2009 级数学专业最优化方法终考试卷( A 卷)max f ( x ) 2 x1 x 2 x 31(15 分 ).求解线性规划s. t . x1 x 2 x 3 6x1 2 x 2 4x1 , x 2 , x 3 0不用重新计算,给出发生下列变化后新的最优解。
( 1)max f ( x ) 2x 1 3 x2 x 3。
(2)增加一个新约束x1 2 x 3 2 。
2.(18 分 )给定极小化问题min f ( x) 4 x12 4x1 x2 2 x22 2 x2 1初始点取为x0 (0, 0)T 。
(1) 针对初始点处的负梯度方向求出满足不精确一维搜索Wolfe 条件的步长区间,其中0.1, 0.9 。
(2) 用 PRP 共轭梯度法求解上述问题。
3.(15 分 ) 试推导无约束优化问题拟Newton 法对称秩 1 公式,即H k 1 H k uu T,u Rn,给出, u 的取法满足拟Newton方程 H k 1 y k s k,其中 s k x k 1 x k, y k g k 1 g k 。
并用相应拟Newton 法计算min f ( x) 4 x12 4 x1 x 2 2x22 2x2 1 初始点取为 x0 (0, 0)T 。
4. (10 分 ?) 用外罚函数法求解min f ( x) x1 x2s.t . x1 x22 0min f ( x ) x1 x25(12 分 )利用广义简约梯度法求解问题s.t . x12 x22 4 0 。