乘法公式知识点详解及提高练习(含答案)
部编数学八年级上册【满分秘诀】专题07整式乘法运算(考点突破)(解析版)含答案
【满分秘诀】专题07 整式乘法运算(考点突破)【思维导图】【常见考法】【真题分点透练】【考点1 幂运算】1.计算(﹣a2)3的结果是( )A.a5B.﹣a5C.a6D.﹣a6【答案】D【解答】解:(﹣a2)3=﹣a2×3=﹣a6.故选:D.2.计算(a2)3的结果是( )A.a5B.a6C.a8D.3 a2【答案】B【解答】解:(a2)3=a6.故选:B.3.下列运算中,结果正确的是( )A.x3•x3=x6B.3x2+2x2=5x4C.(x2)3=x5D.(x+y)2=x2+y2【答案】A【解答】解:A、x3•x3=x6,本选项正确;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选:A.4.已知x m=6,x n=3,则x2m﹣n的值为( )A.9B.C.12D.【答案】C【解答】解:∵x m=6,x n=3,∴x2m﹣n=(x m)2÷x n=62÷3=12.故选:C.5.计算2x2•(﹣3x3)的结果是( )A.﹣6x5B.6x5C.﹣2x6D.2x6【答案】A【解答】解:2x2•(﹣3x3),=2×(﹣3)•(x2•x3),=﹣6x5.故选:A.6.(1)若a m=2,a n=5,求a3m+2n的值.(2)若3×9x×27x=321,求x的值.【解答】解:(1)当a m=2,a n=5,a3m+2n=a3m•a2n=(a m)3•(a n)2=23×52=8×25=200.(2)3×9x×27x=3×32x×33x=36x,36x=321,6x=21,x=.7.计算:(2a2)2﹣a•3a3+a5÷a.【解答】解:(2a2)2﹣a•3a3+a5÷a=4a4﹣3a4+a4=2a4;【考点2 整式乘除法运算】8.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.﹣3B.3C.0D.1【答案】A【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵(x+m)与(x+3)的乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.9.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是( )A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a+b)(a﹣b)=a2﹣b2【答案】C【解答】解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故选:C.10.先化简,再求值:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣1.【解答】解:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),=a2﹣2ab﹣b2﹣a2+b2,=﹣2ab,当a=,b=﹣1时,原式=﹣2××(﹣1)=1;11.先化简,再求值:[(2x﹣y)2﹣y(2x+y)]÷2x,其中x=2,y=﹣1.【解答】解:原式=(4x2﹣4xy+y2﹣2xy﹣y2)÷2x=(4x2﹣6xy)÷2x=2x﹣3y.当x=2,y=﹣1时,原式=2×2﹣3×(﹣1)=7.12.先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.【解答】解:原式=4(x2﹣2x+1)﹣(4x2﹣9)=4x2﹣8x+4﹣4x2+9=﹣8x+13,当x=﹣1时,原式=8+13=21.13.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一处底座边长为(a+b)米的正方形雕像,则绿化的面积是多少平方米?并求出当a=5,b=2时的绿化面积.=(3a+b)(2a+b)﹣(a+b)2【解答】解:S阴影=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米,∴绿化的面积是(5a2+3ab)平方米;当a=5,b=2时,原式=5×25+3×5×2=125+30=155(平方米),∴当a=5,b=2时的绿化面积为155平方米.14.如图,某中学校园内有一块长为(3a+2b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块长为(2a﹣b)米、宽为2b米的小长方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求长方形地块的面积;(用含a,b的代数式表示)(2)当a=3,b=1时,求绿化部分的面积.【解答】解:(1)∵(3a+2b)×(2a+b)=(6a2+7ab+2b2)平方米,∴长方形地块的面积为(6a2+7ab+2b2)平方米;(2)∵绿化部分的面积为6a2+7ab+2b2﹣(4ab﹣2b2)=(6a2+3ab+4b2)平方米;∴当a=3,b=1时,6a2+3ab+4b2=6×3×1+3×1×3+4×1×1=31(平方米),∴绿化部分的面积为31平方米.15.某学校教学楼前有一块长为(6a+2b)米,宽为(4a+2b)米的长方形空地要铺地砖,如图所示,空白的A、B两正方形区域是草坪,不需要铺地砖.两正方形区域的边长均为(a+b)米.请你求出要铺地砖的面积是多少?【解答】解:(6a+2b)(4a+2b)﹣2(a+b)2=24a2+20ab+4b2﹣2a2﹣4ab﹣2b2=(22a2+16ab+2b2)米2,答:要铺地砖的面积是(22a2+16ab+2b2)米2.【考点3 公式法有关计算及应用】16.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b2【答案】C【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.177.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm2【答案】B【解答】解:矩形的面积是:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).故选:B.18.如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为( )A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)【答案】C【解答】解:正方形中,S=a2﹣b2;阴影梯形中,S=(2a+2b)(a﹣b)=(a+b)(a﹣b);阴影故所得恒等式为:a2﹣b2=(a+b)(a﹣b).故选:C.19.x2+kx+9是完全平方式,则k= .【答案】±6【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.20.若m2﹣n2=6,且m﹣n=2,则m+n= .【答案】3【解答】解:m2﹣n2=(m+n)(m﹣n)=(m+n)×2=6,故m+n=3.故答案为:3.21.【探究】如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式 .(用含a,b的等式表示)【应用】请应用这个公式完成下列各题:(1)已知4m2=12+n2,2m+n=4,则2m﹣n的值为 .(2)计算:20192﹣2020×2018.【拓展】计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.【解答】解:【探究】图1中阴影部分面积a2﹣b2,图2中阴影部分面积(a+b)(a﹣b),所以,得到乘法公式(a+b)(a﹣b)=a2﹣b2故答案为(a+b)(a﹣b)=a2﹣b2.【应用】(1)由4m2=12+n2得,4m2﹣n2=12,∵(2m+n)•(2m﹣n)=4m2﹣n2,∴2m﹣n=3.故答案为3.(2)20192﹣2020×2018=20192﹣(2019+1)×(2019﹣1)=20192﹣(20192﹣1)=20192﹣20192+1=1;【拓展】1002﹣992+982﹣972+…+42﹣32+22﹣12=(100+99)×(100﹣99)+(98+97)×(98﹣97)+…+(4+3)×(4﹣3)+(2+1)×(2﹣1)=199+195+…+7+3=5050.22.图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为 ;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是 ;(3)若x+y=﹣6,xy=2.75,则x﹣y=; (4)观察图③,你能得到怎样的代数恒等式呢?(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.【解答】解:(1)(m﹣n)2(3分)(2)(m﹣n)2+4mn=(m+n)2(3分)(3)±5(3分)(4)(m+n)(2m+n)=2m2+3mn+n2(3分)(5)答案不唯一:(4分)例如:23.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2)(1)探究:上述操作能验证的等式是 ;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2﹣4y2=24,3x+2y=6,求3x﹣2y的值;②计算:.【解答】解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)①∵9x2﹣4y2=(3x+2y)(3x﹣2y),∴24=6(3x﹣2y)得:3x﹣2y=4;②原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+),=××××××…××××,=×,=.【考点4 因式分解】24.下列各式由左边到右边的变形中,是分解因式的为( )A.a(x+y)=a x+a yB.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x【答案】C【解答】解:A、a(x+y)=ax+ay,是整式的乘法运算,故此选项不合题意;B、x2﹣4x+4=(x﹣2)2,故此选项不合题意;C、10x2﹣5x=5x(2x﹣1),正确,符合题意;D、x2﹣16+3x,无法分解因式,故此选项不合题意;故选:C.25.下列等式从左到右的变形,属于因式分解的是( )A.a(x﹣y)=ax﹣ay B.x3﹣x=x(x+1)(x﹣1)C.(x+1)(x+3)=x2+4x+3D.x2+2x+1=x(x+2)+1【答案】B【解答】解:因式分解是指将一个多项式化为几个整式的乘积,故选:B.26.下列多项式中能用平方差公式分解因式的是( )A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9【答案】D【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.27.分解因式:x3﹣4x= .【答案】x(x+2)(x﹣2)【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).28.因式分解:2x2﹣8= .【答案】2(x+2)(x﹣2)【解答】解:2x2﹣8=2(x+2)(x﹣2).29.分解因式:2a2﹣8= .【答案】 2(a+2)(a﹣2)【解答】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).30.分解因式:x3﹣2x2+x= .【答案】x(x﹣1)2 【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.31.已知x+y=6,xy=4,则x2y+xy2的值为 .【答案】24【解答】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.32.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为 .【答案】70【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.33.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于 .【答案】-2【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.34.把下列多项式分解因式.(1)a3﹣9ab2;(2)3x2﹣12xy+12y2.【解答】解:(1)a3﹣9ab2=a(a2﹣9b2)=a(a﹣3b)(a+3b);(2)3x2﹣12xy+12y2=3(x2﹣4xy+4y2)=3(x﹣2y)2.35.因式分解:(1)x2﹣x﹣6;(2)﹣3ma2+12ma﹣12m.【解答】解:(1)原式=(x﹣3)(x+2);(2)原式=﹣3m(a2﹣4a+4)=﹣3m(a﹣2)2.36.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).37.把下列多项式因式分解:(1)x(y﹣3)﹣(2y﹣6);(2)4xy2﹣4x2y﹣y3.【解答】解:(1)x(y﹣3)﹣(2y﹣6)=x(y﹣3)﹣2(y﹣3)=(y﹣3)(x﹣2);(2)4xy2﹣4x2y﹣y3=y(4xy﹣4x2﹣y2)=﹣y(4x2﹣4xy+y2)=﹣y(2x﹣y)2.。
八年级上册数学整式乘除知识点和典型习题分类汇总附答案
1、(1) ;(2)
2、(1) ;(2)
3、
【多项式与多项式相乘】
1、计算:
(1)
(2)
(3)
2、计算:
(1)
(2)
(3)
(4)
(5)
(6)
3、计算:
(1)
(2)
(3)
(4)
(5)
(6)
4、计算:
(1)
(2)
参考答案
1、(1) ;(2) ;(4)
【单项式与单项式相除】
1、计算:
(1)
(2)
2、计算:
第10讲整式乘除
基本知识(熟记,一定要结合实例理解,要提问.)
1、单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有字母,则连同它的指数作为积的一个因式。
2、单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式与单项式相除,把系数和同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
5、多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
基本计算训练
【单项式与单项式相乘】
1、计算:
(1)
(2)
2、计算:
(1)
(2)
(3)
(4)
3、下面的计算对不对?如果不对,应当怎样改正?
(1)
(2)
3、计算:
(1)
(2)
(3)
(4)
4、计算:
(1)
(2)
(3)
(4)
必刷提高题14.2 乘法公式(解析版)-2020-2021学年八年级数学上册同步必刷题闯关练
2020-2021学年八年级数学上册同步必刷题闯关练(人教版)第十四章《整式的乘法和因式分解》14.2 乘法公式知识点1:完全平方公式【例1】(2020•呼伦贝尔)下列计算正确的是( )A .236a a a =B .222()x y x y +=+C .5226()a a a ÷=D .22(3)9xy xy -= 【解答】解:A 、235a a a =,故选项错误;B 、222()2x y x y xy +=++,故选项错误;C 、5226()a a a ÷=,故选项正确;D 、222(3)9xy x y -=,故选项错误;故选:C .【变式1-1】(2020春•槐荫区期中)若10a b +=,11ab =,则代数式22a ab b -+的值是() A .89 B .89- C .67 D .67-【解答】解:把10a b +=两边平方得:222()2100a b a b ab +=++=,把11ab =代入得:2278a b +=,∴原式781167=-=,故选:C .【变式1-2】如果2ab =,3a b +=,那么22a b += .【解答】解:2ab =,3a b +=,2222()2345a b a b ab ∴+=+-=-=.【变式1-3】(2018秋•雁江区期末)已知12x x +=,求221x x +,441x x +的值. 【解答】解:22211()22x x x x+=+-=;4224211()22x x x x +=+-=. 【变式1-4】(2017春•苏仙区校级期中)(1)已知490m n +=,2310m n -=,求22(2)(3)m n m n +--的值(2)已知2()7a b +=,2ab =,求22a b +值.【解答】解:(1)490m n +=,2310m n -=,∴原式(4)(23)900m n m n =-+-=-;(2)222()27a b a b ab +=++=,2ab =,223a b ∴+=.知识点2:完全平方公式的几何背景【例2】(2018秋•邓州市期中)用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽()a b >,则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b +=【解答】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项正确; B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项正确;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab =-=,35ab =,故C 选项正确;D 、222()2144a b a b ab +=++=,所以221442351447074a b +=-⨯=-=,故D 选项错误.故选:D .【变式2-1】(2017春•金平区期末)如图是用4个相同的小长方形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为64,小正方形的面积为9,若用x ,y (其中)x y >分别表示小长方形的长与宽,请观察图案,指出以下关系式中不正确的是( )A .8x y +=B .3x y -=C .2216x y -=D .4964xy +=【解答】解:A 、因为正方形图案的边长8,同时还可用()x y +来表示,故此选项正确;B 、中间小正方形的边长为3,同时根据长方形长宽也可表示为x y -,故此选项正确;C 、根据A 、B 可知8x y +=,3x y -=,则22()()24x y x y x y -=+-=,故此选项错误;D 、因为正方形图案面积从整体看是64,从组合来看,可以是2()x y +,还可以是(44)xy +,即4464xy +=,故此选项正确;故选:C .【变式2-2】(2020春•天桥区期末)如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).①图2中的阴影部分的面积为 ;②观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是 ;③根据(2)中的结论,若5x y +=,94x y =,则2()x y -= ; ④实际上通过计算图形的面积可以探求相应的等式.如图3,你发现的等式是 .【解答】解:①2()b a -;②22()()4a b a b ab +--=;③当5x y +=,94x y =时, 22()()4x y x y xy -=+-29544=-⨯ 16=;④22()(3)34a b a b a ab b ++=++.故答案为:①2()b a -;②22()()4a b a b ab +--=;③16;④22()(3)34a b a b a ab b ++=++.【变式2-3】(2019秋•临沭县期中)如图①所示是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于 .(2)请用两种不同的方法表示图②中阴影部分的面积.方法① ;方法② .(3)观察图②,请写出2()m n +、2()m n -、mn 这三个代数式之间的等量关系: .(4)若6a b +=,5ab =,则求a b -的值.【解答】解:(1)图②中的阴影部分的小正方形的边长m n =-;(2)方法①2()4m n mn +-;方法②2()m n -;(3)这三个代数式之间的等量关系是:22()()4m n m n mn -=+-;(4)22()()4a b a b ab -=+-, 6a b +=,5ab =,2()362016a b ∴-=-=,4a b ∴-=±.故答案为m n -;2()4m n mn +-2()m n -;22()4()m n mn m n +-=-. 知识点3:完全平方式【例3】(2016•青羊区校级自主招生)如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( )A .1a +B .21a +C .221a a ++D .1a + 【解答】解:自然数a 是一个完全平方数,a ∴∴比a 的算术平方根大11,∴这个平方数为:21)1a =+.故选:D .【变式3-1】(2013春•武侯区月考)若要使21464x mx ++成为一个两数差的完全平方式,则m 的值应为( )A .12±B .12-C .14±D .14- 【解答】解:22111(2)48264x x x -=-+,或22111[2()]48264x x x --=++, 12m ∴=-或12. 故选:A .【变式3-2】(2018秋•西湖区校级月考)已知2216m km ++是完全平方式,则k = .【解答】解:2216m km ++是完全平方式,28km m ∴=±,解得4k =±.【变式3-3】若多项式224x kx ++是关于x 的完全平方式,则k = .【解答】解:224x kx ++是一个多项式的完全平方,222kx x ∴=±⨯,2k ∴=±.故答案为:2±.【变式3-4】(2015秋•重庆校级期中)阅读理解:所谓完全平方式,就是对于一个整式A ,如果存在另一个整式B ,使得2A B =,则称A 是完全平方式,例如422()a a =,22441(21)a a a -+=-.(1)下列各式中完全平方式的编号有 ;①6a ;②22a ab b ++;③2244x x y -+④269m m ++;⑤21025x x --;⑥221424a ab b ++. (2)若224x xy my ++和2264x nxy y -+都是完全平方式,求20152016m n 的值;(3)多项式2491x +加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是哪些?(请罗列出所有可能的情况,直接写出答案)【解答】解:(1)①632()a a =,是;②22a ab b ++,不是;③2244x x y -+,不是;④2269(3)m m m ++=+,是;⑤21025x x --,不是;⑥2221142(2)42a ab b a b ++=+,是, 故答案为:①④⑥;(2)224x xy my ++和2264x mxy y -+都是完全平方式,116m ∴=,16n =±, 则原式20151(16)161616=⨯⨯=; (3)多项式2491x +加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是14x ,14x -,1-,249x -,424014x . 知识点4:平方差公式【例4】(2020•碑林区校级模拟)下列运算正确的( )A .3232m m m -=B .23522m m m =C .22(2)(2)4a b a b a b --+=-D .23245(2)4x y x y -= 【解答】解:33m 和22m 不能合并,故选项A 错误;23522m m m =,故选项B 正确;22(2)(2)44a b a b a ab b --+=---,故选项C 错误;23246(2)4x y x y -=,故选项D 错误;故选:B .【变式4-1】(2020秋•武侯区校级月考)计算:2(234)(324)2()b c c b b c -+-+--= .【解答】解:2(234)(324)2()b c c b b c -+-+--,2[(23)4][(23)4]2()b c b c b c =-+--+--,2216(23)2()b c b c =----,2222164129242b bc c b bc c =-+--+-,226111616b c bc =--++.【变式4-2】计算:248161(51)(51)(51)(51)(51)4++++++= . 【解答】解:248161(51)(51)(51)(51)(51)4++++++,2481611(51)(51)(51)(51)(51)(51)44=-++++++,3211(51)44=-+,3254=.【变式4-3】(2019秋•开福区校级期中)利用乘法公式计算:(1)2(23)(3)(3)x y y x x y --+-(2)(23)(23)a b a b -++-.【解答】解:(1)原式22224129(9)x xy y x y =-+--222241299x xy y x y =-+-+2251210x xy y =--+;(2)原式[(23)][(23)]a b a b =--+-22(23)a b =--224129a b b =-+-.【变式4-4】(2017春•雁塔区校级月考)用公式简便运算(1)215185⨯(2)2699(3)2201920172021-⨯.【解答】解:(1)原式22(20015)(20015)200154000022539775=+-=-=-=;(2)222699(7001)70027001149000014001488601=-=-⨯⨯+=-+=;(3)222222019201720212019(20192)(20192)2019201924-⨯=---=-+=.【变式4-5】(2017春•义乌市校级期中)探索:2(21)(21)21-+=-23(21)(221)21-++=-324(21)(2221)21-+++=-4325(21)(22221)21-++++=-⋯(1)求8762222221+++⋯⋯+++的值是多少;(2)求2008200720062333331+++⋯⋯+++的值是多少?【解答】解:(1)2(21)(21)21-+=-23(21)(221)21-++=-324(21)(2221)21-+++=-4325(21)(22221)21-++++=-⋯8762922222121511∴+++⋯⋯+++=-=;(2)2008200720062333331+++⋯⋯+++2009(31)(31)=-÷-2009312-=. 知识点5:平方差公式的几何背景【例5】(2018秋•大同期末)如图1,在边长为a 的正方形中剪去一个边长为b 的小正方形()a b >,把剩下部分沿图1中的虚线剪开后重新拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是( )A .222()2a b a ab b -=-+B .222()2a b a ab b +=++C .2()a a b a ab +=+D .22()()a b a b a b +-=-【解答】解:图1阴影部分的面积等于22a b -,图2梯形的面积是1(22)()()()2a b a b a b a b +-=+- 根据两者阴影部分面积相等,可知22()()a b a b a b +-=-比较各选项,只有D 符合题意故选:D .【变式5-1】(2018春•青羊区期末)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,再将剩下的阴影部分剪开,拼成右边的长方形.根据图形的变化过程可以验证下列哪一个等式成立( )A .222()2a b a ab b -=-+B .2()a a b a ab +=+C .222()2a b a ab b +=++D .22()()a b a b a b -+=-【解答】解:由题意这两个图形的面积相等, 22()()a b a b a b ∴-=+-,故选:D .【变式5-2】如图,小刚家有一块“L ”形的菜地,要把这块菜地按图示那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是xm ,下底都是ym ,高都是()y x m -,请你帮小刚家算一算菜地的面积是 平方米.当20x m =,30y m =时,面积是 平方米.【解答】解:由题意得菜地的面积为2212()()2x y y x y x ⨯+-=-. 当20x =,30y =时,222223020900400500y x m -=-=-=.故答案为:22y x -;500.【变式5-3】(2017春•张掖月考)乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式 (用式子表达)小题4:应用所得的公式计算:2222211111(1)(1)(1)(1)(1)23499100---⋯--【解答】解:小题1:利用正方形的面积公式可知:阴影部分的面积22a b =-;故答案为:22a b -;小题2:由图可知矩形的宽是a b -,长是a b +,所以面积是()()a b a b +-;故答案为:a b -,a b +,()()a b a b +-;小题223:()()a b a b a b +-=-(等式两边交换位置也可);故答案为:22()()a b a b a b +-=-; 小题22222111114:(1)(1)(1)(1)(1)23499100---⋯-- 1111111111(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)2233449999100100=-⨯+-+-+⋯-+-+ 13243598100991012233449999100100=⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯ 11012100=⨯ 101200=. 【变式5-4】(2019春•南海区期末)(1)如图1,阴影部分的面积是 .(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是 .(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式: .(4)应用公式计算:222222111111(1)(1)(1)(1)(1)(1)234520172018----⋯--.【解答】解:(1)如图(1)所示,阴影部分的面积是22a b -,故答案为:22a b -;(2)根据题意知该长方形的长为a b +、宽为a b -,则其面积为()()a b a b +-,故答案为:()()a b a b +-;(3)由阴影部分面积相等知22()()a b a b a b -+=-,故答案为:22()()a b a b a b -+=-;(4)222222111111(1)(1)(1)(1)(1)(1)234520172018----⋯-- 111111(1)(1)(1)(1)(1)(1)223320182018=-+-+⋯-+ 132420172019223320182018=⨯⨯⨯⨯⋯⨯⨯ 1201922018=⨯ 20194036=. 【变式5-5】(2018春•延庆区期末)我们经常利用图形描述问题和分析问题.借助直观的几何图形,把问题变得简明、形象,有助于探索解决问题的思路.(1)小明为了解释某一公式,构造了几何图形,如图1所示,将边长为a 的大正方形剪去一个边长为b 的小正方形,并沿图中的虚线剪开,拼接后得到图2,显然图1中的图形与图2中的图形面积相等,从而验证了公式.则小明验证的公式是 .(2)计算:()()x a x b ++= ;请画图说明这个等式.【解答】解:(1)由图1可得,图形面积22a b =-,由图2可得,图形面积()()a b a b =+-,22()()a b a b a b ∴+-=-故答案为:22()()a b a b a b +-=-;(2)2()()x a x b x ax bx ab ++=+++,证明:如图所示,图形面积()()x a x b =++,图形面积2x ax bx ab =+++,2()()x a x b x ax bx ab ∴++=+++,故答案为:2x ax bx ab+++.。
专题复习:乘法公式知识点归纳及典例+练习题及答案(师)
专题复习:乘法公式知识点归纳及典例+练习题一、知识概述 1、平方差公式 由多项式乘法得到 (a+b)(a-b) =a -b . 即两个数的和与这两个数的差的积,等于它们的平方差. 2、平方差公式的特征 ①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数; ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方); ③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式; ④对于形如两数和与这两数差相乘的形式,就可以运用上述公式来计算. 3、完全平方公式 由多项式乘法得到(a±b) =a ±2ab+b2 2 2 2 2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍. 推广形式:(a+b+c) =a +b +c +2ab+2bc+2ca 4、完全平方公式的特征 (a+b) =a +2ab+b 与(a-b) =a -2ab+b 都叫做完全平方公式,为了区别,我们把前者叫做两数 和的完全平方公式,后者叫做两数差的完全平方公式. ①两公式的左边:都是一个二项式的完全平方,二者仅有一个符号不同;右边:都是二次三项式,其 中有两项是公式左边两项中每一项的平方,中间是左边二项式中两项乘积的 2 倍,两者也仅有一个符号不 同. ②公式中的 a、b 可以是数,也可以是单项式或多项式. ③对于形如两数和(或差)的平方的乘法,都可以运用上述公式计算. 5、乘法公式的主要变式 (1)a -b =(a+b)(a-b); (2)(a+b) -(a-b) =4ab; (3)(a+b) +(a-b) =2(a +b ); (4)a +b =(a+b) -2ab=(a-b) +2ab (5)a +b =(a+b) -3ab(a+b). 熟悉这些变形公式,明确它们间联系,综合运用,常可简化解题过程. 注意:(1)公式中的 a,b 既可以表示单项式,也可以表示多项式. (2)乘法公式既可以单独使用,也可以同时使用. (3)这些公式既可以正用,也可以逆用,因此在解题时应灵活地运用公式,以计算简捷为宜.3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2二、典型例题讲解 例 1、计算: (1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3) (4)(a+b+c)(a-b-c). 解:;(1)原式=(2b+3a)(2b-3a) =(2b) -(3a) =4b -9a2 2 2 2(2)原式=(-2y+x)(-2y-x) =(-2y) -x =4y -x2 2 2 2(3)原式=== (4)原式=[a+(b+c)][a-(b+c)] =a -(b+c)2 2 2 2=a -(b +2bc+c ) =a -b -2bc-c 例 2、计算: (1)2004 -19962 2 2 2 2 22(2)(x-y+z) -(x+y-z)2(3)(2x+y-3)(2x-y-3). 解:(1)2004 -1996 =(2004+1996)(2004-1996) =4000×8=32000 (2)(x-y+z) -(x+y-z)2 2 2 2=[(x-y+z)+(x+y-z)][ (x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz (3)(2x+y-3)(2x-y-3)=[(2x-3)+y][(2x-3)-y] =(2x-3) -y =4x -12x+9-y =4x -y -12x+9; 例 3、计算: (1)(3x+4y) ; (3)(2a-b) ;2 2 2 2 2 2 2 2 2(2)(-3+2a) ; (4)(-3a-2b)22解:(1)原式=(3x) +2·3x·4y+(4y) =9x +24xy+16y2 2 22(2)原式=(-3) +2·(-3)·2a+4a =4a -12a+922(3)原式=(2a) +2·2a·(-b)+(-b) =4a -4ab+b2 222(4)原式=[-(3a+2b)] =(3a+2b)2 22=(3a) +2·(3a)·2b+(2b) =9a +12ab+4b2 22例 4、已知 m+n=4, mn=-12,求(1);(2);(3).解:(1);(2);(3)2.例 5、多项式 9x +1 加上一个单项式后,使它能够成为一个整式的完全平方,那么加上的单项式可以是 ________(填上一个你认为正确的即可). 分析: 解答时,很多学生只习惯于课本上的完全平方的顺序,认为只有添加中间(两项的乘积的 2 倍)项,即 9x +1+6x=(3x+1) 或 9x -6x+1=(3x-1) ;但只要从多方面考虑,还会得出2 2 2 2,9x +1-1=9x =(3x) , 9x +1-9x =12, 所以添加的单项式可以是 6x,22222-6x,,-1,-9x .2答案:±6x 或 例 6、计算:或-1 或-9x2,并说明结果与 y 的取值是否有关. 解:从上述结果可以看出,结果中不含 y 的项,因此结果与 y 的取值无关. 点评: (1)利用平方差公式计算的关键是弄清具体题目中,哪一项是公式中的 a,哪一项是公式中的 b; (2)通常在各因式中, 相同项在前, 相反项在后, 但有时位置会发生变化, 因此要归纳总结公式的变化, 使之更准确的灵活运用公式. ①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a -b ; ②符号变化:(-a-b)(a-b)=(-b-a)(-b+a)=(-b) -a =b -a ; ③系数变化:(3a+2b)(3a-2b)=(3a) -(2b) =9a -4b ; ④指数变化:(a +b )(a -b )=(a ) -(b ) =a -b ; ⑤连用公式变化:(a-b)(a+b)(a +b )(a +b ) =(a -b )(a +b )(a +b )=(a -b )(a +b ) =a -b ; ⑥逆用公式变化:(a-b+c) -(a-b-c)2 2 8 8 2 2 2 2 4 4 4 4 4 4 2 2 4 4 3 3 3 3 3 2 3 2 6 6 2 2 2 2 2 2 2 2 2 2=[(a-b+c)+(a-b-c)][(a-b+c)-(a-b-c)] =4c(a-b). 例 7、已知 .求 分析:的值.若直接代入求解则十分繁杂。
中考复习——乘法公式(解析版)
中考复习——乘法公式一、选择题1、(1+y)(1-y)=().A. 1+y2B. -1-y2C. 1-y2D. -1+y2答案:C解答:(1+y)(1-y)=12-y2=1-y2,选C.2、下列运算正确的是().A. a12÷a3=a4B. (3a2)3=9a6C. 2a·3a=6a2D. (a-b)2=a2-ab+b2答案:C解答:A选项:a12÷a3=a9,故A错误.B选项:(3a2)3=27a6,故B错误.C选项:2a·3a=6a2,故C正确.D选项:(a-b)2=a2-2ab+b2,故D错误.选C.3、下列运算正确的是().A. (a+b)(a-2b)=a2-2b2B. (a-12)2=a2-14C. -2(3a-1)=-6a+1D. (a+3)(a-3)=a2-9答案:D解答:A选项:原式=a2-2ab+ab-2b2=a2-ab-2b2,故A错误;B选项:原式=a2-a+14,根据完全平方公式可以做出判断,故B错误;C选项:原式=-6a+2,根据乘法分配律可以做出判断,故C错误;D选项:原式=a2-9,故D正确.选D.4、下列运算正确的是().A. 2x+3x=5x2B. (-2x)3=-6x3C. 2x3·3x2=6x5D. (3x+2)(2-3x)=9x2-4答案:C解答:A选项:2x+3x=5x,故A错误;B选项:(-2x)3=-8x3,故B错误;C选项:2x3·3x2=6x5,故C正确;D选项:(3x+2)(2-3x)=-9x2+4,故D错误.选C.5、下列运算正确的是().A. 4m-m=4B. (a2)3=a5C. (x+y)2=x2+y2D. -(t-1)=1-t 答案:D解答:A选项:4m-m=3m,故A错误;B选项:(a2)3=a6,故B错误;C选项:(x+y)2=x2+2xy+y2,故C错误;D选项:-(t-1)=1-t,故D正确.选D.6、下列运算正确的是().A. (2a2b)2=2a4b2B. (-a)2=a2C. (a+b)2=a2+b2D. a3a4=a12答案:B解答:A选项:原式=4a4b2,故A错误;B选项:原式=a2,故B正确;C选项:原式=a2+2ab+b2,故C错误;D选项:原式=a7,故D错误.选B.7、下列计算正确的是().A. x2+x=x3B. (-3x)2=6x2C. 8x4÷2x2=4x2D. (x-2y)(x+2y)=x2-2y2答案:C解答:A选项:x2+x≠x3,故A错误;B选项:(-3x)2=9x2≠6x2,故B错误;C选项:8x4÷2x2=4x2,故C正确;D选项:(x-2y)(x+2y)=x2-4y2≠x2-2y2,故D错误.选C.8、选择计算(-4xy2+3x2y)(4xy2+3x2y)的最佳方法是().A. 运用多项式乘多项式法则B. 运用平方差公式C. 运用单项式乘多项式法则D. 运用完全平方公式答案:B解答:选择计算(-4xy2+3x2y)(4xy2+3x2y)的最佳方法是:运用平方差公式.选B.9、下列计算正确的是().A. a2·a3=a6B. a8÷a2=a4C. a2+a2=2a2D. (a+3)2=a2+9答案:C解答:A选项:a2·a3=a5,故A错误;B选项:a8÷a2=a6,故B错误;C选项:a2+a2=2a2,故C正确;D选项:(a+3)2=a2+6a+9,故D错误;选C.10、下列运算,正确的是().A. 2x+3y=5xyB. (x-3)2=x2-9C. (xy2)2=x2y4D. x6÷x3=x2答案:C解答:A选项:2x+3y,无法合并,故A错误;B选项:(x-3)2=x2-6x+9,故B错误;C选项:(xy2)2=x2y4,故C正确;D选项:x6÷x3=x3,故D错误.选C.11、下列计算正确的是().A. B. (-2a2b)3=-6a2b3C. (a-b)2=a2-b2D.24aa b-+·2a ba++=a-2答案:D解答:A选项:,故A错误;B选项:(-2a2b)3=(-2)3(a2)3b3=-8a6b3,故B错误;C选项:(a-b)2=a2-2ab+b2,故C错误;D选项:24aa b-+·2a ba++=()()22a aa b+-+·2a ba++=a-2,故D正确.选D.12、下列运算不正确的是().A. xy+x-y-1=(x-1)(y+1)B. x2+y2+z2+xy+yz+zx=12(x+y+z)2C. (x+y)(x2-xy+y2)=x3+y3D. (x-y)3=x3-3x2y+3xy2-y3答案:B解答:A选项:xy+x-y-1=x(y+1)-(y+1)=(x-1)(y+1),A正确,不符合题意;B选项:x2+y2+z2+xy+yz+zx=12[(x+y)2+(x+z)2+(y+z)2],B错误,符合题意;C选项:(x+y)(x2-xy+y2)=x3+y3,C正确,不符合题意;D选项:(x-y)3=x3-3x2y+3xy2-y3,D正确,不符合题意.选B.13、下列计算正确的是().A. (x+y)2=x2+y2B. 2x2y+3xy2=5x3y3C. (-2a2b)3=-8a6b3D. (-x)5÷x2=x3答案:C解答:A选项:原式=x2+2xy+y2,不符合题意;B选项:原式不能合并,不符合题意;C选项:原式=-8a6b3,符合题意;D选项:原式=-x5÷x2=-x3,不符合题意.选C.14、如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式().A. x2-2x+1=(x-1)2B. x2-1=(x+1)(x-1)C. x2+2x+1=(x+1)2D. x2-x=x(x-1)答案:B解答:第一个图形空白部分的面积是x2-1,第二个图形的面积是(x+1)(x-1).则x2-1=(x+1)(x-1).选B.15、下列运算一定正确的是().A. 2a+2a=2a2B. a2·a3=a6C. (2a2)3=6a6D. (a+b)(a-b)=a2-b2答案:D解答:2a+2a=4a,A错误;a2·a3=a5,B错误;(2a2)3=8a6,C错误;选D.16、若()()2291111k--=8×10×12,则k=().A. 12B. 10C. 8D. 6答案:B解答:利用平方差公式可得,8101012k⨯⨯⨯=8×10×12,可求k为10.选B.17、化简(x-3)2-x(x-6)的结果为().A. 6x-9B. -12x+9C. 9D. 3x+9答案:C解答:原式=x2-6x+9-x2+6x=9.选C.18、4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足().A. 2a=5bB. 2a=3bC. a=3bD. a=2b答案:D解答:S1=12b(a+b)×2+12ab×2+(a-b)2=a2+2b2,S2=(a+b)2-S1=(a+b)2-(a2+2b2)=2ab-b2,∵S1=2S2,∴a2+2b2=2(2ab-b2),整理,得(a-2b)2=0,∴a-2b=0,∴a=2b.选D.19、已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则().A. b>0,b2-ac≤0B. b<0,b2-ac≤0C. b >0,b 2-ac ≥0D. b <0,b 2-ac ≥0答案:D解答:∵a -2b +c =0,a +2b +c <0, ∴a +c =2b ,b =2a c+, ∴a +2b +c =(a +c )+2b =4b <0, ∴b <0, ∴b 2-ac =(2a c +)2-ac =2224a ac c ++-ac=2224a ac c -+=(2a c -)2≥0 即b <0,b 2-ac ≥0. 选D. 二、填空题20、计算:(a -1)2=______. 答案:a 2-2a +1解答:根据差的完全平方公式展开得:(a -1)2=a 2-2a +1. 故答案为a 2-2a +1.21、计算:(a +3)2=______. 答案:a 2+6a +9解答:(a +3)2=a 2+6a +9. 故答案为:a 2+6a +9. 22、计算:(2-x )2=______. 答案:4-4x +x 2解答:(2-x )2=22-2×2x +x 2=4-4x +x 2. 故答案为:4-4x +x 2.23、已知a =7-3b ,则代数式a 2+6ab +9b 2的值为______.答案:49解答:∵a=7-3b,∴a+3b=7,∵a2+6ab+9b2=(a+3b)2,∴a2+6ab+9b2=72=49.故答案为:49.24、化简x2-(x+2)(x-2)的结果是______.答案:4解答:x2-(x+2)(x-2)=x2-x2+4=4.25、化简:()()=______.答案:1解答:原式=22-2=4-3=1.26、若a=b+2,则代数式a2-2ab+b2的值为______.答案:4解答:∵a=b+2,∴a-b=2,∴a2-2ab+b2=(a-b)2=22=4.27、若x2+ax+4=(x-2)2,则a=______.答案:-4解答:∵x2+ax+4=(x-2)2,∴a=-4.故答案为:-4.28)-1)的结果等于______.答案:2解答:由平方差公式a2-b2=(a+b)(a-b)可知:)-1)=2-12=3-1=2.29、已知a+b=3,a2+b2=5,则ab的值是______.答案:2解答:∵a+b=3,∴(a+b)2=9,即a2+2ab+b2=9,∵a2+b2=5,∴ab=(9-5)÷2=2.故答案为:2.30、若x、y、z为实数,且2421x y zx y z+-=⎧⎨-+=⎩,则代数式x2-3y2+z2的最大值是______.答案:26解答:①②2421x y zx y z+-=⎧⎨-+=⎩①②,①-②得:y=1+z,则y=1+z代入①得:x=2-z,则x2-3y2+z2=(2-z)2-3(1+z)2+z2=-z2-10z+1=-(z+5)2+26,当z=5时,x2-3y2+z2的最大值是26,故答案且:26.31、2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为______.答案:27解答:由题意可得在图1中:a 2+b 2=15,(b -a )2=3, 图2中大正方形的面积为:(a +b )2, ∵(b -a )2=3,a 2-2ab +b 2=3, ∴15-2ab =3, 2ab =12,∴(a +b )2=a 2+2ab +b 2=15+12=27, 故答案为:27. 三、解答题32、化简:(a +b )2-b (2a +b ). 答案:a 2.解答:原式=a 2+2ab +b 2-2ab -b 2 =a 2. 33、计算:(1)(x +y )2+x (x -2y ).(2)(1-3m m +)÷22969m m m -++.答案:(1)2x 2+y 2. (2)33m -. 解答:(1)原式=x 2+2xy +y 2+x 2-2xy =2x 2+y 2.(2)原式=(333m m m m +-++)·()()()2333m m m ++-=33m +·33m m +- =33m -. 34、计算:(1)(a +b )2+a (a -2b ).(2)m -1+2269m m --+223m m ++. 答案:(1)2a 2+b 2.(2)2413m m m +++. 解答:(1)(a +b )2+a (a -2b ) =a 2+2ab +b 2+a 2-2ab =2a 2+b 2.(2)m -1+2269m m --+223m m ++ =()()133m m m -+++23m ++223m m ++ =2232223m m m m +-++++ =2413m m m +++.。
乘法公式精选题(含答案)
5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。
八年级数学竞赛例题专题讲解:乘法公式(含答案)
专题02 乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用 即根据待求式的结构特征,模仿公式进行直接的简单的套用; 3.逆用 即将公式反过来逆向使用; 4.变用 即能将公式变换形式使用;5.活用 即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】 1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是 .(全国初中数字联赛试题)解题思路:因22()()a b a b a b -=+-,而a b +a b -的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知,a b 满足等式2220,4(2)x a b y b a =++=-,则,x y 的大小关系是( )A .x y ≤B .x y ≥C .x y <D .x y >(山西省太原市竞赛试题)(2)已知,,a b c 满足22227,21,617a b b c c a +=-=--=-,则a b c ++的值等于( ) A .2B .3C .4D .5(河北省竞赛试题)解题思路:对于(1),作差比较,x y 的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.【例3】计算下列各题:(1) 2486(71)(71)(71)(71)1+++++;(天津市竞赛试题) (2)221.23450.76552.4690.7655++⨯;(“希望杯”邀请赛试题)(3)22222222(13599)(246100)++++-++++.解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设221,2a b a b +=+=,求77a b +的值. (西安市竞赛试题)解题思路:由常用公式不能直接求出77a b +的结构,必须把77a b +表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:222123415;2345111;3456119;⨯⨯⨯+=⨯⨯⨯+=⨯⨯⨯+=(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算20002001200220031⨯⨯⨯+的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.【例6】设,,a b c 满足2223331,2,3,a b c a b c a b c ++=++=++=求:(1)abc 的值; (2)444a b c ++的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A 级1.已知22(3)9x m x --+是一个多项式的平方,则m = . (广东省中考试题) 2.数4831-能被30以内的两位偶数整除的是 .3.已知222246140,x y z x y z ++-+-+=那么x y z ++= .(天津市竞赛试题)4.若3310,100,x y x y +=+=则22x y += .5.已知,,,a b x y 满足3,5,ax by ax by +=-=则2222()()a b x y ++的值为 .(河北省竞赛试题)6.若n 满足22(2004)(2005)1,n n -+-=则(2005)(2004)n n --等于 . 7.22221111(1)(1)(1)(1)2319992000----等于( ) A .19992000 B .20012000 C .19994000D .200140008.若222210276,251M a b a N a b a =+-+=+++,则M N -的值是( )A .正数B .负数C .非负数D .可正可负9.若222,4,x y x y -=+=则19921992xy +的值是( )A .4B .19922C .21992D .4199210.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学? (“CASIO ”杯全国初中数学竞赛试题)11.设9310382a =+-,证明:a 是37的倍数. (“希望杯”邀请赛试题)12.观察下面各式的规律:222222222222(121)1(12)2;(231)2(23)3;(341)3(34)4;⨯+=+⨯+⨯+=+⨯+⨯+=+⨯+ 写出第2003行和第n 行的式子,并证明你的结论.B 级1.()na b +展开式中的系数,当n =1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出901.1的值为 . (《学习报》公开赛试题)2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,,a b c ,则222a b c ab bc ac ++---的值为 .(天津市竞赛试题)3.已知,,x y z 满足等式25,9,x y z xy y +==+-则234x y z ++= .4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为 .(全国初中数学联赛试题)5.已知19992000,19992001,19992002a x b x c x =+=+=+,则多项式222a b c ab bc ac ++---的值为( ) A .0B .1C .2D .36.把2009表示成两个整数的平方差的形式,则不同的表示法有( )A .16种B .14种C .12种D .10种(北京市竞赛试题)7.若正整数,x y 满足2264x y -=,则这样的正整数对(,)x y 的个数是( )A .1B .2C .3D .4(山东省竞赛试题)8.已知3a b -=,则339a b ab --的值是( )A .3B .9C .27D .81(“希望杯”邀请赛试题)9.满足等式221954m n +=的整数对(,)m n 是否存在?若存在,求出(,)m n 的值;若不存在,说明理由.第2题图11 2 1 1 3 311 4 6 4 1 1510 10 5 1… … … … … … …。
乘法公式复习(附答案)
华夏教育 初二数学乘法公式一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2数形结合的数学思想认识乘法公式:假设a 、b 都是正数,那么可以用以下图形所示意的面积来认识乘法公式。
如图1,两个矩形的面积之和(即阴影部分的面积)为(a+b)(a-b),通过左右两图的对照,即可得到平方差公式(a+b)(a-b)=a 2-b 2;图2中的两个图阴影部分面积分别为(a+b)2与(a-b)2,通过面积的计算方法,即可得到两个完全平方公式:(a+b)2=a 2+2ab+b 2与(a-b)2=a 2-2ab+b 2。
二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础。
注意掌握公式的特征,认清公式中的“两数”.例1 计算:()()53532222x y x y +- 解:原式()()=-=-53259222244x y x y例2 计算(-2x 2-5)(2x 2-5)分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式(a +b )(a -b )=a 2-b 2中的a ,而“2x 2”则是公式中的b .解:原式=(-5-2x 2)(-5+2x 2)=(-5)2-(2x 2)2=25-4x 4.例3 计算(-a 2+4b )2分析:运用公式(a +b )2=a 2+2ab +b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为(4b -a 2)2时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .(解略)(二)、连用:连续使用同一公式或连用两个以上公式解题。
例1 计算:()()()()111124-+++a a a a 解:原式()()()=-++111224a a a ()()=-+=-111448a a a例2 计算(2+1)(22+1)(24+1)(28+1).分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简.解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。
乘法公式知识点及复习题
蒙迪尔国际教育咨询电话:83737513乘法公式一、知识梳理1.平方差公式:a-b a b二a2-b22 2 22.完全平方公式:a_b a b _2ab23.x a x b]=x a b x ab2 23 34.立方和(差)公式:a b a b - ab = a ba「b ii a2b2ab 二a3_b32 2 2 25.三数和平方公式:(a+b+c)=a +b +c +2ab+2ac + 2bc2 2 2 3336.欧拉公式: a b c a b c- ab - ac - be = a b c - 3abc二、例题讲解2 2例1、要使等式(P *q )+ M =(p -q )成立,代数式M应为__________________ 。
2 2例2、(1)如果x+6xy+ky是一个完全平方公式的展开式,那么常数k= ________ 2 2(2)如果x +kx r^9y是一个完全平方式的展开式,那么常数k= ________ 。
2 2例3、已知a,b 满足a F=3,ab=2,则a b二-------------------“22 2芦a—b=3,ab=2,贝V a +b = _______ ,(a+b)= ________ .右m 丄=3,求m2 2禾廿! m _ 1例4、已知mm * m 的值。
蒙迪尔国际教育咨询电话:83737513例5、试说明不论a,b取任何有理数,代数式a2• b2-2a -4b 5的值总是非负数。
4 , 4 2 ,2 , ,a b a b b-aab“例6、计算'人八 A 丿的结果是________________ 例7、用乘法公式计算:(1)20142-2013 2015(2)2 3 1 32 1 33 1 川332 1 1例&如果(2a+2b+1 )(2a+2b-1 )=63,那么a+b的值为多少?例9、已知a =2013x 2012,b =2013x 2013,c =2013x 2014,则a2 b2 c2 -ab -be-ac =例10、若一个正整数能表示为两个连续偶数的平方差,那么这个正整数为“神秘数”4 =22 - 02,12 =42 -22,20 £-42,因此4,12,20这三个数都是神秘数。
乘法公式(提高)知识讲解
乘法公式(提高讲义)【重点梳理】重点一、平方差公式平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.重点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+(6)增因式变化:如2244()()()()a b a b a b a b -+++ 重点二、完全平方公式完全平方公式:()2222a b a ab b +=++2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.重点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+重点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.重点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 重点四、补充公式2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=±;33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++. 【典型例题】类型一、平方差公式的应用例1、计算(2+1)(221+)( 421+)(821+)(1621+)(3221+)+1.【思路点拨】本题直接计算比较复杂,但观察可以发现2+1与2-1,221+与221-,421+与421-等能够构成平方差,只需在前面添上因式(2-1),即可利用平方差公式逐步计算. 【答案与解析】解:原式=(2-1)(2+1)( 221+)(421+)(821+)(1621+)(3221+) +1 =(221-)( 221+)( 421+)(821+)(1621+)(3221+)+1 =642-1+1=642.【总结升华】对于式子较为复杂的数的计算求值问题,不妨先仔细观察,看是否有规律,然后去解决,会事半功倍,提高解题能力. 举一反三:【变式1】(2019秋﹒平山县期末)用简便方法计算: (1)1002-200×99+992 (2)2018×2020-20192【分析】(1)将原式转化为1002-2×100×(100-1)+(100-1)2,再利用完全平方公式进行计算, (2)2018×2020转化为(2019-1)(2019+1),再利用平方差公式计算即可. 【解答】解:(1)1002-200×99+992 =1002-2×100×(100-1)+(100-1)2 =[100-(100-1)]2=12 =1;(2)2018×2020-20192=(2019-1)(2019+1)-20192=20192-1-20192 =-1.【点评】考查平方差公式、完全平方公式的应用,掌握公式特征是关键.【变式2】(2019•内江)(1)填空: (a ﹣b )(a+b )= ;(a ﹣b )(a 2+ab+b 2)= ;(a ﹣b )(a 3+a 2b+ab 2+b 3)= . (2)猜想:(a ﹣b )(a n ﹣1+a n ﹣2b+…+ab n ﹣2+b n ﹣1)= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2. 【答案】解:(1)(a ﹣b )(a+b )=a 2﹣b 2;(a ﹣b )(a 2+ab+b 2)=a 3+a 2b+ab 2﹣a 2b ﹣ab 2﹣b 3=a 3﹣b 3;(a ﹣b )(a 3+a 2b+ab 2+b 3)=a 4+a 3b+a 2b 2+ab 3﹣a 3b ﹣a 2b 2﹣ab 3﹣b 4=a 4﹣b 4;故答案为:a 2﹣b 2,a 3﹣b 3,a 4﹣b 4; (2)由(1)的规律可得:原式=a n﹣b n,故答案为:a n ﹣b n;(3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.例2、(2019秋﹒甘井子区期末)数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程:(1)小明的想法是:将边长为a 的正方形右下角剪掉一个边长为b 的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的起法是:在边长为a 的正方形内部任意位置剪掉一个边长为b 的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.【考点】平方差公式的几何背景.乘法公式的几何验证方法∴①+②的面积=a 2-b 2;①+②的面积=大正方形的面积-小正方形的面积=a 2-b 2, ∴(a+b)(a -b)=a 2-b 2.(2)①+②的面积=(a-b)b=ab-b 2, ③+④的面积=(a-b)a=a 2-ab, ∴①+②+③+④=a 2-b 2;①+②+③+④的面积=大正方形的面积-小正方形的面积=a 2-b 2, ∴(a+b)(a -b)=a 2-b 2.【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键. 举一反三:【变式】(2019秋﹒南昌期末)如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.(1)在图2中的阴影部分面积S 1可表示为a 2-b 2a 2-b 2,在图3中的阴影部分的面积S 2可表示为a 2-b 2a 2-b 2,由这两个阴影部分的面积得到的一个等式是BB . A .(a+b)2=a 2+2ab+b 2B .a 2-b 2=(a+b)(a-b) C .(a-b)2=a 2-2ab+b 2(2)根据你得到的等式解决下面的问题: ①计算:67.52-32.52; ②解方程:(x+2)2-(x-2)2=24.【考点】平方差公式的几何背景.【专题】整式;一次方程(组)及应用;运算能力. 【分析】(1)由正方形的面积,可得S 1=a 2-b 2;由长方形的面积,可得S 1=(a+b)(a-b)=a 2-b 2;所以a 2-b 2=(a+b)(a-b);(2)①67.52-32.52=(67.5+32.5)(67.5-32.5)=100×35=3500;②展开整理,得8x=24,解得x=3,所以方程的解是x=3.【解答】解:(1)由正方形的面积,可得 S 1=a 2-b 2;由长方形的面积,可得S 1=(a+b)(a-b)=a 2-b 2; ∴a 2-b 2=(a+b)(a-b); 故答案为a 2-b 2,a 2-b 2,选B ;(2)①67.52-32.52=(67.5+32.5)(67.5-32.5)=100×35=3500; ②(x+2)2-(x-2)2=24, 展开整理,得8x=24, 解得x=3, ∴方程的解是x=3.【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键.类型二、完全平方公式的应用例3、运用乘法公式计算:(1)2(23)a b +-;(2)(23)(23)a b c a b c +--+.【思路点拨】(1)是一个三项式的平方,不能直接运用完全平方公式,可以用加法结合律将23a b +-化成(23)a b +-,看成a 与(23)b -和的平方再应用公式;(2)是两个三项式相乘,其中a 与a 完全相同,2b ,3c -与2b -,3c 分别互为相反数,与平方差公式特征一致,可适当添加括号,使完全相同部分作为“一项”,互为相反数的部分括在一起作为“另一项”. 【答案与解析】解:(1)原式222[(23)]2(23)(23)a b a a b b =+-=+-+-22464129a ab a b b =+-+-+ 22446129a b ab a b =++--+.(2)原式22222[(23)][(23)](23)4129a b c a b c a b c a b bc c =+---=--=-+-. 【总结升华】配成公式中的“a ”“b ”的形式再进行计算. 举一反三:【变式】运用乘法公式计算:(1)()()a b c a b c -++-; (2)()()2112x y y x -+-+; (3)()2x y z -+; (4)()()231123a b a b +---. 【答案】解:(1) ()()a b c a b c -++-=[a -(b -c )][ a +(b -c )]=()()222222a b c a b bc c--=--+=2222a b bc c -+-.(2) ()()2112x y y x -+-+ =[2x +(y -1)][2x -(y -1)]=()()()222221421x y x y y --=--+=22421x y y -+-.(3)()()()()22222x y z x y z x y x y z z -+=-+=-+-+⎡⎤⎣⎦=222222x xy y xz yz z -++-+.(4) ()()231123a b a b +---=()2231a b -+-=-22[(23)2(23)1]a b a b +-++=-()22(2)2233461a a b b a b ⎡⎤+⋅⋅+--+⎣⎦=224129461a ab b a b ---++-例4、已知△ABC 的三边长a 、b 、c 满足2220a b c ab bc ac ++---=,试判断△ABC 的形状.【思路点拨】通过对式子变化,化为平方和等于零的形式,从而求出三边长的关系. 【答案与解析】解:∵ 2220a b c ab bc ac ++---=,∴ 2222222220a b c ab bc ac ++---=,即222222(2)(2)(2)0a ab b b bc c a ac c -++-++-+=. 即222()()()0a b b c a c -+-+-=. ∴ 0a b -=,0b c -=,0a c -=,即a b c ==,∴ △ABC 为等边三角形.【总结升华】式子2220a b c ab bc ac ++---=体现了三角形三边长关系,从形式上看与完全平方式相仿,但差着2ab 中的2倍,故想到等式两边同时扩大2倍,从而得到结论. 举一反三:【变式】多项式222225x xy y y -+++的最小值是____________. 【答案】4;提示:()()2222222514x xy y y x y y -+++=-+++,所以最小值为4.。
中考数学总复习《乘法公式》专项提升练习题-带答案
中考数学总复习《乘法公式》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、平方差公式1.计算:(1)(3x+5)(3x−5);(2)(12x+13)(12x−13);(3)(2x+y)(2x−y).2.利用乘法公式计算:(1)5002﹣499×501.(2)5023×49133.已知m=√5+1,n=√5−1.求值:(1)m2+n2;(2)nm +mn.4.(1)先化简,再求值:(2x+1)(2x−1)−5x(x−1)+(x−1)2,其中x=−13;(2)计算:20222−2021×2023−992.5.如图,有一个边长为2a(a>10)米的正方形池塘,为了创建文明农村,需在南北方向上扩大3米,东西方向上减少3米,从而得到一个长方形池塘.(1)求改造后的长方形池塘的面积;(2)改造后的长方形池塘的面积比原正方形池塘的面积变大还是变小了,请通过计算说明.6.如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.二、完全平方公式 10.运用完全平方公式计算:(1)(4m +n)2;(2)(y −12)2.11.解方程:(3x −1)2=(2−5x )2.12.(a −2b +c )213.计算:(7+4√3)(7−4√3)−(√3−1)2.14.放学时,王老师布置了一道因式分解题:(x +y )2+4(x -y )2-4(x 2-y 2),小明思考了半天,没有得出答案.请你帮小明解决这个问题.15.回答下列问题(1)若x 2+1x 2=4,则(x +1x )2=________,(x −1x )2=________.(2)若a +1a =5,则a 2+1a 2=________;(3)若a 2−6a +1=0,求2a 2+2a 2的值.16.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.17.阅读下列文字:我们知道,图形是一种重要的数学语言,我国著名的数学家华罗庚先生曾经说:“数缺形时少直观,形缺数时难入微”.例如,对于一个图形,通过不同的方法计算图形的面积,就可以得到一个数学等式.(1)模拟练习:如图,写出一个我们熟悉的数学公式:______;(2)解决问题:如果a+b=10,ab=12求a2+b2的值;(3)类比探究:如果一个长方形的长和宽分别为(8−x)和(x−2),且(8−x)2+(x−2)2=20,求这个长方形的面积.18.为了纪念革命英雄夏明翰,衡阳市政府计划将一块长为(2a+b)米,宽为(a+b)米的长方形(如图所示)地块用于宣传革命英雄事迹,规划部门计划将阴影部分进行绿化,中间将修建一座夏明翰雕像.(1)试用含a,b的代数式表示绿化的面积是多少平方米?(2)若a+b=5,ab=6请求出绿化面积.19.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个大正方形,如图2所示.(1)请直接写出(a+b)2,(a−b)2,ab之间的等量关系________.(2)若xy=−3,x−y=4求x+y的值.(3)如图3,线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.20.如图①,正方形ABCD是由两个长为a、宽为b的长方形和两个边长分别为a、b 的正方形拼成的.(1)利用正方形ABCD面积的不同表示方法,直接写出(a+b)2、a2+b2、ab之间的关系式,这个关系式是;(2)若m满足(2024−m)2+(m−2023)2=4047,请利用(1)中的数量关系,求(2024−m)(m−2023)的值;(3)若将正方形EFGH的边FG、GH分别与图①中的PG、MG重叠,如图②所示,已知PF= 8,NH=32求图中阴影部分的面积(结果必须是一个具体数值).参考答案1.解:(1)原式=5002−(500−1)×(500+1)=5002−(5002−1)=5002−5002+1=1;(2)原式=(50+23)×(50−23)=2500−49=249959.2.解:(1)(3x +5)(3x −5)=(3x)2−52=9x 2−25;(2)(12x +13)(12x −13) =(12x)2−(13)2 =14x 2−19; (3)(2x +y )(2x −y )=(2x)2−y 2=4x 2−y 2.3.(1)解:∵m =√5+1 n =√5−1∵m 2+n 2=(√5+1)2+(√5−1)2=5+2√5+1+5−2√5+1=6+6=12;(2)解:由题意知=12(√5+1)(√5−1)=124=3.4.解:(1)原式=4x 2−1−5x 2+5x +x 2−2x +1=3x .当x =−13时,原式=3×(−13)=−1. (2)原式=20222−(2022−1)×(2022+1)−(100−1)2=20222−20222+1−10000+200−1=−98005.解:(1)由题可得,改造后池塘的长为(2a +3)m ,宽为(2a -3)m∵改造后的面积为:(2a−3)(2a+3)=(4a2−9)m2.(2)原来的面积为:2a×2a=4a2(m2)∵4a2−(4a2−9)=9>0∵改造后的长方形池塘的面积与原来相比变小了.6.解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b)=2(15.7+4.3)(15.7﹣4.3)=456.7.(1)解:1√14−√13=√14+√13(√14+√13)(√14−√13)=√14+√13(√14)2−(√13)2=√14+√1314−13=√14+√13(2)解:(1√2+1+1√3+√2+1√4+√3+⋯+1√2021+√2020)×(√2021+1)=(√2-1+√3-√2+√4-√3+……+√2021-√2020)×(√2021+1)=(√2021-1)×(√2021+1)=2021-1=2020(3)解:34−√13−6√13−√7−23+√7=(4+√13)-(√13+√7)-(3-√7)=4+√13-√13-√7-3+√7=18.(1)解:S阴影=S边长为a的正方形−S边长为b的正方形,即S阴影=a2−b2.故答案为:a2−b2.(2)观察图形可知,阴影部分裁剪下来,重新拼成一个长方形,它的宽是a−b,长是a+b,面积是(a+b)(a−b).故答案为:a−b a+b(a+b)(a−b).(3)图1和图2表示的面积相等,可得a2−b2=(a+b)(a−b).故答案为:a2−b2=(a+b)(a−b).(4)①20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1②(2m+n+p)(2m+n−p)=[(2m+n)+p][(2m+n)−p]=(2m+n)2−p2=4m2+4mn+n2−p29.(1)解:图1中阴影部分的面积为a2−b2,图2中的阴影部分的面积为(a+b)(a−b)∵图1和图2中两阴影部分的面积相等∵上述操作能验证的等式是a2−b2=(a+b)(a−b)故答案为:a2−b2=(a+b)(a−b);(2)解:①∵9a2−b2=36∵(3a+b)(3a−b)=36∵3a+b=9∵3a−b=4故答案为:4;②(1−122)⋅(1−132)⋅(1−142)⋅(1−152)⋅⋅⋅(1−120222)=(1+12)×(1−12)×(1+13)×(1−13)×(1+14)×(1−14)×⋯×(1+12022)(1−12022)=32×12×43×23×54×34×⋯×20232022×20212022=12×(32×23)×(43×34)×⋯×(20212022×20222021)×20232022=12×1×20232022=20234044.10.解:(1)(4m+n)2=(4m)2+2⋅(4m)⋅n+n2=16m 2+8mn +n 2;(2)(y −12)2=y 2−2⋅y ⋅12+(12)2=y 2−y +14. 11.解:∵(3x −1)2=(2−5x )2∵3x −1=±(2−5x )解得x =12或x =38.12.解:原式=(a −2b)2+2c(a −2b)+c 2=a 2−4ab +4b 2+2ac −4bc +c 2=a 2+4b 2+c 2−4ab +2ac −4bc .13.解:原式=49−48−(3−2√3+1)=2√3−314.解:把(x +y ),(x -y )看作完全平方公式里的a ,b .解:设x +y =a ,x -y =b则原式=a 2+4b 2-4ab =(a -2b )2=[(x +y )-2(x -y )]2=(3y -x )2.故答案为(3y -x )2.15.(1)解:∵x 2+1x 2=4∵(x +1x )2=x 2+2x ⋅1x +1x 2=x 2+2+1x 2=6,(x −1x )2=x 2−2x ⋅1x +1x 2=x 2−2+1x 2=2故答案为:6;2;(2)解:∵a +1a =5 ∵(a +1a )2=a 2+2+1a 2=25∵a 2+1a 2=(a +1a )2−2=23 故答案为:23;(3)解∵a 2−6a +1=0∵a ≠0∵a −6+1a =0∵a +1a =6∵(a+1a )2=a2+2+1a2=36∵a2+1a2=(a+1a)2−2=34∵2a2+2a2=2(a2+1a2)=68.16.解:∵两个正方形的面积=a2+b2=(a+b)2−2ab=100−40=60 ,SΔADC=12a2SΔFGC=12(a+b)⋅b∵阴影部分的面积为:60−12a2−12(a+b)⋅b=60−12a2−12ab−12b2=60−12(a2+b2)−12ab=60−12×60−12×20=20.17.(1)解:(1)用大正方形面积公式求得图形的面积为:(a+b)2;用两个小正方形面积加两个长方形面积和求出图形的面积为:a2+2ab+b2.故答案为:(a+b)2=a2+2ab+b2;(2)解:(2)∵a+b=10ab=12∴a2+b2=(a+b)2﹣2ab=100﹣24=76;(3)解:(3)设8﹣x=a x﹣2=b∵长方形的两邻边分别是8﹣x x﹣2∴a+b=8﹣x+x﹣2=6∵(8﹣x)2+(x﹣2)2=20∴a2+b2=(a+b)2﹣2ab=62﹣2ab=20∴ab=8∴这个长方形的面积=(8﹣x)(x﹣2)=ab=8.18.解:(1)根据题意可得绿化的面积为:(2a+b)(a+b)−a2=2a2+2ab+ab+b2−a2=a2+3ab+b2;(2)∵a+b=5∵a2+3ab+b2=a2+2ab+b2+ab=(a+b)2+ab=52+6=31(平方米).19.(1)解:由图2各部分的面积关系得:(a+b)2−(a−b)2=4ab故答案为:(a+b)2−(a−b)2=4ab;(2)由(1)题结果可得(x+y)2=(x−y)2+4xy=16−12=4∵x+y=±√4=±2∵x+y的值为±2;(3)设AC=x,BC=y则x2+y2=32 x+y=10∵2xy=(x+y)2−(x2+y2)=102−32=68∵xy=682=34∵S△ACF=12AC×CF=12×34=17∵阴影部分△ACF面积为17.20.解:(1)(a+b)2=a2+b2+2ab(2)设2024−m=a m−2023=b则(2024−m)(m−2023)=ab a+b=1由已知得:a2+b2=4047(a+b)2=a2+b2+2ab∵12=4047+2ab∵ab=−2023∵(2024−m)(m−2023)=−2023(3)设正方形EFGH的边长为x,则PG=x−8NG=32−x∵S阴=S正方形APGM+2S长方形PBNG+S正方形CQGN∵S阴=(x−8)2+2(x−8)(32−x)+(32−x)2∵(a+b)2=a2+b2+2ab=[(x−8)+(32−x)]2=242=576∵S阴。
乘法公式(含答案)
1.2 乘法公式◆赛点归纳乘法公式是多项式相乘得出的有规律性和实用性的具体结论,是多项式乘法运算和相关恒等变形的重要工具.除教材里介绍的平方差公式和完全平方公式外,另外补充几个常用公式:(1)(a±b )(a 2ab+b 2)=a 3±b 3;(2)(a±b )3=a 3±3a 2b+3ab 2±b 3;(3)(a+b+c )2=a 2+b 2+c 2+2ab+2bc+2ac .◆解题指导例1 (2004,河北省竞赛)已知实数a 、b 、x 、y 满足ax+by=3,ax -bx=5,则(a 2+b 2)(x 2+y 2)的值为________.【思路探究】显然将已知的代数式的值直接代入要求的代数式中,是难以求其值的,但将已知的两个代数式平方后,加以比较,就可发现它们之间的关系.例2 (2000,重庆市竞赛)计算:(1-22221111)(1)(1)(1)2319992002---). 【思路探究】本题若直接计算是很复杂的,因每个括号内都是两个数的平方差,故利用平方差公式可使计算简化.例 3 (2004,河北省竞赛)已知四边形四条边的长分别是m 、n 、p 、q ,•且满足m 2+n 2+p 2+q 2=2mn+2pq ,则这个四边形是( ).A .平行四边形B .对角线互相垂直的四边形C .平行四边形或对角线互相垂直的四边形D .对角线相等的四边形【思路探究】由观察可知,条件等式具有完全平方公式的特征.故由条件等式变形,可得这个四边形的四边之间的关系.【思维误区】有位同学这样解答例3,你认为对吗?【解】 ∵m 2+n 2+p 2+q 2=2mn+2pq ,∴(m 2+n 2-2mn )+(p 2+q 2-2pq )=0,∴(m -n )2+(p -q )2=0,∴m=n ,p=q .故这个四边形是平行四边形.例4 (2002,全国竞赛)已知a=1999x+2000,b=1999x+2001,c=1999x+2002,•则多项式a2+b2+c2-ab-bc-ca的值为().A.0 B.1 C.2 D.3【思维探究】多项式a2+b2+c2-ab-bc-ca具有完全平方式的基本特征,经过变形可转化为(a-b)2、(b-c)2、(c-a)2的代数和的形式,再结合题设,即可求其值.例5(2003,天津市竞赛)使得2n(n+1)(n+2)(n+3)+12可表示为2•个正整数平方和的自然数n().A.不存在B.有1个C.有2个D.有无数个【思路探究】首先需判断2n(n+1)(n+2)(n+3)+12的奇偶性,显然这个数是偶数,然后推证某两个数平方和是否是偶数.若是,再推导其个数;若不是,就不存在这样的自然数n.例6已知a、b、c满足a2+b2=20053-c2,求(a-b)2+(b-c)2+(c-a)2的最大值.【思路探究】条件等式和待求代数式都涉及数的平方关系,由此联想到利用完全平方公式求其最大值.【拓展题】已知正整数a、b、c满足不等式a2+b2+c2+42<ab+9b+8c,求a、b、c的值.◆探索研讨乘法公式在代数式计算、化简和恒等变形中,有着广泛的应用.在相关应用中要活用它,既要注意正向运用,又要注意逆向运用,请结合本节例题总结你的发现.◆能力训练1.(2005,武汉市“CASIO杯”选拔赛)如果x+y=1,x2+y2=3,那么x3+y3的值为().A.2 B.3 C.4 D.52.(2004,北京市竞赛)如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,则a+b2+c3=().A.12 B.14 C.16 D.183.(2003,太原市竞赛)已知a、b是实数,x=a2+b2+20,y=4(2b-a),则x、y•的大小关系是().A.x≤y B.x≥y C.x<y D.x>y 4.有理数a、b满足│a+b│<│a-b│,则().A.a+b≥0 B.a+b<0 C.ab<0 D.ab≥05.已知实数a、b满足条件a2+4b2-a+4b+54=0,那么-ab的平方根是().A.±2 B.2 C.±12D.126.(2001,“希望杯”,初二)若△ABC的三边长是a、b、c,且满足a4=b4+c4-b2c2,•b4=c4+a4-a2c2,c4=a4+b4-a2b2,则△ABC是().A.钝角三角形B.直角三角形C.等腰直角三角形D.等边三角形7.a、b、c、d都是正数,以下命题中,错误的命题是().A.若a2+b2+c2=ab+bc+ca,则a=b=cB.若a3+b3+c3=3abc,则a=b=cC.若a4+b4+c4+d4=2(a2b2+c2d2),则a=b=c=dD.若a4+b4+c4+d4=4abcd,则a=b=c=d8.*多项式5x2-4xy+4y2+12x+2015的最小值是().A.2004 B.2005 C.2006 D.20079.已知:a=-2000,b=1997,c=-1995,那么a2+b2+c2+ab+bc-ac的值是________.10.*已知a是实数,且使a3+3a2+3a+2=0,那么(a+1)2004+(a+1)2005+(a+3)2006+(a+3)2007的值是_______.11.(2000,“希望杯”,初一)已知a=1999,b=1,则a2+2b2+3ab=_______.12.(2002,北京市竞赛)已知x2+y2+z2-2x+4y-6z+14=0,则(x-y-z)2002=________.13.(2003,河北省竞赛)已知实数a满足a2-a-1=0,则a8+7a-4的值为_______.14.(2003,北京市竞赛)若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a2+a4=_______.15.计算下列各题:(1)333199********199********--⨯⨯;(2)1.345×0.345×2.69-1.3453-1.345×0.3452.16.计算:(1)6(7+1)(72+1)(74+1)(78+1)+1;(2)19492-19502+19512-19522+…+19972-19982+19992.17.(2004,北京市竞赛)在△ABC中,BC=a,AC=b,AB=c,且满足a4+b4+c4=a2c2+b2c2.•试判断△ABC的形状.18.如图,立方体的每一个面上都有一个自然数,•已知相对的两个面上二数之和相等.如果13、9、3的对面的数分别是a、b、c,试求a2+b2+c2-ab-bc-ca之值.139 3答案:解题指导例1 34.[提示:(a2+b2)(x2+y2)=a2x2+a2y2+b2x2+b2y2 =(a2x2+b2y2+2abxy)+(a2y2+b2x2-2abxy)=(ax+by)2+(ay-bx)2=32+52=34.]例2 原式=(1-12)(1+12)(1-13)+(1+13)…(1-1111 )(1)(1)(1 1999199920002000 ++-+)=12×32×23×43×34×…×19982000199920011200120011999199920002000220004000⨯⨯⨯=⨯=.例3 C [提示:(m-n)2+(p-q)2=0,若m、n是四边形的一组对边,则p、q•是它的另一组对边,这个四边形是平行四边形;若m、n是四边形一组邻边,则p、q•是它的另一组邻边,这个四边形是对角线互相垂直的四边形.]例4 D [提示:∵a-b=1999x+2000-(1999x+2001)=-1,b-c=1999x+2001-(1999x+2002)=-1,c-a=1999x+2002-(1999x+2000)=2,∴a2+b2+c2-ab-bc-ca=12[(a-b)2+(b-c)2+(c-a)2]=12[(-1)2+(-1)2+22]=3.]例5 A [提示:原式=2(n2+3n)(n2+3n+2)+12.设n2+3n+1=t,则t为奇数,令t=2k+1,原式=4(2k2+2k+3).若原式可表示为两个正整数x、y的平方和x2+y2,可知x、y均为偶数,不妨设x=2u,y=2v,于是有u2+v2=2k2+3k+3=2k(k+1)+3.因2k(k+1)+3为4p+3型,其中p为正整数,而u2+v2不可能为4p+3型,故满足条件的自然数n不存在.]例6 ∵a2+b2+c2=2005 3,∴(a-b)2+(b-c)2+(c-a)2=2a2+2b2+2c2-2ab-2bc-2ca=3(a2+b2+c2)-(a2+b2+c2+2ab+2bc+2ca)=3×20053-(a+b+c)2=2005-(a+b+c)2≤2005.∴(a-b)2+(b-c)2+(c-a)2的最大值是2005.【拓展题】∵a2+b2+c2+42<ab+9b+8c,∴a2+b2+c2+43≤ab+9b+8c,∴a2+b2+c2-ab-9b-8c+43≤0,∴(a-12b)2+34(b-6)2+(c-4)2≤0,∴(a-12b)2=0,34(b-6)2=0,(c-4)2=0.∴a-12b=0,b-6=0,c-4=0.∴a=3,b=6,c=4.能力训练1.C [提示:由2xy=(x+y)2-(x2+y2)=-2,得xy=-1.∴x3+y3=(x+y)(x2-xy+y2)=x2+y2-xy=4.]2.B [提示:由a2+b2+c2=ab+bc+ca,得(a-b)2+(b-c)2+(c-a)2=0.∴a=b=c.∴6a=12,即a=2.∴a+b2+c2=2+22+22=14.]3.B [提示:∵x-y=a2+b2+20-4(2b-a)=(a+2)2+(b-4)2≥0,∴x≥y.] 4.C [提示:∵│a+b│<│a-b│,∴(a+b)2<(a-b)2,即a2+2ab+b2<a2-2ab+b2.不等式两边都减去a2+b2,则有ab<-ab,故只有ab<0时,才能成立.]5.C [提示:∵a2+4b2-a+4b+54=0,∴(a-12)2+(2b+1)2=0,∵(a-12)2≥0,(2b+1)2≥0,∴a=12,b=-12.∴-ab=14,14的平方根是±12.]6.D [提示:∵a4+b4+c4=(b4+c4-b2c2)+(c4+a4-a2c2)+(a4+b4-a2b2),∴a4+b4+c4-a2b2-b2c2-a2c2=0.∴2a4+2b4+2c4-2a2b2-2b2c2-2a2c2=0.∴(a2-b2)2+(b2-c2)2+(c2-a2)2=0.∵(a2-b2)2≥0,(b2-c2)2≥0,(c2-a2)2≥0,∴a2=b2=c2.∵a、b、c为△ABC的边长,∴a=b=c.]7.C [提示:(1)∵2a2+2b2+2c2-2ab-2bc-2ca=0,∴(a-b)2+(b-c)2+(c-a)2=0.∴a=b=c.故命题A正确.(2)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ac)=0,∵a+b+c≠0,∴a2+b2+c2-ab-bc-ac=0,由(1)得a=b=c.故命题B正确.(3)∵a4+b4+c4+d4-2a2b2-2c2d2=0,∴(a2-b2)2+(c2-d2)2=0.∴a2=b2,c2=d2,∴a=b,c=d.但不一定有b=c,命题C错误.(4)∵a4+b4+c4+d4-4abcd=0,∴(a2-b2)2+(c2-d2)2+2(ab-cd)2=0,∴a2=b2,c2=d2,且ab=cd.∴a=b=c=d,命题D正确.]8.C [提示:5x2-4xy+4y2+12x+2015=(x2-4xy+4y2)+(4x2+12x+9)+2006=(x-2y)2+(2x+3)2+2006.∵(x-2y)2≥0,(2x+3)2≥0,∴原式的最小值为2006.]9.19 [提示:∵(a+b)2+(b+c)2+(a-c)2=a2+2ab+b2+b2+2bc+c2+a2-2ac+c2=2(a2+b2+c2+ab+bc-ac),又a+b=-2000+1997=-3,b+c=1997-1995=2,a-c=-2000+1995=-5,∴(a+b)2+(b+c)2+(a-c)2=(-3)2+22+(-5)2=38.∴a2+b2+c2+ab+bc-ac=19.]10.2 [提示:∵a3+3a2+3a+2=0,∴(a+1)3+1=0,即(a+1)3=-1.∴a+1=-1,∴a+3=1.∴(a+1)2004+(a+1)2005+(a+3)2006+(a+3)2007=(-1)2004+(-1)2005+12006+12007=2.] 11.4002000.[提示:a2+2b2+3ab=a2+2ab+b2+b2+ab=(a+b)2+b(a+1)=(1999+1)2+(1999+1)=20002+2000=4002000.]12.0 [提示:x2+y2+z2-2x+4y-6z+14=x2-2x+1+y2+4y+4+z2-6z+9=0,即(x-1)2+(y+2)2+(z-3)2=0.∴x-1=0,y+2=0,z-3=0,∴x=1,y=-2,z=3.∴(x-y-z)2002=(1+2-3)2002=0.]13.48 [提示:∵a2-a-1=0,a-a-1=1.∴a2+a-2=3,a4+a-4=7.∴a8+7a-4=a4(a4+a-4)+7a-4-1=7(a4+a-4)-1=7×7-1=48.] 14.-120 [提示:令x=0,代入,得a0=-1,令x=1,代入,得a5+a4+a3+a2+a1+a0=1;(1)令x=-1,代入,得-a5+a4-a3+a2-a1+a0=-243.(2)(1)+(2)相加,得a4+a2+a0=-121.故a2+a4=-120.]15.(1)令1000=a,999=b,则原式=3333223332222()333() ()a b a b a a b ab b a b a b aba b a b ab ab a b ab+--+++--+==+++=3.(2)令0.345=a,则1.345=a+1,2.69=2(a+1).∴原式=(a+1)a×2(a+1)-(a+1)3-(a+1)a2=2a3+4a2+2a-a3-3a2-3a-1-a3-a2=-(a+1)=-1.345.16.(1)原式=(7-1)(7+1)(72+1)(74+1)(78+1)+1 =(72-1)(72+1)(74+1)(78+1)+1…=(78-1)(78+1)+1=716-1+1=716.(2)原式=(1949+1950)(1949-1950)+…+(1997+1998)(1997-1998)+19992=-(1949+1950+…+1997+1998)+19992=19992-(19491998)502+⨯=3897326.17.∵a4+b4+12c4=a2c2+b2c2,∴(a4-a2c2+14c4)+(b4-b2c2+14c2)=0.∴(a2-12c2)2+(b2-12c2)2=0.∵(a2-12c2)2≥0,(b2-12c2)2≥0,∴a2=12c2,b2=12c2,∴a2=b2,a2+b2=c2.∴a=b,且a2+b2=c2.故△ABC是等腰直角三角形.18.∵a+13=9+b=3+c,∴a-b=-4,b-c=-6,c-a=10.∴a2+b2+c2-ab-bc-ca=12[(a-b)2+(b-c)2+(c-a)2]=12[(-4)2+(-6)2+102]=76.。
升五年级暑假讲义第3讲:运算定律(二)-乘除(含答案)
运算定律(二)--乘除____________________________________________________________________________________________________________________________________________________________________1.引导学生探究、理解并掌握乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
1.乘法交换律:交换两个因数的位置,积不变。
字母公式:a×b=b×a2.乘法分配律:先乘前两个数,或者先乘后两个数,积不变。
字母公式:(a×b)×c=a×(b×c)3.乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘。
字母公式: (a+b)×c=a×c+b×c或 a×(b+c) =a×b+a×c拓展:(a-b)×c=a×c-b×c或 a×(b-c) =a×b-a×c4.除法的性质:一个数连续除以两个数,可以用这个数除以后两个数的积。
用字母表示:a÷b÷c =a÷(b×c)题目类型一:乘法交换律例题1.下列式子交换数字顺序,等式左右两边相等吗?100×9=100×9 2×18=18×2 a×b=b×a答案:都相等。
练习1.325×3×4=325×口×3 125×3×8=125×口×3答案:325×3×4=325×4×3 125×3×8=125×8×3。
【精品讲义】人教版 八年级上册数学 乘法公式 讲义 知识点讲解+练习题
讲 义1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
即nm nma a a +=• (m 、n 都是正整数) 注:底数可以是单项式,也可以是多项式;底数不同的幂相乘,不能用该法则;不要忽视指数为1 的因数;三个或三个以上同底数幂相乘时,也具有这一性质;该法则可以逆用,即nm n m a a a•=+ (m 、n 都是正整数) 2、幂的乘方法则:幂的乘方,底数不变,指数相乘。
即注:不要将幂的乘方与同底数幂的乘法混淆,幂的乘方运算转化为指数的乘法壳牌 (底数不变),同底数幂的乘法运算转化为指数的加法运算(底数不变);在形式上,底数本身就是一个幂,底数为多项式时,应视为一个整体,切忌分开;幂的乘方法则可进一步推广为:()[]=p nm a (M 、N 、P 都是正整数) 该法则可逆用,即3、积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即()nn nb a ab =(N 为正整数)。
注:法则中的字母可以表示数,也可以表示单项式或多项式;运用该法则时,注意系数为-1时的“-”号的确定; 三个或三个以上因式的乘方,也具有这一性质;该法则可逆用,即 ,逆向运用可将算式灵活性变形或简化计算。
单项式的乘法1、单项式乘单项式法则:把它们的系数、同底数分别相乘,其余字母连同它的指数不变,作为积的因式。
积的系数等于各因式系数的积,注意相乘时积的符号; 相同字母相乘,要运用同底数幂的乘法,即底数不变,指数相加;2、单项式乘多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。
单位项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同; 积的符号由单项式的符号与多项式的符号同时决定的;对于混合运算,应注意运算顺序,先算积的乘方与幂的乘方,再算乘法,最后有同类项要合并,使所得的结果是要最简。
多项式的乘法:多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
乘法公式知识点详解及提高练习(含答案)
初中数学竞赛辅导资料乘法公式知识点详解及提高练习甲内容提要1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2ab+b2)=a3±b33.公式的推广:①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)…………注意观察右边展开式的项数、指数、系数、符号的规律③由平方差、立方和(差)公式引伸的公式(a+b)(a3-a2b+ab2-b3)=a4-b4(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6…………注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n4.公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
七年级数学上册专题知识讲义-乘法公式、整式的除法(附练习及答案)
乘法公式、整式的除法【考向解读】一、考点突破本讲考点主要包括:平方差公式、完全平方公式,同底数幂的除法、单项式除以单项式、多项式除以单项式。
通过多项式的乘法运算得到乘法公式,再运用公式计算多项式的乘法,培养从一般到特殊,再从特殊到一般的思维能力;通过乘法公式的几何背景,培养运用数形结合思想和整体思想解决问题的能力。
平方差公式是中考命题中比较重要的考点之一,单独命题的题型多为填空题,选择题和简单的计算题,这一知识点也常融入其他知识命题;完全平方公式在中考中占有重要地位,它在数的运算,代数式的化简,方程,函数等方面都有极其广泛的应用。
整式的除法在中考中出现的频率比较高,题型多见选择题与填空题,有时也会出现化简求值题,因此运算必须熟练。
二、重点、难点提示重点:平方差公式、完全平方公式,整式的除法及零指数幂的运算。
难点:乘法公式中字母的广泛含义及整式除法法则的应用。
【重点点拨】知识脉络图【典例精析】能力提升类例1 计算:(1)(-2a-b)(b-2a);(2)(2x+y-z)2.一点通:第(1)题中的b-2a=-2a+b,把-2a看成平方差公式中的“a”即可;第(2)题有多种解法,可把2x看成完全平方公式中的“a”,把y-z看成公式中的“b”,也可把2x+y看成公式中“a”,把z看成公式中的“b”。
答案:(1)(-2a-b)(b-2a)=(-2a-b)(-2a+b)=(-2a)2-b2=4a2-b2;(2)(2x+y-z)2=[(2x+y)-z]2=(2x+y)2-2z(2x+y)+z2=4x2+4xy+y2-4xz -2yz +z 2.点评:这两题都可以运用乘法公式计算,第(1)题先变形,再用平方差公式;第(2)题把三项和看成两项和,两次运用完全平方公式。
例2 计算:(1)[(-3xy )2·x 3-2x 2·(3xy 2)3·12y ]÷(9x 4y 2);(2)[(x +2y )(x -2y )+4(x -y )2]÷(6x ).一点通:本题是整式的混合运算,解题时要注意运算顺序,先乘方,再乘除,最后加减,有括号先算括号里的。
分数乘法-计算提高篇(十三大考点)-2023-2024学年六年级数学上册(解析版)
2023-2024学年六年级数学上册分数乘法·计算提高篇【十三大考点】(解析版)专题解读本专题是第一单元分数乘法·计算提高篇,该专题内容主要是分数乘法的简便计算和复杂类型的计算,考点和题型偏于计算,题目综合性强,难度较大,部分考点更偏于思维拓展,建议根据学生总体掌握水平,选择性讲解考点考题,一共划分为十三个考点,欢迎使用。
目录导航目录【考点一】简便计算:“乘法交换律和乘法结合律的运用” (2)【考点二】简便计算:“乘法分配律的运用” (6)【考点三】简便计算:“乘法分配律逆运算” (8)【考点四】简便计算:“添加因数1” (9)【考点五】简便计算:“分子、分母交换与拆分” (11)【考点六】简便计算:“带分数化加式或化减式” (12)【考点七】简便计算:“分数化加式或化减式” (13)【考点八】简便计算:“整数化加减或化倍式” (15)【考点九】简便计算:“裂项相消法” (17)【考点十】简便计算:“连锁约分” (20)【考点十一】简便计算:“分组简算” (21)【考点十二】简便计算:“换元法解题” (22)【考点十三】定义新运算。
(24)考点导图典型例题【考点一】简便计算:“乘法交换律和乘法结合律的运用”。
【方法点拨】1.乘法交换律:两个数相乘,交换两个因数的位置,积不变,用字母表示为a×b=b×a。
2.乘法结合律:三个数相乘,先把前两个数相乘或者先把后两个数相乘,积不变,用字母表示为(a×b)×c=a ×(b×c)。
【典型例题】【对应练习1】【对应练习2】【对应练习3】=54【考点二】简便计算:“乘法分配律的运用”。
【方法点拨】乘法分配律: (a+b)×c=a×c+b×c(a-b)×c=a×c-b×c【典型例题1】乘法分配律。
简便计算。
7196 −×5.4【对应练习1】简便计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛辅导资料
乘法公式知识点详解及提高练习
甲内容提要
1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,
平方差公式:(a+b)(a-b)=a2-b2
立方和(差)公式:(a±b)(a2 ab+b2)=a3±b3
3.公式的推广:
①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd
即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:(a±b)3=a3±3a2b+3ab2±b3
(a±b)4=a4±4a3b+6a2b2±4ab3+b4)
(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)
…………
注意观察右边展开式的项数、指数、系数、符号的规律
③由平方差、立方和(差)公式引伸的公式
(a+b)(a3-a2b+ab2-b3)=a4-b4
(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5
(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6
…………
注意观察左边第二个因式的项数、指数、系数、符号的规律
在正整数指数的条件下,可归纳如下:设n为正整数
(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n
(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1
类似地:
(a-b)(a n-1+a n-2b+a n-3b2+…+a b n-2+b n-1)=a n-b n
4.公式的变形及其逆运算
由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2a b
由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b)
由公式的推广③可知:当n为正整数时
a n-
b n能被a-b整除,
a2n+1+b2n+1能被a+b整除,
a2n-b2n能被a+b及a-b整除。
乙例题
例1. 己知x+y=a xy=b
求①x2+y2②x3+y3③x4+y4④x5+y5
解:①x2+y2=(x+y)2-2xy=a2-2b
②x3+y3=(x+y)3-3xy(x+y)=a3-3ab
③x4+y4=(x+y)4-4xy(x2+y2)-6x2y2=a4-4a2b+2b2
④x5+y5=(x+y)(x4-x3y+x2y2-xy3+y4)
=(x+y)[x4+y4-xy(x2+y2)+x2y2]
=a[a4-4a2b+2b2-b(a2-2b)+b2]
=a5-5a3b+5ab2
例2.求证:四个連续整数的积加上1的和,一定是整数的平方。
证明:设这四个数分别为a, a+1, a+2, a+3(a为整数)
a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)+1=(a2+3a)(a2+3a+2)+1
=(a2+3a)2+2(a2+3a)+1=(a2+3a+1)2
∵a是整数,整数的和、差、积、商也是整数
∴a2+3a+1是整数证毕
例3.求证:2222+3111能被7整除
证明:2222+3111=(22)111+3111=4111+3111
根据a2n+1+b2n+1能被a+b整除,(见内容提要4)
∴4111+3111能被4+3整除
∴2222+3111能被7整除
例4. 由完全平方公式推导“个位数字为5的两位数的平方数”的计算规律解:∵(10a+5)2=100a2+2×10a×5+25=100a(a+1)+25
∴“个位数字为5的两位数的平方数”的特点是:幂的末两位数字是底数个位数字5的平方,幂的百位以上的数字是底数十位上数字乘以比它大1的数的积。
如:152=225 幂的百位上的数字2=1×2),252=625 (6=2×3),352=1225 (12=3×4) 452=2025 (20=4×5)
……
丙练习15
1. 填空:
①a 2+b 2=(a+b)2-_____ ②(a+b)2=(a -b)2+___
③a 3+b 3=(a+b)3-3ab(___) ④a 4+b 4=(a 2+b 2)2-____
,⑤a 5+b 5=(a+b)(a 4+b 4)-_____ ⑥a 5+b 5=(a 2+b 2)(a 3+b 3)-____
2. 填空:
①(x+y)(___________)=x 4-y 4 ②(x -y)(__________)=x 4-y 4
③(x+y)( ___________)=x 5+y 5 ④(x -y )(__________)=x 5-y 5
3.计算:
①552= ②652= ③752= ④852= ⑤952=
4. 计算下列各题 ,你发现什么规律
⑥11×19= ⑦22×28= ⑧34×36= ⑨43×47= ⑩76×74=
5..已知x+
x 1=3, 求①x 2+21x ②x 3+31x ③x 4+41x 的值
6.化简:①(a+b )2(a -b)2
②(a+b)(a 2-ab+b 2)
③(a -b)((a+b)3-2ab(a 2-b 2)
④(a+b+c)(a+b -c)(a -b+c)(-a+b+c)
7.己知a+b=1,求证:a3+b3-3ab=1
8.己知a2=a+1,求代数式a5-5a+2的值
9.求证:233+1能被9整除
10.求证:两个连续整数的积加上其中较大的一个数的和等于较大的数
的平方
的直径分别是a,b,c
①
②求:大圆面积减去三个小圆面积和的差。
答案:
4.十位上的数字相同,个位数的和为10的两个两位数相乘,其积的末两
位数是两个个位数字的积,积的百位以上的数是,原十位上数字乘上比它大1的数的积
8. n(n+1)+(n+1)=(n+1)2
9. ①可证明3个小圆周长的和减去大圆周长,其差等于0 ②2
(ab+ac+bc)。