人版八年级(上册)数学基础训练题
八年级上册数学基础训练答案人教版
三一文库()/初中二年级〔八年级上册数学基础训练答案人教版[1]〕§11.1全等三角形一、1. C 2. C二、1.(1)①AB DE ②AC DC ③BC EC(2)①∠A ∠D ②∠B ∠E ③∠ACB ∠DCE2. 120 4三、1.对应角分别是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.对应边分别是:AO和DO,OB和OC,AC和DB.2.相等,理由如下:∵△ABC≌△DFE ∴BC=FE ∴BC-EC=FE-EC ∴BE=FC3.相等,理由如下:∵△ABC≌△AEF ∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠FAE #—∠BAF 即∠CAF=∠EAB§11.2全等三角形的判定(一)一、1. 100 2. △BAD,三边对应相等的两个三角形全等(SSS)3. 2, △ADB≌△DAC,△ABC≌△DCB4. 24二、1. ∵BG=CE ∴BE=CG 在△ABE和△DCG中,∴△ABE≌△DCG(SSS),∴∠B=∠C2. ∵D是BC中点,∴BD=CD,在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC又∵∠ADB+∠ADC=180°∴∠ADB=90°∴AD⊥BC3.提示:证△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2可得∠ACE=∠FDB§11.2全等三角形的判定(二)一、1.D 2.C二、1.OB=OC 2. 95三、1. 提示:利用“SAS”证△DAB≌△CBA可得∠DAC=∠DBC.2. ∵∠1=∠2 ∴∠1+∠CAD=∠2+∠CAD即∠BAC=∠DAE,在△BAC和△DAE中,∴△BAC≌△DAE(SAS)∴BC=DE3.(1)可添加条件为:BC=EF或BE=CF(2)∵AB∥DE ∴∠B=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)§11.2全等三角形的判定(三)一、1. C 2. C二、1.AAS 2.(1)SAS (2)ASA 3.(答案不)∠B=∠B1,∠C=∠C1等三、1.在△ACE和△ABD中, ∴△ACE≌△ABD(AAS)2.(1)∵AB//DE ∴∠B=∠DEF ∵AC//DF ∴∠ACB=∠F 又∵BE=CF∴BE+EC=CF+EC ∴BC=EF ∴△ABC≌△DEF(ASA)3. 提示:用“AAS”和“ASA”均可证明.§11.2全等三角形的判定(四)一、1.D 2.C二、1.ADC,HL;CBE SAS 2. AB=A'B'(答案不)3.Rt△ABC,Rt△DCB,AAS,△DOC三、1.证明:∵AE⊥BC,DF⊥BC,∴∠CEA=∠DFB=90°∵BE=CF,∴BC-BE=BC-CF即CE=BF 在Rt△ACE和Rt△DBF中, ∴Rt△ACE≌ Rt△DBF(HL)∴∠ACB=∠DBC ∴AC//DB2.证明:∵AD⊥BC,CE⊥AB ∴∠ADB=∠CEB=90°.又∵∠B=∠B ,AD=CE∴△ADB≌△CEB(AAS)3.(1)提示利用“HL”证Rt△ADO≌Rt△AEO,进而得∠1=∠2;(2)提示利用“AAS”证△ADO≌△AEO,进而得OD=OE. 11.2三角形全等的判定(综合)一、1.C 2.B 3.D 4.B 5.B二、1. 80° 2. 2 3. 70° 4. (略)三、1.(1)∵AB⊥BE,DE⊥BE,∵∠B=∠E=90°又∵BF=CE,∴BC=EF,在Rt△ABC和Rt△DEF中, ∴△ABC≌△DEF(2)∵△ABC≌△DEF ∴∠GFC=∠GCF ∴GF=GC2.△ADC≌△AEB,△BDF≌△CEF 或△BDC≌△CEB ∵D、E分别是AB、AC的中点,AB=AC∴AD=AE.在△ADC和△AEB中, ∴△ADC≌△AEB(SAS)§11.3角的平分线的性质一、1.C 2.D 3.B 4.B 5.B 6.D二、1. 5 2. ∠BAC的角平分线 3.4cm三、1.在A内作公路与铁路所成角的平分线;并在角平分线上按比例尺截取BC=2cm,C点即为所求(图略).2. 证明:∵D是BC中点,∴BD=CD.∵ED⊥AB,DF⊥AC,∴∠BED=∠CFD=∠AED=∠AFD=90°.在△BED与△CFD中, ∴△BED≌△CFD((AAS)∴DE=DF,∴AD平分∠BAC3.(1)过点E作EF⊥DC,∵E是∠BCD,∠ADC的平分线的交点,又∵DA⊥AB,CB⊥AB,EF⊥DC,∴AE=EF,BE=EF,即AE=BE (2)∵∠A=∠B=90°,∴AD//BC,∴∠ADC+∠BCD=180°.又∵∠EDC= ∠ADC,∠ECD= ∠BCD ∴∠EDC+∠ECD=90°∴∠DEC=180°-(∠EDC+∠ECD)=90°4. 提示:先运用AO是∠BAC的平分线得DO=EO,再利用“ASA”证△DOB≌△EOC,进而得BO=CO.第十二章轴对称§12.1轴对称(一)一、1.A 2.D二、1. (注一个正“E”和一个反“E”合在一起) 2. 2 4 3.70° 6三、1.轴对称图形有:图(1)中国人民银行标志,图(2)中国铁路标徽,图(4)沈阳太空集团标志三个图案.其中图(1)有3条对称轴,图(2)与(4)均只有1条对称轴. 2. 图2:∠1与∠3,∠9与∠10,∠2与∠4,∠7与∠8,∠B与∠E等; AB与AE,BC与ED,AC与AD等. 图3:∠1与∠2,∠3与∠4,∠A与∠A′等;AD与A′D′,CD与C′D′, BC与B′C′等.§12.1轴对称(二)二、1.MB 直线CD 2. 10cm 3. 120°三、1.(1)作∠AOB的平分线OE;(2)作线段MN的垂直平分线CD,OE与CD交于点P,点P就是所求作的点.2.解:因为直线m是多边形ABCDE的对称轴,则沿m折叠左右两部分完全重合,所以∠A=∠E=130°,∠D=∠B=110°,由于五边形内角和为(5-2)×180°=540°,即∠A+∠B+∠BCD+∠D+∠E=540°,130°+110°+∠BCD+110°+130°=540°,所以∠BCD=60°3. 20提示:利用线段垂直平分线的性质得出BE=AE.§12.2.1作轴对称图形一、1.A 2.A 3.B二、1.全等 2.108三、1. 提示:作出圆心O′,再给合圆O的半径作出圆O′.2.图略3.作点A关于直线a的对称点A′,连接A′B交直线a于点C,则点C为所求.当该站建在河边C点时,可使修的渠道最短.如图§12.2.2用坐标表示轴对称二、1.A(0,2), B(2,2), C(2,0), O(0,0)2.(4,2)3. (-2,-3)三、1. A(-3,0),B(-1,-3),C(4,0),D(-1,3),点A、B、C、D关于y轴的对称点坐标分别为A′(3,0)、B′(1,-3)、C′(-4,0)、D′(1,3)顺次连接A′B′C′D′.如上图2.∵M,N关于x轴对称, ∴∴∴ba+1=(-1)3+1=03.A′(2,3),B′(3,1),C′(-1,-2)§12.3.1等腰三角形(一)一、1.D 2.C二、1. 40°,40° 2. 70°,55°,55°或40°,70°,70° 3.82.5°三、1.证明:∵∠EAC是△ABC的外角∴∠EAC=∠1+∠2=∠B+∠C ∵AB=AC∴∠B=∠C ∴∠1+∠2=2∠C ∵∠1=∠2 ∴2∠2=2∠C∴∠2=∠C ∴AD//BC2.解∵AB=AC,AD=BD,AC=CD ∴∠B=∠C=∠BAD,∠ADC=∠DAC.设∠B=x,则∠ADC=∠B+∠BAD=2x,∴∠DAC=∠ADC=2x,∴∠BAC=3x.于是在△ABC中,∠B+∠C+∠BAC=x+x+3x=180°,得x=36∴∠B=36°.§12.3.2等腰三角形(二)一、1.C 2.C 3.D二、1.等腰 2. 9 3.等边对等角,等角对等边三、1.由∠OBC=∠OCB得BO=CO,可证△ABO≌△ACO,得AB=AC ∴△ABC是等腰三角形.2.能.理由:由AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,得△ABE≌△DCE,∴BE=CE,∴△BEC是等腰三角形.3.(1)利用“SAS”证△ABC≌△AED. (2)△ABC≌△AED 可得∠ABO=∠AEO,AB=AE得∠ABE=∠AEB.进而得∠OBE=∠OEB,最后可证OB=OE. §12.3.3等边三角形一、1.B 2.D 3.C二、1.3cm 2. 30°,4 3. 1 4. 2三、1.证明:∵在△ADC中,∠ADC=90°, ∠C=30°∴∠FAE=60°∵在△ABC中,∠BAC=90°,∠C=30°∴∠ABC=60°∵BE平分∠ABC,∴∠ABE= ×60°=30°∵在△ABE中,∠ABE=30°,∠BAE=90°∴∠AEF=60°∴在△AEF中∠FAE=∠AEF=60°∴FA=FE ∵∠FAE=60°∴△AFE为等边三角形.2.∵DA是∠CAB的平分线,DE⊥AB,DC⊥AC,∴DE=CD=3cm,在Rt△ABC中,由于∠CAB=60°,∴∠B=30°.在Rt△DEB中,∵∠B=30°,DE=3cm,∴DB=2DE=6cm∴BC=CD+DE=3+6=9(cm)3. 证明:∵△ABC为等边三角形,∴BA=CA , ∠BAD=60°. 在△ABD和△ACE中, ∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE=60°∴△ADE是等边三角形.4. 提示:先证BD=AD,再利用直角三角形中,30°角所对的直角边是斜边的一半,得DC=2AD.第十三章实数§13.1平方根(一)一、1. D 2. C二、1. 6 2. 3. 1三、1. (1)16 (2)(3)0.42. (1)0, (2)3 , (3)(4)40 (5)0.5 (6) 43. =0.54. 倍;倍.§13.1平方根(二)一、1. C 2. D二、1. 2 2. 3. 7和8三、1.(1)(2)(3)2.(1)43 (2)11.3 (3)12.25 (4) (5)6.62 3.(1)0.5477 1.732 5.477 17.32(2)被开方数的小数点向右(左)移动两位,所得结果小数点向右(左)移动一位. (3)0.1732 54.77§13.1平方根(三)一、1. D 2. C二、1. ,2 2, 3.三、1.(1)(2)(3)(4)2.(1)(2)-13 (3)11 (4)7 (5) 1.2 (6)-3.(1)(2)(3)(4)4. ,这个数是4 5. 或§13.2立方根(一)一、1. A 2. C二、1. 125 2. ±1和0 3. 3三、1.(1)-0.1 (2)-7 (3)(4)100 (5)- (6)-22.(1)-3 (2)(3)3. (a≠1)§13.2立方根(二)一、1. B 2. D二、1. 1和0; 2. 3. 2三、1. (1)0.73 (2)±14 (3)2. (1)-2 (2)-11 (3)±1 (4)- (5)-2 (6)3.(1) (2) (3) (4)x=-4 (5)x= (6)x= +1§13.3实数(一)一、1. B 2. A二、1.2. ±33.三、1. (1)-1,0,1,2;(2)-4,-3,-2,-1,0,1,2,3,42. 略3.16cm、12cm4. a= ,b=-§13.3实数(二)一、1. D 2. D二、1. 2. 3 3. ①,③-π1111。
八年级上册数学基础训练卷
选择题:1. 已知一个正方形的面积是49平方米,它的边长是:A. 4米B. 7米C. 14米D. 21米2. 解方程3x + 5 = 2x - 3,得到的解是:A. x = -8B. x = -2C. x = 4D. x = 83. 若一个数减去8的一半再加上4等于20,这个数是:A. 12B. 16C. 24D. 324. 一架飞机以每小时400千米的速度直飞3000千米的距离,需要飞行的时间是:A. 5小时B. 7.5小时C. 12小时D. 15小时5. 若函数f(x) = 2x - 3,则f(-4)的值是:A. -11B. -5C. 1D. 56. 某商店一件商品原价200元,现有8折优惠,折后的价格是:A. 20元B. 80元C. 160元D. 180元填空题:1. 若x = 7,y = -3,则x - y的值是_________。
2. 解方程4x + 3 = 7x - 6,得到的解是_________。
3. 若一个矩形的长是5cm,宽是8cm,则它的面积是_________平方厘米。
4. 若m² = 16,则m的值是_________。
5. 若a = 3,b = -2,c = 5,则a + b - c的值是_________。
6. 一根铁丝长12.6米,要剪成4段,每段的长度相同,每段的长度是_________米。
应用题:1. 一辆汽车以每小时70公里的速度行驶,行驶了2小时后停下来休息,再以每小时50公里的速度行驶。
求整个行程的平均速度。
2. 一个正方形花坛的边长是5米,四周围绕一条宽1米的石板路,请问石板路的面积是多少平方米?3. 一块长方形地面积是48平方米,长比宽多8米,求长和宽分别是多少?4. 一桶汽油有40升,汽车以每升6公里的速度行驶。
求这桶汽油能使汽车行驶的最长距离。
5. 若两条直线的斜率分别是2和3,它们的夹角的正切值是多少?。
最新人教版八年级数学上册第13章 轴对称 基础训练题(合集)(含答案)
最新人教版八年级数学上册基础训练题第十三章轴对称13.1 轴对称1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()2.下列说法中错误的是()A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.全等的三角形一定关于某条直线对称D.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称3.如图,△ABC中,AB=AC=6,BC=4.5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是__________.4.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC 的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为__________.5.我国的文字非常讲究对称美,分析图中的四个图案,图案()有别于其余三个图案.6.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后的图是()7.如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量的存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行8.如图,P在△AOB内,点M,N分别是点P关于AO,BO的对称点,且与AO,BO 相交于点E,F,若△PEF的周长为15,求MN的长.9.如图所示,在四边形ABCD中,AD△BC,E为CD的中点,连接AE,BE,BE△AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案:1-2 AC 3.10.5 4.6 5-7 DDB8.解:△点M 是点P 关于AO 的对称点, △AO 垂直平分MP , △EP =EM. 同理PF =FN.△MN =ME +EF +FN , △MN =EP +EF +PF. △△PEF 的周长为15, △MN =EP +EF +PF =15. 9.证明:(1)△AD△BC(已知),△△ADC =△ECF(两直线平行,内错角相等). △E 是CD 的中点(已知), △DE =EC(中点的定义). △在△ADE 与△FCE 中,,,,ADC ECF DE EC AED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩△△ADE△△FCE(ASA). △FC =AD(全等三角形的性质). (2)△△ADE△△FCE ,△AE =EF ,AD =CF(全等三角形的对应边相等) △BE 是线段AF 的垂直平分线. △AB =BF =BC +CF. △AD =CF(已证),△AB =BC +AD(等量代换).第十三章轴对称13.2 画轴对称图形1.下列说法正确的是()A.全等的两个图形可以由其中一个经过轴对称变换得到B.轴对称变换得到的图形与原图形全等C.轴对称变换得到的图形可以由原图形经过一次平移得到D.轴对称变换中的两个图形,每一对对应点所连线段都被这两个图形之间的直线垂直平分2.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是轴对称图形的有()A.1个B.2个C.3个D.4个3.点M(3,1)关于x轴对称的点的坐标为()A.(-3,-1) B.(-3,1) C.(1,-3) D.(3,-1)4.如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′,下列判断错误的是()A.AB=A′B′ B.BC△B′C′ C.直线l△BB′ D.△A′=120°5.已知点P(a+1,3),Q(-2,2a+b)关于y轴对称,则a=__________,b=__________;若关于x轴对称,则a=__________,b=__________.6.如图,四边形ABCD的顶点坐标为A(-5,1),B(-1,1),C(-1,6),D(-5,4),请作出四边形ABCD关于x轴及y轴的对称图形,并写出各对称图形的顶点坐标.7.如图,等边△ABC的边长为1 cm,D,E分别是AB,AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为__________cm.8.若|3a-2|+|b-3|=0,则P(-a,b)关于y轴的对称点P′的坐标是__________.9.点A(-2a,a-1)在x轴上,则A点的坐标是__________,A点关于y轴的对称点的坐标是__________.10.桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有().A.1个B.2个C.4个D.6个11.图△、图△均为7×6的正方形网格,点A,B,C在格点(小正方形的顶点)上,分别在图△、图△中确定格点D,并各画出一个以A,B,C,D为顶点的四边形,使其为轴对称图形.12.作图题:在方格纸中,画出△ABC关于直线MN对称的△A′B′C′.13.用四个任意大小的半圆面设计四个轴对称图案(如图所示),并且为所设计的每个图案命名,名称要贴切生动.莲花盛开参考答案:1-4 BBDB 5.1 1 -3 36.解:(1)如图所示,四边形A′B′C′D′和四边形A″B″C″D″即为所求.(2)关于y 轴对称的四边形A′B′C′D′各顶点的坐标分别是A′(5,1),B′(1,1),C′(1,6),D′(5,4);关于x 轴对称的四边形A″B″C″D″各顶点的坐标分别是A″(-5,-1),B″(-1,-1),C″(-1,-6),D″(-5,-4).7.3 8.2,33⎛⎫⎪⎝⎭ 9.(-2,0) (2,0) 10.B11.解:12.解:13.解:如图所示.第十三章轴对称13.3 等腰三角形1.若等腰三角形底角为72°,则顶角为()A.108° B.72° C.54° D.36°2.如图,在△ABC中,AB=AC,AD=BD=BC,则△C=()A.72° B.60° C.75° D.45°3.若等腰三角形的周长为26 cm,一边为11 cm,则腰长为()A.11 cm B.7.5 cm C.11 cm或7.5 cm D.以上都不对4.下列三角形:△有两个角等于60°的三角形;△有一个角等于60°的等腰三角形;△三个外角(每个顶点处各取一个外角)都相等的三角形;△一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.△△△ B.△△△ C.△△ D.△△△△5.如图所示,已知△1=△2,要使BD=CD,还应增加的条件是()△AB=AC△△B=△C△AD△BC△AB=BCA.△ B.△△ C.△△△ D.△△△△6.如图所示,在△ABC中,△ACB=90°,△B=30°,CD△AB于点D,若AD=2,则AB =__________.7.如图,在△ABC中,AB=AC,BD和CD分别是△ABC和△ACB的平分线,EF过D点,且EF△BC ,图中等腰三角形共有( )A .2个B .3个C .4个D .5个8.如图所示的正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( )A .6B .7C .8D .99.如图,D 是△ABC 中BC 边上一点,AB =AC =BD ,则△1和△2的关系是( )A .△1=2△2B .△1+△2=90°C .180°-△1=3△2D .180°+△2=3△110.如图,△ABC 中,AB =AC ,△C =30°,DA△BA 于A ,BC =4.2 cm ,则AD =__________.11.如图,在△ABC 中,△C =90°,△CAB =60°,按以下步骤作图:(1)分别以A ,B 为圆心,以大于12AB的长为半径做弧,两弧相交于点P 和Q ;(2)作直线PQ 交AB 于点D ,交BC 于点E ,连接AE.若CE =4,则AE =__________. 12.如图所示,△AOP =△BOP =15°,PC△OA ,PD△OA ,若PC =4,求PD 的长.13.如图所示,在△ABC中,AB=AC,点E在CA的延长线上,且△AEF=△AFE.求证:EF△BC.14.如图,在△ABC中,△ACB=45°,△A=90°,BD是△ABC的角平分线,CH△BD,交BD的延长线于H,求证:BD=2CH.参考答案:1-5 DACDC 6.8 7-9 DCD 10.1.4 cm 11.812.解:如图,过P 作PE△OB ,垂足为E.△△AOP =△BOP =15°,PD△OA △PD =PE.△PC△OA ,△△CPO =△AOP =15°. △△BCP =△BOP +△CPO =30°, 在Rt△CPE 中,△ECP =30°,△114222PE PC ==⨯=.△PD =PE =2.13.证明:如图,过A 作AD△BC ,垂足为D ,△AB =AC ,△12BAD BAC ∠=∠.△△AEF =△AFE , △BAC =△AEF +△AFE ,△12EFA BAC ∠=∠.△△EFA=△BAD.△EF△AD,△EF△BC.14.证明:如图,分别延长CH,BA交于点E.△CH△BD,BD是△ABC的角平分线,△△CHB=△EHB=90°,△CBH=△EBH.又△BH=BH,△△CBH△△EBH.△CH=EH.△CE=2CH.△△ACB=45°,△CAB=90°,△△ABC=45°,△△ACB=△ABC.△AC=AB.△△CAB=△CAE=90°,△△E+△ECA=90°.△CH△BD,△△E+△EBH=90°.△△ECA=△EBH.△△ECA△△DBA.△CE=BD.△BD=2CH.第十三章轴对称13.4 课题学习最短路径问题1.有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿A—B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置.2.已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在△AOB内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?3.如图所示,P,Q为△ABC边上的两个定点,在BC上求作一点R,使△PQR的周长最小.4.七年级(1)班同学做游戏,在活动区域边OP放了一些球(如图),则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到目的地A?5.公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.6.如图,牧童在A处放牛,其家在B处,A,B到河岸CD的距离分别为AC,BD,且AC=BD,若A到河岸CD的中点的距离为500 m.(1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?在图中作出该处,并说明理由;(2)最短路程是多少?参考答案:1.解:如图,作D关于AB的对称点D′,连接CD′交AB于点E,则点E就是所求的点.2.解:如图所示,(1)分别作点P关于OA,OB的对称点P1,P2;(2)连接P1P2,与OA,OB分别相交于点M,N.因为乙站在OA上,丙站在OB上,所以乙必须站在OA上的M处,丙必须站在OB上的N处才能使传球所用时间最少.3.解:(1)作点P关于BC所在直线的对称点P′(2)连接P′Q,交BC于点R,则点R就是所求作的点(如图所示).4.解:如图,作小明关于活动区域边线OP的对称点A′,连接AA′交OP于点B,则小明行走的路线是小明→B→A,即在B处捡球,才能最快拿到球跑到目的地A.5.解:如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置.理由:在OM上任取一个异于Q的点Q′,在O N上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,且P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,故Q,R就是我们所求的小桥的位置.6.解:(1)作法:如图作点A关于CD的对称点A′;连接A′B交CD于点M.则点M即为所求的点.证明:在CD上任取一点M′,连接AM′,A′M′,BM′,AM,因为直线CD是A,A′的对称轴,M,M′在CD上,所以AM=A′M,AM′=A′M′,所以AM+BM=A′M+BM=A′B,在△A′M′B中,因为A′M′+BM′>A′B,所以AM′+BM′=A′M′+BM′>AM+BM,即AM+BM最小.(2)由(1)可得A′C=AC=BD,所以△A′CM△△BDM,即A′M=BM,CM=DM,所以M为CD的中点,且A′B=2AM,因为AM=500 m,所以A′B=AM+BM=2AM=1 000 m.即最短路程为1 000 m.。
人教版 八年级数学上册 14.1 --14.3基础测试题(含答案)
人教版 八年级数学上册 14.1 --14.3基础测试题(含答案) 14.1 整式的乘法一、选择题(本大题共12道小题) 1. 计算a 3·a 2正确的是( )A. ɑB. ɑ5C. ɑ6D. ɑ92. 单项式乘多项式运算法则的依据是( )A .乘法交换律B .加法结合律C .分配律D .加法交换律3. 化简(x 3)2,结果正确的是() A .-x 6 B .x 6C .x 5D .-x 54. 下列运算正确的是() A .(x 3)3=x 6 B .x 7·x 2=x 9 C .3x -x =3D .x 4+x 2=x 65. 一个长方形的周长为4a +4b ,若它的一边长为b ,则此长方形的面积为( )A .b 2+2abB .4b 2+4abC .3b 2+4abD .a 2+2ab6. 下列计算错误的是( )A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=7. 已知x a =2,x b =3,则x 3a +2b 的值() A .48 B .54C .72D .178. 若(x +1)(2x 2-ax +1)的运算结果中,x 2的系数为-6,则a 的值是( )A .4B .-4C .8D .-89. 已知a m =4,则a 2m 的值为() A .2 B .4C .8D .1610. 通过计算,比较图①、图②中阴影部分的面积,可以验证的算式是( )A .a (b -x )=ab -axB .(a -x )(b -x )=ab -ax -bx +x 2C .(a -x )(b -x )=ab -ax -bxD .b (a -x )=ab -bx11. 已知0a b +=,n 为正数,则下列等式中一定成立的是()A .0n n a b +=B .220n n a b +=C .21210n n a b +++=D .110n n a b +++=12. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( ) A .21()0n n a b += B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共6道小题) 13. 填空:54x x x ÷⨯= ;14. 填空:()()()324a a a -⋅-⋅-= ;15. 计算:(103)5=________.16. 填空:()()2322a b b ⋅-=;17. 计算:(2x +1)·(-6x )=____________.18. 如图①,有多个长方形和正方形的卡片,图②是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示方法可以验证等式a (a +b )=a 2+ab 成立,根据图③,利用面积的不同表示方法,仿照上面的式子写出一个等式:____________________.三、解答题(本大题共3道小题)19. 整体代入阅读下面文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=2×27-6×9-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.20. 小明在做多项式乘法的时候发现,两个多项式相乘在合并同类项后的结果存在缺项的可能.比如x+2和x-2相乘的结果为x2-4,x的一次项没有了.(1)请计算x2+2x+3与x-2相乘后的结果,并观察x的几次项没有了;(2)请想一下,x2+2x+3与x+a相乘后的结果有没有可能让一次项消失?如果可能,那么a 的值应该是多少?21. 阅读下列解题过程:试比较2100与375的大小.解:∵2100=(24)25=1625,375=(33)25=2725,且16<27,∴2100<375.请根据上述解答过程解决下列问题:比较255,344,433的大小.人教版八年级数学14.1 整式的乘法课时训练-答案一、选择题(本大题共12道小题)1. 【答案】B【解析】原式=a3+2=a5.2. 【答案】C3. 【答案】B4. 【答案】B[解析] (x3)3=x9,3x-x=2x,x4与x2不是同类项,不能合并,因此只有选项x7·x2=x9正确.5. 【答案】A[解析] 因为一个长方形的周长为4a+4b,若它的一边长为b,则另一边长=2a+2b-b=2a+b,故面积=(2a+b)b=b2+2ab.6. 【答案】C【解析】根据积的乘方运算法则,应选C7. 【答案】C[解析] 因为x a=2,x b=3,所以x3a+2b=(x a)3·(x b)2=23×32=72.8. 【答案】C[解析] (x+1)(2x2-ax+1)=2x3-ax2+x+2x2-ax+1=2x3+(-a+2)x2+(1-a)x+1.因为运算结果中,x2的系数是-6,所以-a+2=-6,解得a=8.9. 【答案】D[解析] 由于a m=4,因此a2m=(a m)2=42=16.10. 【答案】B [解析] 图①中阴影部分的面积=(a -x)·(b -x),图②中阴影部分的面积=ab -ax -bx +x 2,所以(a -x)(b -x)=ab -ax -bx +x 2.11. 【答案】C【解析】因为a b ,互为相反数,它们的偶次幂相等,而奇次幂互为相反数,指数中只有21n +一定是奇数,故选C12. 【答案】D【解析】由10a b +=知1,a b两数为相反数,且不为0,易得答案二、填空题(本大题共6道小题) 13. 【答案】8x【解析】原式448x x x =⋅=14. 【答案】9a -【解析】原式()99a a =-=-15. 【答案】1015[解析] (103)5=1015.16. 【答案】458a b -【解析】原式()4234588a b b a b =⋅-=-17. 【答案】-12x 2-6x18. 【答案】(a +b)(a +2b)=a 2+3ab +2b 2三、解答题(本大题共3道小题)19. 【答案】解:(2a 3b 2-3a 2b +4a)·(-2b) =-4a 3b 3+6a 2b 2-8ab =-4(ab)3+6(ab)2-8ab =-4×33+6×32-8×3 =-108+54-24 =-78.20. 【答案】解:(1)(x2+2x+3)(x-2)=x3-2x2+2x2-4x+3x-6=x3-x-6,x的二次项没有了.(2)(x2+2x+3)(x+a)=x3+ax2+2x2+2ax+3x+3a=x3+(a+2)x2+(2a+3)x+3a.当2a+3=0,即a=-1.5时,x的一次项消失了.故x2+2x+3与x+a相乘后的结果有可能让一次项消失,此时a=-1.5.21. 【答案】解:因为255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,且32<64<81,所以255<433<344.:14.2 乘法公式一.选择题1.下列各式中,能用平方差公式计算的是()A.(p+q)(p+q)B.(p﹣q)(p﹣q)C.(p+q)(p﹣q)D.(p+q)(﹣p﹣q)2.若(2a+3b)()=9b2﹣4a2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a3.计算(x+3y)2﹣(x﹣3y)2的结果是()A.12xy B.﹣12xy C.6xy D.﹣6xy4.若多项式x2+kx+9是一个完全平方式,则常数k的值是()A.6B.3C.±6D.±35.计算(x+1)(x﹣1)(x2+1)的结果是()A.x2﹣1B.x3﹣1C.x4+1D.x4﹣16.已知a+b=5,ab=3,则a2+b2=()A.25B.22C.19D.137.如图,两个正方形边长分别为a、b,且满足a+b=10,ab=12,图中阴影部分的面积为()A.100B.32C.144D.368.如图,从边长为m的大正方形中剪掉一个边长为n的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(m﹣n)2=m2﹣2mn+n2B.m2﹣n2=(m+n)(m﹣n)C.(m﹣n)2=m2﹣n2D.m(m﹣n)=m2﹣mn二.填空题9.x2﹣4x+k是完全平方式,则k=.10.(2x+3y)2=;(2a﹣b)(﹣b﹣2a)=.11.若x2+y2=10,xy=3,则(x﹣y)2=.12.如果(2x+2y+1)(2x+2y﹣1)=15,那么x+y的值是.13.已知a+=3,则a2+的值是.14.计算:12(1+72)(1+74)(1+78)(1+716)的结果为.三.解答题15.计算:9(x﹣2)2﹣(3x+2)(3x﹣2)16.199.5×200.5(运用公式简便运算)17.先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=.18.已知x+y=4,xy=3,求下列各式的值:(1)2x2y+2xy2;(2)x﹣y19.图1是一个长为2a,宽为2b的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形边长等于多少?(2)请你用两种不同的方法表示图2中阴影部分的面积,并用等式表示.(3)根据(2)中的等量关系解决下面问题,若a+b=5,ab=3,求(a﹣b)2的值.20.如图1,在一个边长为a的正方形木板上锯掉一个边长为b的正方形,并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积:图1得:;图2得;(2)由图1与图2面积关系,可以得到一个等式:;(3)利用(2)中的等式,已知a2﹣b2=16,且a+b=8,则a﹣b=.参考答案一.选择题1.解:(p+q)(p+q)=(p+q)2=p2+2pq+q2;(p﹣q)(p﹣q)=(p﹣q)2=p2﹣2pq+q2;(p+q)(p﹣q)=p2﹣q2;(p+q)(﹣p﹣q)=﹣(p+q)2=﹣p2﹣2pq﹣q2.故选:C.2.解:∵(2a+3b)(3b﹣2a)=9b2﹣4a2即(3b+2a)(3b﹣2a)=(3b)2﹣(2a)2∴括号内应填的代数式是3b﹣2a.故选:D.3.解:原式=x2+6xy+9y2﹣(x2﹣6xy+9y2)=x2+6xy+9y2﹣x2+6xy﹣9y2=12xy.故选:A.4.解:∵a2+ka+9=a2+ka+32,∴ka=±2×a×3,解得k=±6.故选:C.5.解:原式=(x2﹣1)(x2+1)=x4﹣1.故选:D.6.解:∵(a+b)2=a2+2ab+b2,∴a2+b2=(a+b)2﹣2ab=25﹣2×3=19,故选:C.7.解:S阴影=a2+b2﹣a2﹣(a+b)•b,=a2﹣ab+b2,=(a2﹣ab+b2),=[(a+b)2﹣3ab],当a+b=10,ab=12时,原式=(100﹣36)=32.故选:B.8.解:左边图形的阴影部分可表示为:m2﹣n2右边图形可表示为:(m﹣n)(m+n)由于阴影部分面积相等,故m2﹣n2=(m+n)(m﹣n),故选:B.二.填空题9.解:∵x2﹣4x+k是完全平方式,∴k=22=4,故答案为:410.解:(2x+3y)2=(2x)2+2•2x•3y+(3y)2=4x2+12xy+9y2;(2a﹣b)(﹣b﹣2a)=(﹣b+2a)(﹣b﹣2a)=b2﹣4a2.故答案为:4x2+12xy+9y2,b2﹣4a2.11.解:∵x2+y2=10,xy=3,∴(x﹣y)2=x2﹣2xy+y2=x2+y2﹣2xy=10﹣6=4,故答案为:4.12.解:(2x+2y+1)(2x+2y﹣1)=15,(2x+2y)2﹣12=15,(2x+2y)2=16,2x+2y=±4,x+y=±2,故答案为:±2.13.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.14.解:原式=×(1+72)(1+74)(1+78)(1+716)=×(1+74)(1+78)(1+716)=×(1+78)(1+716)=(1+716)=.故答案为:.三.解答题15.解:原式=9(x2﹣4x+4)﹣(9x2﹣4)=9x2﹣36x+36﹣9x2+4=﹣36x+40.16.解:原式=(200﹣0.5)×(200+0.5)=40000﹣0.25=39999.75.17.解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2,∵a=,∴原式=1+2=3.18.解:(1)∵x+y=4,xy=3,∴2x2y+2xy2=2xy(x+y)=2×4×3=24;(2)∵x+y=4,xy=3,∴(x﹣y)2=(x+y)2﹣4xy=42﹣4×3=4.∴.19.解:(1)根据拼图可知,阴影正方形的边长为(a﹣b),(2)阴影正方形的边长为(a﹣b),因此S阴影正方形的面积=(a﹣b)2,S阴影正方形的面积=S大正方形的面积﹣S图1的面积=(a+b)2﹣4ab,故有(a﹣b)2=(a+b)2﹣4ab;(3)由(2)得(a﹣b)2=(a+b)2﹣4ab,当a+b=5,ab=3时,(a﹣b)2=(a+b)2﹣4ab=52﹣4×3=25﹣12=13.即(a﹣b)2的值为13.20.解:(1)图1中阴影部分的面积为:a2﹣b2,图2中阴影部分的面积为:(2b+2a)(a﹣b),即(a+b)(a﹣b);故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图1与图2面积关系,可以得到一个等式:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(3)∵a2﹣b2=16,且a+b=8,∴(a+b)(a﹣b)=16,即8(a﹣b)=16,∴a﹣b=2.故答案为:2.14.3因式分解一.选择题(共10小题)1.下列从左边到右边的变形,是因式分解的是()A.12ab=3a•4bB.(a+b)2=a2+2ab+b2C.a2﹣b2+1=(a+b)(a﹣b)+1D.3(a﹣b)﹣c(a﹣b)=(a﹣b)(3﹣c)2.下列变形属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x﹣1=x(1﹣)(x≠0)C.x3+2x2+1=x2(x+2)+1D.x2﹣9=(x+3)(x﹣3)3.下列多项式可以用平方差公式进行因式分解的有()①﹣a2+b2;②x2+x+;③x2﹣4y2;④(﹣m)2﹣(﹣n)2;⑤﹣121a2+36b2;⑥﹣s2+2s.A.2个B.3个C.4个D.5个4.因式分解a2﹣4的结果是()A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)5.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)6.下列多项式中,能用完全平方公式分解因式的是()A.a2+4B.a2+ab+b2C.a2+4ab+b2D.x2+2x+17.把多项式(a+b)(a+4b)﹣9ab分解因式正确的是()A.(a﹣2b)2B.(a+2b)2C.a(a﹣3b)2D.ab(a+3)(a﹣3)8.下列因式分解正确的是()A.x2﹣x+=(x﹣)2B.a4b﹣6a3b+9a2b=a2b(a2﹣6a+9)C.x2﹣2x+4=(x﹣2)2D.4x2﹣y2=(4x+y)(4x﹣y)9.把多项式x2+mx﹣5因式分解成(x+5)(x﹣1),则m的值为()A.m=6B.m=﹣6C.m=﹣4D.m=410.分解因式a3﹣4a的结果正确的是()A.a(a2﹣4)B.a(a﹣2)(a+2)C.a(a﹣2)2D.a(a+2)2二.填空题(共5小题)11.分解因式:ab3﹣4a=.12.分解因式:m2﹣m=.13.分解因式:16x4﹣81=.14.因式分解:2m2﹣12m+18=.15.把多项式m2n+6mn+9n分解因式的结果是.三.解答题(共3小题)16.分解因式:(1)36﹣25x2;(2)x2y﹣4xy﹣5y.17.因式分解(1)x3﹣4x2+4x(2)a2(x﹣y)﹣4(x﹣y)18.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图).如:将式子x2+3x+2和2x2+x﹣3分解因式,如图:x2+3x+2=(x+1)(x+2);2x2+x﹣3=(x﹣1)(2x+3)请你仿照以上方法,探索解决下列问题:(1)分解因式:y2﹣7y+12;(2)分解因式:3x2﹣2x﹣1.参考答案1.解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.2.解:A.从左边到右边的变形,不属于因式分解,故本选项不符合题意;B.从左边到右边的变形,不属于因式分解,故本选项不符合题意;C.从左边到右边的变形,不属于因式分解,故本选项不符合题意;D.从左边到右边的变形,属于因式分解,故本选项符合题意;故选:D.3.解:①﹣a2+b2=(b+a)(b﹣a),可以用平方差公式进行因式分解;②x2+x+=(x+)2,不可以用平方差公式进行因式分解;③x2﹣4y2=(x+2y)(x﹣2y),可以用平方差公式进行因式分解;④(﹣m)2﹣(﹣n)2=(m+n)(m﹣n),可以用平方差公式进行因式分解;⑤﹣121a2+36b2=(6b﹣11a)(6b+11a),可以用平方差公式进行因式分解;⑥﹣s2+2s=﹣s(s﹣4),不可以用平方差公式进行因式分解;故选:C.4.解:原式=(a+2)(a﹣2),故选:A.5.解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.6.解:A、a2+4,无法分解因式,故此选项错误;B、a2+ab+b2,无法运用公式分解因式,故此选项错误;C、a2+4ab+b2,无法运用公式分解因式,故此选项错误;D、x2+2x+1=(x+1)2,正确.故选:D.7.解:原式=a2+5ab+4b2﹣9ab=a2﹣4ab+4b2=(a﹣2b)2.故选:A.8.解:A、x2﹣x+=(x﹣)2,正确;B、a4b﹣6a3b+9a2b=a2b(a2﹣6a+9)=a2b(a﹣3)2,故此选项错误;C、x2﹣2x+4,无法运用公式法分解因式,故此选项错误;D、4x2﹣y2=(2x+y)(2x﹣y),故此选项错误;故选:A.9.解:由题意,得m=5﹣1=4.故选:D.10.解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故选:B.11.解:ab3﹣4a=a(b3﹣4).故答案为:a(b3﹣4).12.解:m2﹣m=m(m﹣1).故答案为:m(m﹣1).13.解:16x4﹣81=(4x2+9)(4x2﹣9)=(4x2+9)(2x+3)(2x﹣3).故答案为:(4x2+9)(2x+3)(2x﹣3).14.解:原式=2(m2﹣6m+9)=2(m﹣3)2.故答案为:2(m﹣3)2.15.解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.16.解:(1)36﹣25x2=(6+5x)(6﹣5x);(2)x2y﹣4xy﹣5y=y(x2﹣4x﹣5)=y(x﹣5)(x+1).17.解:(1)x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2;(2)a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).18.解:(1)y2﹣7y+12=(y﹣3)(y﹣4)(2)3x2﹣2x﹣1=(x﹣1)(3x+1).。
最新人教版八年级数学上册第12章 全等三角形 基础训练题(合集)(含答案)
最新人教版八年级数学上册基础训练题第十二章全等三角形12.1 全等三角形1.下列说法中,不正确的是()A.形状相同的两个图形是全等形B.大小不同的两个图形不是全等形C.形状、大小都相同的两个三角形是全等三角形D.能够完全重合的两个图形是全等形2.如图所示,△ABD△△BAC,B,C和A,D分别是对应顶点,如果AB=4 cm,BD=3 cm,AD=5 cm,那么BC的长是()A.5 cm B.4 cm C.3 cm D.无法确定3.如图所示,△ABC△△ADC,△ABC=70°,则△ADC的度数是()A.70° B.45° C.30° D.35°4.如图所示,若△ABC△△DBE,那么图中相等的角有()A.1对B.2对C.3对D.4对5.如图所示,若△ABC△△DEF,那么图中相等的线段有()A.1组B.2组C.3组D.4组6.(1)已知如图,△ABE△△ACD,△1=△2,△B=△C,指出其他的对应边和对应角.(2)由对应边找对应角,由对应角找对应边有什么规律?7.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC△△A′B′C′,则△A′B′C′中一定有一条边等于()A.7 cm B.2 cm或7 cm C.5 cm D.2 cm或5 cm8.下图所示是用七巧板拼成的一艘帆船,其中全等的三角形共有__________对.9.如图所示,△ADF△△CBE,且点E,B,D,F在一条直线上.判断AD与BC的位置关系,并加以说明.10.下图是把4×4的正方形方格图形沿方格线分割成两个全等图形,请在下列三个4×4的正方形方格中,沿方格线分别画出三种不同的分法,把图形分割成两个全等图形。
11.如图,△ABC△△ADE,且△CAD=10°,△B=△D=25°,△EAB=120°,求△DFB和△DGB的度数.参考答案:1.A2.A3.A4.D5.D6.解:(1)AB与AC,AE与AD,BE与CD是对应边,△BAE与△CAD是对应角.(2)对应边所对的角是对应角,对应边所夹的角是对应角,对应角所对的边是对应边,对应角所夹的边是对应边.7.D8.29.解:AD与BC的关系是AD△BC.理由如下:因为△ADF△△CBE,所以△1=△2,△F=△E,点E,B,D,F在一条直线上,所以△3=△1+△F,△4=△2+△E,即△3=△4,所以AD△BC.10.解:如图.答案不唯一.11.解:△△ABC△△ADE,△11()(12010)5522DAE BAC EAB CAD∠=∠=∠-∠=︒-︒=︒.△△DFB=△FAB+△B=△FAC+△CAB+△B=10°+55°+25°=90°,△DGB=△DFB-△D=90°-25°=65°.第十二章全等三角形12.2 三角形全等的判定1.如图,在△ABC中,AB=AC,BE=CE,则直接利用“SSS”可判定() A.△ABD△△ACDB.△BDE△△CDEC.△ABE△△ACED.以上都不对2.如图,在△ABC和△DEF中,AB=DE,△B=△DEF,请你再补充一个条件,能直接运用“SAS”判定△ABC△△DEF,则这个条件是()A.△ACB=△DEFB.BE=CFC.AC=DFD.△A=△F3.如图,请看以下两个推理过程:△△△D=△B,△E=△C,DE=BC,△△ADE△△ABC(AAS);△△△DAE=△BAC,△E=△C,DE=BC,△△ADE△△ABC(AAS).则以下判断正确的(包括判定三角形全等的依据)是()A.△对△错B.△错△对C.△△都对D.△△都错4.如图是跷跷板的示意图,支柱OC与地面垂直,点O是横板AB的中点,AB可以绕着点O上下转动,当A端落地时,△OAC=20°,横板上下可转动的最大角(即△A′OA)是()A.80° B.60° C.40° D.20°5.如图,在△ABC中,D是BC边上的中点,△BDE=△CDF,请你添加一个条件,使DE=DF成立.你添加的条件是__________.(不再添加辅助线和字母)6.如图是一个三角形测平架,已知AB=AC,在BC的中点D挂一个重锤DE,让其自然下垂,调整架身,使点A恰好在重锤线上,这时AD和BC的位置关系为__________.7.如图,AC△BD,垂足为点B,点E为BD上一点,BC=BE,△C=△AEB,AB=6 cm,则图中长度为6 cm的线段还有__________.8.如图,为了固定门框,木匠师傅把两根同样长的木条BE,CF两端分别固定在门框上,且AB=CD,则木条与门框围成的两个三角形(图中阴影部分)__________全等(填“一定”、“不一定”或“一定不”).9.如图,A,B,C三点在同一条直线上,△A=△C=90°,AB=CD,请添加一个适当的条件__________,使得△EAB△△BCD.10.在Rt△ABC中,△ACB=90°,BC=2 cm,CD△AB,在AC上取一点E,使EC=BC,过点E作EF△AC交CD的延长线于点F,若EF=5 cm,则AE=__________ cm.11.如图,D是△ABC的边AB上一点,E是AC的中点,过点C作CF△AB,交DE的延长线于点F.求证:AD=CF.12.如图,点F,B,E,C在同一直线上,并且BF=CE,△ABC=△DEF.能否由上面的已知条件证明△ABC△△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC△△DEF,并给出证明.提供的三个条件是:△AB=DE;△AC=DF;△AC△DF.13.如图,在△ABC中,AB=AC,DE是过点A的直线,BD△DE于点D,CE△DE于点E,AD=CE.(1)若BC在DE的同侧(如图△).求证:AB△AC.(2)若BC在DE的两侧(如图△),其他条件不变,(1)中的结论还成立吗?若成立,请予证明;若不成立请说明理由.参考答案 1-4 C 2.B 3.B 4.C5.AB =AC 或△B =△C 或△BED =△CFD 或△AED =△AFD. 6.垂直 7.BD 8.一定9.AE =CB(或EB =BD 或△EBD =90°或△E =△DBC 等) 10.311.证明:△E 是AC 的中点, △AE =CE. △CF△AB ,△△A =△ECF ,△ADE =△F. 在△ADE 与△CFE 中,ADE F A ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,△△ADE△△CFE(AAS). △AD =CF12.解:由前面的已知条件不能证明△ABC△△DEF.需要再添加条件△时: 证明: △BF =CE , △EF =BC ,△△ABC =△DEF ,AB =DE , △△ABC△△DEF(SAS). 添加条件△时,△AC△DF , △△ACB =△DFE , △△ABC△△DEF(ASA).13.(1)证明:△BD△DE ,CE△DE ,△△ADB =△CEA =90°,△BAD +△ABD =90° 在Rt△ADB 和Rt△CEA 中,AB AC AD EC =⎧⎨=⎩,,△Rt△ADB△Rt△CEA(HL) △△ABD =△CAE. △△BAD +△CAE =90°△△BAC =180°-(△BAD +△CAE)=90°, △AB△AC(2)解:仍有AB△AC 证明:△BD△DE ,CE△DE△△ADB =△CEA =90°,△BAD +△ABD =90° 在Rt△ADB 和Rt△CEA 中AB CA AD CE =⎧⎨=⎩,,△Rt△ADB△Rt△CEA(HL). △△ABD =△CAE. △△BAD +△CAE =90° △△BAC =90° △AB△AC.第十二章全等三角形12.3 角的平分线的性质1.作△AOB的平分线OC,合理的顺序是()△作射线OC;△以O为圆心,适当长为半径画弧,交OA于D,交OB于E;△分别以D,E为圆心,大于12DE的长为半径画弧,两弧在△AOB内交于点C.A.△△△ B.△△△ C.△△△ D.△△△2.三角形中到三边距离相等的点是()A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条内角平分线的交点3.如图,△1=△2,PD△OA,PE△OB,垂足分别为D,E,下列结论错误的是() A.PD=PEB.OD=OEC.△DPO=△EPOD.PD=OD4.如图,在△ABC中,△ACB=90°,BE平分△ABC,DE△AB于点D,如果AC=3 cm,那么AE+DE等于()A.2 cm B.3 cm C.4 cm D.5 cm5.△ABC中,△C=90°,点O为△ABC三条角平分线的交点,OD△BC于D,OE△AC 于E,OF△AB于F,且AB=10 cm,BC=8 cm,AC=6 cm,则点O到三边AB,AC,BC的距离为()A.2 cm,2 cm,2 cm B.3 cm,3 cm,3 cmC.4 cm,4 cm,4 cm D.2 cm,3 cm,5 cm6.如图所示,△AOB=60°,CD△OA于点D,CE△OB于点E,且CD=CE,则△DCO=__________.7.在△ABC中,△C=90°,AD平分△BAC交BC于D,若BC=32,且BD△CD=9△7,则D到AB的距离为__________.8.点O是△ABC内一点,且点O到三边的距离相等,△A=60°,则△BOC的度数为__________.9.如图,BN是△ABC的平分线,P在BN上,D,E分别在AB,BC上,△BDP+△BEP =180°,且△BDP,△BEP都不是直角.求证:PD=PE.10.如图,在△ABC中,△C=90°,AD平分△BAC,DE△AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB;(2)请你判断AE,AF与BE的大小关系,并说明理由.参考答案1.C2.D3.D4.B5.B6.60°7.148.120°9.证明:过点P 分别作PF△AB 于F ,PG△BC 于G , △BN 是△ABC 的平分线△PF =PG.又△△BDP +△BEP =180°,△PEG +△BEP =180°, △△BDP =△PEG.在△PFD 和△PGE 中,FDP GEP PFD PGE PF PG ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,△△PFD△△PGE(AAS),△PD =PE.10.(1)证明:△△C =90°△DC△AC△AD 平分△BAC ,DE△AB△DC =DE ,△DEB =△C =90°在Rt△DCF 与Rt△DEB 中,DF DB DC DE =⎧⎨=⎩,,△Rt△DCF△Rt△DEB(H L),△CF=EB.(2)解:AE=AF+BE.理由如下:△AD平分△BAC,△△CAD=△EAD,又△△C=△DEA=90°,△△ACD△△AED(AAS),△AC=AE,由(1)知BE=CF△AC=AF+CF=AF+BE,即A E=AF+BE.。
人教版八年级数学基础练习题
八年级人教数学基础练习一.选择题。
1.下列计算正确的是()A.2a﹣a=1B.a2+a2=2a4C.a2•a3=a5D.(a﹣b)2=a2﹣b2 2.已知x+y﹣3=0,则2y•2x的值是()A.6 B.﹣6 C. D.8 3.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1 4.多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2 B.﹣5mx3 C.mx D.﹣5mx 5.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;126.已知x+=5,那么x2+=()A.10 B.23 C.25 D.277.若分式的值为0,则x的值为()A.±2 B.2 C.﹣2 D.48.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.39.在式子中,分式的个数为()A.2个B.3个C.4个D.5个10.若分式的值为零,则x的值是()A.±2 B.2 C.﹣2 D.011.使分式有意义的x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥2 12.计算的结果是()A.a﹣b B.b﹣a C.1 D.﹣1二.解答题。
15.已知a+b=5,ab=6.求下列各式的值:(1)a2+b2(2)(a﹣b)2.16.分解因式(1)4n(m﹣2)﹣6(2﹣m)(2)x2﹣2xy+y2﹣1.(3)2x2﹣4x+2;(4)(a2+b2)2﹣4a2b2.17.解方程﹣2.18.化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.解方程:1+= .19.化简:(﹣)÷.20.计算:(1)(2)(3).人教版八年级上册数学基础训练题参考答案与试题解析一.选择题(共15小题)1.(2016•江西模拟)下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4C.a2•a3=a5D.(a﹣b)2=a2﹣b2【分析】根据合并同类项,积的乘方,完全平方公式,即可解答.【解答】解:A.2a﹣a=a,故错误;B.a2+a2=2a2,故错误;C.a2•a3=a5,正确;D.(a﹣b)2=a2﹣2ab+b2,故错误;故选:C.【点评】本题考查了合并同类项,积的乘方,完全平方公式,解决本题的关键是熟记完全平分公式.2.(2016春•保定校级期末)已知x+y﹣3=0,则2y•2x的值是()A.6 B.﹣6 C.D.8【分析】根据同底数幂的乘法求解即可.【解答】解:∵x+y﹣3=0,∴x+y=3,∴2y•2x=2x+y=23=8,故选:D.【点评】此题考查了同底数幂的乘法等知识,解题的关键是把2y•2x 化为2x+y.3.(2016春•沧州期末)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.4.(2016春•高青县期中)计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b8【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2﹣b2,再把这个式子与a2+b2相乘又符合平方差公式,得到a4﹣b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选B.【点评】本题主要考查了平方差公式的运用,本题难点在于连续运用平方差公式后再利用完全平方公式求解.5.(2016春•深圳校级期中)多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx【分析】根据公因式是多项式中每项都有的因式,可得答案.【解答】解:﹣5mx3+25mx2﹣10mx各项的公因式是﹣5mx,故选:D.【点评】本题考查了公因式,公因式的系数是各项系数的最大公约数,字母是相同的字母,指数是相同字母的指数最底的指数.6.(2016春•灌云县校级月考)若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;12【分析】根据积的乘方法则展开得出a3m b3n=a9b15,推出3m=9,3n=15,求出m、n即可.【解答】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选B.【点评】本题考查了积的乘方的运用,关键是检查学生能否正确运用法则进行计算,题目比较好,但是一道比较容易出错的题目.7.(2016春•滕州市校级月考)已知x+=5,那么x2+=()A.10 B.23 C.25 D.27【分析】根据完全平方公式,即可解答.【解答】解:x+=5,,,.故选:B.【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式.8.(2016•都匀市一模)若分式的值为0,则x的值为()A.±2 B.2 C.﹣2 D.4【分析】分式的值为零即:分子为0,分母不为0.【解答】解:根据题意,得:x2﹣4=0且x﹣2≠0,解得:x=﹣2;故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.(2016•苏州一模)已知x2﹣3x+1=0,则的值是()A.B.2 C.D.3【分析】先根据x2﹣3x+1=0得出x2=3x﹣1,再代入分式进行计算即可.【解答】解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选A.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.10.(2016春•淅川县期末)在式子中,分式的个数为()A.2个B.3个C.4个D.5个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,这3个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.11.(2016春•滕州市期末)若分式的值为零,则x的值是()A.±2 B.2 C.﹣2 D.0【分析】分式的值为0,则分母不为0,分子为0.【解答】解:∵|x|﹣2=0,∴x=±2,当x=2时,x﹣2=0,分式无意义.当x=﹣2时,x﹣2≠0,∴当x=﹣2时分式的值是0.故选C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.12.(2016春•固镇县期末)分式,,的最简公分母是()A.(a2﹣1)2 B.(a2﹣1)(a2+1) C.a2+1 D.(a﹣1)4【分析】利用最简公分母就是各系数的最小公倍数,相同字母或整式的最高次幂,所有不同字母或整式都写在积里求解即可.【解答】解:=,,=,所以分式,,的最简公分母是(a﹣1)2(a+1)2.即(a2﹣1)2故选:A.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.13.(2015•南京二模)使分式有意义的x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥2【分析】根据分式有意义的条件:分母不等于0即可求解.【解答】解:根据题意得:x﹣2≠0,解得:x≠2.故选:C.【点评】本题主要考查了分式有意义的条件,解决本题的关键是熟记分式有意义的条件:分母不等于0.14.(2015•滨州模拟)计算的结果是()A.a﹣b B.b﹣a C.1 D.﹣1【分析】几个分式相加减,根据分式加减法则进行运算,如果分母互为相反数则应将分母转化为其相反数后再进行运算.【解答】解:,故选D.【点评】进行分式的加减时应注意符号的转化.二.解答题(共15小题)16.(2016春•灌云县期中)已知a+b=5,ab=6.求下列各式的值:(1)a2+b2(2)(a﹣b)2.【分析】(1)根据a2+b2=(a+b)2﹣2ab,即可解答.(2)根据(a﹣b)2=(a+b)2﹣4ab,即可解答.【解答】解:(1){a2+b2=(a+b)2﹣2ab=52﹣2×6a2+b2=(a+b)2﹣2ab=52﹣2×6=25﹣12=13.(2)(a﹣b)2=(a+b)2﹣4ab=52﹣4×6=25﹣24=1.【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式.17.(2015春•宁波期中)分解因式(1)4n(m﹣2)﹣6(2﹣m)(2)x2﹣2xy+y2﹣1.【分析】(1)利用提公因式法进行分解因式,即可解答;(2)利用完全平方公式,平方差公式进行因式分解,即可解答.【解答】解:(1)4n(m﹣2)﹣6(2﹣m)=4n(m﹣2)+6(m﹣2)=(4n+6)(m﹣2)=2(m﹣2)(2n+3).(2)x2﹣2xy+y2﹣1=(x﹣y)2﹣1=(x﹣y+1)(x﹣y﹣1).【点评】本题考查了因式分解,解决本题的关键是利用提公因式法,公式法进行因式分解.18.(2015春•泾阳县校级月考)将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=ad﹣bc.上述记号叫做2阶行列式,若=8.求x的值.【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x的值.【解答】解:根据题意化简=8,得:(x+1)2﹣(1﹣x)2=8,整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,即4x=8,解得:x=2.【点评】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.19.(2014春•苏州期末)因式分解:(1)2x2﹣4x+2;(2)(a2+b2)2﹣4a2b2.【分析】(1)首先提取公因式2,再利用完全平方公式进行二次分解即可;(2)首先利用平方差公式进行分解,再利用完全平方公式进行分解.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2,(2)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.(2016•江干区一模)解方程﹣2.【分析】观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原方程无解.【点评】此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.21.(2016春•开县校级月考)化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.【分析】(1)根据平方差公式进行计算即可;(2)先对式子能分解因式的先分解因式,对括号内的先通分再相加,然后化简即可.【解答】解:(1)(x﹣1)2(x+1)2﹣1=[(x﹣1)(x+1)]2﹣1=(x2﹣1)2﹣1=x4﹣2x2+1﹣1=x4﹣2x2;(2)÷(﹣x+2)+=======.【点评】本题考查分式的混合运算、整式的混合运算、平方差公式、完全平方差公式、因式分解,考查的是对问题观察与巧妙利用公式的能力,主要是采用因式分解的数学思想对所化简的式子进行分解因式后再化简.22.(2015•龙岩)解方程:1+=.【分析】根据解分式方程的步骤进行解答,注意进行检验.【解答】解:方程两边同乘以(x﹣2)得,(x﹣2)+3x=6,解得;x=2,检验:当x=2时,x﹣2=0,∴x=2不是原分式方程的解,∴原分式方程无解.【点评】本题考查了解分式方程,解决本题的关键是熟记解分式方程的步骤,一定要进行检验.23.(2015•贺州)解分式方程:=﹣.【分析】方程两边同时乘以(2x+1)(2x﹣1),即可化成整式方程,解方程求得x的值,然后进行检验,确定方程的解.【解答】解:原方程即=﹣,两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.【点评】本题考查的是解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.24.(2015•宝应县一模)若a2﹣a﹣6=0,求分式的值.【分析】先根据题意得出a2=a+6,再根据分式混合运算的法则把原式进行化简,把a2的值代入进行计算即可,【解答】解:∵a2﹣a﹣6=0,∴a2=a+6.∴原式===.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.25.(2015•南平模拟)解分式方程:=+1.【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母,得2(x+1)=x+x(x+1).去括号,得2x+2=x+x2+x,整理,得x2=2,解这个方程,得x=±.检验:当x=±时,x(x+1)≠0,所以x=是原方程解.故原方程的解是x=.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时要注意符号的变化26.(2014•崇明县二模)解方程:+=4.【分析】可根据方程特点设y=,则原方程可化为y2﹣4y+3=0.解一元二次方程求y,再求x.【解答】解:设y=,得:+y=4,y2﹣4y+3=0,解得y1=1,y2=3.当y1=1时,=1,x2﹣x+1=0,此方程没有数解.当y2=3时,=3,x2﹣3x+1=0,解得x=.经检验x=都是原方程的根,所以原方程的根是x=.【点评】本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.27.(2013秋•昌平区期末)计算:()÷.【分析】首先对括号内的分式进行通分相减,把除法转化为乘法,然后进行约分即可.【解答】解:原式=•=•=.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.28.(2014春•维扬区校级期中)化简:.【分析】(1)原式两项通分并利用同分母分式的加法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时除法法则变形,约分即可得到结果.【解答】解:(1)原式=+==;(2)原式=•==x+6.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.29.(2014春•宜宾校级期中)计算:(1);(2)÷(a2﹣4)•.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.30.(2014秋•西城区校级期中)计算:【分析】(1)分别根据0指数幂及负整数指数幂的计算法则、有理数乘方的法则及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的式子,再算除法即可;(3)从左到右依次计算即可.【解答】解:(1)原式=4﹣8+1+1=﹣2;(2)原式=•=;(3)原式=a(b﹣a)••=•=﹣b.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.。
人教版数学八年级上册 《11.3 多边形及其内角和》 同步训练题 (1)
《11.3 多边形及其内角和》同步训练题基础题训练(一):限时30分钟1.如图,AC,BD为四边形ABCD的对角线,∠ABC=90°,∠ABD+∠ADB=∠ACB,∠ADC=∠BCD.(1)求证:AD⊥AC;(2)探求∠BAC与∠ACD之间的数量关系,并说明理由.2.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.3.【知识回顾】:如图①,在△ABC中,根据三角形内角和定理,我们知道∠A+∠B+∠C=180°.如图②,在△ABC中,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.请写出∠ACD与∠A、∠B的关系,直接填空:∠ACD=.【初步运用】:如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=70°,∠DBC=150°,则∠ACB=°.(直接写出答案)(2)若∠A=70°,则∠DBC+∠ECB=°.(直接写出答案)【拓展延伸】:如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=70°,∠P=150°,则∠DBP+∠ECP=°.(请说明理由)(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=40°,求出∠A和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.4.如图,已知四边形ABCD中,∠D=∠B=90°,AE平分∠DAB,CF平分∠DCB.试判断∠AEF与∠CFE是否相等?并证明你的结论.5.如图,在四边形ABCD中,∠C+∠D=210°(1)∠DAB+∠CBA=度;(2)若∠DAB的角平分线与∠CBA的角平分线相交于点E,求∠E的度数.基础题训练(二):限时30分钟6.如图,在四边形ABCD中,∠A=∠C=90°,BE∥DF,∠1=∠2.求证:∠3=∠4.7.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)8.(1)如图1,在△ADC中,∠ADC的平分线和∠ACD的外角平分线交于点P,若∠ADC=70°,∠ACD=50°,求∠P的度数.(2)如图2,在四边形ABCD中,∠ADC的平分线和∠BCD的外角平分线交于点P,∠A=90°,∠B=150°,求∠P的度数.(3)如图3,若将(2)中“∠A=90°,∠B=150°”改为“∠A=α,∠B=β”,其余条件不变,直接写出∠P与α+β之间的数量关系.9.三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图1,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.求证:∠ACD=∠A+∠B证明:过点C作CE∥AB(过直线外一点)∴∠B=∠A=∵∠ACD=∠1+∠2∴∠ACD=∠+∠B(等量代换)应用:如图2是一个五角星,请利用上述结论求∠A+∠B+∠C+∠D+∠E的值为10.如图1,在∠A内部有一点P,连接BP、CP,请回答下列问题:①求证:∠P=∠1+∠A+∠2;②如图2,利用上面的结论,在五角星中,∠A+∠B+∠C+∠D+∠E=;③如图3,如果在∠BAC间有两个向上突起的角,请你根据前面的结论猜想∠1、∠2、∠3、∠4、∠5、∠A之间有什么等量关系,直接写出结论即可.基础题训练(三):限时30分钟11.观察每个正多边形中∠α的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形边数3 4 5 6 …∠a的度数…10°(2)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.12.阅读材料:如图1,点A是直线MN上一点,MN上方的四边形ABCD中,∠ABC=140°,延长BC,2∠DCE=∠MAD+∠ADC,探究∠DCE与∠MAB的数量关系,并证明.小白的想法是:“作∠ECF=∠ECD(如图2),通过推理可以得到CF∥MN,从而得出结论”请按照小白的想法完成解答:拓展延伸保留原题条件不变,CG平分∠ECD,反向延长CG,交∠MAB的平分线于点H(如图3),设∠MAB=α,请直接写出∠H的度数(用含α的式子表示).13.(1)思考探究:如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P 点,请探究∠P与∠A的关系是.(2)类比探究:如图②,四边形ABCD中,设∠A=α,∠D=β,α+β>180°,四边形ABCD的内角∠ABC与外角∠DCE的平分线相交于点P.求∠P的度数.(用α,β的代数式表示)(3)拓展迁移:如图③,将(2)中α+β>180°改为α+β<180°,其它条件不变,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)14.如图,在四边形ABCD中,AD∥BC,∠B=∠D,延长BA至点E,连接CE,且CE交AD 于点F,∠EAD和∠ECD的角平分线相交于点P.(1)求证:①AB∥CD;②∠EAD+∠ECD=2∠APC;(2)若∠B=70°,∠E=60°,求∠APC的度数;(3)若∠APC=m°,∠EFD=n°,请你探究m和n之间的数量关系.15.如图1,在四边形ABCD中,∠A=∠C,点E在AB边上,DE平分∠ADC,且∠ADE=∠DEA.(1)求证:AD∥BC;(2)如图2,已知DF⊥BC交BC边于点G,交AB边的延长线于点F,且DB平分∠EDF.若∠BDC<45°,试比较∠F与∠EDF的大小,并说明理由.参考答案1.解:(1)∵在△ABC中,∠ABC=90°,∴∠ACB+∠BAC=90°,在△ABD中,∠ABD+∠ADB+∠BAD=180°,∵∠ABD+∠ADB=∠ACB,∴∠ACB+∠BAD=180°,即∠ACB+∠BAC+∠CAD=180°,∴∠CAD=90°,∴AD⊥AC.(2)∠BAC=2∠ACD;∵∠ABC=90°,∴∠BAC=90°﹣∠ACB=90°﹣(∠BCD﹣∠ACD),∵∠DAC=90°,∴∠ADC=90°﹣∠ACD,∵∠ADC=∠BCD,∴∠BCD=90°﹣∠ACD,∴∠BAC=90°﹣(90°﹣∠ACD﹣∠ACD)=2∠ACD.2.解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.3.解:【知识回顾】∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B;故答案为:∠A+∠B;【初步运用】(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;【拓展延伸】(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.4.解:∠AEF=∠CFE.证明:∵∠D=∠B=90°,∴∠DAB+∠DCB=180°,又∵AE平分∠DAB,CF平分∠DCB,∴∠DAE=∠DAB,∠DCF=∠DCB,∴∠DAE+∠DCF=(∠DAB+∠DCB)=90°,∵∠D=90°,∴∠DAE+∠DEA=90°,∴∠DEA=∠DCF,∴AE∥CF,∴∠AEF=∠CFE.5.解:(1)∵∠DAB+∠CBA+∠C+∠D=360°,∴∠DAB+∠CBA=360°﹣(∠C+∠D)=360°﹣210°=150°.故答案为:150;(2)∵∠DAB与∠ABC的平分线交于四边形内一点E,∴∠EAB=∠DAB,∠EBA=∠ABC,∴∠E=180°﹣(∠EAB+∠EBA)=180°﹣(∠DAB+∠CBA)=180°﹣(360°﹣∠C﹣∠D)=(∠C+∠D),∵∠C+∠D=210°,∴∠E=(∠C+∠D)=105°.6.证明:∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE∥DF,∴∠2=∠5,∠AEB=∠3,∵∠1=∠2,∴∠1=∠5,∴∠AEB=∠4,∴∠3=∠4.7.解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°;(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180°×5+180°=1080°.8.解:(1)如图1,在射线DC上取一点E,∵∠ADC的平分线和∠ACD的平分线交于点P,∴,,∴∠P=∠PCE﹣∠PDC=30°;(2)如图2,在射线DC上取一点E,∵∠ADC的平分线和∠BCD的外角平分线交于点P,∴,,∴∠P=∠PCE﹣∠PDC======30°;(3).9.证明:过点C作CE∥AB(过直线外一点有且只有一条直线与已知直线平行)∴∠B=∠2(两直线平行,同位角相等),∠A=∠1(两直线平行,内错角相等),∵∠ACD=∠1+∠2,∴∠ACD=∠A+∠B(等量代换)应用:对于△BDN,∠MNA=∠B+∠D,对于△CEM,∠NMA=∠C+∠E,对于△ANM,∠A+∠MNA+∠NMA=180°,∴∠A+∠B+∠D+∠C+∠E=180.故答案为:有且只有一条直线与已知直线平行;∠2(两直线平行,同位角相等);∠1(两直线平行,内错角相等);A;180°10.解:①连接AP并延长,则∠3=∠2+∠BAP,∠4=∠1+∠PAC,故∠BPC=∠1+∠A+∠2;②利用①中的结论,可得∠1=∠A+∠C+∠D,∵∠2=∠B+∠E,∵∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=180°.③连接AP、AD、AG并延长,同①由三角形内角与外角的性质可求出∠4+∠5=∠1+∠2+∠3+∠BAC.故答案为:180°.11.解:(1)填表如下:正多边形的边数 3 4 5 6 (18)∠α的度数60°45°36°30°…10°故答案为:60°,45°,36°,30°,18;(2)不存在,理由如下:假设存在正n边形使得∠α=21°,得∠α=()°=21°,解得:n=8,又n是正整数,所以不存在正n边形使得∠α=21°.12.解:阅读材料:延长CB交MN于点T,∵∠ECF=∠ECD,2∠DCE=∠MAD+∠ADC,∴2∠ECD=∠MAD+∠ADC=360°﹣∠CTA﹣∠DCT=360°﹣(180°﹣∠MTC)﹣(180°﹣∠ECD)=∠MTC+∠ECD,∴∠ECD=∠MTC,∴∠ECF=∠MTC,∴CF∥MN,∵∠ABC=140°,∴∠ABT=40°,∴∠MTC=∠MAB+40°,即∠DCE=∠MAB+40°;拓展延伸:∠H=360°﹣∠CDA﹣∠MAB﹣∠DAB﹣∠HCD=180°﹣[360°﹣(180°﹣∠ECD)﹣∠MAB﹣(180°﹣∠ECD)]=180°﹣(∠ECD﹣∠MAB),∵∠DCE=∠MAB+40°,∴∠H=180°﹣(∠MAB+60°),∵∠MAB=α,∴∠H=120°﹣α.13.解:(1)如图1中,结论:2∠P=∠A.理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)如图2中,解法一:由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得∠PCE=∠P+∠PBC,∵BP、CP分别是∠ABC和∠DCE的平分线,∴∠PBC=∠ABC,∠PCE=∠DCE,∴∠P+∠PBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠P=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠P=(α+β)﹣90°;解法二:延长BA交CD的延长线于F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知:∠P=∠F,∴∠P=(α+β)﹣90°;②如图3,延长AB交DC的延长线于F.∵∠F=180°﹣α﹣β,∠P=∠F,∴∠P=(180°﹣α﹣β)=90°﹣α﹣β.故答案为:2∠P=∠A;90°﹣α﹣β.14.解:(1)证明:①∵AD∥BC,∴∠EAD=∠B,∵∠B=∠D,∴∠EAD=∠D,∴AB∥CD;②过点P作PQ∥AB,则∠EAP=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠DCP=∠CPQ,∵AB∥CD,∴PQ∥CD,∴∠DCP=∠CPQ,∵∠EAP=∠EAD,∠DCP=,∴;(2)由(1)知AD∥BC,AB∥CD,∴∠EAD=∠B=70°,∠ECD=∠E=60°,由(1)知∠EAD+∠ECD=2∠APC,∴∠APC=;(3)过点F作FH∥AB,则∠EAD=∠AFH,∵AB∥CD,∴FH∥CD,∴∠ECD=∠CFH,∴∠EAD+∠ECD=∠AFH+∠CFH=∠AFC=∠EFD,由(1)知∠EAD+∠ECD=2∠APC,∴∠EFD=2∠APC,∵∠APC=m°,∠EFD=n°,∴.15.解:(1)证明:∵DE平分∠ADC,∴∠CDE=∠ADE,又∵∠ADE=∠DEA,∴∠CDE=∠DEA,∴CD∥AB,∴∠B+∠C=180°,又∵∠A=∠C,∴∠B+∠A=180°,∴AD∥BC;(2)∵DF⊥BC,∴∠BGF=90°,又∵AD∥BC,∴∠ADF=∠BGF=90°,∵CD∥AB,∴∠CDF=∠F.设∠EDB=∠BDF=x°,∠CDF=∠F=y°,则∠EDF=2x°,∠ADE=∠EDC=(2x+y)°,由∠ADF=∠ADE+∠EDF,得2x+y+2x=90,∴y=90﹣4x,∴∠F﹣∠EDF=y°﹣2x°=90°﹣4x°﹣2x°=90°﹣6x,∵∠BDC<45°,∴x+y<45°,x+90﹣4x<45,解得x>15,∴6x>90.∴∠F﹣∠EDF=90°﹣6x°<0,∴∠F<∠EDF.。
第12章全等三角形 同步基础达标训练 2021-2022学年人教版八年级数学上册(含答案)
2021-2022学年人教版八年级数学上册《第12章全等三角形》同步基础达标训练(附答案)1.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.60°B.100°C.120°D.135°2.根据下列已知条件,能唯一画出△ABC的是()A.∠C=90°,AB=6B.AB=4,BC=3,∠A=30°C.AB=5,BC=3D.∠A=60°,∠B=45°,BC=43.已知△ABC≌△DEF,且△ABC的周长为6,则△DEF的周长为()A.12B.10C.8D.64.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D.如果AC=10cm,那么AE+DE等于()A.6cm B.8cm C.10cm D.12cm5.如图,在△ABC中,AD平分∠BAC,且AE=AF,则可直接用“SAS”判断的是()A.△ABD≌△ACD B.△BDE≌△CDF C.△ADE≌△ADF D.△ABD≌△ABC 6.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是()A.SAS B.ASA C.AAS D.SSS7.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.厘米8.下列说法:①能够重合的两个图形一定是全等图形;②两个全等图形的面积一定相等;③两个面积相等的图形一定是全等图形;④两个周长相等的图形一定是全等图形.这些说法中正确的是()A.①②B.②③④C.①②④D.①②③④9.如图,已知∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD 全等.以下给出的条件适合的是()A.∠ABC=∠ABD B.∠BAC=∠BAD C.AC=AD D.AC=BC10.如图,点P是∠AOC的角平分线上一点,PD⊥OA,垂足为点D,且PD=3,点M是射线OC上一动点,则PM的最小值为()A.2B.3C.4D.511.如图,B、E、C、F四点在同一直线上,在△ABC和△DEF中,AB=DE,∠B=∠DEF,添加下列条件,仍不能证明△ABC≌△DEF的是()A.AC=DF B.∠A=∠D C.BE=CF D.AC∥DF12.如图,在正方形网格内(每个小正方形的边长为1),有一格点三角形ABC(三个顶点分别在正方形的格点上),现需要在网格内构造一个新的格点三角形与原三角形全等,且有一条边与原三角形的一条边重合,这样的三角形可以构造出()A.3个B.4个C.5个D.6个13.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去14.如图,点P在BC上,AB⊥BC于点B,DC⊥BC于点C,△ABP≌△PCD,其中BP=CD,则下列结论中错误的是()A.∠APB=∠D B.∠A+∠CPD=90°C.AP=PD D.AB=PC15.如图,正方形ABCD被分割成2个长方形和1个正方形,要求图中阴影部分的面积,只要知道下列图形的面积是()A.长方形AEFD B.长方形BEGH C.正方形CFGH D.长方形BCFE 16.直角△ABC、△DEF如图放置,其中∠ACB=∠DFE=90°,AB=DE且AB⊥DE.若DF=a,BC=b,CF=c,则AE的长为()A.a+c B.b+c C.a+b﹣c D.a﹣b+c17.如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM的度数等于()A.10°B.20°C.30°D.40°18.在△ABC中,AB=5,AC=7,AD是BC边上的中线,则AD的取值范围是()A.0<AD<12B.1<AD<6C.0<AD<6D.2<AD<12 19.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个20.如图,AB=14,AC=6,AC⊥AB,BD⊥AB,垂足分别为A、B.点P从点A出发,以每秒2个单位的速度沿AB向点B运动;点Q从点B出发,以每秒a个单位的速度沿射线BD方向运动.点P、点Q同时出发,当以P、B、Q为顶点的三角形与△CAP全等时,a的值为()A.2B.3C.2或3D.2或21.如图是由6个边长相等的正方形组合成的图形,∠1+∠2+∠3=.22.如图,已知∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“SAS”为依据,还需添加的一个条件为.23.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥OB于点C,BD、AC都经过点E,则图中全等的三角形共有对.24.如图,△ABC≌△ADE,且AE∥BD,∠BAD=96°,则∠BAC度数的值为.25.如图,在△ABC和△EBD中,AB=EB,AC=ED,若再添加一个条件,则下列条件中能使得△ABC与△EBD全等的有.①BC=BD;②∠C=∠D;③∠A=∠E;④∠ABC=∠DBE=90°.26.如图,已知∠ABC=∠DEF,BE=CF,AB=DE,求证:AC=DF.27.完成下面的说理过程.已知:如图,OA=OB,AC=BC.试说明:∠AOC=∠BOC.解:在△AOC和△BOC中,因为OA=,AC=,OC=,所以≌(SSS),所以∠AOC=∠BOC().28.如图,AD=AC,∠1=∠2=40°,∠C=∠D,点E在线段BC上.(1)求证:△ABC≌△AED;(2)求∠AEC的度数.29.如图,AC与BD相交于点O,且OA=OC,OB=OD.(1)求证:AB∥CD;(2)直线EF过点O,分别交AB,CD于点E,F,试判断OE与OF是否相等,并说明理由.30.如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠ABC=65°,求∠CBD的度数.参考答案1.解:∵△ABC≌△A'B'C',∠C'=24°,∴∠C=∠C'=24°,∴∠B=180°﹣∠A﹣∠C=180°﹣36°﹣24°=120°,故选:C.2.解:A、当∠C=90°,AB=6,可根据全等三角形的判定方法判断三角形不唯一,所以A选项不符合题意;B、当AB=6,BC=3,∠A=30°,可根据全等三角形的判定方法判断三角形不唯一,所以B选项不符合题意;C、当AB=6,BC=3,可根据全等三角形的判定方法,判断三角形不唯一,所以C选项不符合题意;D、当∠A=60°,∠B=45°,BC=4,可根据全等三角形的判定方法判断三角形唯一,所以D选项符合题意.故选:D.3.解:∵△ABC≌△DEF,且△ABC的周长为6,∴△DEF的周长为6,故选:D.4.解:∵∠ACB=90°,∴EC⊥BC,又∵BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC,∵AC=10cm,∴AE+DE=AC=10cm,故选:C.5.解:∵AD平分∠BAC,∴∠EAD=∠F AD,在△ADE与△ADF中,,∴△ADE≌△ADF(SAS),故选:C.6.解:如图,由作图可知,OA=OB=CE=EF,BA=CF.在△AOB和△CEF中,,∴△AOB≌△CEF(SSS),故选:D.7.解:连接AB.在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD=5厘米,∵EF=6厘米,∴圆柱形容器的壁厚是×(6﹣5)=(厘米),故选:D.8.解:①能够重合的两个图形一定是全等图形,说法正确;②两个全等图形的面积一定相等,说法正确;③全等的两个图形的面积相等,但两个面积相等的图形不一定是全等图形,说法错误;④全等的两个图形的周长相等,两个周长相等的图形不一定是全等图形,说法错误;故选:A.9.解:A.∵∠ABC=∠ABD,∠C=∠D=90°,AB=AB,∴Rt△ABC≌Rt△ABD(AAS),故本选项不符合题意;B.∵∠BAC=∠BAD,∠C=∠D=90°,AB=AB,∴Rt△ABC≌Rt△ABD(AAS),故本选项不符合题意;C.∵∠C=∠D=90°,AB=AB,AC=AD,∴Rt△ABC≌Rt△ABD(HL),故本选项符合题意;D.根据∠C=∠D=90°,AB=AB,AC=BC不能推出Rt△ABC≌Rt△ABD,故本选项不符合题意;故选:C.10.解:根据垂线段最短可知:当PM⊥OC时,PM最小,当PM⊥OC时,又∵OP平分∠AOC,PD⊥OA,PD=3,∴PM=PD=3,故选:B.11.解:∵AB=DE,∠B=∠DEF,若添加AC=DF,则两个三角形满足SSA,∴不一定全对,符合题意;若添加:∠A=∠D,则两个三角形ASA全等,不符合题意;若添加BE=CF,则BC=EF,则两个三角形SAS全等,不符合题意;若添加AC∥DF,则∠ACB=∠DFE,则两个三角形AAS全等,不符合题意;故选:A.12.解:如图满足条件的三角形如图所示,有5个.故选:C.13.解:A、带①②去,符合ASA判定,选项符合题意;B、带②③去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;C、带③④去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;D、带②④去,仅保留了原三角形的两个角和部分边,不符合任何判定方法,选项不符合题意;故选:A.14.解:∵△ABP≌△PCD,∴∠APB=∠D,AP=PD,AB=PC,∠A=∠CPD,∴∠A+∠CPD=90°是错误的,故选:B.15.解:如图所示:在△GDF与△BGE中,,∴△GDF≌△BGE(SAS).∴S△GDF=S△BEG,则S阴影=S△EFB=S矩形BCFE.所以只要知道长方形BCFE的面积即可求得答案.故选:D.16.解:∵AB⊥DE,∴∠DGH=90°,∵∠DFE=90°,∴∠AFH=90°,∴∠AFH=∠DGH,∵∠DHG=∠AHF,∴∠A=∠D,在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF,BC=EF,∵DF=a,BC=b,CF=c,∴AE=AC+EF﹣CF=DF+BC﹣CF=a+b﹣c.故选:C.17.解:∵在△ABC中,∠A:∠ABC:∠ACB=3:5:10,∠A+∠ABC+∠ACB=180°,∴∠A=30°,∠BCA=100°,∠ABC=50°,∵△MNC≌△ABC,∴∠NCM=∠ACB=100°,∠N=∠ABC=50°,BC=NC,∴∠NBC=∠N=50°,∴∠BCN=180°﹣∠N﹣∠NBC=80°,∴∠BCM=∠ACB﹣∠BCN=100°﹣80°=20°,18.解:如图,延长中线AD到E,使DE=AD,∵AD是三角形的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD≌△EBD(SAS),∴AC=BE,∵AB=5,BE=AC=7,∴7﹣5<AE<7+5,即7﹣5<2AD<7+5,∴1<AD<6.故选:B.19.解:∵∠EAC=∠F AB,∴∠EAB=∠CAF,在△ABE和△ACF,,∴△ABE≌△ACF(AAS),∴∠B=∠C.AE=AF.由△AEB≌△AFC知:∠B=∠C,AC=AB;在△ACN和△ABM,,∴△ACN≌△ABM(ASA)(故④正确);由于条件不足,无法证得②CD=DN;综上所述,正确的结论是①③④,共有3个.故选:C.20.解:当△CAP≌△PBQ时,则AC=PB,AP=BQ,∵AC=6,AB=14,∴PB=6,AP=AB﹣AP=14﹣6=8,∴BQ=8,∴8÷a=8÷2,解得a=2;当△CAP≌△QBP时,则AC=BQ,AP=BP,.∵AC=6,AB=14,∴BQ=6,AP=BP=7,∴6÷a=7÷2,解得a=;由上可得a的值是2或,故选:D.21.解:如图,根据题意得DE=BC,EC=AB,GF=GC,∠DEC=∠ABC=∠FGC=90°,∴△CGF为等腰直角三角形,∴∠2=45°,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠1=∠DCE,∵∠DCE+∠3=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°.故答案为135°.22.解:还需添加的一个条件为BC=EF或BE=CF,理由如下:添加BC=EF时,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);添加BE=CF时,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:BC=EF或BE=CF.23.解:∵OE是∠AOB的平分线,BD⊥OA,AC⊥OB,∴ED=EC,在Rt△OED和△OEC中,,∴Rt△OED≌Rt△OEC(HL);∴OD=OC,在△AED和△BEC中,,∴△AED≌△BEC(ASA);∴AD=BC,∴OD+AD=OC+BC,即OA=OB,在△OAE和△OBE中,,∴△OAE≌△OBE(SAS),在△OAC和△OBD中,,∴△OAC≌△OBD(SAS).故答案为4.24.解:∵△ABC≌△ADE,∠BAD=96°,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB=×(180°﹣96°)=42°,∵AE∥BD,∴∠DAE=∠ADB=42°,∴∠BAC=∠DAE=42°,故答案为:42°.25.解:∵AB=EB,AC=ED,∴当BC=BD时,可根据“SSS”可证△ABC≌△EBD;当∠C=∠D时,无法证明△ABC≌△EBD;当∠A=∠E时,可根据“SAS”可证△ABC≌△EBD;当∠ABC=∠DBE=90°,可根据“HL”可证△ABC≌△EBD;故答案为①③④.26.证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.27.解:在△OAC和△OBC中,因为AO=OB,AC=BC,OC=OC,所以△AOC≌△BOC(SSS),所以∠AOC=∠BOC(全等三角形的对应角相等).故答案为OB;BC;OC;△AOC;△BOC;全等三角形的对应角相等.28.(1)证明:∵∠1=∠2=40°,∴∠1+∠CAE=∠2+∠CAE,即∠BAC=∠EAD,在△ABC和△AED中,,∴△ABC≌△AED(ASA);(2)解:由(1)得:△ABC≌△AED,∴AB=AE,∴∠B=∠AEB=(180°﹣∠1)=(180°﹣40°)=70°,∴∠AEC=∠1+∠B=40°+70°=110°.29.(1)证明:在△OAB与△OCD中,,∴△OAB≌△OCD(SAS),∴∠A=∠C,∴AB∥CD;(2)解:OE=OF,理由如下:由(1)知,△OAB≌△OCD,∴∠B=∠D,OB=OD,在△EOB与△FOD中,∴△EOB≌△FOD(ASA),∴OE=OF.30.解:∵CE⊥AB,BD⊥AC,∴△BCE和△CBD是直角三角形,在Rt△BCE和Rt△CBD中,,∴Rt△BCE≌Rt△CBD(HL),∴∠ABC=∠ACB,∵∠ABC=65°,∴∠ACB=65°,∴∠CBD=90°﹣∠ACB=25°。
八年级上册数学基础训练答案人教版
八年级上册数学基础训练答案人教版§11.1全等三角形一、1. C 2. C二、1.(1)①AB DE ②AC DC ③BC EC(2)①∠A ∠D ②∠B ∠E ③∠ACB ∠DCE2. 120 4三、1.对应角分别是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.对应边分别是:AO和DO,OB和OC,AC和DB.2.相等,理由如下:∵△ABC≌△DFE ∴BC=FE ∴BC-EC=FE-EC ∴BE=FC3.相等,理由如下:∵△ABC≌△AEF ∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠FAE ¬—∠BAF 即∠CAF=∠EAB§11.2全等三角形的判定(一)一、1. 100 2. △BAD,三边对应相等的两个三角形全等(SSS)3. 2, △ADB≌△DAC,△ABC≌△DCB4. 24二、1. ∵BG=CE ∴BE=CG 在△ABE和△DCG中,∴△ABE≌△DCG(SSS),∴∠B=∠C2. ∵D是BC中点,∴BD=CD,在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC又∵∠ADB+∠ADC=180°∴∠ADB=90° ∴AD⊥BC3.提示:证△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2可得∠ACE=∠FDB§11.2全等三角形的判定(二)一、1.D 2.C二、1.OB=OC 2. 95三、1. 提示:利用“SAS”证△DAB≌△CBA可得∠DAC=∠DBC.2. ∵∠1=∠2 ∴∠1+∠CAD=∠2+∠CAD即∠BAC=∠DAE,在△BAC和△DAE中,∴△BAC≌△DAE(SAS)∴BC=DE3.(1)可添加条件为:BC=EF或BE=CF(2)∵AB∥DE ∴∠B=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)§11.2全等三角形的判定(三)一、1. C 2. C二、1.AAS 2.(1)SAS (2)ASA 3.(答案不)∠B=∠B1,∠C=∠C1等三、1.在△ACE和△ABD中, ∴△ACE≌△ABD(AAS)2.(1)∵AB//DE ∴∠B=∠DEF ∵AC//DF ∴∠ACB=∠F 又∵BE=CF∴BE+EC=CF+EC ∴BC=EF ∴△ABC≌△DEF(ASA)3. 提示:用“AAS”和“ASA”均可证明.§11.2全等三角形的判定(四)一、1.D 2.C二、1.ADC,HL;CBE SAS 2. AB=A'B'(答案不)3.Rt△ABC,Rt△DCB,AAS,△DOC三、1.证明:∵AE⊥BC,DF⊥BC,∴∠CEA=∠DFB=90°∵BE=CF,∴BC-BE=BC-CF即CE=BF 在Rt△ACE和Rt△DBF中, ∴Rt△ACE≌ Rt△DBF (HL)∴∠ACB=∠DBC ∴AC//DB2.证明:∵AD⊥BC,CE⊥AB ∴∠ADB=∠CEB=90°.又∵∠B=∠B ,A D=CE∴△ADB≌△CEB(AAS)3.(1)提示利用“HL”证Rt△ADO≌Rt△AEO,进而得∠1=∠2;(2)提示利用“AAS”证△ADO≌△AEO,进而得OD=OE.11.2三角形全等的判定(综合)一、1.C 2.B 3.D 4.B 5.B二、1. 80° 2. 2 3. 70° 4. (略)三、1.(1)∵AB⊥BE,DE⊥BE,∵∠B=∠E=90° 又∵BF=CE,∴BC=EF,在Rt△ABC和Rt△DEF中, ∴△ABC≌△DEF(2)∵△ABC≌△DEF ∴∠GFC=∠GCF ∴GF=GC2.△ADC≌△AEB,△BDF≌△CEF 或△BDC≌△CEB ∵D、E分别是AB、AC的中点,AB=AC∴AD=AE.在△ADC和△AEB中, ∴△ADC≌△AEB(SAS)§11.3角的平分线的性质一、1.C 2.D 3.B 4.B 5.B 6.D二、1. 5 2. ∠BAC的角平分线 3.4cm三、1.在A内作公路与铁路所成角的平分线;并在角平分线上按比例尺截取BC=2cm,C点即为所求(图略).2. 证明:∵D是BC中点,∴BD=CD.∵ED⊥AB,DF⊥AC,∴∠BED=∠CFD=∠AED=∠AFD=90°.在△BED与△CFD中, ∴△BED≌△CFD(AAS)∴DE=DF,∴AD平分∠BAC3.(1)过点E作EF⊥DC,∵E是∠BCD,∠ADC的平分线的交点,又∵DA⊥AB,CB⊥AB,EF⊥DC,∴AE=EF,BE=EF,即AE=BE(2)∵∠A=∠B=90°,∴AD//BC,∴∠ADC+∠BCD=180°.又∵∠EDC= ∠ADC,∠ECD= ∠BCD ∴∠EDC+∠ECD=90°∴∠DEC=180°-(∠EDC+∠E CD)=90°4. 提示:先使用AO是∠BAC的平分线得DO=EO,再利用“ASA”证△DOB≌△EOC,进而得BO=CO.第十二章轴对称§12.1轴对称(一)一、1.A 2.D二、1. (注一个正“E”和一个反“E”合在一起) 2. 2 4 3.70° 6三、1.轴对称图形有:图(1)中国人民银行标志,图(2)中国铁路标徽,图(4)沈阳太空集团标志三个图案.其中图(1)有3条对称轴,图(2)与(4)均只有1条对称轴.2. 图2:∠1与∠3,∠9与∠10,∠2与∠4,∠7与∠8,∠B与∠E等;AB与AE,BC与ED,AC与AD等. 图3:∠1与∠2,∠3与∠4,∠A与∠A′等;AD与A′D′,CD与C′D′, BC与B′C′等.§12.1轴对称(二)一、1.B 2.B 3.C 4.B 5.D二、1.MB 直线CD 2. 10cm 3. 120°三、1.(1)作∠AOB的平分线OE;(2)作线段MN的垂直平分线CD,OE与CD交于点P,点P就是所求作的点.2.解:因为直线m是多边形ABCDE的对称轴,则沿m折叠左右两部分完全重合,所以∠A=∠E=130°,∠D=∠B=110°,因为五边形内角和为(5-2)×180°=540°,即∠A+∠B+∠BCD+∠D+∠E=540°,130°+110°+∠BCD+110°+130°=540°,所以∠BCD=60°3. 20提示:利用线段垂直平分线的性质得出BE=AE.§12.2.1作轴对称图形一、1.A 2.A 3.B二、1.全等 2.108三、1. 提示:作出圆心O′,再给合圆O的半径作出圆O′. 2.图略3.作点A关于直线a的对称点A′,连接A′B交直线a于点C,则点C 为所求.当该站建在河边C点时,可使修的渠道最短.如图§12.2.2用坐标表示轴对称一、1.B 2.B 3.A 4.B 5.C二、1.A(0,2), B(2,2), C(2,0), O(0,0)2.(4,2)3. (-2,-3)三、1. A(-3,0),B(-1,-3),C(4,0),D(-1,3),点A、B、C、D关于y轴的对称点坐标分别为A′(3,0)、B′(1,-3)、C′(-4,0)、D′(1,3)顺次连接A′B′C′D′.如上图2.∵M,N关于x轴对称, ∴∴ ∴ba+1=(-1)3+1=03.A′(2,3),B′(3,1),C′(-1,-2)§12.3.1等腰三角形(一)一、1.D 2.C二、1. 40°,40° 2. 70°,55°,55°或40°,70°,70° 3. 82.5°三、1.证明:∵∠EAC是△ABC的外角∴∠EAC=∠1+∠2=∠B+∠C∵AB=AC∴∠B=∠C ∴∠1+∠2=2∠C ∵∠1=∠2 ∴2∠2=2∠C∴∠2=∠C ∴AD//BC2.解∵AB=AC,AD=BD,AC=CD ∴∠B=∠C=∠BAD,∠ADC=∠DAC.设∠B=x,则∠ADC=∠B+∠BAD=2x,∴∠DAC=∠ADC=2x,∴∠BAC=3x.于是在△ABC 中,∠B+∠C+∠BAC=x+x+3x=180°,得x=36∴∠B=36°.§12.3.2等腰三角形(二)一、1.C 2.C 3.D二、1.等腰 2. 9 3.等边对等角,等角对等边三、1.由∠OBC=∠OCB得BO=CO,可证△ABO≌△ACO,得AB=AC ∴△ABC 是等腰三角形.2.能.理由:由AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,得△ABE≌△DCE,∴BE=CE,∴△BEC是等腰三角形.3.(1)利用“SAS”证△ABC≌△AED. (2)△ABC≌△AED可得∠ABO=∠AEO,AB=AE得∠ABE=∠AEB.进而得∠OBE=∠OEB,最后可证OB=OE.§12.3.3等边三角形一、1.B 2.D 3.C二、1.3cm 2. 30°,4 3. 1 4. 2三、1.证明:∵在△ADC中,∠ADC=90°, ∠C=30° ∴∠FAE=60° ∵在△ABC中,∠BAC=90°,∠C=30°∴∠ABC=60°∵BE平分∠ABC,∴∠ABE=×60°=30°∵在△ABE中,∠ABE=30°,∠BAE=90° ∴∠AEF=60°∴在△AEF中∠FAE=∠AEF=60° ∴FA=FE ∵∠FAE=60°∴△AFE为等边三角形.2.∵DA是∠CAB的平分线,DE⊥AB,DC⊥AC,∴DE=CD=3cm,在Rt△ABC中,因为∠CAB=60°,∴∠B=30°.在Rt△DEB中,∵∠B=30°,DE=3cm,∴DB=2DE=6c m∴BC=CD+DE=3+6=9(cm)3. 证明:∵△ABC为等边三角形,∴BA=CA , ∠BAD=60°.在△ABD和△ACE中, ∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE=60°∴△ADE是等边三角形.4. 提示:先证BD=AD,再利用直角三角形中,30°角所对的直角边是斜边的一半,得DC=2AD.第十三章实数§13.1平方根(一)一、1. D 2. C二、1. 6 2. 3. 1三、1. (1)16 (2)(3)0.42. (1)0, (2)3 , (3)(4)40 (5)0.5 (6) 43. =0.54. 倍;倍.§13.1平方根(二)一、1. C 2. D二、1. 2 2. 3. 7和8三、1.(1)(2)(3)2.(1)43 (2)11.3 (3)12.25 (4) (5)6.623.(1)0.5477 1.732 5.477 17.32(2)被开方数的小数点向右(左)移动两位,所得结果小数点向右(左)移动一位. (3)0.1732 54.77§13.1平方根(三)一、1. D 2. C二、1. ,2 2, 3.三、1.(1)(2)(3)(4)2.(1)(2)-13 (3)11 (4)7 (5) 1.2 (6)-3.(1)(2)(3)(4)4. ,这个数是4 5. 或§13.2立方根(一)一、1. A 2. C二、1. 125 2. ±1和0 3. 3三、1.(1)-0.1 (2)-7 (3)(4)100 (5)- (6)-22.(1)-3 (2)(3)3. (a≠1)§13.2立方根(二)一、1. B 2. D二、1. 1和0; 2. 3. 2三、1. (1)0.73 (2)±14 (3)2. (1)-2 (2)-11 (3)±1 (4)- (5)-2 (6)3.(1) (2) (3) (4)x=-4 (5)x= (6)x= +1§13.3实数(一)一、1. B 2. A二、1.2. ±33.三、1. (1)-1,0,1,2;(2)-4,-3,-2,-1,0,1,2,3,42. 略3.16cm、12cm4. a= ,b=-§13.3实数(二)一、1. D 2. D二、1. 2. 3 3. ①,③-π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册数学基础训练题一.选择题(共15小题)1.下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4C.a2•a3=a5D.(a﹣b)2=a2﹣b22.已知x+y﹣3=0,则2y•2x的值是()A.6 B.﹣6 C.D.83.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.14.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8 D.a8﹣b85.多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx6.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;127.已知x+=5,那么x2+=()A.10 B.23 C.25 D.278.若分式的值为0,则x的值为()A.±2 B.2 C.﹣2 D.49.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.310.在式子中,分式的个数为()A.2个B.3个C.4个D.5个11.若分式的值为零,则x的值是()A.±2 B.2 C.﹣2 D.012.分式,,的最简公分母是()A.(a2﹣1)2 B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)413.使分式有意义的x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥214.计算的结果是()A.a﹣b B.b﹣a C.1 D.﹣115.化简的结果是()A.﹣1 B.1 C.1+x D.1﹣x二.解答题(共15小题)16.已知a+b=5,ab=6.求下列各式的值:(1)a2+b2(2)(a﹣b)2.17.分解因式(1)4n(m﹣2)﹣6(2﹣m)(2)x2﹣2xy+y2﹣1.18.将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=ad﹣bc.上述记号叫做2阶行列式,若=8.求x的值.19.因式分解:(1)2x2﹣4x+2;(2)(a2+b2)2﹣4a2b2.20.解方程﹣2.21.化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.22.解方程:1+=.23.解分式方程:=﹣.24.若a2﹣a﹣6=0,求分式的值.25.解分式方程:=+1.26.解方程:+=4.27.计算:()÷.28.化简:(1)m﹣n+;(2)(﹣)÷.29.计算:(1);(2)÷(a2﹣4)•.30.计算:(1)(2)(3).人教版八年级上册数学基础训练题参考答案与试题解析一.选择题(共15小题)1.(2016•江西模拟)下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4C.a2•a3=a5D.(a﹣b)2=a2﹣b2【分析】根据合并同类项,积的乘方,完全平方公式,即可解答.【解答】解:A.2a﹣a=a,故错误;B.a2+a2=2a2,故错误;C.a2•a3=a5,正确;D.(a﹣b)2=a2﹣2ab+b2,故错误;故选:C.【点评】本题考查了合并同类项,积的乘方,完全平方公式,解决本题的关键是熟记完全平分公式.2.(2016春•保定校级期末)已知x+y﹣3=0,则2y•2x的值是()A.6 B.﹣6 C.D.8【分析】根据同底数幂的乘法求解即可.【解答】解:∵x+y﹣3=0,∴x+y=3,∴2y•2x=2x+y=23=8,故选:D.【点评】此题考查了同底数幂的乘法等知识,解题的关键是把2y•2x化为2x+y.3.(2016春•沧州期末)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x 的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.4.(2016春•高青县期中)计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8 D.a8﹣b8【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2﹣b2,再把这个式子与a2+b2相乘又符合平方差公式,得到a4﹣b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选B.【点评】本题主要考查了平方差公式的运用,本题难点在于连续运用平方差公式后再利用完全平方公式求解.5.(2016春•深圳校级期中)多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx【分析】根据公因式是多项式中每项都有的因式,可得答案.【解答】解:﹣5mx3+25mx2﹣10mx各项的公因式是﹣5mx,故选:D.【点评】本题考查了公因式,公因式的系数是各项系数的最大公约数,字母是相同的字母,指数是相同字母的指数最底的指数.6.(2016春•灌云县校级月考)若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;12【分析】根据积的乘方法则展开得出a3m b3n=a9b15,推出3m=9,3n=15,求出m、n即可.【解答】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选B.【点评】本题考查了积的乘方的运用,关键是检查学生能否正确运用法则进行计算,题目比较好,但是一道比较容易出错的题目.7.(2016春•滕州市校级月考)已知x+=5,那么x2+=()A.10 B.23 C.25 D.27【分析】根据完全平方公式,即可解答.【解答】解:x+=5,,,.故选:B.【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式.8.(2016•都匀市一模)若分式的值为0,则x的值为()A.±2 B.2 C.﹣2 D.4【分析】分式的值为零即:分子为0,分母不为0.【解答】解:根据题意,得:x2﹣4=0且x﹣2≠0,解得:x=﹣2;故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.(2016•苏州一模)已知x2﹣3x+1=0,则的值是()A.B.2 C.D.3【分析】先根据x2﹣3x+1=0得出x2=3x﹣1,再代入分式进行计算即可.【解答】解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选A.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.10.(2016春•淅川县期末)在式子中,分式的个数为()A.2个B.3个C.4个D.5个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,这3个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.11.(2016春•滕州市期末)若分式的值为零,则x的值是()A.±2 B.2 C.﹣2 D.0【分析】分式的值为0,则分母不为0,分子为0.【解答】解:∵|x|﹣2=0,∴x=±2,当x=2时,x﹣2=0,分式无意义.当x=﹣2时,x﹣2≠0,∴当x=﹣2时分式的值是0.故选C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.12.(2016春•固镇县期末)分式,,的最简公分母是()A.(a2﹣1)2 B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)4【分析】利用最简公分母就是各系数的最小公倍数,相同字母或整式的最高次幂,所有不同字母或整式都写在积里求解即可.【解答】解:=,,=,所以分式,,的最简公分母是(a﹣1)2(a+1)2.即(a2﹣1)2故选:A.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.13.(2015•南京二模)使分式有意义的x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥2【分析】根据分式有意义的条件:分母不等于0即可求解.【解答】解:根据题意得:x﹣2≠0,解得:x≠2.故选:C.【点评】本题主要考查了分式有意义的条件,解决本题的关键是熟记分式有意义的条件:分母不等于0.14.(2015•滨州模拟)计算的结果是()A.a﹣b B.b﹣a C.1 D.﹣1【分析】几个分式相加减,根据分式加减法则进行运算,如果分母互为相反数则应将分母转化为其相反数后再进行运算.【解答】解:,故选D.【点评】进行分式的加减时应注意符号的转化.15.(2015•深圳二模)化简的结果是()A.﹣1 B.1 C.1+x D.1﹣x【分析】把分式的分母转化为同分母,按照同分母分式加减,分母不变,分子加减,即可解答.【解答】解:===,故选:A.【点评】本题考查了分式的加减法,解决本题的关键是同分母分式加减,分母不变,分子加减,注意最后要约分.二.解答题(共15小题)16.(2016春•灌云县期中)已知a+b=5,ab=6.求下列各式的值:(1)a2+b2(2)(a﹣b)2.【分析】(1)根据a2+b2=(a+b)2﹣2ab,即可解答.(2)根据(a﹣b)2=(a+b)2﹣4ab,即可解答.【解答】解:(1){a2+b2=(a+b)2﹣2ab=52﹣2×6a2+b2=(a+b)2﹣2ab=52﹣2×6=25﹣12=13.(2)(a﹣b)2=(a+b)2﹣4ab=52﹣4×6=25﹣24=1.【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式.17.(2015春•宁波期中)分解因式(1)4n(m﹣2)﹣6(2﹣m)(2)x2﹣2xy+y2﹣1.【分析】(1)利用提公因式法进行分解因式,即可解答;(2)利用完全平方公式,平方差公式进行因式分解,即可解答.【解答】解:(1)4n(m﹣2)﹣6(2﹣m)=4n(m﹣2)+6(m﹣2)=(4n+6)(m﹣2)=2(m﹣2)(2n+3).(2)x2﹣2xy+y2﹣1=(x﹣y)2﹣1=(x﹣y+1)(x﹣y﹣1).【点评】本题考查了因式分解,解决本题的关键是利用提公因式法,公式法进行因式分解.18.(2015春•泾阳县校级月考)将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=ad﹣bc.上述记号叫做2阶行列式,若=8.求x的值.【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【解答】解:根据题意化简=8,得:(x+1)2﹣(1﹣x)2=8,整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,即4x=8,解得:x=2.【点评】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.19.(2014春•苏州期末)因式分解:(1)2x2﹣4x+2;(2)(a2+b2)2﹣4a2b2.【分析】(1)首先提取公因式2,再利用完全平方公式进行二次分解即可;(2)首先利用平方差公式进行分解,再利用完全平方公式进行分解.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2,(2)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.(2016•江干区一模)解方程﹣2.【分析】观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原方程无解.【点评】此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.21.(2016春•开县校级月考)化简下列各式:(1)(x﹣1)2(x+1)2﹣1;(2)÷(﹣x+2)+.【分析】(1)根据平方差公式进行计算即可;(2)先对式子能分解因式的先分解因式,对括号内的先通分再相加,然后化简即可.【解答】解:(1)(x﹣1)2(x+1)2﹣1=[(x﹣1)(x+1)]2﹣1=(x2﹣1)2﹣1=x4﹣2x2+1﹣1=x4﹣2x2;(2)÷(﹣x+2)+=======.【点评】本题考查分式的混合运算、整式的混合运算、平方差公式、完全平方差公式、因式分解,考查的是对问题观察与巧妙利用公式的能力,主要是采用因式分解的数学思想对所化简的式子进行分解因式后再化简.22.(2015•龙岩)解方程:1+=.【分析】根据解分式方程的步骤进行解答,注意进行检验.【解答】解:方程两边同乘以(x﹣2)得,(x﹣2)+3x=6,解得;x=2,检验:当x=2时,x﹣2=0,∴x=2不是原分式方程的解,∴原分式方程无解.【点评】本题考查了解分式方程,解决本题的关键是熟记解分式方程的步骤,一定要进行检验.23.(2015•贺州)解分式方程:=﹣.【分析】方程两边同时乘以(2x+1)(2x﹣1),即可化成整式方程,解方程求得x的值,然后进行检验,确定方程的解.【解答】解:原方程即=﹣,两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.【点评】本题考查的是解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.24.(2015•宝应县一模)若a2﹣a﹣6=0,求分式的值.【分析】先根据题意得出a2=a+6,再根据分式混合运算的法则把原式进行化简,把a2的值代入进行计算即可,【解答】解:∵a2﹣a﹣6=0,∴a2=a+6.∴原式===.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.25.(2015•南平模拟)解分式方程:=+1.【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母,得2(x+1)=x+x(x+1).去括号,得2x+2=x+x2+x,整理,得x2=2,解这个方程,得x=±.检验:当x=±时,x(x+1)≠0,所以x=是原方程的解.故原方程的解是x=.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时要注意符号的变化26.(2014•崇明县二模)解方程:+=4.【分析】可根据方程特点设y=,则原方程可化为y2﹣4y+3=0.解一元二次方程求y,再求x.【解答】解:设y=,得:+y=4,y2﹣4y+3=0,解得y1=1,y2=3.当y1=1时,=1,x2﹣x+1=0,此方程没有数解.当y2=3时,=3,x2﹣3x+1=0,解得x=.经检验x=都是原方程的根,所以原方程的根是x=.【点评】本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.27.(2013秋•昌平区期末)计算:()÷.【分析】首先对括号内的分式进行通分相减,把除法转化为乘法,然后进行约分即可.【解答】解:原式=•=•=.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.28.(2014春•维扬区校级期中)化简:(1)m﹣n+;(2)(﹣)÷.【分析】(1)原式两项通分并利用同分母分式的加法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时除法法则变形,约分即可得到结果.【解答】解:(1)原式=+==;(2)原式=•==x+6.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.29.(2014春•宜宾校级期中)计算:(1);(2)÷(a2﹣4)•.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.30.(2014秋•西城区校级期中)计算:(1)(2)(3).【分析】(1)分别根据0指数幂及负整数指数幂的计算法则、有理数乘方的法则及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的式子,再算除法即可;(3)从左到右依次计算即可.【解答】解:(1)原式=4﹣8+1+1=﹣2;(2)原式=•=;(3)原式=a(b﹣a)••=•=﹣b.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.。