遗传算法
遗传算法遗传算法
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10
遗传算法
1.3 遗传算法与传统方法的比较
传统算法 起始于单个点 遗传算法 起始于群体
改善 (问题特有的)
否
改善 (独立于问题的) 否
终止?
终止? 是 结束
是
结束
1.3.1遗传算法与启发式算法的比较
启发式算法是通过寻求一种能产生可行解的启发式规则,找到问 题的一个最优解或近似最优解。该方法求解问题的效率较高,但是具有 唯一性,不具有通用性,对每个所求问题必须找出其规则。但遗传算法 采用的是不是确定性规则,而是强调利用概率转换规则来引导搜索过程。
1.2 遗传算法的特点
遗传算法是一种借鉴生物界自然选择和自然遗传机制 的随机搜索法。它与传统的算法不同,大多数古典的优化算 法是基于一个单一的度量函数的梯度或较高次统计,以产生 一个确定性的试验解序列;遗传算法不依赖于梯度信息,而 是通过模拟自然进化过程来搜索最优解,它利用某种编码技 术,作用于称为染色体的数字串,模拟由这些串组成的群体 的进化过程。
1.2.2 遗传算法的缺点
(1)编码不规范及编码存在表示的不准确性。 (2)单一的遗传算法编码不能全面地将优化问题的约束表示 出来。考虑约束的一个方法就是对不可行解采用阈值,这样, 计算的时间必然增加。 (3)遗传算法通常的效率比其他传统的优化方法低。 (4)遗传算法容易出现过早收敛。 (5)遗传算法对算法的精度、可信度、计算复杂性等方面, 还没有有效的定量分析方法。
上述遗传算法的计算过程可用下图表示。
遗传算法流程图
目前,遗传算法的终止条件的主要判据有 以下几种:
• 1) 判别遗传算法进化代数是否达到预定的最大代数; • 2) 判别遗传搜索是否已找到某个较优的染色体; • 3) 判别各染色体的适应度函数值是否已趋于稳定、再上升 否等。
遗传算法
1 遗传算法1.1 遗传算法的定义遗传算法(GeneticAlgorithm,GA)是近多年来发展起来的一种全新的全局优化算法,它是基于了生物遗传学的观点,是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
它通过自然选择、遗传、复制、变异等作用机制,实现各个个体的适应性的提高,从而达到全局优化。
遗传算法151解决一个实际问题通常都是从一个种群开始,而这个种群通常都是含有问题的一个集合。
这个种群是由一定数目的个体所构成的,利用生物遗传的知识我们可以知道这些个体正好组成了我们知道的染色体,也就是说染色体是由一个个有特征的个体组成的。
另外我们还知道,遗传算法是由染色体组成,而染色体是由基因组成,可以这么说,基因就决定了个体的特性,所以对于遗传算法的最开始的工作就需要进行编码工作。
然后形成初始的种群,最后进行选择、交叉和变异的操作。
1.2遗传算法的重要应用在现实应用中,遗传算法在很多领域得到很好的应用,特别是在解决多维并且相当困难的优化问题中时表现出了很大的优势。
在遗传算法的优化问题的应用中,其中最为经典的应用就是我们所熟悉的函数优化问题,它也是对遗传算法的性能进行评价的最普遍的一种算法;另外的一个最重要的应用,也就是我们本文所研究的应用—组合优化问题,一般的算法很难解决组合优化问题的搜索空间不断扩大的局面,而组合优化问题正好是解决这种问题的最有效的方法之一,在本文的研究中,比如求解TSP问题、VRP问题等方面都得到了很好的应用;另外遗传算法在航空控制系统中的应用、在图像处理和模式识别的应用、在生产调度方面的应用以及在工人智能、人工生命和机器学习方面都得到了很好的应用。
其实在当今的社会中,有关于优化方面的问题应用于各行各业中,因此有关于优化问题已经变得非常重要,它对于整个社会的发展来说都是一个不可改变的发展方向,也是社会发展的一个非常重要的需要。
1.3 遗传算法的特点遗传算法不同于传统的搜索与优化方法,它是随着问题种类的不同以及问题规模的扩大,能以有限的代价来很好的解决搜索和优化的方法。
遗传算法的概念
遗传算法的概念
遗传算法(Genetic Algorithm)是基于生物学进化理论的一种优化算法。
它是模拟自然界的进化过程,通过筛选、交叉、变异等元素不断筛选出能够适应环境的个体,最终得到最优解或次优解的一种算法。
遗传算法的基本思想是将问题看作一个个体,使用种群的方式不断迭代,将群体中优劣个体进行适应度评估并进行优胜劣汰,简单来说就是不断筛选出最优的解决方案来。
遗传算法被广泛应用于各类优化问题,例如旅行商问题、机器学习和函数优化等。
什么是遗传算法
什么是遗传算法遗传算法的基本意思就是说象人的遗传一样,有一批种子程序,它们通过运算得到一些结果,有好有坏,把好的一批取出来,做为下一轮计算的初值进行运算,反复如此,最终得到满意的结果。
举个例子,假如有一个动物群体,如果你能让他们当中越强壮的越能优先交配和产籽,那么千万年后,这个动物群体肯定会变得更加强壮,这是很容易理解的。
同样,对于许多算法问题,特别是NP问题,比如说最短路径,如果有400个城市,让你找出最短的旅游路线,采用穷举比较,复杂度为O(n!),这时,你可以先随机产生100种路径,然后让他们之中路程越短的那些越能优先互相交换信息(比如每条里面随机取出10个位置互相交换一下),那么循环几千次后,算出来的路径就跟最短路径非常接近了(即求出一个近似最优解)。
遗传算法的应用还有很多,基本思想都一样,但实现上可能差别非常大。
现在有许多搞算法的人不喜欢遗传算法,因为,它只给出了一种“有用”的方法,却不能保证有用的程度,与此相反,能保证接近最优程度的概率算法更受青睐。
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。
遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。
它是现代有关智能计算中的关键技术之一。
1.遗传算法与自然选择 达尔文的自然选择学说是一种被人们广泛接受的生物进化学说。
这种学说认为,生物要生存下去,就必须进行生存斗争。
生存斗争包括种内斗争、种间斗争以及生物跟无机环境之间的斗争三个方面。
在生存斗争中,具有有利变异的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产生后代的机会也少的多。
遗传算法
j=0 选择两个交叉个体 执行交叉 将交叉后的两个新个体 添入新群体中 j = j+2
将复制的个体添入 新群体中
j = j+1
N
j = M? Y
N
j = pc· M? Y
Gen=Gen+1
N
j = pm· M? L· Y
遗传算法应用举例 ——在函数优化中的应用
[例] Rosenbrock函数的全局最大值计算。
bi 2i1 )
i 1
U max U min 2 1
0.3 70352 (12.1 3) /(218 1) 1.052426
二)个体适应度评价
如前所述,要求所有个体的适应度必须为正数或零,不能是负数。
(1) 当优化目标是求函数最大值,并且目标函数总取正值时,可以直接设定
max s.t. 如图所示: 该函数有两个局部极大点, 分别是: f(2.048, -2048) =3897.7342 f(-2.048,-2.0048) =3905.9262 其中后者为全局最大点。 f(x1,x2) = 100 (x12-x22)2 + (1-x1)2 -2.048 ≤ xi ≤ 2.048 (xi=1,2)
变异操作示例
变异字符的位置是随机确定的,如下表所示。某群体有3个个体,每个体含4 个基因。针对每个个体的每个基因产生一个[0, 1] 区间具有3位有效数字的值产生变异。表 中3号个体的第4位的随机数为0.001,小于0.01,该基因产生变异,使3号个体由
下面介绍求解该问题的遗传算法的构造过程:
第一步:确定决策变量及其约束条件。 s.t. 第二步:建立优化模型。 max 第三步:确定编码方法。 用长度为l0位的二进制编码串来分别表示二个决策变量x1,x2。 lO位二进制编码串可以表示从0到1023之间的1024个不同的数,故将x1,x2的 定义域离散化为1023个均等的区域,包括两个端点在内共有1024个不同的离散点。 从离散点-2.048到离散点2.048,依次让它们分别对应于从0000000000(0)到 f(x1,x2) = 100 (x12-x22)2 + (1-x1)2 -2.048 ≤ xi ≤ 2.048 (xi=1,2)
遗传算法
5.3.3 多交配位法
单交配位方法只能交换一个片段的基 因序列,但多交配位方法能够交换多 个片段的基因序列 1101001 1100010 1100000 1101011
交配前
交配后
5.3.4 双亲单子法
两个染色体交配后,只产生一个子染 色体。通常是从一般的交配法得到的 两个子染色体中随机地选择一个,或 者选择适应值较大的那一个子染色体
6.1.4 基于共享函数的小生境实现方 法
6.1.1 小生境遗传算法的生物 学背景
•小生境是特定环境下的生存环境
•相同的物种生活在一起,共同繁 衍后代 •在某一特定的地理区域内,但也 能进化出优秀的个体 •能够帮助寻找全部全局最优解和 局部最优解(峰顶)
6.1.2 基于选择的小生境实现 方法
•只有当新产生的子代适应度超过 其父代个体的适应度时,才进行 替换,否则父代保存在群体中 •这种选择方式有利于保持群体的 多样性 •这种方法有利于使得某些个体成 为它所在区域中的最优个体
5.1.3 实数编码的实现方法(续)
•适合于精度要求较高的问题 •便于较大空间的遗传搜索 •改善了遗传算法的计算复杂性, 提高了效率 •便于遗传算法与经典优化算法混 合使用 •便于设计针对问题的专门知识型 算子 •便于处理复杂的决策约束条件
5.2 选择算子
5.2.1 概率选择算子
5.2.2 适应值变换选择算子
•pm: 变异概率,一般取0.0001—0.1
4.1 问题描述 4.2 问题转换和参数设定 4.3 第0代情况 4.4 第0代交配情况 4.5 第1代情况 4.6 第1代交配情况 4.7 第1代变异情况 4.8 第2代情况 4.9 第2代交配情况
4. 基本遗传算法举例
4.1 问题描述
遗传算法
2. 遗传算法在电磁优化中的应用
在电磁场工程中,许多电磁优化问题的目标 函数往往是高度非线性的、多极值的、不可 微分的和多参数的。同时,这些目标函数的 计算成本往往很高。在这些复杂电磁问题的 优化设计中,高效的优化算法对于实现高性 价比的设计具有举足轻重的作用。
例 用GPS/铱星系统的圆极化弯钩天线。 全球定位系统(GPS)的工作频率有两个,一个是 1575.4MHz,另一个是1227.6MHz,信号采用圆极化 方式传输。铱星系统也采用圆极化方式传输,其工 作频带1225~1630MHz。 为了使天线同时接收GPS/铱星两个系统的信号,天 线的工作频带应该为1225~1630MHz,采用圆极化 工作方式,在相对于水平面大于5°的准半球空间 具有均匀的辐射方向图。下图为一个弯钩天线,它 有7段直导线串联而成,整个天线被限定在边长为 0.5λmax 的立方体空间内。通过遗传算法,调节7个 连接点的坐标,可以得到满足设计要求的最佳弯钩 天线结构。在优化过程中,价值函数取为
2 杂交策略 在自然界生物进化过程中,起核心作用的是生物遗传基因的 重组(加上变异)。 同样,遗传算法中起核心作用的是遗传操作的杂交算子。对于 占主流地位的二值编码而言,各种杂交算子都包括两个基本 内容:①从由选择操作形成的配对库中,对个体两两配对, 按预先设定的杂交概率来决定每对是否需要进行杂交操作; ②设定配对个体的杂交点,并对这些点前后的配对个体的部 分结构进行相互交换。 就配对的方式来看,可分为随机配对和确定式配对。 3 变异策略 变异算子的基本内容是对群体中个体串的某些基因座上的基 因值作变动。就二值码串而言,变异操作就是把某些基因座 上的基因值取反,即1→0或0→1.
5.杂交操作:遗传算子(有性重组)可以产 生新的个体,从而检测搜索空间的新点。简 单的杂交可分2步进行:随机配对,交换杂交 点后的基因信息。
遗传算法
缺点:该算法只是对每个落点进行单独的考虑,没有反应不同组 合所产生的共同效果,所以只是近似的算法,不能获得最优的结果。 基于单个的优化不能保证在整体情况下能获得最大值。 如果对所有的可能方案进行评价,找到最佳方案。例如在N*N的
栅格空间中确定n个 目标的最佳位置,则所要对比的组合高达
2.遗传算法和GIS结合解决空间优化问题
所谓交叉运算,是指对两个相互配对的染色体依据
交叉概率 Pc 按某种方式相互交换其部分基因,从而形 成两个新的个体。
交叉前: 00000|011100000000|10000 11100|000001111110|00101 交叉后: 00000|000001111110|10000 11100|011100000000|00101 染色体交叉是以一定的概率发生的,这个概率记为Pc
行一点或多点交叉的操作,但这样很容易产生断路或环路。针对路径 的具体需要,这里采用只允许在除首、尾结点之外的第一个重复结点位
置交叉且只进行一点交叉的操作方式。例如:设从起始结点1到目标结
点9的一对父代个体分别是G1和G2,分别如下表示: G1(1,3,5,6,7,8,9)
G2(1,2,4,5,8,9)
是一种有效的解最优化问题的方法。 其基本思想是:首先随机产生种群,对种群中的被选中染色体进行交
叉或变异运算生成后代,根据适值选择部分后代,淘汰部分后代,但种群
大小不变。经过若干代遗传之后,算法收敛于最好的染色体,可能是问题 的最优解或次优解。
适应度函数
遗传算法对一个个体(解)的好坏用适应度函数
值来评价,适应度函数值越大,解的质量越好。适应 度函数是遗传算法进化过程的驱动力,也是进行自然
篇论文。此后Holland教授指导学生完成了多篇有关遗传算法研究的论
2遗传算法介绍
对控制参数的改进
Srinvivas等人提出自适应遗传算法,即PC和Pm 能够随适应度自动改变,当种群的各个个体适应度 趋于一致或趋于局部最优时,使二者增加,而当种 群适应度比较分散时,使二者减小,同时对适应值 高于群体平均适应值的个体,采用较低的PC和Pm, 使性能优良的个体进入下一代,而低于平均适应值 的个体,采用较高的PC和Pm,使性能较差的个体被 淘汰。
对遗传算子的改进
排序选择 均匀交叉 逆序变异
(1) 随机产生一个与个体编码长度 相同的二进制屏蔽字P = W1W2„Wn ; (2) 按下列规则从A、B两个父代个 体中产生两个新个体X、Y:若Wi = 0, 则X的第i个基因继承A的对应基因,Y 的第i个基因继承B的对应基因;若Wi = 1,则A、B的第i个基因相互交换,从 而生成X、Y的第i个基因。
模式阶用来反映不同模式间确定性的 差异,模式阶数越高,模式的确定性就越高,
所匹配的样本数就越少。在遗传操作中,即
使阶数相同的模式,也会有不同的性质,而
模式的定义距就反映了这种性质的差异。
模式定理
模式定理:具有低阶、短定义距以及平 均适应度高于种群平均适应度的模式在子代
中呈指数增长。
模式定理保证了较优的模式(遗传算法
的质量越好。适应度函数是遗传算法进化过
程的驱动力,也是进行自然选择的唯一标准,
它的设计应结合求解问题本身的要求而定。
选择算子
遗传算法使用选择运算来实现对群体中的个体 进行优胜劣汰操作:适应度高的个体被遗传到下一
代群体中的概率大;适应度低的个体,被遗传到下
一代群体中的概率小。选择操作的任务就是按某种 方法从父代群体中选取一些个体,遗传到下一代群
遗传算法应用于组合优化
遗传算法
遗传算法的基本运算过程如下:a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
b)个体评价:计算群体P(t)中各个个体的适应度。
c)选择运算:将选择算子作用于群体。
选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。
选择操作是建立在群体中个体的适应度评估基础上的。
d)交叉运算:将交叉算子作用于群体。
遗传算法中起核心作用的就是交叉算子。
e)变异运算:将变异算子作用于群体。
即是对群体中的个体串的某些基因座上的基因值作变动。
群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。
f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
每个个体实际上是染色体(chromosome)带有特征的实体。
染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
因此,在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
遗传算法
遗传算法直接以目标函数作为搜索信息。 (3)遗传算法直接以目标函数作为搜索信息。传统的优化算法不仅 需要利用目标函数值, 需要利用目标函数值,而且需要目标函数的导数值等辅助信息才 能确定搜索方向。 能确定搜索方向。而遗传算法仅使用由目标函数值变换来的适应 度函数值,就可以确定进一步的搜索方向和搜索范围, 度函数值,就可以确定进一步的搜索方向和搜索范围,无需目标 函数的导数值等其他一些辅助信息。 遗传算法可应用于目标函 函数的导数值等其他一些辅助信息。 数无法求导数或导数不存在的函数的优化问题, 数无法求导数或导数不存在的函数的优化问题,以及组合优化问 题等。 题等。 遗传算法使用概率搜索技术。遗传算法的选择、交叉、 (4)遗传算法使用概率搜索技术。遗传算法的选择、交叉、变异等 运算都是以一种概率的方式来进行的, 运算都是以一种概率的方式来进行的,因而遗传算法的搜索过程 具有很好的灵活性。随着进化过程的进行, 具有很好的灵活性。随着进化过程的进行,遗传算法新的群体会 更多地产生出许多新的优良的个体。 更多地产生出许多新的优良的个体。
• 1.2 遗传算法的概述
• 遗传算法的基本思想: 遗传算法的基本思想: 在问题的求解过程中,把搜索空间视为遗传空间,把问题的 在问题的求解过程中,把搜索空间视为遗传空间, 每一个可能解看做一个染色体,染色体里面有基因,所有染色体 每一个可能解看做一个染色体,染色体里面有基因, 组成一个群体。首先随机选择部分染色体组成初始种群,依据某 组成一个群体。首先随机选择部分染色体组成初始种群, 种评价标准,也就是寻优准则(这里叫适应度函数),对种群每 种评价标准,也就是寻优准则(这里叫适应度函数),对种群每 ), 一个染色体进行评价,计算其适应度,淘汰适应度值小的,保留 一个染色体进行评价,计算其适应度,淘汰适应度值小的, 适应度值大的,并借助于自然遗传学的遗传算子进行选择、交叉 适应度值大的,并借助于自然遗传学的遗传算子进行选择、 和变异,产生出代表新的解集的种群。 和变异,产生出代表新的解集的种群。
遗传算法基础知识
遗传算法(GENETIC ALGORITHM,GA)一、遗传算法的特点:1、遗传算法的操作对象是一组可行解,而非单个可行解;搜索轨道有多条,而非单条,因而具有良好的并行性。
2、遗传算法只需要利用目标的取值信息,而无需梯度等高价值信息,因而适用于任何大规模、高度非线性的不连续多峰函数的优化以及无解析表达式的目标函数的优化,具有很强的通用性。
3、遗传算法择优机制是一种软选择,加上其良好的并行性,使它具有良好的全局优化和稳健性。
4、遗传算法操作的可行解是经过编码化的(通常采用二进制编码),目标函数解释为编码化个体(可行解)的适应值,因而具有良好的可操作性和简单性.二、遗传算法的发展与现状遗传算法的产生归功于美国的Michigan大学的Holland在20世纪60年代末、70年代初的开创性,其本意是在人工适应系统中设计的一种基于自然演化原理搜索机制。
大约在同一时代,Foegl和Rechenberg及Schwefel,引入了另两种基于自然演化原理的算法,演化程序(evolutionary programming)和演化策略(evolution strategies)。
这三种算法构成了目前演化计算(evolutionary computation)领域的三大分支,它们从不同层次、不同角度模拟自然演化原理,以达到求解问题的目的.Holland不仅设计了遗传算法的模拟与操作原理,更重要的是他运用统计策略理论对遗传算法的搜索机理进行了理论分析,建立了著名的Schema定理和隐含并行(implicit parallelism)原理,为遗传算法奠定了基础。
遗传算法应用于函数优化始于De Jone的在线(one-line)和离线(off-line)指标仍是目前衡量遗传算法性能的主要手段。
1、遗传算法在神经网络、模糊系统和机器学习中的应用神经网络的学习包含两个优化过程,分别是网络连接权重的优化和网络拓扑结构的优化。
优化连接权重最著名的方法是Rumelhart提出的基于梯度下降法的反向传播法(backpropagation,BP).BP算法的最大弱点是局部极小问题和无法学习网络拓扑结构。
遗传算法(GeneticAlgorithms)
遗传算法(GeneticAlgorithms)遗传算法前引:1、TSP问题1.1 TSP问题定义旅⾏商问题(Traveling Salesman Problem,TSP)称之为货担郎问题,TSP问题是⼀个经典组合优化的NP完全问题,组合优化问题是对存在组合排序或者搭配优化问题的⼀个概括,也是现实诸多领域相似问题的简化形式。
1.2 TSP问题解法传统精确算法:穷举法,动态规划近似处理算法:贪⼼算法,改良圈算法,双⽣成树算法智能算法:模拟退⽕,粒⼦群算法,蚁群算法,遗传算法等遗传算法:性质:全局优化的⾃适应概率算法2.1 遗传算法简介遗传算法的实质是通过群体搜索技术,根据适者⽣存的原则逐代进化,最终得到最优解或准最优解。
它必须做以下操作:初始群体的产⽣、求每⼀个体的适应度、根据适者⽣存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染⾊体的基因并随机变异某些染⾊体的基因⽣成下⼀代群体,按此⽅法使群体逐代进化,直到满⾜进化终⽌条件。
2.2 实现⽅法根据具体问题确定可⾏解域,确定⼀种编码⽅法,能⽤数值串或字符串表⽰可⾏解域的每⼀解。
对每⼀解应有⼀个度量好坏的依据,它⽤⼀函数表⽰,叫做适应度函数,⼀般由⽬标函数构成。
确定进化参数群体规模、交叉概率、变异概率、进化终⽌条件。
案例实操我⽅有⼀个基地,经度和纬度为(70,40)。
假设我⽅飞机的速度为1000km/h。
我⽅派⼀架飞机从基地出发,侦察完所有⽬标,再返回原来的基地。
在每⼀⽬标点的侦察时间不计,求该架飞机所花费的时间(假设我⽅飞机巡航时间可以充分长)。
已知100个⽬标的经度、纬度如下表所列:3.2 模型及算法求解的遗传算法的参数设定如下:种群⼤⼩M=50;最⼤代数G=100;交叉率pc=1,交叉概率为1能保证种群的充分进化;变异概率pm=0.1,⼀般⽽⾔,变异发⽣的可能性较⼩。
编码策略:初始种群:⽬标函数:交叉操作:变异操作:选择:算法图:代码实现:clc,clear, close allsj0=load('data12_1.txt');x=sj0(:,1:2:8); x=x(:);y=sj0(:,2:2:8); y=y(:);sj=[x y]; d1=[70,40];xy=[d1;sj;d1]; sj=xy*pi/180; %单位化成弧度d=zeros(102); %距离矩阵d的初始值for i=1:101for j=i+1:102d(i,j)=6370*acos(cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*...cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2)));endendd=d+d'; w=50; g=100; %w为种群的个数,g为进化的代数for k=1:w %通过改良圈算法选取初始种群c=randperm(100); %产⽣1,...,100的⼀个全排列c1=[1,c+1,102]; %⽣成初始解for t=1:102 %该层循环是修改圈flag=0; %修改圈退出标志for m=1:100for n=m+2:101if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<...d(c1(m),c1(m+1))+d(c1(n),c1(n+1))c1(m+1:n)=c1(n:-1:m+1); flag=1; %修改圈endendendif flag==0J(k,c1)=1:102; break %记录下较好的解并退出当前层循环endendendJ(:,1)=0; J=J/102; %把整数序列转换成[0,1]区间上实数即染⾊体编码for k=1:g %该层循环进⾏遗传算法的操作for k=1:g %该层循环进⾏遗传算法的操作A=J; %交配产⽣⼦代A的初始染⾊体c=randperm(w); %产⽣下⾯交叉操作的染⾊体对for i=1:2:wF=2+floor(100*rand(1)); %产⽣交叉操作的地址temp=A(c(i),[F:102]); %中间变量的保存值A(c(i),[F:102])=A(c(i+1),[F:102]); %交叉操作A(c(i+1),F:102)=temp;endby=[]; %为了防⽌下⾯产⽣空地址,这⾥先初始化while ~length(by)by=find(rand(1,w)<0.1); %产⽣变异操作的地址endB=A(by,:); %产⽣变异操作的初始染⾊体for j=1:length(by)bw=sort(2+floor(100*rand(1,3))); %产⽣变异操作的3个地址%交换位置B(j,:)=B(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]);endG=[J;A;B]; %⽗代和⼦代种群合在⼀起[SG,ind1]=sort(G,2); %把染⾊体翻译成1,...,102的序列ind1num=size(G,1); long=zeros(1,num); %路径长度的初始值for j=1:numfor i=1:101long(j)=long(j)+d(ind1(j,i),ind1(j,i+1)); %计算每条路径长度endend[slong,ind2]=sort(long); %对路径长度按照从⼩到⼤排序J=G(ind2(1:w),:); %精选前w个较短的路径对应的染⾊体endpath=ind1(ind2(1),:), flong=slong(1) %解的路径及路径长度xx=xy(path,1);yy=xy(path,2);plot(xx,yy,'-o') %画出路径以上整个代码中没有调⽤GA⼯具箱。
遗传算法
遗传算法一、遗传算法的简介及来源1、遗传算法简介遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《自然系统和人工系统的自适应》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法模仿了生物的遗传、进化原理, 并引用了随机统计理论。
在求解过程中, 遗传算法从一个初始变量群体开始, 一代一代地寻找问题的最优解, 直至满足收敛判据或预先设定的迭代次数为止。
它是一种迭代式算法。
2、遗传算法的基本原理遗传算法是一种基于自然选择和群体遗传机理的搜索算法, 它模拟了自然选择和自然遗传过程中发生的繁殖、杂交和突变现象。
在利用遗传算法求解问题时, 问题的每个可能的解都被编码成一个“染色体”,即个体, 若干个个体构成了群体( 所有可能解) 。
在遗传算法开始时, 总是随机地产生一些个体( 即初始解) , 根据预定的目标函数对每个个体进行评价, 给出了一个适应度值。
基于此适应度值, 选择个体用来繁殖下一代。
选择操作体现了“适者生存”原理, “好”的个体被选择用来繁殖, 而“坏”的个体则被淘汰。
然后选择出来的个体经过交叉和变异算子进行再组合生成新的一代。
这一群新个体由于继承了上一代的一些优良性状,因而在性能上要优于上一代, 这样逐步朝着更优解的方向进化。
因此, 遗传算法可以看作是一个由可行解组成的群体逐代进化的过程。
3、遗传算法的一般算法(1)创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。
(2)评估适应度对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。
什么是遗传算法
什么是遗传算法遗传算法的基本意思就是说象人的遗传一样,有一批种子程序,它们通过运算得到一些结果,有好有坏,把好的一批取出来,做为下一轮计算的初值进行运算,反复如此,最终得到满意的结果。
举个例子,假如有一个动物群体,如果你能让他们当中越强壮的越能优先交配和产籽,那么千万年后,这个动物群体肯定会变得更加强壮,这是很容易理解的。
同样,对于许多算法问题,特别是NP问题,比如说最短路径,如果有400个城市,让你找出最短的旅游路线,采用穷举比较,复杂度为O(n!),这时,你可以先随机产生100种路径,然后让他们之中路程越短的那些越能优先互相交换信息(比如每条里面随机取出10个位置互相交换一下),那么循环几千次后,算出来的路径就跟最短路径非常接近了(即求出一个近似最优解)。
遗传算法的应用还有很多,基本思想都一样,但实现上可能差别非常大。
现在有许多搞算法的人不喜欢遗传算法,因为,它只给出了一种“有用”的方法,却不能保证有用的程度,与此相反,能保证接近最优程度的概率算法更受青睐。
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。
遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。
它是现代有关智能计算中的关键技术之一。
1.遗传算法与自然选择 达尔文的自然选择学说是一种被人们广泛接受的生物进化学说。
这种学说认为,生物要生存下去,就必须进行生存斗争。
生存斗争包括种内斗争、种间斗争以及生物跟无机环境之间的斗争三个方面。
在生存斗争中,具有有利变异的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产生后代的机会也少的多。
第七讲遗传算法
四、遗传算法应用举例 1
于是,得第三代种群S3: s1=11100(28), s2=01001(9) s3=11000(24), s4=10011(19)
四、遗传算法应用举例 1
第三代种群S3中各染色体的情况
染色体
适应度 选择概率 估计的 选中次数
四、遗传算法应用举例 1
首先计算种群S1中各个体
s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011)
的适应度f (si) 。 容易求得
f (s1) = f(13) = 132 = 169 f (s2) = f(24) = 242 = 576 f (s3) = f(8) = 82 = 64 f (s4) = f(19) = 192 = 361
群体的染色体都将逐渐适应环境,不断进化,最后收敛到 一族最适应环境的类似个体,即得到问题最优解。
一、遗传算法概述
与传统的优化算法相比,遗传算法主要有以下几 个不同之处
遗传算法不是直接作用在参变量集上而是利用参变量集 的某种编码 遗传算法不是从单个点,而是从一个点的群体开始搜索; 遗传算法利用适应值信息,无须导数或其它辅助信息; 遗传算法利用概率转移规则,而非确定性规则。
否
结束程序
计算每个个体的适应值
以概率选择遗传算子
选择一个个体 选择两个个体进行 选择一个个体进行 复制到新群体 交叉插入到新群体 变异插入到新群体
得到新群体
四、遗传算法应用举例 1
例1 利用遗传算法求解区间[0,31]上的二次函数 y=x2的最大值。
Y
y=x2
31 X
四、遗传算法应用举例 1
分析
s1’’=11001(25), s2’’=01100(12) s3’’=11011(27), s4’’=10000(16)
遗传算法的作用
遗传算法的应用一、什么是遗传算法?遗传算法是一种全局概率搜索优化算法。
遗传算法( Gnectci Algortihms) ,是一种模拟自然界生物进化过程的全局随机搜索算法,由美国Mcihigna大学的Hollnad 教授于60 年代首先提出。
它将计算机科学与进化论思想有机结合起来,借助于生物进化机制与遗传学原理,根优胜劣汰和适者生存的原则,通过模拟自然界中生物群体由低级、简单到高级、复杂的生物进化过程,使所要解决的问题从初始解逐渐逼近最优解或准最优解。
作为一种新的全局优化搜索算法,遗传算法因其简单易用,对很多优化问题能够较容易地解出令人满意的解,适用于并行分布处理等特点而得到深入发展和广泛应用,已在科学研究和工程最优化领域中展现出独特魅力.二、遗传算法的发展:从20世纪40年代,生物模拟就成为了计算科学的一个组成部分;20世纪50年代中期创立了仿生学;进入60年代后,美国密切根大学教授Holland及其学生创造出遗传算法。
三、遗传算法的特点:遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。
遗传算法具有进化计算的所有特征,同时又具有自身的特点:(1)搜索过程既不受优化函数的连续性约束,也没有优化函数导数必须存在的要求。
(2)遗传算法采用多点搜索或者说是群体搜索,具有很高的隐含并行性,因而可以提高计算速度。
(3)遗传算法是一种自适应搜索技术,其选择、交叉、变异等运算都是以一种概率方式来进行,从而增加了搜索过程的灵活性,具有较好的全局优化求解能力。
(4)遗传算法直接以目标函数值为搜索信息,对函数的性态无要求,具有较好的普适性和易扩充性。
(5)遗传算法更适合大规模复杂问题的优化。
四、遗传算法的原理和方法:(1)编码:编码是把一个问题的可行解从其解空间转换到GA 所能处理的搜索空间的转换方法。
而解码是由GA 解空间向问题空间的转换。
编码机制直接影响着算法的整体性能,也决定了种群初始化和各种遗传算子的设计等各种过程。
(完整版)遗传算法简介及代码详解
遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传算法发展前景概况
(华北电力大学电气与电子工程学院,北京102206)
摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。
关键词:遗传算法; 遗传算子;进化计算;编码
GENERAL GENETIC ALGORITHM DEVELOPMENT PROSPECT
(North China Electric Power University Electrical And Electronic Engineering Institute,Beijing102206) ABSTRACT: Genetic algorithm is a kind of natural selection and based on biological evolution of genetic mechanism, group suitable for complex system optimization adaptive probability optimization technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own.
KEY WORD: Genetic algorithm; Genetic operator; Evolutionary computation; coding
1.引言
现在,遗传算法正在迅速发展,遗传算法与其很强的解决问题能力和适合于复杂系统的自适应优化技术渗透到研究和工业工程领域,在电力系统,系统辨识,最优控制,模式识别等领域有了很广泛的应用,取得了很好的效果。
2.遗传算法基本思想
遗传算法是建立在自然选择和群体遗传学基础上的随机,迭代和进化,具有广泛适用性的搜索方法,所有的自然种类都是适应环境而生存,这一自然适用性是遗传算法的主要思想。
遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则经过基因编码的一定数目的个体组成。
每个个体实际上是染色体带有特征的实体。
染色体作为遗传物质的主要载体,其内部基因决定了个体的外部表现。
因此,在一开始就要实现外部表现到内部基因的映射,即编码工作,通常采用二进制码。
初始种群产生之后,按照适者生存和优胜劣汰的原则,逐代演化产生出越来越好的近似解。
在每一代,根据问题域中个体的适应度大小选择个体,并借助自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集和种群,这种过程将导致种群像自然进化那样产生比前代更适应于环境的后代种群,末代种群中的最有个体经过解码,可以作为问题近似最优解。
遗传算法采纳了自然进化模型,如选择,交叉,变异等,计算开始时,种群随机初始化产生一定数目的N个个体,并计算每个个体的适应度函数,如果不满足优化准则,就开始新一代的计算。
为了产生下一代,按照适应度选择个体父代进行基因重组二产生子代。
所有的子代按一定的概率进行变异,子代取代父代构成新一代,然后重新计算子代的适应度。
这一过程循环执行,直到满足优化准则为止。
3.遗传算法基本操作
(1)编码。
由于遗传算法不能直接处理解空间的解数据,因此在搜索之前必须先通过编码把解空间变量表示成遗传空间的位串结构数据,即染色体。
(2)生成初始化种群。
生成初始群体遗传算法是群体型操作算法,在对解空间变量进行编码后,紧接着就随机产生N个染色体,构成遗传算法的初始种群,然后以这个初始种群为起始点开始迭代搜索。
(3)评价个体适应度。
遗传算法在搜索进化过程中一般不需要外部信息,仅用适应度函数值来评价个体或解的优劣,并作为以后遗传操作的依据。
适应度函数表明个体对环境适应度的强弱,不同的问题,适应度函数的定义方式也不同,对函数优化问题,一般取目标函数作为适应度函数。
(4)选择。
选择的目的是为了从当前群体中选出生命力强的染色体,使它有机会保留以繁殖后代。
判断染色体优良与否的准则就是各自的适应度值,个体适应度值越大,其被选择机会就越多。
选择操作体现了生物进化的思想。
选择的方法根据不同的问题,采用不同的选择算法。
(5)交叉。
交叉是把两个父代个体的部分结构加以替换重组而生成新个体的操作,也称基因重组。
交叉的目的是为了能在下一代中产生新个体,通过交叉操作,遗传算法的搜索能力得到飞跃的提高。
交叉是遗传算法得到新优良个体的最重要的手段。
交叉的方法有很多。
如单点交叉,多点交叉,均匀交叉。
(6)变异。
即交叉之后子代的变异。
变异操作时模拟自然界生物进化中染色体上基因发生突变的现象,从而改变染色体的结构和物理性状。
在遗传算法中,变异算子通过按变异概率P随机反转某位等位基因的二进制字符值来实现。
选择和交叉基本上完成了遗传算法的大部分搜索功能,二变异则增加了遗传算法找到接近最优解的能力。
变异首先在群体中随机的选择一个个体,以一定的概率随机的改变基因串中某个字符的值,变异操作是按位进行的,变异发生的概率极低,它本身是一种随机搜索,但与选择,交叉算子结合在一起,就能避免由复制和交叉算子引起某些信息丢失,从而保证的遗传算法的有效性。
4.遗传算法的研究发展进展和应用
遗传算法研究兴起是在20世纪80年代末和90年代初期,但它的历史起源可追溯至20世纪60年代初期。
早期的研究大多以对自然系统的计算机模拟为主。
如Fraser的模拟研究,他提出了和现在遗传算法十分相似的概念和思想。
Holland和DeJong的创造性研究成果改变了早期遗传算法研究无目的性和理论指导的缺乏。
进入20世纪80年代,遗传算法迎来了兴盛发展时期,无论是理论研究和应用研究都成了很热门的课题。
尤其是遗传算法的应用领域不断扩大。
自从遗传算法出现以来为提高遗传算法解决问题的能力的改进研究一直在进行,包括改善基本操作方法,改善编码方法,改善种群的多样性等三大类。
5.个人对遗传算法发展趋势的几点看法
从自然现象来看,生物演化的目的并非取得某一限制条件下的某些参数优化,而是适应环境。
从这一点来看,虽然目前工程实践上遗传算法的主要应用是用于优化,但真正的结果并非如此。
借鉴遗传算法和生物演化现象的紧密关系,人工生命和复杂性科学的研究与遗传算法有极其密却的联系。
从长远来看。
遗传算法还有以下发展空间:
(1)协同进化。
进化的目标不是形成一个超级物种,一个生态环境进化的结果是物种与环境的相互适应的复杂系统。
因此,应该研究多个物种早共同的生态环境中的协同进化。
对应到遗传算法,可以用于多目标的优化。
(2)学习与进化的相互作用。
可以将学习分为以下几种,(1)宗亲学习:通过血亲遗传祖先的特征遗传给后代。
(2)社团学习:经验和知识在群体中共享。
(3)个体学习:个体生存过程中的学习。
个体学习获得某种所需特性的机会。
但是除了生物界的有性生殖,突变,染色体互换和倒置等等基于生理结构的进化机制外,人类社会还存在基于社会文化的进化机制,个体在社会学
习中得到特有的更高级的进化。
6.结束语
随着计算机技术的高速发展,遗传算法将会更加广泛地应用于国民经济的各个领域,如故障诊断,工业控制,电力系统,系统辨识,神经网络,路径规划,网络通信,社会科学等。
随着遗传算法的深入研究以及与其他学科的互相融合,必将在智能领域占有越来越重要的地位。
随着理论研究的不断深入和应用领域的不断扩展,遗传算法将得到长足的发展。
参考文献
[1]吴启迪,康琦,汪镭,陆金山.自然计算导论[M].上海:上海科学技术出版社,2011
[2]张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2000
[3]李敏强,寇纪淞,林丹,李书全.遗传算法的基本理论与应用[M].北京:科学出版社,2002
[4]巩敦卫,郝国生,周勇,郭一楠.交互式遗传算法原理及其应用[M].北京:国防工业出版社,2007
[5]赵宜鹏,孟磊,彭承靖.遗传算法原理与发展方向综述[J].昆明:云南民族大学学报,2004。