新北师大版八年级下数学1.1等腰三角形(1)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 等腰三角形1
回顾复习
公理:
同位角 相等,那么这两条直线平行; 1.两直线被第三条直线所截,如果________ 同位角 相等; 2.两条平行线被第三条直线所截,________ 两边及其夹角 对应相等的两个三角形全等; (SAS) 3. ____________ 两角及其夹边 对应相等的两个三角形全等; (ASA) 4. ____________ 三边 对应相等的两个三角形全等; (SSS) 5. _____ 对应边 相等, ________ 对应角 相等. 6.全等三角形的________ 你能由公理3、4、 5、 6证明下面的推论吗? 推论 两角及其中一角的对边对应相等的两个三角形全等.(AAS)
等腰三角形的性质
定理: 等腰三角形的两个底角相等. (等边对等角)
已知:如图, 在△ABC中, AB=AC. 求证:∠B=∠C.
A
证法一: 证明:取BC的中点D, 连接AD.
在△ABD和△ACD中 ∵ AB=AC, BD=CD, AD=AD
B
D
C
∴ △ABD≌△ACD (SSS)
∴ ∠B=∠C (全等三角形的对应角相等)
用心想一想,马到功成
推论 两角及其中一角的对边对应相等的 两个三角形全等.(AAS) A D
已知:如图,∠A=∠D,∠B=∠E,BC=EF. 求证:△ABC≌△DEF. 证明:∵∠A+∠B+∠C=180°,
B
C E
F
∠D+∠E+∠F=180°(三角形内角和等于180°) ∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E) ∵∠A=∠D,∠B=∠E(已知) ∴∠C=∠F(等量代换)
B C
想一想
在上面的图形中,线段AD还具有怎样 的性质?为什么?由此你能得到什么结论?
A
推论: 等腰三角形顶角的平分 线、底边上的中线、底边上的高互 相重合. (三线合一)
B
D
C
ຫໍສະໝຸດ Baidu
等腰三角形的性质
1.等腰三角形的两个底角相等;
2.等腰三角形顶角的平分线、底边中线、 底边上高三条线重合;
3.等边三角形三个内角都相等并且每个内 角都等于60°.
等腰三角形的性质
定理: 等腰三角形的两个底角相等. (等边对等角)
A
已知:如图, 在△ABC中, AB=AC.
求证:∠B=∠C.
证法二:
B
D
C
证明:作△ABC顶角∠A的角平分线AD.
在△ABD和△ACD中
∵ AB=AC, ∠BAD=∠CAD, AD=AD ∴ △ABD≌△ACD (SAS) ∴ ∠B=∠C (全等三角形的对应角相等)
∵BC=EF(已知)
∴△ABC≌△DEF(ASA)
议一议, 做一做
(1)还记得我们探索过的等腰三角形的性质吗?尽 可能回忆出来. (2)你能利用已有的公理和定理证明这些结论吗? 如图,先自己折纸观察探索并写出等腰三角形的 性质,然后再小组交流,互相弥补不足.
A A
A
→
B
D C B
→
C D
B(C) D
再见 Class Over
2. 如图,在△ABD中,C是BD上的一点,且AC⊥BD, AC=BC=CD, (1)求证: △ABD是等腰三角形; (2)求∠BAD的度数.
A
B
C
D
课堂小结, 畅谈收获:
1. 通过折纸活动获得三个定理,均给予了严格的 证明,为今后解决有关等腰三角形的问题提供了丰富 的理论依据。 2. 体会了证明一个命题的严格的要求,体会了证 明的必要性。
练一练
1. 求证:等边三角形三个内角都相等并且每个内角都等于60°.
已知:如图,在△ABC中,AB=BC=AC。 求证:∠A=∠B=∠C=60°. 证明:在ΔABC中,∵AB=AC, ∴∠B=∠C(等边对等角).
B C
A
同理:∠C=∠A,
∴∠A=∠B=∠C(等量代换). 又∵∠A+∠B+∠C=180°(三角形内角和定理) ∴∠A=∠B=∠C=60°.
等腰三角形的性质
定理: 等腰三角形的两个底角相等. (等边对等角)
A
已知:如图, 在△ABC中, AB=AC.
求证:∠B=∠C.
证法三: 证明:在△ABC和△ACB中 ∵ AB=AC, ∠A=∠A, AC=AB, ∴ △ABC≌△ACB (SAS) ∴ ∠B=∠C (全等三角形的对应角相等) 点拨:此题还有多种证法,不论怎样证,依据都是全等 的基本性质。
回顾复习
公理:
同位角 相等,那么这两条直线平行; 1.两直线被第三条直线所截,如果________ 同位角 相等; 2.两条平行线被第三条直线所截,________ 两边及其夹角 对应相等的两个三角形全等; (SAS) 3. ____________ 两角及其夹边 对应相等的两个三角形全等; (ASA) 4. ____________ 三边 对应相等的两个三角形全等; (SSS) 5. _____ 对应边 相等, ________ 对应角 相等. 6.全等三角形的________ 你能由公理3、4、 5、 6证明下面的推论吗? 推论 两角及其中一角的对边对应相等的两个三角形全等.(AAS)
等腰三角形的性质
定理: 等腰三角形的两个底角相等. (等边对等角)
已知:如图, 在△ABC中, AB=AC. 求证:∠B=∠C.
A
证法一: 证明:取BC的中点D, 连接AD.
在△ABD和△ACD中 ∵ AB=AC, BD=CD, AD=AD
B
D
C
∴ △ABD≌△ACD (SSS)
∴ ∠B=∠C (全等三角形的对应角相等)
用心想一想,马到功成
推论 两角及其中一角的对边对应相等的 两个三角形全等.(AAS) A D
已知:如图,∠A=∠D,∠B=∠E,BC=EF. 求证:△ABC≌△DEF. 证明:∵∠A+∠B+∠C=180°,
B
C E
F
∠D+∠E+∠F=180°(三角形内角和等于180°) ∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E) ∵∠A=∠D,∠B=∠E(已知) ∴∠C=∠F(等量代换)
B C
想一想
在上面的图形中,线段AD还具有怎样 的性质?为什么?由此你能得到什么结论?
A
推论: 等腰三角形顶角的平分 线、底边上的中线、底边上的高互 相重合. (三线合一)
B
D
C
ຫໍສະໝຸດ Baidu
等腰三角形的性质
1.等腰三角形的两个底角相等;
2.等腰三角形顶角的平分线、底边中线、 底边上高三条线重合;
3.等边三角形三个内角都相等并且每个内 角都等于60°.
等腰三角形的性质
定理: 等腰三角形的两个底角相等. (等边对等角)
A
已知:如图, 在△ABC中, AB=AC.
求证:∠B=∠C.
证法二:
B
D
C
证明:作△ABC顶角∠A的角平分线AD.
在△ABD和△ACD中
∵ AB=AC, ∠BAD=∠CAD, AD=AD ∴ △ABD≌△ACD (SAS) ∴ ∠B=∠C (全等三角形的对应角相等)
∵BC=EF(已知)
∴△ABC≌△DEF(ASA)
议一议, 做一做
(1)还记得我们探索过的等腰三角形的性质吗?尽 可能回忆出来. (2)你能利用已有的公理和定理证明这些结论吗? 如图,先自己折纸观察探索并写出等腰三角形的 性质,然后再小组交流,互相弥补不足.
A A
A
→
B
D C B
→
C D
B(C) D
再见 Class Over
2. 如图,在△ABD中,C是BD上的一点,且AC⊥BD, AC=BC=CD, (1)求证: △ABD是等腰三角形; (2)求∠BAD的度数.
A
B
C
D
课堂小结, 畅谈收获:
1. 通过折纸活动获得三个定理,均给予了严格的 证明,为今后解决有关等腰三角形的问题提供了丰富 的理论依据。 2. 体会了证明一个命题的严格的要求,体会了证 明的必要性。
练一练
1. 求证:等边三角形三个内角都相等并且每个内角都等于60°.
已知:如图,在△ABC中,AB=BC=AC。 求证:∠A=∠B=∠C=60°. 证明:在ΔABC中,∵AB=AC, ∴∠B=∠C(等边对等角).
B C
A
同理:∠C=∠A,
∴∠A=∠B=∠C(等量代换). 又∵∠A+∠B+∠C=180°(三角形内角和定理) ∴∠A=∠B=∠C=60°.
等腰三角形的性质
定理: 等腰三角形的两个底角相等. (等边对等角)
A
已知:如图, 在△ABC中, AB=AC.
求证:∠B=∠C.
证法三: 证明:在△ABC和△ACB中 ∵ AB=AC, ∠A=∠A, AC=AB, ∴ △ABC≌△ACB (SAS) ∴ ∠B=∠C (全等三角形的对应角相等) 点拨:此题还有多种证法,不论怎样证,依据都是全等 的基本性质。