推荐高考数学一轮总复习第9章平面解析几何第1节直线与方程高考AB卷理
高考数学一轮总复习 第9章 平面解析几何 第一节 直线与方程AB卷 文 新人教A版
【大高考】2017版高考数学一轮总复习 第9章 平面解析几何 第一节 直线与方程AB 卷 文 新人教A 版1. (2016·北京,7)已知A (2,5),B (4,1),若点P (x ,y )在线段AB 上,则2x -y 的最大值为( ) A.-1 B.3 C.7D.8解析 线段AB 的方程为y -1=5-12-4(x -4),2≤x ≤4.即2x +y -9=0,2≤x ≤4,因为P (x ,y )在线段AB 上, 所以2x -y =2x -(-2x +9)=4x -9.又2≤x ≤4,则-1≤4x -9≤7,故2x -y 最大值为7. 答案 C2.(2015·安徽,8)直线3x +4y =b 与圆x 2+y 2-2x -2y +1=0相切,则b 的值是( ) A.-2或12 B.2或-12 C.-2或-12D.2或12解析 圆方程可化为(x -1)2+(y -1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x +4y =b 与该圆相切,∴|3×1+4×1-b |32+42=1.解得b =2或b =12,故选D. 答案 D3.(2014·福建,6)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0D.x -y +3=0解析 依题意,得直线l 过点(0,3),斜率为1,所以直线l 的方程为y -3=x -0,即x -y +3=0.故选D. 答案 D4.(2013·江苏,17)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解 (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3,由题意得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO ,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上. 由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.5.(2014·四川,9)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |+|PB |的取值范围是( ) A.[5,25] B.[10,25] C.[10,45]D.[25,45]解析 易知直线x +my =0过定点A (0,0),直线mx -y -m +3=0过定点B (1,3),且两条直线相互垂直,故点P 在以AB 为直径的圆上运动,故|PA |+|PB |=|AB |cos∠PAB +|AB |sin ∠PAB =10·2sin ⎝ ⎛⎭⎪⎫∠PAB +π4∈[10,25],故选B.答案 B6.(2015·江苏,12)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________. 解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+12=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 答案227.(2013·四川,15)在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析 由题意可知,若P 为平面直角坐标系内任意一点,则|PA |+|PC |≥|AC |,等号成立的条件是点P 在线段AC 上;|PB |+|PD |≥|BD |,等号成立的条件是点P 在线段BD 上.所以到A ,B ,C ,D 四点的距离之和最小的点为AC 与BD 的交点.直线AC 方程为2x -y =0,直线BD 方程为x +y -6=0.∴⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4. 即所求点的坐标为(2,4). 答案 (2,4)。
高考总复习一轮数学精品课件 第9章 平面解析几何 第1节 直线的倾斜角与斜率、直线的方程
2-(-2)
所以
=-1(m≠3),
3-
解得 m=-5.
C.-5
D.-1
(2)直线l过点P(1,0),且与以A(2,1),B(0, √3 )为端点的线段有公共点,则直线l
(-∞,-√3]∪[1,+∞)
的斜率的取值范围为____________________.
将条件标在图形上的过程则是条件转化及建立条件与结论联系的过程.
第1节 直线的倾斜角与斜率、直线的方程
课标解读
1.在平面直角坐标系中,结合具体图形,探索确定直线位置的
几何要素.
2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率
的计算公式.
3.掌握直线方程的几种形式(点斜式、两点式及一般式).
目录索引
线的综合问
题
2022
2023
Ⅰ卷 Ⅱ卷 Ⅰ卷 Ⅱ卷
第14题 第15题第6题 第15题
第5题,
第16题
第16题
第16题
第21题 第21题
第5题
第21题
第11题 第10题第22题第10题
优化 备考策略
1.本章在高考中的特点
(1)题型、题量稳定:近几年高考试题对解析几何的考查一直以“2小1大”或
“3小1大”的形式出现,分值约22~27分.
x+2y-4=0
解析 由直线的点斜式方程,得
1
y-(-2)=-2(x-8),即
x+2y-4=0.
6.(人教B版选择性必修第一册2.2.1节练习B第4题改编)已知经过A(a,-1),
B(2,a+1)的直线的斜率为3,则实数a的值是__________.
高考数学一轮总复习 第9章 平面解析几何 第1节 直线与方程高考AB卷 理
【大高考】2017版高考数学一轮总复习 第9章 平面解析几何 第1节 直线与方程高考AB 卷 理直线及其方程(2013·全国Ⅱ,12)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D.⎣⎢⎡⎭⎪⎫13,12 解析 (1)当直线y =ax +b 与AB 、BC 相交时(如图①),由⎩⎪⎨⎪⎧y =ax +b ,x +y =1得y E =a +ba +1,又易知x D =-b a ,∴|BD |=1+b a ,由S △DBE =12×a +b a ×a +b a +1=12得b =11+1a+1∈⎝ ⎛⎭⎪⎫0,12.图① 图②(2)当直线y =ax +b 与AC 、BC 相交时(如图②),由S △FCG =12(x G -x F )·|CM |=12得b =1-221-a 2∈⎝ ⎛⎭⎪⎫1-22,1(∵0<a <1), ∵对于任意的a >0恒成立,∴b ∈⎝ ⎛⎭⎪⎫0,12∩⎝ ⎛⎭⎪⎫1-22,1,即b ∈⎝ ⎛⎭⎪⎫1-22,12.故选B.答案 B直线及其方程1.(2013·湖南,8)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 等于( )A.2B.1C.83D.43解析 以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示.则A (0,0),B (4,0),C (0,4).设△ABC 的重心为D ,则D 点坐标为⎝ ⎛⎭⎪⎫43,43. 设P 点坐标为(m ,0),则P 点关于y 轴的对称点P 1为(-m ,0),因为直线BC 方程为x +y -4=0,所以P 点关于BC 的对称点P 2为(4,4-m ), 根据光线反射原理,P 1,P 2均在QR 所在直线上, ∴k P 1D =k P 2D ,即4343+m =43-4+m 43-4,解得,m =43或m =0.当m =0时,P 点与A 点重合,故舍去.∴m =43.答案 D2.(2014·广东,10)曲线y =e -5x+2在点(0,3)处的切线方程为________.解析 y ′=-5e-5x,曲线在点(0,3)处的切线斜率k =y ′|x =0=-5,故切线方程为y -3=-5(x -0),即5x +y -3=0. 答案 5x +y -3=两直线的位置关系3.(2013·辽宁,9)已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( ) A.b =a 3B.b =a 3+1aC.(b -a 3)(b -a 3-1a)=0D.|b -a 3|+|b -a 3-1a|=0解析 若△OAB 为直角三角形,则A =90°或B =90°. 当A =90°时,有b =a 3;当B =90°时,有b -a 30-a ·a 3-0a -0=-1,得b =a 3+1a.故(b -a 3)(b -a 3-1a)=0,选C.答案 C4.(2012·浙江,3)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 由l 1∥l 2⇒a (a +1)-2=0⇒a =1或a =-2,∴a =1是l 1∥l 2的充分不必要条件. 答案 A5.(2014·四川,14)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析 易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,不难验证PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5. 答案 56.(2014·江苏,11)在平面直角坐标系xOy 中,若曲线y =ax 2+bx(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________. 解析 由曲线y =ax 2+b x 过点P (2,-5)可得-5=4a +b 2 (1).又y ′=2ax -bx2,所以在点P 处的切线斜率4a -b 4=-72(2).由(1)(2)解得a =-1,b =-2,所以a +b =-3.答案 -3。
2023年新高考数学一轮复习9-1 直线与直线方程(知识点讲解)含详解
专题9.1 直线与直线方程(知识点讲解)【知识框架】【核心素养】(1)通过考查直线的斜率与倾斜角、考查直线方程的几种形式,凸显直观想象、数学运算、逻辑推理的核心素养.(2)通过考查两直线的平行与垂直的判断、两直线的平行与垂直的条件的应用、考查与充要条件、基本不等式、导数的几何意义等相结合,以及考查直线与圆、直线与圆锥曲线的位置关系.凸显直观想象、数学运算、逻辑推理、数学应用的核心素养.【知识点展示】知识点1.直线的倾斜角与斜率1.直线的倾斜角①定义.当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴的正方向与直线l 向上的方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. ②范围:倾斜角的范围为. 2.直线的斜率①定义.一条直线的倾斜角的正切叫做这条直线的斜率,斜率常用小写字母k 表示,即,倾斜角是90°的直线没有斜率.当直线与x 轴平行或重合时, , .②过两点的直线的斜率公式.经过两点的直线的斜率公式为.3.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率.倾斜角为90°的直线斜率不存在.4.直线的倾斜角、斜率k 之间的大小变化关系: (1)当时,越大,斜率越大;(2)当时,越大,斜率越大.知识点2.直线的方程1.直线的点斜式方程:直线经过点,且斜率为,则直线的方程为:.这个方程就叫做直线点斜式方程.特别地,直线过点,则直线的方程为:.这个方程叫做直线 的斜截式方程.2.直线的两点式方程直线过两点其中,则直线的方程为:.这个方程叫做直线的两点式方程.当时,直线与轴垂直,所以直线方程为:;当时,直线与轴垂直,直线方程为:.特别地,若直线过两点,则直线的方程为:,这个方程叫做直线的截距式方程.αα0απ≤<(90)αα≠tan k α=l 0α=tan 00k ==11122212()()()P x y P x y x x ≠,,,2121y y k x x --=α[0,)2πα∈0,k α>(,)2παπ∈0,k α<l 000(,)P x y k l )(00x x k y y -=-l ),0(b l b kx y +=l ),(),,(222211y x P x x P ),(2121y y x x ≠≠l ),(2121121121y y x x x x x x y y y y ≠≠--=--21x x =x 1x x =21y y =y 1y y=l 12(,0),(0,)(0)P a P b ab ≠l 1x ya b+=3.直线的一般式方程关于的二元一次方程(A ,B 不同时为0)叫做直线的一般式方程.由一般式方程可得,B 不为0时,斜率,截距. 知识点3.两条直线平行与垂直 1.两直线的平行关系(1) 对于两条不重合的直线,其斜率为,有. (2)对于两条直线,有.2.两条直线的垂直关系(1) 对于两条直线,其斜率为,有.(2)对于两条直线,有. 知识点4.距离问题 1.两点间的距离公式设两点,则.2.点到直线的距离公式设点,直线,则点到直线的距离.3.两平行线间的距离公式设两条平行直线,则这两条平行线之间的距离.知识点5.两条直线的交点1.两条直线相交:对于两条直线,若,则方程组有唯一解,两条直线就相交,方程组的解就是交点的坐标.2.两条直线,联立方程组,y x ,0=++C By Ax A k B =-C b B=-12,l l 12,k k 1212//l l k k ⇔=11112222:0,:0l A x B y C l A x B y C ++=++=1212211221//0,0l l A B A B AC A C ⇔-=-≠12,l l 12,k k 12121l l k k ⊥⇔=-11112222:0,:0l A x B y C l A x B y C ++=++=1211220l l A B A B ⊥⇔+=111222(,),(,)P x y P xy 12PP =000(,)P x y :0l Ax By C ++=000(,)P x y :0l Ax By C ++=d =1122:0,:0l Ax By C l Ax By C ++=++=d =11112222:0,:0l A x B y C l A x B y C ++=++=12210A B A B -≠11122200A x B y C A x B y C ++=⎧⎨++=⎩11112222:0,:0l A x B y C l A x B y C ++=++=11122200A x B y C A x B y C ++=⎧⎨++=⎩若方程组有无数组解,则重合. 知识点6.对称问题 1.中点坐标公式 2.两条直线的垂直关系(1) 对于两条直线,其斜率为,有.(2)对于两条直线,有.【常考题型剖析】题型一:直线的倾斜角与斜率例1.(2022·全国·高三专题练习)过点(1,2)(1,0)-、A B 的直线的倾斜角为( ) A .45︒B .135︒C .1D .1-例2.(2022·全国·高三专题练习)如图,设直线1l ,2l ,3l 的斜率分别为1k ,2k ,3k ,则1k ,2k ,3k 的大小关系为( )A .123k k k <<B .132k k k <<C .213k k k << D .321k k k <<例3.(2020·北京·高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.12,l l 12,l l 12,k k 12121l l k k ⊥⇔=-11112222:0,:0l A x B y C l A x B y C ++=++=1211220l l A B A B ⊥⇔+=给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【规律方法】1.求直线的斜率与倾斜角.若已知两点的坐标,则直接利用斜率公式求斜率;若条件中给出一条直线,则求出直线上的两点的坐标,然后利用斜率公式求斜率.求直线的倾斜角,则先求出直线的斜率,再利用求倾斜角.2. 求直线的斜率与倾斜角的范围.若斜率k 是含参数的一个式子,则利用函数或不等式的方法求其范围;若是给出图形求斜率与倾斜角的范围,则采用数开结合的方法求其范围.3.从高考题看,对直线斜率的考查,越侧重其应用. 题型二:直线的方程例4.(2015·山东·高考真题)如下图,直线l 的方程是( )A.330x y --= B .3230x y --=C 310y --=D .10x -=例5.(2022·全国·高三专题练习)过点()2,1A 且与直线:2430l x y -+=垂直的直线的方程是( ) A .20x y -= B .250x y +-= C .230x y --= D .240x y +-=【规律方法】求直线方程的常用方法:tan k α=1.直接法:根据已知条件灵活选用直线方程的形式,写出方程.2.待定系数法:先根据已知条件设出直线方程,再根据已知条件构造关于待定系数的方程(组)求系数,最后代入求出直线方程.3.直线在x (y )轴上的截距是直线与x (y )轴交点的横(纵)坐标,所以截距是一个实数,可正、可负,也可为0,而不是距离.4.从高考命题看,侧重于直线与圆、直线与圆锥曲线位置关系的考查. 题型三:两条直线平行与垂直例6.(2023·全国·高三专题练习)“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件例7.(2021·台州市书生中学高二期中)已知直线1l :sin 10x y α+-=,直线2l :3cos 10x y α-+=,若12l l //,则sin2α=_________若12l l ⊥,则sin2α=________ 【易错提醒】当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. 题型四:距离问题例8.(2019·江苏高考真题)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P到直线x +y =0的距离的最小值是_____. 例9.(2016·上海·高考真题(文))已知平行直线,则12l l 与的距离是_______________.【规律方法】 两种距离的求解思路 (1)点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. (2)两平行线间的距离的求法①利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离. ②利用两平行线间的距离公式(利用公式前需把两平行线方程中x ,y 的系数化为相同的形式). 题型五:两条直线的交点例10.(2022·全国·高三专题练习)直线1:1l y mx =+,2:1l x my =-+相交于点P ,其中1m ≤.(1)求证:1l 、2l 分别过定点A 、B ,并求点A 、B 的坐标; (2)当m 为何值时,ABP △的面积S 取得最大值,并求出最大值.例11.(2021·全国高三专题练习)求过直线1:5230l x y +-=和2:3580l x y --=的交点P ,且与直线470x y +-=垂直的直线l 的方程.【规律方法】 1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标. 2.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.3.涉及两直线的交点问题,往往需借助于图形,应用数形结合思想,探索解题思路,这也是解析几何中分析问题、解决问题的重要特征. 题型六:对称问题例12.(2020·山东高考真题)直线2360x y +-=关于点()1,2-对称的直线方程是( ) A .32100x y --= B .32230x y --= C .2340x y +-=D .2320x y +-=例13.(浙江·高考真题(理))直线210x y -+=关于直线1x =对称的直线方程是( ) A .210x y +-=B .210x y +-=C .230x y +-=D .230x y +-=例14.(2019·河北高考模拟(理))设点为直线:上的动点,点,,则的最小值为( ) A . BC .D【规律方法】涉及对称问题,主要有以下几种情况:1.若点关于直线对称,设对称点是,则线段的中点在直线上且直线,由此可得一方程组,解这个方程组得:的值,从而求得对称点的坐标.P l 40x y +-=(2,0)A -()2,0B ||||PA PB +00(,)P x y :0l Ax By C ++=00(,)Q x y ''PQ l PQ l ⊥0000000022()1x x y y A B C y y A x x B ''++⎧⨯+⨯+=⎪⎪⎨'-⎪⨯-=-'-⎪⎩00,x y ''2.若直线关于点对称,由于对称直线必与直线平行,故可设对称直线为.因为直线间的距离是点到直线的距离的二倍,,解这个方程可得的值(注意这里求出的有两个),再结合图形可求得对称直线的方程.3.若直线关于直线对称,则在直线上取两点,求出这两点关于直线对称的两点的坐标,再由两点式便可得直线关于直线对称的直线的方程. 4.中心对称问题的两种类型及求解方法5.轴对称问题的两种类型及求解方法:0l Ax By C ++=00(,)P x y :0l Ax By C ++=0:0l Ax By C '++=,l l 'P :0l Ax By C ++=2=0C 0C l ':0l Ax By C ++=0000:0l A x B y C ++=:0l Ax By C ++=0l l 0l专题9.1 直线与直线方程(知识点讲解)【知识框架】【核心素养】(1)通过考查直线的斜率与倾斜角、考查直线方程的几种形式,凸显直观想象、数学运算、逻辑推理的核心素养.(2)通过考查两直线的平行与垂直的判断、两直线的平行与垂直的条件的应用、考查与充要条件、基本不等式、导数的几何意义等相结合,以及考查直线与圆、直线与圆锥曲线的位置关系.凸显直观想象、数学运算、逻辑推理、数学应用的核心素养.【知识点展示】知识点1.直线的倾斜角与斜率1.直线的倾斜角①定义.当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴的正方向与直线l 向上的方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. ②范围:倾斜角的范围为. 2.直线的斜率①定义.一条直线的倾斜角的正切叫做这条直线的斜率,斜率常用小写字母k 表示,即,倾斜角是90°的直线没有斜率.当直线与x 轴平行或重合时, , .②过两点的直线的斜率公式.经过两点的直线的斜率公式为.3.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率.倾斜角为90°的直线斜率不存在.4.直线的倾斜角、斜率k 之间的大小变化关系: (1)当时,越大,斜率越大;(2)当时,越大,斜率越大.知识点2.直线的方程1.直线的点斜式方程:直线经过点,且斜率为,则直线的方程为:.这个方程就叫做直线点斜式方程.特别地,直线过点,则直线的方程为:.这个方程叫做直线 的斜截式方程.2.直线的两点式方程直线过两点其中,则直线的方程为:.这个方程叫做直线的两点式方程.当时,直线与轴垂直,所以直线方程为:;当时,直线与轴垂直,直线方程为:.特别地,若直线过两点,则直线的方程为:,这个方程叫做直线的αα0απ≤<(90)αα≠tan k α=l 0α=tan 00k ==11122212()()()P x y P x y x x ≠,,,2121y y k x x --=α[0,)2πα∈0,k α>(,)2παπ∈0,k α<l 000(,)P x y k l )(00x x k y y -=-l ),0(b l b kx y +=l ),(),,(222211y x P x x P ),(2121y y x x ≠≠l ),(2121121121y y x x x x x x y y y y ≠≠--=--21x x =x 1x x =21y y =y 1y y=l 12(,0),(0,)(0)P a P b ab ≠l 1x ya b+=截距式方程.3.直线的一般式方程关于的二元一次方程(A ,B 不同时为0)叫做直线的一般式方程.由一般式方程可得,B 不为0时,斜率,截距. 知识点3.两条直线平行与垂直1.两直线的平行关系(1) 对于两条不重合的直线,其斜率为,有.(2)对于两条直线,有.2.两条直线的垂直关系(1) 对于两条直线,其斜率为,有.(2)对于两条直线,有. 知识点4.距离问题1.两点间的距离公式设两点,则.2.点到直线的距离公式 设点,直线,则点到直线的距离.3.两平行线间的距离公式设两条平行直线,则这两条平行线之间的距离.知识点5.两条直线的交点1.两条直线相交:对于两条直线,若,则方程组有唯一解,两条直线就相交,方程组的解就是交点的坐标.2.两条直线y x ,0=++C By Ax A k B =-C b B =-12,l l 12,k k 1212//l l k k ⇔=11112222:0,:0l A x B y C l A x B y C ++=++=1212211221//0,0l l A B A B AC A C ⇔-=-≠12,l l 12,k k 12121l l k k ⊥⇔=-11112222:0,:0l A x B y C l A x B y C ++=++=1211220l l A B A B ⊥⇔+=111222(,),(,)P x y P xy 12PP =000(,)P x y :0l Ax By C ++=000(,)P x y :0l Ax By C ++=d =1122:0,:0l Ax By C l Ax By C ++=++=d =11112222:0,:0l A x B y C l A x B y C ++=++=12210A B A B -≠11122200A x B y C A x B y C ++=⎧⎨++=⎩,联立方程组, 若方程组有无数组解,则重合.知识点6.对称问题1.中点坐标公式2.两条直线的垂直关系(1) 对于两条直线,其斜率为,有.(2)对于两条直线,有.【常考题型剖析】题型一:直线的倾斜角与斜率例1.(2022·全国·高三专题练习)过点(1,2)(1,0)-、A B 的直线的倾斜角为( )A .45︒B .135︒C .1D .1- 【答案】A【解析】【分析】利用斜率与倾斜角的关系即可求解.【详解】过A 、B 的斜率为2011(1)k -==--,则该直线的倾斜角为45︒, 故选:A .例2.(2022·全国·高三专题练习)如图,设直线1l ,2l ,3l 的斜率分别为1k ,2k ,3k ,则1k ,2k ,3k 的大小关系为( ) A .123k k k << B .132k k k <<C .213k k k << D .321k k k <<11112222:0,:0l A x B y C l A x B y C ++=++=11122200A x B y C A x B y C ++=⎧⎨++=⎩12,l l 12,l l 12,k k 12121l l k k ⊥⇔=-11112222:0,:0l A x B y C l A x B y C ++=++=1211220l l A B A B ⊥⇔+=【答案】A【解析】【分析】直接由斜率的定义判断即可.【详解】由斜率的定义可知,123k k k <<.故选:A .例3.(2020·北京·高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强;③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强.其中所有正确结论的序号是____________________.【答案】①②③【解析】【分析】根据定义逐一判断,即可得到结果【详解】()()f b f a b a---表示区间端点连线斜率的负数, 在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【规律方法】1.求直线的斜率与倾斜角.若已知两点的坐标,则直接利用斜率公式求斜率;若条件中给出一条直线,则求出直线上的两点的坐标,然后利用斜率公式求斜率.求直线的倾斜角,则先求出直线的斜率,再利用求倾斜角.2. 求直线的斜率与倾斜角的范围.若斜率k 是含参数的一个式子,则利用函数或不等式的方法求其范围;若是给出图形求斜率与倾斜角的范围,则采用数开结合的方法求其范围.3.从高考题看,对直线斜率的考查,越侧重其应用.题型二:直线的方程例4.(2015·山东·高考真题)如下图,直线l 的方程是( )A .330x y --=B .3230x y --=C .3310x y --=D .310x y --=【答案】D【解析】【分析】 由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解.tan k α=【详解】由图可得直线的倾斜角为30°,所以斜率tan 30k =︒=, 所以直线l 与x 轴的交点为()1,0,所以直线的点斜式方程可得l :)01y x -=-,即10x -=.故选:D例5.(2022·全国·高三专题练习)过点()2,1A 且与直线:2430l x y -+=垂直的直线的方程是( ) A .20x y -=B .250x y +-=C .230x y --=D .240x y +-= 【答案】B【解析】【分析】利用相互垂直的直线斜率之间的关系即可求解.【详解】由题意可知,设所求直线的方程为420x y m ++=,将点()2,1A 代入直线方程420x y m ++=中,得42210m ⨯+⨯+=,解得10m =-,所以所求直线的方程为42100x y +-=,即250x y +-=.故选:B.【规律方法】求直线方程的常用方法:1.直接法:根据已知条件灵活选用直线方程的形式,写出方程.2.待定系数法:先根据已知条件设出直线方程,再根据已知条件构造关于待定系数的方程(组)求系数,最后代入求出直线方程.3.直线在x (y )轴上的截距是直线与x (y )轴交点的横(纵)坐标,所以截距是一个实数,可正、可负,也可为0,而不是距离.4.从高考命题看,侧重于直线与圆、直线与圆锥曲线位置关系的考查.题型三:两条直线平行与垂直例6.(2023·全国·高三专题练习)“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】B【解析】【分析】由直线()2140x m y +++=与直线320x my --=垂直求出m 的值,再由充分条件和必要条件的定义即可得出答案.【详解】直线()2140x m y +++=与直线320x my --=垂直,则()()2310m m ⨯++⨯-=,解得:2m =或3m =-,所以“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的充分不必要条件.故选:B.例7.(2021·台州市书生中学高二期中)已知直线1l :sin 10x y α+-=,直线2l :3cos 10x y α-+=,若12l l //,则sin2α=_________若12l l ⊥,则sin2α=________ 【答案】23- 35 【分析】根据直线平行和垂直得到sin ,cos αα的关系,再结合二倍角公式及弦化切得到答案.【详解】若12l l //,则()12sin 3cos 10sin cos sin 22sin cos 33ααααααα--=⇒=-⇒==-,此时113cos α≠,则两条直线不重合,故2sin 23α=-; 若12l l ⊥,则sin 3cos 0tan 3ααα-=⇒=, ∴2222sin cos 2tan 3sin 22sin cos sin cos tan 15ααααααααα====++. 故答案为:23-,35. 【易错提醒】当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.题型四:距离问题例8.(2019·江苏高考真题)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.【答案】4.【解析】当直线x +y =0平移到与曲线y =x +4x 相切位置时,切点Q 即为点P 到直线x +y =0的距离最小. 由y ′=1−4x 2=−1,得x =√2(−√2舍),y =3√2,即切点Q(√2,3√2),则切点Q 到直线x +y =0的距离为√2+3√2|√12+12=4, 故答案为:4.例9.(2016·上海·高考真题(文))已知平行直线,则12l l 与的距离是_______________.【解析】利用两平行线间的距离公式得d == 【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数必须相同,本题较为容易,主要考查考生的基本运算能力.【规律方法】两种距离的求解思路(1)点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式.(2)两平行线间的距离的求法①利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.②利用两平行线间的距离公式(利用公式前需把两平行线方程中x ,y 的系数化为相同的形式).题型五:两条直线的交点例10.(2022·全国·高三专题练习)直线1:1l y mx =+,2:1l x my =-+相交于点P ,其中1m ≤.(1)求证:1l 、2l 分别过定点A 、B ,并求点A 、B 的坐标;(2)当m 为何值时,ABP △的面积S 取得最大值,并求出最大值.【答案】(1)证明见解析,()0,1A ,()10B , (2)0m =时,S 取得最大值12【解析】【分析】(1)在直线1l 的方程中令0x =可得出定点A 的坐标,在直线2l 的方程中令0y =可得出定点B 的坐标,由此可得出结论;(2)联立直线1l 、2l 的方程,可求得两直线的交点P 的坐标,计算出AP 和BP ,利用三角形的面积公式可计算出S 的表达式,由S 的表达式可求得S 的最大值及其对应的m 的值.(1)在直线1l 的方程中,令0x =可得1y =,则直线1l 过定点()0,1A ,在直线2l 的方程中,令0y =可得1x =,则直线2l 过定点()10B ,; (2)联立直线1l 、2l 的方程11y mx x my =+⎧⎨=-+⎩,解得221111m x m m y m -⎧=⎪⎪+⎨+⎪=⎪+⎩,即点2211,11m m P m m -+⎛⎫ ⎪++⎝⎭.AP ==BP ,11m -≤≤,所以,()()222211111212212121m m m S AP BP m m m -⋅+-⎛⎫=⋅===- ⎪+++⎝⎭;212121S m ⎛⎫=- ⎪+⎝⎭且11m -≤≤,因此,当0m =时,S 取得最大值,即max 12S =.例11.(2021·全国高三专题练习)求过直线1:5230l x y +-=和2:3580l x y --=的交点P ,且与直线470x y +-=垂直的直线l 的方程.【答案】450x y --=【分析】解法一:先取得两直线的交点,再根据与直线470x y +-=垂直求解;解法二:根据直线l 垂直于直线470x y +-=,设直线l 的方程为40x y c -+=,再将.1l 与2l 的交点代入求解;解法三:根据直线l 过1l 与2l 的交点,设直线l 的方程为(523)(358)0x y x y λ+-+--=,再根据l 与直线470x y +-=垂直求解.【详解】解法一:由5230,3580x y x y +-=⎧⎨--=⎩,解得(1,1). - 直线470x y +-=的斜率为14-, ∴直线l 的斜率为4.因此满足条件的直线l 的方程为:14(1)y x +=-,即450x y --=. 解法二:直线l 垂直于直线470x y +-=.∴设直线l 的方程为40x y c -+=.1l 与2l 的交点为(1,1)P -,41(1)0c ∴⨯--+=,解得从而5c =-.所以直线l 的方程为450x y --=.解法三:因为直线l 过1l 与2l 的交点,∴设直线l 的方程为(523)(358)0x y x y λ+-+--=,即(53)(25)380x y λλλ++---=, l 与直线470x y +-=垂直,53425l k λλ+∴=-=-,解得1317λ=. ∴直线l 的方程为450x y --=.【规律方法】1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.2.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.3.涉及两直线的交点问题,往往需借助于图形,应用数形结合思想,探索解题思路,这也是解析几何中分析问题、解决问题的重要特征.题型六:对称问题例12.(2020·山东高考真题)直线2360x y +-=关于点()1,2-对称的直线方程是( )A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=【答案】D【分析】 设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,因为点(2,4)x y ---在直线2360x y +-=上,所以()()223460x y --+--=即2320x y +-=.故选:D.例13.(浙江·高考真题(理))直线210x y -+=关于直线1x =对称的直线方程是( )A .210x y +-=B .210x y +-=C .230x y +-=D .230x y +-= 【答案】D【解析】【分析】设所求直线上任一点(x ,y ),关于x=1的对称点求出,代入已知直线方程,即可得到所求直线方程.【详解】设所求直线上任一点(x y ,),则它关于1x =对称点为()2,x y -在直线210x y -+=上,∴2210x y --+=化简得230x y +-=故选答案D .故选D .例14.(2019·河北高考模拟(理))设点为直线:上的动点,点,,则的最小值为( )A .BC .D【答案】A【解析】 P l 40x y +-=(2,0)A -()2,0B ||||PA PB +依据题意作出图像如下:设点关于直线的对称点为,则它们的中点坐标为:,且 由对称性可得:,解得:, 所以因为,所以当三点共线时,最大 此时最大值为故选:A【规律方法】涉及对称问题,主要有以下几种情况:1.若点关于直线对称,设对称点是,则线段的中点在直线上且直线,由此可得一方程组,解这个方程组得:的值,从而求得对称点的坐标. 2.若直线关于点对称,由于对称直线必与直线平行,故可设对称直线为.因为直线间的距离是点到直线的距离的二倍,,解这个方程可得的值(注意这里求出的有两个),再结合图形可求得对称直线的方程.()2,0B l ()1,B a b 2,22a b +⎛⎫ ⎪⎝⎭1PB PB =()011224022b a a b -⎧⨯-=-⎪⎪-⎨+⎪+-=⎪⎩4a =2b =()14,2B 1||||||||PA PB PA PB +=+1,,A P B ||||PA PB +1AB ==00(,)P x y :0l Ax By C ++=00(,)Q x y ''PQ l PQ l ⊥0000000022()1x x y y A B C y y A x x B ''++⎧⨯+⨯+=⎪⎪⎨'-⎪⨯-=-'-⎪⎩00,x y '':0l Ax By C ++=00(,)P x y :0l Ax By C ++=0:0l Ax By C '++=,l l 'P :0l Ax By C ++=2=0C 0C l '3.若直线关于直线对称,则在直线上取两点,求出这两点关于直线对称的两点的坐标,再由两点式便可得直线关于直线对称的直线的方程.4.中心对称问题的两种类型及求解方法5.轴对称问题的两种类型及求解方法:0l Ax By C ++=0000:0l A x B y C ++=:0l Ax By C ++=0l l 0l。
高考数学一轮复习第九章解析几何第一节直线与方程实用理
倾斜角α 锐角 0° 钝角
90°
2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=
tan α的单调性,如图所示:
(1)当α取值在
0,π2
内,由0增大到
π 2
α≠π2
时,k由0增大并趋向于正无穷大;
(2)当α取值在π2,π内,由π2α≠π2增大到π(α≠π)时,k由负无 穷大增大并趋近于0.
解决此类问题,常采用数形结合思想.
[易错提醒]
直线倾斜角的范围是[0,π),而这个区间不是正切函 数的单调区间,因此根据斜率求倾斜角的范围时,要分 0,π2 与 π2,π 两种情况讨论.由正切函数图象可以看 出,当α∈ 0,π2 时,斜率k∈[0,+∞);当α= π2 时,斜率 不存在;当α∈π2,π时,斜率k∈(-∞,0).
两直线的位置关系
解析:设l1,l2,l3的倾斜角分别为α1,α2,α3.由题图易知 0<α3<α2<90°<α1<180°,∴tan α2>tan α3>0>tan α1, 即k2>k3>k1. 答案:k2>k3>k1
(3)已知直线l1:x=-2,l2:y=
1 2
,则直线l1与l2的位置关系
是________.
答案:垂直
(4)已知直线l1:ax+(3-a)y+1=0,l2:x-2y=0.若l1⊥l2, 则实数a的值为________. 解析:由题意,得a-a 3=-2,解得a=2. 答案:2
讲练区 研透高考· 完成情况
[全析考法]
直线的倾斜角与斜率
1.直线都有倾斜角,但不一定都有斜率,二者的关系具 体如下:
斜率k k=tan α>0 k=0 k=tan α<0 不存在
近年高考数学一轮复习第九章平面解析几何9.1直线方程与两条直线的位置关系练习理(2021年整理)
2019高考数学一轮复习第九章平面解析几何9.1 直线方程与两条直线的位置关系练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第九章平面解析几何9.1 直线方程与两条直线的位置关系练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第九章平面解析几何9.1 直线方程与两条直线的位置关系练习理的全部内容。
§9.1直线方程与两条直线的位置关系命题探究解答过程答案:A解析:解法一:由题意可知,点F的坐标为(1,0),直线AB的斜率存在且不为0,故设直线AB的方程为x=my+1。
由得y2-4my—4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=—4,∴x1+x2=m(y1+y2)+2=4m2+2,∴|AB|=|AF|+|BF|=x1+x2+2=4m2+4。
∵AB⊥DE,∴直线DE的方程为x=—y+1,|DE|=+4,∴|AB|+|DE|=4m2+4++4=4+8≥4×2+8=16,当且仅当m2=,即m=±1时,等号成立.即|AB|+|DE|的最小值为16.故选A.解法二:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B与E关于x轴对称,即直线DE的斜率为1。
又直线l2过点(1,0),∴直线l2的方程为y=x—1,联立方程组则y2-4y—4=0,设D(x1,y1),E(x2,y2),∴y1+y2=4,y1y2=-4,∴|DE|=·|y1—y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16考纲解读考点内容解读要求高考示例常考题型预测热度1。
高考数学大一轮复习 第九章 平面解析几何 9.1 直线的方程教师用书 文 新人教版-新人教版高三全册
2018版高考数学大一轮复习 第九章 平面解析几何 9.1 直线的方程教师用书 文 新人教版1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)X 围:直线l 倾斜角的X 围是[0°,180°). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式名称 方程适用X 围 点斜式 y -y 0=k (x -x 0) 不含直线x =x 0 斜截式y =kx +b 不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1 (x 1≠x 2)和直线y =y 1(y 1≠y 2)截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线 一般式 Ax +By +C =0(A 2+B 2≠0)平面直角坐标系内的直线都适用【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × )(3)直线的倾斜角越大,其斜率就越大.( ×)(4)直线的斜率为tan α,则其倾斜角为α.( ×)(5)斜率相等的两直线的倾斜角不一定相等.( ×)(6)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( √)1.(2016·某某模拟)过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为( ) A.1 B.4C.1或3 D.1或4答案 A解析依题意得m-4-2-m=1,解得m=1.2.直线3x-y+a=0的倾斜角为( )A.30° B.60°C.150° D.120°答案 B解析化直线方程为y=3x+a,∴k=tan α= 3.∵0°≤α<180°,∴α=60°.3.如果A·C<0且B·C<0,那么直线Ax+By+C=0不通过( ) A.第一象限 B.第二象限C.第三象限 D.第四象限答案 C解析由已知得直线Ax+By+C=0在x轴上的截距-CA>0,在y轴上的截距-CB>0,故直线经过第一、二、四象限,不经过第三象限.4.(教材改编)直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则实数a=________. 答案1或-2解析 令x =0,得直线l 在y 轴上的截距为2+a ; 令y =0,得直线l 在x 轴上的截距为1+2a,依题意2+a =1+2a,解得a =1或a =-2.5.过点A (2,-3)且在两坐标轴上的截距互为相反数的直线方程为________________. 答案 3x +2y =0或x -y -5=0解析 ①当直线过原点时,直线方程为y =-32x ,即3x +2y =0;②当直线不过原点时,设直线方程为x a -y a=1,即x -y =a ,将点A (2,-3)代入,得a =5,即直线方程为x -y -5=0.故所求直线的方程为3x +2y =0或x -y -5=0.题型一 直线的倾斜角与斜率例 1 (1)(2016·东城区期末)已知直线l 的倾斜角为α,斜率为k ,那么“α>π3”是“k >3”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值X 围为__________________.答案 (1)B (2)(-∞,-3]∪[1,+∞) 解析 (1)当π2<α<π时,k <0;当k >3时,π3<α<π2.所以“α>π3”是“k >3”的必要不充分条件,故选B.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 引申探究1.若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值X 围. 解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02--1=13,k BP =3-00--1= 3.如图可知,直线l 斜率的取值X 围为⎣⎢⎡⎦⎥⎤13,3.2.若将本例(2)中的B 点坐标改为(2,-1),其他条件不变,求直线l 倾斜角的X 围. 解 如图,直线PA 的倾斜角为45°,直线PB 的倾斜角为135°,由图象知l 的倾斜角的X 围为[0°,45°]∪[135°,180°).思维升华 直线倾斜角的X 围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的X 围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).(2017·某某月考)若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线的倾斜角的取值X 围是________________. 答案 (π6,π2)解析 ∵直线l 恒过定点(0,-3). 作出两直线的图象,如图所示,从图中看出,直线l 的倾斜角的取值X 围应为(π6,π2).题型二 求直线的方程例2 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)经过点P (4,1),且在两坐标轴上的截距相等; (3)直线过点(5,10),到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过点(0,0)及(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1),∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.求适合下列条件的直线方程:(1)经过点P (3,2)且在两坐标轴上的截距相等;(2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14倍;(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且|AB |=5. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. (2)设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k x -1.得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2(k ≠-2,否则与已知直线平行),则B 点坐标为(k +7k +2,4k -2k +2). ∴(k +7k +2-1)2+(4k -2k +2+1)2=52, 解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线方程为x =1或3x +4y +1=0. 题型三 直线方程的综合应用命题点1 与基本不等式相结合求最值问题例3 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解 方法一 设直线方程为x a +y b=1(a >0,b >0), 把点P (3,2)代入得3a +2b =1≥26ab,得ab ≥24,从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.方法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0),且有A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+-9k +4-k≥12⎣⎢⎡⎦⎥⎤12+2 -9k ·4-k =12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立. 即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0. 命题点2 由直线方程解决参数问题例4 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,某某数a 的值.解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,当a =12时,面积最小. 思维升华 与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程.(3)求参数值或X围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.设m∈R,过定点A的动直线x+my=0和过定点B的直线mx-y-m+3=0交于点P(x,y),则|PA|+|PB|的最大值是________.答案2 5解析因为m∈R,所以定点A(0,0),B(1,3),又1×m+m×(-1)=0,所以这两条直线垂直,则|PA|2+|PB|2=|AB|2=10,则|PA|+|PB|=|PA|2+|PB|2+2|PA|·|PB|≤2|PA|2+|PB|2=25,当且仅当|PA|=|PB|时,等号成立.10.求与截距有关的直线方程典例设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求直线l的方程;(2)若l在两坐标轴上的截距互为相反数,求a.错解展示现场纠错解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,∴a =2,方程即为3x +y =0. 当直线不经过原点时,截距存在且均不为0. ∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.综上,直线l 的方程为3x +y =0或x +y +2=0. (2)由a -2a +1=-(a -2)得a -2=0或a +1=-1, ∴a =2或a =-2.纠错心得 在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.1.直线x =π3的倾斜角等于( )A .0 B.π3 C.π2 D .π答案 C解析 由直线x =π3,知倾斜角为π2.2.(2016·威海模拟)过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A .x =2B .y =1C .x =1D .y =2答案 A解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4, 依题意,所求直线的倾斜角为3π4-π4=π2, ∴斜率不存在,∴过点(2,1)的所求直线方程为x =2. 3.(2016·某某模拟)直线mx -y +2m +1=0经过一定点,则该定点的坐标是( )A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)答案 A解析 mx -y +2m +1=0,即m (x +2)-y +1=0.令⎩⎪⎨⎪⎧ x +2=0,-y +1=0,得⎩⎪⎨⎪⎧ x =-2,y =1,故定点坐标为(-2,1).4.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值X 围是( )A .k ≥34或k ≤-4B .-4≤k ≤34C.34≤k ≤4 D.-34≤k ≤4 答案 A解析 如图所示,∵k PN =1--21--3=34, k PM =1--31-2=-4. ∴要使直线l 与线段MN 相交,当l 的倾斜角小于90°时,k ≥k PN ;当l 的倾斜角大于90°时,k ≤k PM ,由已知得k ≥34或k ≤-4. 5.直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <0答案 A解析 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b .易知-a b <0且-c b>0,故ab >0,bc <0.6.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则 ( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.7.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值X 围是__________.答案 [-3,0)∪⎣⎢⎡⎭⎪⎫33,1 解析 当π6≤α<π4时,33≤tan α<1, ∴33≤k <1. 当2π3≤α<π时,-3≤tan α<0. ∴k ∈[-3,0)∪[33,1). 8.(2017·潍坊质检)直线l 过点(-2,2)且与x 轴,y 轴分别交于点(a,0),(0,b ),若|a |=|b |,则直线l 的方程为____________________________.答案 x +y =0或x -y +4=0解析 若a =b =0,则直线l 过点(0,0)与(-2,2),直线l 的斜率k =-1,直线l 的方程为y =-x ,即x +y =0.若a ≠0,b ≠0,则直线l 的方程为x a +y b =1, 由题意知⎩⎪⎨⎪⎧ -2a +2b=1,|a |=|b |,解得⎩⎪⎨⎪⎧ a =-4,b =4,此时,直线l 的方程为x -y +4=0.9.(2016·某某模拟)直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值X 围是________________.答案 (-∞,-12)∪(0,+∞) 解析 当a =-1时,直线l 的倾斜角为90°,符合题意.当a ≠-1时,直线l 的斜率k =-a a +1, 由题意知-a a +1>1或-aa +1<0, 解得-1<a <-12或a <-1或a >0. 综上知,a <-12或a >0.10.(2016·山师大附中模拟)函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny-1=0(mn >0)上,则1m +1n的最小值为________. 答案 4解析 ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1).∴把A (1,1)代入直线方程得m +n =1(mn >0).∴1m +1n =(1m +1n )·(m +n )=2+n m +m n≥4 (当且仅当m =n =12时取等号), ∴1m +1n的最小值为4. 11.(2016·某某模拟)已知两点A (-1,2),B (m,3).(1)求直线AB 的方程;(2)已知实数m ∈[-33-1,3-1],求直线AB 的倾斜角α的取值X 围. 解 (1)当m =-1时,直线AB 的方程为x =-1,当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1). 即x -(m +1)y +2m +3=0.(2)①当m =-1时,α=π2; ②当m ≠-1时,m +1∈[-33,0)∪(0,3], ∴k =1m +1∈(-∞,-3]∪[33,+∞), ∴α∈[π6,π2)∪(π2,2π3]. 综合①②知,直线AB 的倾斜角α∈[π6,2π3]. 12.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由. 解 (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过点P (2,-1)且垂直于x 轴的直线满足条件,此时直线l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2),即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2, 解得k =34. 此时l 的方程为3x -4y -10=0.综上可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图所示.由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP =2.由直线方程的点斜式,得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5. (3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.*13.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A 、P 、B 三点共线得 ⎩⎪⎨⎪⎧ m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.。
高考数学一轮复习 第九章 平面解析几何9 (1)
高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。
高考数学一轮复习考点与题型总结:第九章 平面解析几何
精品基础教育教学资料,仅供参考,需要可下载使用!第九章 平面解析几何第一节 直线的倾斜角、斜率与直线的方程一、基础知识1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角叫做直线 l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α⎝⎛⎭⎫α≠π2,则斜率k =tan α. (2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上, 且x 1≠x 2,则l 的斜率 k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含垂直于x 轴的直线 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式 y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1(x 1≠x 2)和直线y =y 1(y 1≠y 2)截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0,A 2+B 2≠0平面内所有直线都适用二、常用结论特殊直线的方程(1)直线过点P 1(x 1,y 1),垂直于x 轴的方程为x =x 1; (2)直线过点P 1(x 1,y 1),垂直于y 轴的方程为y =y 1; (3)y 轴的方程为x =0; (4)x 轴的方程为y =0. 考点一 直线的倾斜角与斜率[典例] (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.[解析] (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3, 即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.(2) 设P A 与PB 的倾斜角分别为α,β,直线P A 的斜率是k AP =1,直线PB 的斜率是k BP=-3,当直线l 由P A 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,- 3 ].故直线l 斜率的取值范围是(-∞,- 3 ]∪[1,+∞). [答案] (1)B (2)(-∞,- 3 ]∪[1,+∞)[变透练清]1.(变条件)若将本例(1)中的条件变为:平面上有相异两点A (cos θ,sin 2 θ),B (0,1),则直线AB 的倾斜角α的取值范围是________.解析:由题意知cos θ≠0,则斜率k =tan α=sin 2θ-1cos θ-0=-cos θ∈[-1,0)∪(0,1],所以直线AB 的倾斜角的取值范围是⎝⎛⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:⎝⎛⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 2.(变条件)若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,则直线l 斜率的取值范围为________.解析:设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0. ∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0, 即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎡⎦⎤13,3. 答案:⎣⎡⎦⎤13,3 3.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:4考点二 直线的方程[典例] (1)若直线经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍,则该直线的方程为________________.(2)若直线经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半,则该直线的方程为________________.(3)在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为________________.[解析] (1)①当横截距、纵截距均为零时,设所求的直线方程为y =kx ,将(-5,2)代入y =kx 中,得k =-25,此时,直线方程为y =-25x ,即2x +5y =0.②当横截距、纵截距都不为零时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0.综上所述,所求直线方程为x +2y +1=0或2x +5y =0.(2)由3x +y +1=0得此直线的斜率为-3,所以倾斜角为120°,从而所求直线的倾斜角为60°,故所求直线的斜率为 3.又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3),即3x -y +6=0. (3)设C (x 0,y 0),则M ⎝⎛⎭⎫5+x 02,y 0-22,N ⎝⎛⎭⎫7+x 02,y 0+32.因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5.因为点N 在x 轴上,所以y 0+32=0,所以y 0=-3,即C (-5,-3), 所以M ⎝⎛⎭⎫0,-52,N (1,0), 所以直线MN 的方程为x 1+y-52=1,即5x -2y -5=0.[答案] (1)x +2y +1=0或2x +5y =0 (2)3x -y +6=0 (3)5x -2y -5=0[题组训练]1.过点(1,2),倾斜角的正弦值是22的直线方程是________________. 解析:由题知,倾斜角为π4或3π4,所以斜率为1或-1,直线方程为y -2=x -1或y -2=-(x -1),即x -y +1=0或x +y -3=0.答案:x -y +1=0或x +y -3=02.过点P (6,-2),且在x 轴上的截距比在y 轴上的截距大1的直线方程为________________.解析:设直线方程的截距式为x a +1+y a =1,则6a +1+-2a=1,解得a =2或a =1,则直线的方程是x 2+1+y 2=1或x 1+1+y1=1,即2x +3y -6=0或x +2y -2=0.答案:2x +3y -6=0或x +2y -2=0考点三 直线方程的综合应用[典例] 已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA ―→|·|MB ―→|取得最小值时直线l 的方程.[解] 设A (a,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +yb =1,所以2a +1b=1.|MA ―→|·| MB ―→|=-MA ―→·MB ―→=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2b a +2ab≥4, 当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.[解题技法]与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的性质或基本不等式求解.[题组训练]1.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.2.已知直线l :x -my +3m =0上存在点M 满足与A (-1,0),B (1,0)两点连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是( )A .[-6, 6 ] B.⎝⎛⎭⎫-∞,-66∪⎝⎛⎭⎫66,+∞ C.⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞ D.⎣⎡⎦⎤-22,22 解析:选C 设M (x ,y ),由k MA ·k MB =3,得y x +1·y x -1=3,即y 2=3x 2-3.联立⎩⎨⎧x -my +3m =0,y 2=3x 2-3,得⎝⎛⎭⎫1m 2-3x 2+23m x +6=0(m ≠0), 则Δ=⎝⎛⎭⎫23m 2-24⎝⎛⎭⎫1m 2-3≥0,即m 2≥16,解得m ≤-66或m ≥66. ∴实数m 的取值范围是⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞.[课时跟踪检测]1.(2019·合肥模拟)直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=0解析:选D 由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y =-3(x +1),即3x +y +3=0.3.已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0解析:选C 由题知M (2,4),N (3,2),则中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.4.方程y =ax -1a表示的直线可能是( )解析:选C 当a >0时,直线的斜率k =a >0,在y 轴上的截距b =-1a <0,各选项都不符合此条件;当a <0时,直线的斜率k =a <0,在y 轴上的截距b =-1a >0,只有选项C符合此条件.故选C.5.在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0B .3x +y +6=0C .3x -y +6=0D .3x +y -6=0解析:选C 因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN =-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.6.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 对于直线mx +ny +3=0,令x =0得y =-3n ,即-3n =-3,n =1.因为3x -y =33的斜率为60°,直线mx +ny +3=0的倾斜角是直线3x -y =33的2倍,所以直线mx +ny +3=0的倾斜角为120°,即-mn=-3,m = 3.7.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.8.若直线l :kx -y +2+4k =0(k ∈R)交x 轴负半轴于A ,交y 轴正半轴于B ,则当△AOB 的面积取最小值时直线l 的方程为( )A .x -2y +4=0B .x -2y +8=0C .2x -y +4=0D .2x -y +8=0解析:选B 由l 的方程,得A ⎝⎛⎭⎫-2+4k k ,0,B (0,2+4k ).依题意得⎩⎪⎨⎪⎧-2+4k k <0,2+4k >0,解得k >0.因为S =12|OA |·|OB |=12⎪⎪⎪⎪2+4k k ·|2+4k |=12·(2+4k )2k =12⎝⎛⎭⎫16k +4k +16≥12(2×8+16)=16,当且仅当16k =4k ,即k =12时等号成立.此时l 的方程为x -2y +8=0.9.以A (1,1),B (3,2),C (5,4)为顶点的△ABC ,其边AB 上的高所在的直线方程是________________.解析:由A ,B 两点得k AB =12,则边AB 上的高所在直线的斜率为-2,故所求直线方程是y -4=-2(x -5),即2x +y -14=0.答案:2x +y -14=010.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0.答案:4x -3y -4=011.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y -2=k (x -1),直线l 在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式得k >12或k <-1.答案:(-∞,-1)∪⎝⎛⎭⎫12,+∞ 12.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]13.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.第二节 两直线的位置关系一、基础知识1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在, 设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离公式点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两平行直线间的距离公式两条平行直线Ax +By +C 1=0与Ax +By +C 2=0 间的距离d =|C 1-C 2|A 2+B 2.二、常用结论(1)与直线Ax +By +C =0(A 2+B 2≠0)垂直或平行的直线方程可设为: ①垂直:Bx -Ay +m =0;②平行:Ax +By +n =0. (2)与对称问题相关的四个结论:①点(x ,y )关于点(a ,b )的对称点为(2a -x,2b -y ).②点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). ③点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). ④点(x ,y )关于直线x +y =k 的对称点为(k -y ,k -x ),关于直线x -y =k 的对称点为(k +y ,x -k ).考点一 两条直线的位置关系[典例] 已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.[解] (1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得⎩⎪⎨⎪⎧m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.[解题技法]1..由一般式确定两直线位置关系的方法[题组训练]1.已知直线4x+my-6=0与直线5x-2y+n=0垂直,垂足为(t,1),则n的值为() A.7B.9C.11 D.-7解析:选A由直线4x+my-6=0与直线5x-2y+n=0垂直得,20-2m=0,m=10.直线4x+10y-6=0过点(t,1),所以4t+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,所以-5-2+n=0,n=7.2.(2019·保定五校联考)直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C由l1∥l2得-m(m-1)=1×(-2),得m=2或m=-1,经验证,当m=-1时,直线l1与l2重合,舍去,所以“m=2”是“l1∥l2”的充要条件,故选C.考点二距离问题[典例](1)过点P(2,1)且与原点O距离最远的直线方程为()A.2x+y-5=0B.2x-y-3=0C.x+2y-4=0 D.x-2y=0(2)若两平行直线l1:x-2y+m=0(m>0)与l2:2x+ny-6=0之间的距离是5,则m+n =( )A .0B .1C .-2D .-1[解析] (1)过点P (2,1)且与原点O 距离最远的直线为过点P (2,1)且与OP 垂直的直线,因为直线OP 的斜率为1-02-0=12,所以所求直线的斜率为-2,故所求直线方程为2x +y -5=0.(2)因为l 1,l 2平行,所以1×n =2×(-2),1×(-6)≠2×m ,解得n =-4,m ≠-3,所以直线l 2:x -2y -3=0.又l 1,l 2之间的距离是 5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2,故选C.[答案] (1)A (2)C[解题技法]1.点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. 2.两平行线间的距离的求法(1)利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式. [题组训练]1.已知点P (2,m )到直线2x -y +3=0的距离不小于25,则实数m 的取值范围是________________.解析:由题意得,点P 到直线的距离为|2×2-m +3|22+12≥25,即|m -7|≥10,解得m ≥17或m ≤-3,所以实数m 的取值范围是(-∞,-3]∪[17,+∞).答案:(-∞,-3]∪[17,+∞)2.如果直线l 1:ax +(1-b )y +5=0和直线l 2:(1+a )x -y -b =0都平行于直线l 3:x -2y +3=0,则l 1,l 2之间的距离为________.解析:因为l 1∥l 3,所以-2a -(1-b )=0,同理-2(1+a )+1=0,解得a =-12,b =0,因此l 1:x -2y -10=0,l 2:x -2y =0,d =|-10-0|12+(-2)2=2 5.答案:2 5考点三 对称问题[典例] 已知直线l :2x -3y +1=0,点A (-1,-2). (1)求点A 关于直线l 的对称点A ′的坐标;(2)求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. [解] (1)设A ′(x ,y ),再由已知得 ⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′方程为9x -46y +102=0.[变透练清]1.(变结论)在本例条件下,则直线l 关于点A (-1,-2)对称的直线l ′的方程为________________.解析:法一:在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上. 易知M ′(-3,-5),N ′(-6,-7), 由两点式可得 l ′的方程为2x -3y -9=0. 法二:设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. 答案:2x -3y -9=02.(2019·合肥四校联考)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.答案:6x -y -6=0[解题技法]1.中心对称问题的两个类型及求解方法 (1)点关于点对称若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1进而求解.(2)直线关于点对称①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程; ③轨迹法,设对称直线上任一点M (x ,y ),其关于已知点的对称点在已知直线上. 2.轴对称问题的两个类型及求解方法 (1)点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称, 由方程组⎩⎪⎨⎪⎧A ×x 1+x 22+B ×y 1+y22+C =0,y 2-y 1x 2-x 1×⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[课时跟踪检测]1.过点(1,0)且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选C 因为直线x -2y -2=0的斜率为12,所以所求直线的斜率k =-2.所以所求直线的方程为y -0=-2(x -1), 即2x +y -2=0.2.已知直线l 1:2ax +(a +1)y +1=0和l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B.13或-1 C.13D .-1解析:选B 因为直线l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或-1.3.若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故P (1,2)或(2,-1).4.(2018·揭阳一模)若直线l 1:x -3y +2=0与直线l 2:mx -y +b =0关于x 轴对称,则m +b =( )A.13 B .-1 C .-13D .1解析:选B 直线l 1:x -3y +2=0关于x 轴对称的直线为x +3y +2=0.由题意知m ≠0. 因为mx -y +b =0,即x -y m +bm=0,且直线l 1与l 2关于x 轴对称,所以有⎩⎨⎧-1m =3,bm =2,解得⎩⎨⎧m =-13,b =-23,则m +b =-13+⎝⎛⎭⎫-23=-1. 5.点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( )A .-32B.54 C .-65D.56解析:选D 由题意,知⎩⎨⎧3-11+2·k =-1,2=k ·⎝⎛⎭⎫-12+b ,解得⎩⎨⎧k =-32,b =54.∴直线方程为y =-32x +54,它在x 轴上的截距为-54×⎝⎛⎭⎫-23=56.故选D. 6.(2019·成都五校联考)已知A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0解析:选B 由|P A |=|PB |得点P 一定在线段AB 的垂直平分线上,根据直线P A 的方程为x -y +1=0,可得A (-1,0),将x =2代入直线x -y +1=0,得y =3,所以P (2,3),所以B (5,0),所以直线PB 的方程是x +y -5=0,选B.7.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3 2B .2 2C .3 3D .4 2解析:选A 依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0.根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2. 8.已知点A (1,3),B (5,-2),在x 轴上有一点P ,若|AP |-|BP |最大,则P 点坐标为( ) A .(3.4,0) B .(13,0) C .(5,0)D .(-13,0)解析:选B 作出A 点关于x 轴的对称点A ′(1,-3),则A ′B 所在直线方程为x -4y -13=0.令y =0得x =13,所以点P 的坐标为(13,0).9.经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.解析:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0得x =0,y =2,即P (0,2).因为l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.答案:4x +3y -6=010.已知点P 1(2,3),P 2(-4,5)和A (-1,2),则过点A 且与点P 1,P 2距离相等的直线方程为________.解析:当直线与点P 1,P 2的连线所在的直线平行时,由直线P 1P 2的斜率k =3-52+4=-13,得所求直线的方程为y -2=-13(x +1),即x +3y -5=0.当直线过线段P 1P 2的中点时,因为线段P 1P 2的中点坐标为(-1,4),所以直线方程为x =-1.综上所述,所求直线方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-111.直线x -2y +1=0关于直线x =1对称的直线方程是________.解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=012.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=013.已知△ABC 的三个顶点是A (1,1),B (-1,3),C (3,4). (1)求BC 边的高所在直线l 1的方程;(2)若直线l 2过C 点,且A ,B 到直线l 2的距离相等,求直线l 2的方程.解:(1)因为k BC =4-33+1=14,又直线l 1与BC 垂直,所以直线l 1的斜率k =-1k BC =-4,所以直线l 1的方程是y =-4(x -1)+1,即4x +y -5=0.(2)因为直线l 2过C 点且A ,B 到直线l 2的距离相等, 所以直线l 2与AB 平行或过AB 的中点M , 因为k AB =3-1-1-1=-1,所以直线l 2的方程是y =-(x -3)+4,即x +y -7=0. 因为AB 的中点M 的坐标为(0,2), 所以k CM =4-23-0=23,所以直线l 2的方程是y =23(x -3)+4,即2x -3y +6=0. 综上,直线l 2的方程是x +y -7=0或2x -3y +6=0.第三节 圆的方程一、基础知识1.圆的定义及方程❶标准方程强调圆心坐标为(a ,b ),半径为r .❷(1)当D 2+E 2-4F =0时,方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (2)当D 2+E 2-4F <0时,方程不表示任何图形. 2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.二、常用结论(1)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是⎩⎪⎨⎪⎧A =C ≠0,B =0,D 2+E 2-4AF >0.(2)以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.考点一 求圆的方程[典例] (1)圆心在y 轴上,半径长为1,且过点A (1,2)的圆的方程是( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=4(2)圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为________. [解析] (1)根据题意可设圆的方程为x 2+(y -b )2=1,因为圆过点A (1,2),所以12+(2-b )2=1,解得b =2,所以所求圆的方程为x 2+(y -2)2=1.(2)法一:几何法设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a ). 又该圆经过A ,B 两点,所以|CA |=|CB |, 即(2a +3-2)2+(a +3)2=(2a +3+2)2+(a +5)2,解得a =-2, 所以圆心C 的坐标为(-1,-2),半径r =10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法二:待定系数法设所求圆的标准方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得a =-1,b =-2,r 2=10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法三:待定系数法设圆的一般方程为x 2+y 2+Dx +Ey +F =0, 则圆心坐标为⎝⎛⎭⎫-D 2,-E2, 由题意得⎩⎪⎨⎪⎧-D2-2×⎝⎛⎭⎫-E2-3=0,4+9+2D -3E +F =0,4+25-2D -5E +F =0,解得D =2,E =4,F =-5.故所求圆的方程为x 2+y 2+2x +4y -5=0. [答案] (1)A (2)x 2+y 2+2x +4y -5=0[题组训练]1.已知圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E的标准方程为( )A.⎝⎛⎭⎫x -322+y 2=254 B.⎝⎛⎭⎫x +342+y 2=2516 C.⎝⎛⎭⎫x -342+y 2=2516D.⎝⎛⎭⎫x -342+y 2=254解析:选C 法一:根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r ,则圆E 的标准方程为(x -a )2+y 2=r 2(a >0).由题意得⎩⎪⎨⎪⎧a 2+12=r 2,(2-a )2=r 2,a 2+(-1)2=r 2,解得⎩⎨⎧a =34,r 2=2516,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 法二:设圆E 的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则由题意得⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,1-E +F =0,解得⎩⎪⎨⎪⎧D =-32,E =0,F =-1,所以圆E 的一般方程为x 2+y 2-32x -1=0,即⎝⎛⎭⎫x -342+y 2=2516. 法三:因为圆E 经过点A (0,1),B (2,0),所以圆E 的圆心在线段AB 的垂直平分线y -12=2(x -1)上.又圆E 的圆心在x 轴的正半轴上, 所以圆E 的圆心坐标为⎝⎛⎭⎫34,0. 则圆E 的半径为|EB |=⎝⎛⎭⎫2-342+(0-0)2=54,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 2.已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.解析:过切点且与x +y -1=0垂直的直线方程为x -y -5=0,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(3-1)2+(-2+4)2=22, 故所求圆的方程为(x -1)2+(y +4)2=8. 答案:(x -1)2+(y +4)2=83.已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为________________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧ 2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6,得D 2-4F =36,④联立①②④,解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0. 答案:x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0考点二 与圆有关的轨迹问题[典例] (1)点P (4,-2)与圆x 2+y 2=4上任意一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1(2)已知圆C :(x -1)2+(y -1)2=9,过点A (2,3)作圆C 的任意弦,则这些弦的中点P 的轨迹方程为________.[解析] (1)设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.(2)设P (x ,y ),圆心C (1,1).因为P 点是过点A 的弦的中点,所以P A ―→⊥PC ―→. 又因为P A ―→=(2-x,3-y ),PC ―→=(1-x,1-y ). 所以(2-x )·(1-x )+(3-y )·(1-y )=0. 所以点P 的轨迹方程为⎝⎛⎭⎫x -322+(y -2)2=54. [答案] (1)A (2)⎝⎛⎭⎫x -322+(y -2)2=54[变透练清]1.(变条件)若将本例(2)中点A (2,3)换成圆上的点B (1,4),其他条件不变,则这些弦的中点P 的轨迹方程为________.解析:设P (x ,y ),圆心C (1,1).当点P 与点B 不重合时,因为P 点是过点B 的弦的中点,所以PB ―→⊥PC ―→.又因为PB ―→=(1-x,4-y ),PC ―→=(1-x,1-y ). 所以(1-x )·(1-x )+(4-y )·(1-y )=0. 所以点P 的轨迹方程为(x -1)2+⎝⎛⎭⎫y -522=94; 当点P 与点B 重合时,点P 满足上述方程. 综上所述,点P 的轨迹方程为(x -1)2+⎝⎛⎭⎫y -522=94. 答案:(x -1)2+⎝⎛⎭⎫y -522=942.已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PB Q =90°,求线段P Q 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥P Q , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0.[课时跟踪检测]A 级1.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.2.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( ) A .1 B .2 C. 2D .4解析:选B 由半径r =12D 2+E 2-4F =124a 2+4b 2=2,得a 2+b 2=2.∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.3.以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=5解析:选A 由题意知,圆心到这两条直线的距离相等,即圆心到直线2x -y +4=0的距离d =|2a -1+4|5=|2a -1-6|5,解得a =1,d =5,∵直线与圆相切,∴r =d =5, ∴圆的标准方程为(x -1)2+(y -1)2=5.4.(2019·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆D .两个半圆解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.5.已知a ∈R ,若方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则此圆的圆心坐标为( )A .(-2,-4)B.⎝⎛⎭⎫-12,-1 C .(-2,-4)或⎝⎛⎭⎫-12,-1 D .不确定解析:选A ∵方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,∴a 2=a +2≠0,解得a =-1或a =2.当a =-1时,方程化为x 2+y 2+4x +8y -5=0.配方,得(x +2)2+(y +4)2=25,所得圆的圆心坐标为(-2,-4),半径为5.当a =2时,方程化为x 2+y 2+x +2y +52=0,此时方程不表示圆.故选A.6.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 直线x -y +1=0与x 轴的交点(-1,0). 根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离, 即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.7.圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________. 解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3).半径r =12|AB |=12[1-(-1)]2+(4-2)2= 2.∴圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=28.已知圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的取值范围为________.解析:设圆心为C (a,0),由|CA |=|CB |, 得(a +1)2+12=(a -1)2+32,解得a =2. 半径r =|CA |=(2+1)2+12=10. 故圆C 的方程为(x -2)2+y 2=10. 由题意知(m -2)2+(6)2<10, 解得0<m <4. 答案:(0,4)9.若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是________________.解析:抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,所以r =d =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.答案:x 2+(y -1)2=210.(2019·德州模拟)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的标准方程为________________. 解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的标准方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=911.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 所以直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又直径|CD |=410, 所以|P A |=210. 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 12.已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解:(1)法一:设C (x ,y ),因为A ,B ,C 三点不共线, 所以y ≠0.因为AC ⊥BC ,所以k AC ·k BC =-1,又k AC =y x +1,k BC =yx -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).法二:设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).B 级1.(2019·伊春三校联考)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -1)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B 圆C 1:(x +1)2+(y -1)2=1,圆心C 1为(-1,1),半径为1.易知点C 1(-1,1)关于直线x -y -1=0对称的点为C 2,设C 2(a ,b ),则⎩⎪⎨⎪⎧b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,所以C 2(2,-2),所以圆C 2的圆心为C 2(2,-2),半径为1,所以圆C 2的方程为(x -2)2+(y +2)2=1.故选B.2.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________________.解析:因为直线mx -y -2m -1=0(m ∈R )恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.答案:(x -1)2+y 2=23.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4, ∴圆C 1的圆心坐标为C 1(3,0).(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→=0. 又∵MC 1―→=(3-x ,-y ),MO ―→=(-x ,-y ), ∴x 2-3x +y 2=0.易知直线l 的斜率存在,故设直线l 的方程为y =mx , 当直线l 与圆C 1相切时, 圆心到直线l 的距离d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程化简得 9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3,其轨迹为一段圆弧.第四节 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )相离相切相交图形量化 方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|) 相离外切相交内切内含图形量的关系 d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题。
(重点班)高三数学一轮复习第九篇平面解析几何第1节直线与方程课时训练理
第九篇平面解析几何(必修2、选修21)第1节直线与方程知识点、方法题号直线的倾斜角和斜率1,4,12直线的方程8,10,14直线的位置关系2,3,13直线的交点和距离问题9直线方程的综合应用5,6,7,11,15,16基础对点练(时间:30分钟)1.直线l:xsin 30°+ycos 150°+1=0的斜率是( A )(A)(B)(C)-(D)-解析:设直线l的斜率为k,则k=-=.2.直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a的值为( C )(A)3或-1 (B)0或3(C)0或-1 (D)-1或0或3解析:两直线无公共点,即两直线平行,所以解得a=0或a=-1.故选C.3.(2015新泰模拟)已知直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0.若l1⊥l2,则实数a的值是( C )(A)0 (B)2或-1 (C)0或-3 (D)-3解析:因为l1⊥l2,所以a+a(a+2)=0,则a=0或a=-3,故选C.4.(2016枣庄模拟)将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l′,此时直线l′与l重合,则直线l′的斜率为( B )(A)(B)-(C)(D)-解析:设直线l:y=kx+b,l沿y轴负方向平移a个单位得l1:y=kx+b-a,再沿x轴正方向平移a+1个单位得l′:y=k(x-a-1)+b-a,即y=kx+b-ka-k-a,由l′与l重合得-a-ka-k=0,k=-.5.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2经过定点( B )(A)(0,4) (B)(0,2) (C)(-2,4) (D)(4,-2)解析:直线l1:y=k(x-4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l1与直线l2关于点(2,1)对称,故直线l2经过定点(0,2).故选B.6.不论m为何值时,直线l:(m-1)x+(2m-1)y=m-5恒过定点( D )(A) (1,- ) (B)(-2,0) (C)(2,3) (D)(9,-4)解析:直线(m-1)x+(2m-1)y=m-5,化为(mx+2my-m)+(-x-y+5)=0,即直线l过x+2y-1=0与-x-y+5=0的交点,解方程组得7.(2015合肥一模)已知直线l:x-y-1=0,l1:2x-y-2=0.若直线l2与l1关于l对称,则l2的方程是( B )(A)x-2y+1=0 (B)x-2y-1=0(C)x+y-1=0 (D)x+2y-1=0解析:因为l1与l2关于l对称,所以l1上任一点关于l的对称点都在l2上,故l与l1的交点(1,0)在l2上.又易知(0,-2)为l1上一点,设它关于l的对称点为(x,y),则解得即(1,0),(-1,-1)为l2上两点,可得l2的方程为x-2y-1=0.8.经过点P(1,4)的直线在两坐标轴上的截距都是正值,且截距之和最小,则直线的方程为( B )(A)x+2y-6=0 (B)2x+y-6=0(C)x-2y+7=0 (D)x-2y-7=0解析:直线过P(1,4),代入后舍去选项A,D;又在两坐标轴上的截距均为正值,舍去选项C.故选B.9.已知平面内两点A(1,2),B(3,1)到直线l的距离分别是,-,则满足条件的直线l的条数为( C )(A)1 (B)2 (C)3 (D)4解析:由题知满足题意的直线l在线段AB两侧各有1条;又因为|AB|=,所以还有1条为过线段AB上的一点且与AB垂直的直线,故共3条.故选C.10.(2016哈尔滨模拟)经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l的方程为.解析:设所求直线方程为+=1,由已知得解得或所以2x+y+2=0或x+2y-2=0为所求.答案:2x+y+2=0或x+2y-2=011.已知两直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.(1)l1⊥l2,且直线l1过点(-3,-1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.解:(1)因为l1⊥l2,所以a(a-1)-b=0.又因为直线l1过点(-3,-1),所以-3a+b+4=0.故a=2,b=2.(2)因为直线l2的斜率存在,l1∥l2,所以直线l1的斜率存在,k1=k2,即=1-a.又因为坐标原点到这两条直线的距离相等,所以l1、l2在y轴上的截距互为相反数,即=b.故a=2,b=-2或a=,b=2.能力提升练(时间:15分钟)12.(2016哈尔滨模拟)函数y=asin x-bcos x的一条对称轴为x=,则直线l:ax-by+c=0的倾斜角为( D )(A)45°(B)60° (C)120°(D)135°解析:由函数y=f(x)=asin x-bcos x的一条对称轴为x=知,f(0)=f(),即-b=a,所以直线l的斜率为-1,所以倾斜角为135°.13.若m>0,n>0,点(-m,n)关于直线x+y-1=0的对称点在直线x-y+2=0上,那么+的最小值等于.解析:设点(-m,n)关于直线x+y-1=0的对称点为(x0,y0),则有解得x0=1-n,y0=1+m,又点(x0,y0)在直线x-y+2=0上,所以1-n-1-m+2=0,所以m+n=2,所以+=(+) (m+n)=++≥.答案:14.(2015淮安一调)已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为.解析:设点M(-3,4)关于直线l:x-y+3=0的对称点为M′(a,b),则反射光线所在直线过点M′,解得a=1,b=0.又反射光线经过点N(2,6),所以所求直线的方程为=,即6x-y-6=0.答案:6x-y-6=015.已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点,求:(1)当|OA|+|OB|取得最小值时,直线l的方程;(2)当|MA|2+|MB|2取得最小值时,直线l的方程.解:(1)设A(a,0),B(0,b)(a>0,b>0).则直线l的方程为+=1,则+=1,所以|OA|+|OB|=a+b=(a+b) (+)=2++≥2+2=4,当且仅当“a=b=2”时取等号,此时直线l的方程为x+y-2=0.(2)设直线l的斜率为k,则k<0,直线l的方程为y-1=k(x-1),则A(1-,0),B(0,1-k),所以|MA|2+|MB|2=(1-1+)2+12+12+(1-1+k)2=2+k2+≥2+2=4,则当且仅当k2=,即k=-1时等号成立,则直线l的方程为y=-x+2.16. (2015东营模拟)设直线l的方程为(a+1)x+y-2-a=0(a∈R).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若a>-1,直线l与x,y轴分别交于M,N两点,O为坐标原点,求△OMN面积取最小值时,直线l的方程.解:(1)当直线l经过坐标原点时,设直线在两坐标轴上的截距都为0,此时a+2=0,解得a=-2, 此时直线l的方程为-x+y=0,即x-y=0;当直线l不经过坐标原点,即a≠-2且a≠-1时,由直线在两坐标轴上的截距相等可得=2+a,解得a=0,此时直线l的方程为x+y-2=0.所以直线l的方程为x-y=0或x+y-2=0.(2)由直线方程可得M(,0),N(0,2+a),因为a>-1,所以S△OMN=××(2+a)=×=[(a+1)++2]≥×[2+2]=2,当且仅当a+1=,即a=0时等号成立,此时直线l的方程为x+y-2=0.精彩5分钟1.(2014高考四川卷)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是.解题关键:两直线过定点,且两直线互相垂直.解析:易求定点A(0,0),B(1,3).当P与A和B均不重合时,不难验证PA⊥PB,所以|PA|2+|PB|2=|AB|2=10,所以|PA|·|PB|≤=5(当且仅当|PA|=|PB|=时,等号成立),当P与A或B重合时,|PA|·|PB|=0,故|PA|·|PB|的最大值是5.答案:52.(2015黄山一模)已知点A在直线x+2y-1=0上,点B在直线x+2y+3=0上,线段AB的中点为P(x0,y0),且满足y0>x0+2,则的取值范围为.解题关键:利用点到直线的距离,确定x0,y0的关系,求的范围转化为关于x0的函数,求其范围.解析:因为直线x+2y-1=0与直线x+2y+3=0平行,所以=, 可得x0+2y0+1=0,因为y0>x0+2,所以-(1+x0)>x0+2,解得x0<-.设=k,所以k==--,因为x0<-,所以0<-<,所以-<<-.答案:(-,-)。
(通用版)2021版高考数学一轮复习第9章平面解析几何1第1讲直线的倾斜角与斜率、直线的方程教案理
第1讲直线的倾斜角与斜率、直线的方程知识点考纲下载直线的方程在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.两直线的位置关系能根据两条直线的斜率判定这两条直线平行或垂直.能用解方程组的方法求两条相交直线的交点坐标.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.圆的方程掌握确定圆的几何要素,掌握圆的标准方程与一般方程.直线、圆的位置关系能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.能用直线和圆的方程解决一些简单的问题.初步了解用代数方法处理几何问题的思想.椭圆了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.掌握椭圆的定义、几何图形、标准方程及简单性质.双曲线了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. 抛物线掌握抛物线的定义、几何图形、标准方程及简单性质.曲线与方程了解方程的曲线与曲线的方程的对应关系.理解数形结合的思想,了解圆锥曲线的简单应用.1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l倾斜角的取值范围是[0,π).2.直线的斜率条件公式直线的倾斜角θ,且θ≠90° k =tan__θ 直线过点A (x 1,y 1),B (x 2,y 2)且x 1≠x 2 k =y 1-y 2x 1-x 2名称 条件方程适用范围 点斜式 斜率k 与点(x 1,y 1) y -y 1=k (x -x 1)不含直线x =x 1 斜截式 斜率k 与直线在y 轴上的截距by =kx +b不含垂直于x 轴的直线续 表名称条件方程适用范围 两点式 两点(x 1,y 1),(x 2,y 2)y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2)不含直线x =x 1(x 1=x 2)和直线y =y 1(y 1=y 2)截距式直线在x 轴、y 轴上的截距分别为a ,bx a +y b=1 (a ≠0,b ≠0)不含垂直于坐标轴和过原点的直线 一般式Ax +By +C =0(A 2+B 2≠0)平面直角坐标系内的直线都适用判断正误(正确的打“√〞,错误的打“×〞) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,那么其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案:(1)× (2)× (3)× (4)× (5)√(教材习题改编)经过点P 0(2,-3),倾斜角为45°的直线方程为( ) A .x +y +1=0 B .x +y -1=0 C .x -y +5=0D .x -y -5=0解析:选D .由点斜式得直线方程为y -(-3)=tan 45°(x -2)=x -2,即x -y -5=0,应选D.如果AC <0,BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C.由题意知直线的斜率k =-A B <0,直线在y 轴上的截距b =-C B>0,应选C. 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,那么y =________. 解析:tan 3π4=2y +1-〔-3〕4-2=2y +42=y +2,因此y +2=-1,y =-3. 答案:-3(教材习题改编)经过点(-4,3)且在两坐标轴上的截距相等且不过原点的直线方程为________.解析:由题意可设方程为x +y =a , 所以a =-4+3=-1. 所以直线方程为x +y +1=0. 答案:x +y +1=0直线的倾斜角与斜率[典例引领](1)直线2xcos α-y -3=0⎝⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的变化范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3(2)直线l :x -my +3m =0上存在点M 满足与两点A (-1,0),B (1,0)连线的斜率k MA 与k MB 之积为3,那么实数m 的取值范围是( )A .[-6, 6] B.⎝ ⎛⎭⎪⎫-∞,-66∪⎝ ⎛⎭⎪⎫66,+∞C.⎝ ⎛⎦⎥⎤-∞,-66∪⎣⎢⎡⎭⎪⎫66,+∞ D .以上都不对【解析】 (1)直线2xcos α-y -3=0的斜率k =2cos α.由于α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cosα≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,那么有tan θ∈[1,3].由于θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的变化范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)设M (x ,y ),由k MA ·k MB =3,得yx +1·yx -1=3,即y 2=3x 2-3. 联立⎩⎨⎧x -my +3m =0,y 2=3x 2-3,得⎝ ⎛⎭⎪⎫1m 2-3x 2+23m x +6=0. 要使直线l :x -my +3m =0上存在点M 满足与两点A (-1,0),B (1,0)连线的斜率k MA 与k MB 之积为3,那么Δ=⎝ ⎛⎭⎪⎫23m 2-24⎝ ⎛⎭⎪⎫1m 2-3≥0,即m 2≥16.所以实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-66∪⎣⎢⎡⎭⎪⎫66,+∞.应选C.【答案】 (1)B (2)C假设本例(1)中直线变为x +y cos θ-3=0(θ∈R ),那么直线的倾斜角α的取值范围为________.解析:当cos θ=0时,方程变为x -3=0,其倾斜角为π2;当cos θ≠0时,由直线l 的方程,可得斜率k =-1cos θ. 因为cos θ∈[-1,1]且cos θ≠0, 所以k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π),所以α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4,综上知,直线l 的倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.答案:⎣⎢⎡⎦⎥⎤π4,3π4(1)求倾斜角的取值范围的一般步骤①求出斜率k =tan α的取值范围.②利用三角函数的单调性,借助图象,确定倾斜角α的取值范围. 求倾斜角时要注意斜率是否存在. (2)斜率的求法①定义法:假设直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. ②公式法:假设直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.[通关练习]1.假设直线l 的斜率为k ,倾斜角为α,且α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,那么k 的取值范围是________.解析:当α∈⎣⎢⎡⎭⎪⎫π6,π4时,k =tan α∈⎣⎢⎡⎭⎪⎫33,1;当α∈⎣⎢⎡⎭⎪⎫2π3,π时,k =tan α∈[-3,0). 综上k ∈[-3,0)∪⎣⎢⎡⎭⎪⎫33,1. 答案:[-3,0)∪⎣⎢⎡⎭⎪⎫33,1 2.曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________. 解析:记曲线上点P 处的切线的倾斜角是θ, 因为y ′=3x 2-1≥-1, 所以tan θ≥-1, 所以θ为钝角时,应有θ∈⎣⎢⎡⎭⎪⎫3π4,π;θ为锐角时,tan θ≥-1显然成立.综上,θ的取值范围是⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 答案:⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π求直线的方程[典例引领]根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010; (2)经过点P (4,1),且在两坐标轴上的截距相等; (3)(待定系数法)直线过点(5,10),到原点的距离为5. 【解】 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,那么sin α=1010(0<α<π), 从而cos α=±31010,那么k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)设直线l 在x ,y 轴上的截距均为a , 假设a =0,即l 过点(0,0)及(4,1), 所以l 的方程为y =14x ,即x -4y =0.假设a ≠0,那么设l 的方程为x a +y a=1, 因为l 过点(4,1),所以4a +1a=1,所以a =5,所以l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(3)当斜率不存在时,所求直线方程为x -5=0,当斜率存在时,设其为k ,那么所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5, 解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.(1)求直线方程的两种常用方法①直接法:根据条件,确定适当的直线方程形式,直接写出直线方程;②待定系数法:先设出直线方程,再根据条件求出待定的系数,最后代入求出直线的方程.(2)求直线方程应注意的问题①选择直线方程时,应注意分类讨论思想的应用:选用点斜式或斜截式时,需讨论直线的斜率是否存在;选用截距式时,需讨论直线是否过原点.②求直线方程时,如果没有特别要求,求出的方程应化为一般式Ax +By +C =0(A ,B 不同时为0).[通关练习]1.A (-1,1),B (3,1),C (1,3),那么△ABC 的BC 边上的高所在直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0D .x -y =0解析:选B.因为B (3,1),C (1,3), 所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1, 又高线经过点A ,所以其直线方程为x -y +2=0.2.过点M (-1,-2)作一条直线l ,使得l 夹在两坐标轴之间的线段被点M 平分,那么直线l 的方程为________.解析:由题意,可设所求直线l 的方程为y +2=k (x +1)(k ≠0),直线l 与x 轴、y 轴分别交于A 、B 两点,那么A ⎝ ⎛⎭⎪⎫2k -1,0,B (0,k -2).因为AB 的中点为M ,所以⎩⎪⎨⎪⎧-2=2k -1,-4=k -2,解得kl 的方程为2x +y +4=0. 答案:2x +y +4=0直线方程的综合应用(高频考点)直线方程的综合应用是解析几何的一个根底内容,在高考中常与其他知识结合考察,多以选择题、填空题的形式呈现,难度为中、低档题目.高考中对直线方程的综合应用考察主要有以下两个命题角度: (1)与根本不等式相结合求最值问题; (2)由直线方程解决参数问题.[典例引领]角度一 与根本不等式相结合求最值问题直线l 过点P (1,4),分别交x 轴的正半轴和y 轴的正半轴于A 、B 两点,O 为坐标原点,当|OA |+|OB |最小时,求l 的方程. 【解】 依题意,l 的斜率存在,且斜率为负, 设直线l 的斜率为k ,那么直线l 的方程为y -4=k (x -1)(k <0).令y =0,可得A ⎝⎛⎭⎪⎫1-4k,0;令x =0,可得B (0,4-k ).|OA |+|OB |=⎝⎛⎭⎪⎫1-4k +(4-k )=5-⎝ ⎛⎭⎪⎫k +4k=5+⎝ ⎛⎭⎪⎫-k +4-k ≥5+4=9. 所以当且仅当-k =4-k 且k <0,即k =-2时,|OA |+|OB |取最小值. 这时l 的方程为2x +y -6=0. 角度二 由直线方程解决参数问题直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.【解】 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,当a =12时,面积最小.直线方程综合问题的两大类型及其解法(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用根本不等式求解最值.(2)求参数值或范围.注意点在直线上,那么点的坐标适合直线的方程,再结合函数的单调性或根本不等式求解.[通关练习]1.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C.令x =0,得y =b2,令y =0,得x =-b ,所以所求三角形的面积为12⎪⎪⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].2.直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,假设动点P (a ,b )在线段AB 上,那么ab 的最大值为________.解析:直线方程可化为x2+y =1,故直线与x 轴的交点为A (2,0),与y 轴的交点为B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1,且a +2b =2,从而a =2-2b ,故ab =(2-2b )b =-2b 2+2b =-2⎝ ⎛⎭⎪⎫b -122+12,由于0≤b ≤1,故当b =12时,ab 取得最大值12.答案:12直线的倾斜角和斜率的关系(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率. (2)直线的倾斜角α和斜率k 之间的对应关系:α 0° 0°<α<90°90° 90°<α<180°kk >0 不存在k <0求直线方程的一般方法(1)直接法:根据条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论. (2)待定系数法,具体步骤为: ①设所求直线方程的某种形式; ②由条件建立所求参数的方程(组); ③解这个方程(组)求出参数; ④把参数的值代入所设直线方程. 易错防范(1)求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.(2)根据斜率求倾斜角,要注意倾斜角的范围.(3)直线的截距式中易无视截距均不为0这一条件,当截距为0时可用点斜式.(4)由一般式Ax +By +C =0确定斜率k 时易无视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-AB.1.(2021·大连模拟)倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=0解析:选D.由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以方程为y =-3(x +1),即3x +y +3=0.2.直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,那么直线l 的方程为( ) A .y =3x +2 B .y =3x -2 C .y =3x +12D .y =-3x +2解析:选A.因为直线x -2y -4=0的斜率为12,所以直线l 在y 轴上的截距为2, 所以直线l 的方程为y =3x +2.3.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),那么其斜率的取值范围是( ) A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1解析:选D.设直线的斜率为k ,那么直线方程为y -2=k (x -1), 令y =0,得直线l 在x 轴上的截距为1-2k,那么-3<1-2k <3,解得k >12或k <-1.4.函数f (x )=a x(a >0且a ≠1),当x <0时,f (x )>1,方程y =ax +1a表示的直线是( )解析:选C.因为x <0时,a x>1,所以0<a <1. 那么直线y =ax +1a的斜率0<a <1,在y 轴上的截距1aC.5.(2021·太原质检)假设直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为( ) A. 13 B .-13C .-32D. 23解析:选B.依题意,设点P (a ,1),Q (7,b ),那么有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.6.过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为________.解析:设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0. 答案:3x +4y +15=07.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,那么b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.所以b 的取值范围是[-2,2]. 答案:[-2,2]8.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,那么此直线的方程为________________.解析:设所求直线的方程为x a +y b=1, 因为A (-2,2)在直线上,所以-2a +2b=1.①又因为直线与坐标轴围成的三角形面积为1, 所以12|a |·|b |=1.②由①②可得(1)⎩⎪⎨⎪⎧a -b =1,ab =2或(2)⎩⎪⎨⎪⎧a -b =-1,ab =-2. 由(1)解得⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =-2.方程组(2)无解.故所求的直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0为所求直线的方程. 答案:x +2y -2=0或2x +y +2=0 9.直线l :x m +y4-m=1.(1)假设直线l 的斜率等于2,求实数m 的值;(2)假设直线l 分别与x 轴、y 轴的正半轴交于A ,B 两点,O 是坐标原点,求△AOB 面积的最大值及此时直线的方程.解:(1)根据直线l 的方程:x m +y 4-m =1可得直线l 过点(m ,0),(0,4-m ),所以k =4-m-m=2,解得m =-4.(2)直线l 过点(m ,0),(0,4-m ),那么由m >0,4-m >0得0<m <4,那么S △AOB =m 〔4-m 〕2=-〔m -2〕2+42,那么m =2时,S △AOB 有最大值2,此时直线l 的方程为x+y -2=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.1.(2021·湖南岳阳模拟)动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m )且Q (4,0)到动直线l 的最大距离为3,那么12a +2c的最小值为( )A.92 B.94 C .1D .9解析:选B.因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0,又Q (4,0)到动直线l 的最大距离为3,所以〔4-1〕2+〔-m 〕2=3,解得m =0,所以a +c =2,那么12a +2c =12(a +c )·⎝ ⎛⎭⎪⎫12a +2c =12⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥12⎝ ⎛⎭⎪⎫52+2c 2a ·2a c =94,当且仅当c =2a =43时取等号,应选B. 2.直线l 的倾斜角是直线4x +3y -1=0的倾斜角的一半,假设l 不过坐标原点,那么l 在x 轴上与y 轴上的截距之比为________. 解析:设直线l 的倾斜角为θ.所以tan 2θ=-43.2tan θ1-tan 2θ=-43,所以tan θ=2或tan θ=-12, 由2θ∈[0°,180°)知,θ∈[0°,90°).所以tan θ=2.又设l 在x 轴上的截距为a ,在y 轴上的截距为b .所以tan θ=-b a .即a b =-1tan θ=-12.答案:-123.(2021·山东临沂检测)直线l :(2+m )x +(1-2m )y +4-3m =0. (1)求证:不管m 为何实数,直线l 过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程. 解:(1)证明:直线l的方程整理得(2x +y +4)+m (x -2y -3)=0,由⎩⎪⎨⎪⎧2x +y =-4,x -2y =3,解得⎩⎪⎨⎪⎧x =-1,y =-2, 所以无论m 为何实数,直线l 过定点M (-1,-2).(2)过定点M (-1,-2)作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分, 那么直线l 1过点(-2,0),(0,-4), 设直线l 1的方程为y =kx +b ,把两点坐标代入得⎩⎪⎨⎪⎧-2k +b =0,b =-4,解得⎩⎪⎨⎪⎧k =-2,b =-4, 那么直线l 1的方程为y =-2x -4,即2x +y +4=0.4.为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大? 解:如下图,建立平面直角坐标系,那么E (30,0),F (0,20), 所以直线EF 的方程为x 30+y20=1(0≤x ≤30). 易知当矩形草坪的一个顶点在EF 上时,可取最大值, 在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S ,那么S =|PQ |·|PR |=(100-m )(80-n ).又m 30+n 20=1(0≤m ≤30),所以n =20-23m . 所以S =(100-m )⎝ ⎛⎭⎪⎫80-20+23m=-23(m -5)2+18 0503(0≤m ≤30).所以当m =5时,S 有最大值,这时|EP ||PF |=5∶1.所以当矩形草坪的两边在BC ,CD 上,一个顶点在线段EF 上,且这个顶点分有向线段EF 成5∶1时,草坪面积最大.。
高考数学一轮总复习 第九章 平面解析几何课堂过关 理
第九章 平面解析几何第1课时 直线的倾斜角与斜率⎝ ⎛⎭⎪⎫对应学生用书(文)111~112页 (理)116~117页了解确定直线位置的几何要素(两个定点、一个定点和斜率) .对直线的倾斜角、斜率的概念要理解,能牢记过两点的斜率公式并掌握斜率公式的推导,了解直线的倾斜角的范围.理解直线的斜率和倾斜角之间的关系,能根据直线的倾斜角求出直线的斜率.① 在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. ② 理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.1. (原创)设m 为常数,则过点A(2,-1),B(2,m)的直线的倾斜角是________. 答案:90°解析:因为过点A(2,-1),B(2,m)的直线x =2垂直于x 轴,故其倾斜角为π2.2. (必修2P 80第1题改编)过点M(-2,m),N(m ,4)的直线的斜率等于1,则m 的值为________.答案:1解析:由1=4-mm +2,得m +2=4-m ,m =1.3. (原创)若过点P(1-a ,1+a)和Q(3,2a)的直线的倾斜角α为钝角,则实数a 的取值范围是________.答案:-2<a <1解析:tan α=2a -(1+a )3-(1-a )=a -12+a .由a -12+a <0,得-2<a <1.4. (必修2P 70练习4改编)已知A(-1,23),B(0,3a),C(a ,0)三点共线,则此三点所在直线的倾斜角α=________.答案:2π3解析:若a =0,则B ,C 重合,不合题意,从而由A ,B ,C 三点共线得k AB =k BC ,即3a -230+1=0-3a a -0,解得a =1.从而B(0,3),此三点所在直线的斜率为k AB =3-230+1=-3,即tan α=-3,而α∈[0,π),所以α=2π3.5. 设直线l 的倾斜角为α,且π4≤α≤5π6,则直线l 的斜率k 的取值范围是______________.答案:⎝⎛⎦⎥⎤-∞,-33∪[1,+∞)解析:由k =tan α关系图(如下)知k∈⎝ ⎛⎦⎥⎤-∞,-33∪[1,+∞).1. 直线倾斜角的定义 在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时,所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0;直线的倾斜角α的取值范围为[0,π).2. 直线斜率的定义倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tan α.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.3. 过两点的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式k =tan α=y 2-y 1x 2-x 1,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°.题型1 直线的倾斜角和斜率之间的关系, 1) 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x-y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为____________.答案:α1<α2<α3解析:由tan α1=k 1=1>0,所以α1∈⎝ ⎛⎭⎪⎫0,π2.tan α2=k 2=-12<0,所以α2∈⎝ ⎛⎭⎪⎫π2,π,α2>α1.tan α3=k 3=-13<0,所以α3∈⎝ ⎛⎭⎪⎫π2,π,α3>α1,而-12<-13,正切函数在⎝ ⎛⎭⎪⎫π2,π上单调递增,所以α3>α2.综上,α1<α2<α3.变式训练如果下图中的三条直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则k 1、k 2、k 3从小到大的排列顺序为____________.答案:k 1<k 3<k 2解析:设三条直线的倾斜角分别为α1,α2,α3.由题图知,k 1<0,k 2>0,k 3>0,另外,tan α2=k 2>0,α2∈⎝ ⎛⎭⎪⎫0,π2,tan α3=k 3>0,α3∈⎝ ⎛⎭⎪⎫0,π2,而α3<α2,正切函数在⎝⎛⎭⎪⎫0,π2上单调递增,所以, k 3<k 2.综上,k 1<k 3<k 2.题型2 求直线的倾斜角和斜率, 2) 已知点M(-4,3),N(2,15),若直线l 的倾斜角是直线MN 的倾斜角的一半,求直线l 的斜率.解:设直线l 的倾斜角是θ,则直线MN 的倾斜角为2θ,由已知得tan2θ=k MN =15-32+4=2,即2tan θ1-tan 2θ=2, 所以tan 2θ+tan θ-1=0,解得tan θ=-1+52或tan θ=-1-52,由tan2θ=2>0知,2θ必为锐角,从而θ为锐角,故tan θ=-1+52.备选变式(教师专享)已知点A(-3,1),点B 在y 轴上,直线AB 的倾斜角为2π3,求点B 的坐标.解:B 点的坐标设为(0,y),再利用k =tanθ以及两点求斜率公式tan120°=y -10+3,得y =-2,所以B 的坐标为(0,-2).题型3 求直线的倾斜角和斜率的取值范围, 3) (2014·苏州调研)经过P(0,-1)作直线l ,若直线l 与连结A(1,-2)、B(2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.答案:[-1,1] ⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π解析:如图所示,结合图形:为使l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k<0时,倾斜角α为钝角,k =0时,α=0,k>0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =-1-10-2=1,∴ -1≤k≤1.又当0≤k≤1时,0≤α≤π4;当-1≤k<0时,3π4≤α<π. 故倾斜角α的取值范围为α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.备选变式(教师专享)直线l 经过A(2,1)、B(1,m 2)(m∈R )两点,那么直线l 的倾斜角的取值范围是________.答案:α∈⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π解析:k =tanα=m 2-11-2=1-m 2≤1,所以α∈⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π.1. (2014·山西联考)直线xsin α+y +2=0的倾斜角的取值范围是________.答案:⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π 解析:设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.2. 已知点A(1,3),B(-2,-1),若直线l :y =k(x -2)+1与线段AB 相交,则k 的取值范围是________.答案:⎣⎢⎡⎦⎥⎤-2,12 解析:由题意知直线l 恒过定点P(2,1),如图.若l 与线段AB 相交,则k PA ≤k ≤k PB .∵ k PA =-2,k PB =12,∴ -2≤k≤12.3. 已知实数x 、y 满足(x -2)2+(y -1)2=1,求z =y +1x的最大值与最小值.解:y +1x表示过点A(0,-1)和圆(x -2)2+(y -1)2=1上的动点(x ,y)的直线的斜率.如图,当且仅当直线与圆相切时,直线的斜率分别取得最大值和最小值.设切线方程为y =kx-1,即kx -y -1=0,则|2k -2|k 2+1=1,解得k =4±73.因此,z max =4+73,z min =4-73.4. 如图所示,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P(1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的斜率.解: 由题意可得k OA =tan45°=1,k OB =tan (180°-30°)=-33,所以射线OA 的方程为y =x(x≥0),射线OB 的方程为y =-33x (x≥0). 设A(m ,m),B(-3n ,n),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A(3,3).又P(1,0),所以k AB =k AP =33-1=3+32.1. 已知x 轴上的点P 与点Q(-3,1)连线所成直线的倾斜角为30°,则点P 的坐标为________.答案:(-23,0)解析:设P(x ,0),由题意k PQ =tan30°=33,即1-3-x =33,解得x =-23,故点P 的坐标为(-23,0).2. 有以下几个命题:① 直线的倾斜角越大,则斜率越大; ② 垂直于x 轴的直线没有方程;③ 若直线的斜率为a ,则其倾斜角正切值一定为tana ;④ 只要直线不过坐标原点,则它一定可以用截距式方程式表示; ⑤ 斜率存在的直线,其倾斜角一定不等于90°. 其中正确的命题是________.(填序号) 答案:⑤解析:根据直线的倾斜角与斜率的关系,可知①不正确,⑤正确;x =a(a∈R )是垂直于x 轴的直线,所以②错误;直线倾斜角的正切值是斜率,所以③错误;不过原点但垂直于坐标轴的直线不可以用截距式方程式表示,所以④错误; 故答案为⑤.3. 已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率是________.答案: 3解析:由k PQ =-3得直线PQ 的倾斜角为120°,将直线PQ 绕点P 顺时针旋转60°所得直线的倾斜角为60°,∴ 所得直线的斜率k =tan60°= 3.4. 直线ax +y +1=0与连结A(2,3)、B(-3,2)的线段相交,则a 的取值范围是________.答案:(-∞,-2]∪[1,+∞)解析:直线ax +y +1=0过定点C(0,-1),当直线处在AC 与BC 之间时,必与线段AB相交,即应满足-a≥3+12或-a≤2+1-3,得a≤-2或a≥1.1. 求斜率要熟记斜率公式:k=y 2-y 1x2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 要正确理解倾斜角的定义,明确倾斜角的取值范围,倾斜角与斜率的关系是k =tan α(α≠90°),其中α为倾斜角,因此求倾斜角的取值范围通常需从斜率的范围入手,而求斜率的范围则常需考虑倾斜角的取值范围,但都需要利用正切函数的性质,借助图象或单位圆数形结合,注意直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k∈(-∞,0).请使用课时训练(B )第1课时(见活页).第2课时 直线的方程⎝⎛⎭⎪⎫对应学生用书(文)113~115页 (理)118~120页掌握直线方程的几种形式(点斜式、斜截式、两点式、截距式及一般式)的特点与适用范围;能根据问题的具体条件选择恰当的形式求直线的方程;了解直线方程的斜截式与一次函数的关系.① 在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. ② 掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.1. 把直线方程Ax +By +C =0(ABC≠0)化成斜截式为________________,化成截距式为________________.答案:y =-A B x -C B x -C A +y-CB=1解析:因为ABC≠0,即A≠0,B ≠0,C ≠0,按斜截式、截距式的形式要求变形即可.斜截式为y =-A B x -C B ,截距式为x -C A +y-CB=1.2. (必修2P 77习题3改编)直线3x -4y +12=0与两坐标轴所围成的三角形的面积为________.答案:6解析:直线3x -4y +12=0在x 轴上的截距为-4,在x 轴上的截距为3,因此它与两坐标轴所围成的三角形的面积为12×|-4|×3=6.3. 下列四个命题:① 过点P(1,-2)的直线可设为y +2=k(x -1);② 若直线在两轴上的截距相等,则其方程可设为x a +ya =1(a≠0);③ 经过两点P(a ,2),Q(b ,1)的直线的斜率k =1a -b;④ 如果AC<0,BC>0,那么直线Ax +By +C =0不通过第二象限. 其中正确的是_____________.(填序号) 答案:④4. (必修2P 74练习3改编)过点M(3,-4)且在两坐标轴上的截距互为相反数的直线方程为________.答案:y =-43x 或x -y -7=0解析:① 当直线过原点时,直线方程为y =-43x ;② 当直线不过原点时,设直线方程为x a +y-a=1,即x -y =a.代入点(3,-4),∴ a =7,即直线方程为x -y -7=0. 5. (必修2P 73练习3改编)若一直线经过点P(1,2),且在y 轴上的截距与直线2x +y +1=0在y 轴上的截距相等,则该直线的方程是________.答案:3x -y -1=0解析:直线2x +y +1=0在y 轴上的截距为-1,由题意,所求直线过点(0,-1),又所求直线过点P(1,2),故由两点式得直线方程为y +1x -0=2+11-0,即3x -y -1=0.1. 直线方程的五种形式 名称 方程 适用范围 点斜式 y -y 0=k(x -x 0) 不含直线x =x 0 斜截式y =kx +b 不含垂直于x 轴的直线 两点式 y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1(x 1≠x 2)和直线y =y 1(y 1≠y 2) 截距式 x a +y b =1不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0(A ,B 不同时为0) 平面直角坐标系内的直线都适用111222(1) 若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1. (2) 若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1. (3) 若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0. (4) 若x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0. (5) 直线的斜率k 与倾斜角α之间的关系如下表: α 0° (0°,90°) 90° (90°,180°) k 0 (0,+∞) 不存在 (-∞,0) 若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.[备课札记]题型1 求直线方程, 1) (必修2P 115复习题5、6改编)已知直线l 过点P(5,2),分别求满足下列条件的直线方程.(1) 直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2) 直线l 与两坐标轴围成的三角形面积为52.解:(1) 当直线l 过原点时,l 的斜率为25,∴ 直线方程为y =25x ,即2x -5y =0;当直线l 不过原点时,设方程为x 2a +y a =1,将x =5,y =2代入得a =92,∴ 直线方程为x +2y -9=0.综上:l 的方程为2x -5y =0或x +2y -9=0. (2) 显然两直线与x 轴不垂直.∵ 直线l 经过点P(5,2),∴ 可设直线l 的方程为y -2=k(x -5)(k≠0),则直线在x 轴上的截距为5-2k ,在y 轴上的截距为2-5k ,由题意,得12⎪⎪⎪⎪⎪⎪5-2k ·|2-5k|=52,即(5k -2)2=5|k|.当k>0时,原方程可化为(5k -2)2=5k ,解得k =15或k =45;当k<0时,原方程可化为(5k -2)2=-5k ,此方程无实数解;故直线l 的方程为y -2=15(x -5)或y -2=45(x -5),即x -5y +5=0或4x -5y -10=0.变式训练(2014·常州模拟)过点P(-2,3)且在两坐标轴上的截距相等的直线l 的方程为________.答案:x +y -1=0或3x +2y =0解析:分两种情况:(1)直线l 过原点时,l 的斜率为-32,∴ 直线方程为y =-32x ;(2) l 不过原点时,设方程为x a +ya=1,将x =-2,y =3代入得a =1,∴ 直线方程为x +y =1.综上:l 的方程为x +y -1=0或2y +3x =0. 题型2 含参直线方程问题, 2) (2014·银川改编)设直线l 的方程为(a +1)x +y +2-a =0(a∈R ).(1) 若l 在两坐标轴上截距相等,求l 的方程; (2) 若l 不经过第二象限,求实数a 的取值范围; (3) 求证:无论a 为何实数值,直线l 恒过一定点M.(1) 解:当直线过原点时,该直线在x 轴和y 轴上的截距为零,∴ a=2,方程即为3x +y =0.当直线不经过原点时,截距存在且均不为0, ∴ a -2a +1=a -2,即a +1=1. ∴ a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0.(2) 解:将l 的方程化为y =-(a +1)x +a -2, ∴ ⎩⎪⎨⎪⎧-(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,∴ a≤-1. 综上可知a 的取值范围是(-∞,-1]. (3) 证明:∵ (x-1)a +(x +y +2)=0,∴ 由题意得⎩⎪⎨⎪⎧x -1=0,x +y +2=0,解得⎩⎪⎨⎪⎧x =1,y =-3.故直线l 恒过定点M(1,-3).备选变式(教师专享)直线l 过点M(2,1),且分别交x 轴、y 轴的正半轴于点A 、B.点O 是坐标原点. (1) 当△ABO 的面积最小时,求直线l 的方程; (2) 当||MA ||MB 最小时,求直线l 的方程.解:(1) 如图,设||OA =a ,||OB =b ,△ABO 的面积为S ,则S=12ab ,并且直线l 的截距式方程是x a +yb=1,由直线通过点(2,1),得2a +1b=1,所以a 2=11-1b=b b -1.因为A 点和B 点在x 轴、y 轴的正半轴上,所以上式右端的分母b -1>0.由此得S =a 2×b =b b -1×b =b 2-1+1b -1=b +1+1b -1=b -1+1b -1+2≥2+2=4.当且仅当b -1=1b -1,即b =2时,面积S 取最小值4,这时a =4,直线的方程为x 4+y2=1.即直线l 的方程为x +2y -4=0.(2) 如上图,设∠BAO=θ,则||MA =1sinθ,||MB =2cosθ, 所以||MA ||MB =1sinθ·2cosθ=4sin2θ, 当θ=45°时,||MA ||MB 有最小值4,此时直线斜率为-1,∴直线l 的方程为x +y -3=0.题型3 直线方程的综合应用, 3) 设直线l 的方程为(a +1)x +y -2-a =0(a∈R ).(1) 当a =1时,直线l 分别与x 轴、y 轴交于A 、B 两点.若动点P(m ,n)在线段AB 上,求mn 的最大值;(2) 若a>-1,直线l 与x 、y 轴分别交于M 、N 两点,求△OMN 面积取最大值时,直线l 的方程.解:(1) 当a =1时,直线l 的方程为2x +y -3=0,可化为2x 3+y3=1.由动点P(m ,n)在线段AB 上可知0≤m≤32,0≤n ≤3,且2m 3+n 3=1,∴ 1≥22m 3·n 3,∴ mn ≤98.当且仅当2m 3=n 3时等号成立,可解得m =34,n =32,故mn 的最大值为98. (2) 由直线方程可求得M ⎝ ⎛⎭⎪⎫2+a a +1,0、N(0,2+a),又a>-1,故S △OMN=12×2+a a +1×(2+a)=12×(a +1)2+2(a +1)+1a +1=12×[(a +1)+1a +1+2]≥12×⎝⎛⎭⎪⎫2(a +1)×1a +1+2=2,当且仅当a +1=1a +1,即a =0或a =-2(舍去)时等号成立.此时直线l 的方程为x +y -2=0. 备选变式(教师专享)直线l 经过点(3,2),且在两坐标轴上的截距相等,求直线l 的方程. 解:(解法1:借助点斜式求解)由于直线l 在两轴上有截距,因此直线不与x 、y 轴垂直,斜率存在,且k≠0.设直线方程为y -2=k(x -3),令x =0,则y =-3k +2;令y =0,则x =3-2k.由题设可得-3k +2=3-2k ,解得k =-1或k =23.故l 的方程为y -2=-(x -3)或y -2=23(x -3).即直线l 的方程为x +y -5=0或2x -3y =0. (解法2:利用截距式求解)由题设,设直线l 在x 、y 轴的截距均为a. 若a =0,则l 过点(0,0).又过点(3,2),∴ l 的方程为y =23x ,即l :2x -3y =0.若a≠0,则设l 为x a +ya =1.由l 过点(3,2),知3a +2a=1,故a =5.∴ l 的方程为x +y -5=0.综上可知,直线l 的方程为2x -3y =0或x +y -5=0.1. (2014·海淀模拟改编)直线l 经过点A(1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.答案:k>12或k<-1解析:设直线的斜率为k ,则直线方程为y -2=k(x -1),直线在x 轴上的截距为1-2k,令-3<1-2k <3,解不等式可得k>12或k<-1.(也可以利用数形结合)2. (2014·长春调研改编)一次函数y =-m n x +1n的图象同时经过第一、三、四象限的必要不充分条件是________.(填序号)① m>1,且n<1;② mn<0;③ m>0,且n<0;④ m<0,且n<0. 答案:②解析:因为y =-m n x +1n 经过第一、三、四象限,故-m n >0,且1n<0,即m>0,且n<0,但此为充要条件,因此,其必要不充分条件为mn<0,故选填②.3. 直线l 经过点P(-5,-4),且与两坐标轴围成的三角形面积为5,则直线l 的方程为________.答案:8x -5y +20=0或2x -5y -10=0解析:设所求直线l 的方程为x a +yb=1,∵ 直线l 过点P(-5,-4),∴ -5a +-4b =1,即4a +5b =-ab.又由已知有12|a|·|b|=5,即|ab|=10,解方程组⎩⎪⎨⎪⎧4a +5b =-ab ,|ab|=10,得⎩⎪⎨⎪⎧a =-52,b =4或⎩⎪⎨⎪⎧a =5,b =-2.故所求直线l 的方程为x -52+y 4=1或x 5+y-2=1.即8x -5y +20=0或2x -5y -10=0.4. (2014·银川联考)已知直线x +2y =2与x 轴、y 轴分别相交于A 、B 两点,若动点P(a ,b)在线段AB 上,则ab 的最大值为________.答案:12解析:由题意知A(2,0),B(0,1),所以线段AB 的方程可表示为x2+y =1,x ∈[0,2],又动点P(a ,b)在线段AB 上,所以a 2+b =1,a ∈[0,2],又a 2+b≥2ab 2,所以1≥2ab2,解得0≤ab≤12,当且仅当a 2=b =12,即P ⎝ ⎛⎭⎪⎫1,12时,ab 取得最大值12. 5. 已知△ABC 中,A(1,-4),B(6,6),C(-2,0).求:(1) △ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2) BC 边的中线所在直线的一般式方程,并化为截距式方程.解:(1) 平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB 、AC 中点坐标分别为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得一般式方程为6x -8y-13=0,截距式方程为x 136-y138=1.(2) 因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即一般式方程为7x -y -11=0,截距式方程为x 117-y11=1.6. (原创)若直线l 的方程为(2m 2-m -1)x +(m 2-m)y +4m -1=0,求: (1) 参数m 的取值集合;(2) 若直线l 的斜率不存在,试确定直线l 在x 轴上的截距;(3) 若直线l 在y 轴上的截距等于直线4x -y -2=0的斜率,求直线l 的方程.解:(1) 由⎩⎪⎨⎪⎧2m 2-m -1=0,m 2-m =0,解得m =1,故参数m 的取值集合为{m|m≠1}.(2) 由⎩⎪⎨⎪⎧2m 2-m -1≠0,m 2-m =0,解得m =0,故直线方程为-x -1=0,即x =-1,故直线l 在x轴上的截距为-1.(3) 直线l 在y 轴上的截距存在时,截距为1-4mm 2-m,又直线4x -y -2=0的斜率为4,所以1-4m m 2-m =4,解得m =±12,所以直线l 的方程为4x +y -4=0或y =4.1. 直线x +a 2y -a =0(a>0,a 是常数),当此直线在x 、y 轴上的截距和最小时,a =________.答案:1解析:方程可化为x a +y 1a=1,因为a>0,所以截距之和t =a +1a ≥2,当且仅当a =1a ,即a =1时取等号.2. (原创)如果AC<0且BC>0,那么直线Ax +By +C =0不通过第________象限.答案:二解析:由已知条件知A ,B ,C 均不为0,直线Ax +By +C =0在x 轴上的截距-CA>0,直线一定过一、四象限,又直线在y 轴上的截距-CB<0,故直线一定过三、四象限,故直线不通过第二象限.3. 在平面直角坐标系中,如果x 与y 都是整数,就称点(x ,y)为整点.下列命题中正确的是________.(填序号).① 存在这样的直线,既不与坐标轴平行又不经过任何整点; ② 如果k 与b 都是无理数,则直线y =kx +b 不经过任何整点; ③ 直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点;④ 直线y =kx +b 经过无穷多个整点的充要条件是:k 与b 都是有理数; ⑤ 存在恰经过一个整点的直线. 答案:①③⑤解析: ①正确.比如直线y =2x +3,不与坐标轴平行,且当x 取整数时,y 始终是一个无理数,即不经过任何整点.②错误.直线y =3x -3中k 与b 都是无理数,但直线经过整点(1,0).③正确.当直线经过两个整点时,它经过无数多个整点.④错误.当k=0,b =13时,直线y =13不通过任何整点.⑤正确.比如直线y =3x -3只经过一个整点(1,0).4. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点________. 答案:(-2,3)解析:把直线方程(m -1)x -y +2m +1=0,整理得 (x +2)m -(x +y -1)=0, 则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3. 5. 对直线l 上任一点(x ,y),点(4x +2y ,x +3y)仍在此直线上,求直线方程. 解:设直线方程Ax +By +C =0, ∴ A(4x +2y)+B(x +3y)+C =0, 整理得(4A +B)x +(2A +3B)y +C =0,∴ 上式也是l 的方程,当C≠0时,则有⎩⎪⎨⎪⎧A =4A +B ,B =2A +3B ,∴ A =B =0,此时直线不存在;当C =0时,两方程表示的直线均过原点,应有斜率相等,故-A B =-4A +B2A +3B,∴ A =B或B =-2A ,∴ 所求直线方程为x +y =0或x -2y =0.1. 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况;而选用两点式时不要忽视与坐标轴垂直的情况.2. 解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.请使用课时训练(A )第2课时(见活页).[备课札记]第3课时 直线与直线的位置关系⎝⎛⎭⎪⎫对应学生用书(文)116~118页 (理)121~123页能熟练掌握两条直线平行和垂直的条件并灵活运用,把研究两条直线的平行或垂直问题,转化为研究两条直线斜率的关系问题;能判断两直线是否相交并求出交点坐标,体会两直线相交与二元一次方程组的关系;理解两点间距离公式的推导,并能应用两点间距离公式证明几何问题;点到直线距离公式的理解与应用.① 能根据两条直线的斜率判断这两条直线平行或垂直. ② 能用解方程组的方法求两直线的交点坐标. ③ 掌握两点间的距离公式,点到直线的距离公式,会求两条平行直线间的距离.1. (必修2P 93练习1改编)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于________.答案:2-1解析:由题意知|a -2+3|2=1,∴ |a +1|=2,又a >0,∴ a =2-1.2. (必修2P 85习题7改编)已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是a =________.答案:-1解析:由l 1∥l 2得a(a -2)-3=0且2a -6(a -2)≠0,解得a =-1.3. 经过点(-2,3),且与直线2x +y -5=0平行的直线方程为________. 答案:2x +y +1=0解析:由题意,所求直线的斜率与直线2x +y -5=0的斜率相同为-2,又过点(-2,3),所以直线方程为y -3=-2(x +2),即2x +y +1=0.4. (必修2P 85习题3改编)已知直线l 过两条直线3x +2y -1=0和2x -3y +8=0的交点,且与直线2x -3y +4=0垂直,则l 的方程是________.答案:3x +2y -1=0解析:由⎩⎪⎨⎪⎧3x +2y -1=0,2x -3y +8=0,得两直线的交点坐标为(-1,2),又由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.5. (必修2P 106习题18改编)已知直线l :y =3x +3,那么直线x -y -2=0关于直线l 对称的直线方程为____________.答案:7x +y +22=0解析:由⎩⎪⎨⎪⎧x -y -2=0,3x -y +3=0,得交点坐标P ⎝ ⎛⎭⎪⎫-52,-92.又直线x -y -2=0上的点Q(2,0)关于直线l 的对称点为Q ′⎝ ⎛⎭⎪⎫-175,95,故所求直线(即PQ′)的方程为y +92-95-92=x +52175-52,即7x +y +22=0.1. 两条直线的位置关系 斜截式一般式方程y =k 1x +b 1y =k 2x +b 2 A 1x +B 1y +C 1=0(A 21+B 21≠0)A 2x +B 2y +C 2=0(A 22+B 22≠0)相交 k 1≠k 2A 1B 2-A 2B 1≠0(A 2B 2≠0时,A 1A 2≠B 1B 2)垂直k 1=-1k 2或k 1k 2=-1A 1A 2+B 1B 2=0(当B 1B 2≠0时,A 1B 1·A 2B 2=-1)平行 k 1=k 2且b 1≠b 2⎩⎪⎨⎪⎧A 1B 2-A 2B 1=0B 2C 1-B 1C 2≠0或⎩⎪⎨⎪⎧A 1B 2-A 2B 1=0A 2C 1-A 1C 2≠0(当A 2B 2C 2≠0,记为A 1B 1=A 2B 2≠C 1C 2) 重合 k 1=k 2且b 1=b 2A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0) (当A 2B 2C 2≠0,记为A 1B 1=A 2B 2=C 1C 2)设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.若方程组有无数个解,则两直线方程表示的直线重合.3. 几种距离(1) 两点间的距离平面上的两点A(x 1,y 1),B(x 2,y 2)间的距离公式:d(A ,B)=AB =(x 1-x 2)2+(y 1-y 2)2. (2) 点到直线的距离点P(x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C|A 2+B2. (3) 两条平行线间的距离两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2.[备课札记]题型1 两直线的平行与垂直, 1) 两条直线l 1:(m +3)x +2y =5-3m ,l 2:4x +(5+m)y =16,分别求满足下列条件的m 的值.(1) l 1与l 2相交; (2) l 1与l 2平行; (3) l 1与l 2重合; (4) l 1与l 2垂直.解:可先从平行的条件a 1a 2=b 1b 2(化为a 1b 2=a 2b 1)着手.由m +34=25+m,得m 2+8m +7=0,解得m 1=-1,m 2=-7.由m +34=5-3m 16,得m =-1.(1) 当m≠-1且m≠-7时,a 1a 2≠b 1b 2,l 1与l 2相交.(2) 当m =-7时,a 1a 2=b 1b 2≠c 1c 2.l 1∥l 2.(3) 当m =-1时,a 1a 2=b 1b 2=c 1c 2,l 1与l 2重合.(4) 当a 1a 2+b 1b 2=0,即(m +3)·4+2·(5+m)=0,即m =-113时,l 1⊥l 2.变式训练已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1) 试判断l 1与l 2是否平行; (2) l 1⊥l 2时,求a 的值.解:(1) (解法1)当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a≠1且a≠0时,两直线可化为l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1,综上可知,a =-1时,l 1∥l 2,否则l 1与l 2不平行.(解法2)由A 1B 2-A 2B 1=0,得a(a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a(a 2-1)-1×6≠0,∴ l 1∥l 2⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6a =-1, 故当a =-1时,l 1∥l 2,否则l 1与l 2不平行. (2) (解法1)当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2; 当a≠1且a≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝ ⎛⎭⎪⎫-a 2·11-a=-1a =23.(解法2)由A 1A 2+B 1B 2=0得a +2(a -1)=0a =23.题型2 两直线的交点, 2) (2014·江苏联考)已知点A(3,3),B(5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.解:解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P(1,2).① 若点A 、B 在直线l 的同侧,则l∥AB.而k AB =3-23-5=-12,由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0.② 若点A 、B 在直线l 的异侧,则直线l 经过线段AB 的中点⎝ ⎛⎭⎪⎫4,52, 由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为x +2y -5=0或x -6y +11=0. 备选变式(教师专享)已知直线l 经过点P(3,1),且被两平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段之长为5,求直线l 的方程.解:(解法1)若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1、l 2的交点分别为A′(3,-4)和B ′(3,-9),截得的线段AB 的长||AB =||-4+9=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k(x -3)+1.解方程组⎩⎪⎨⎪⎧y =k (x -3)+1x +y +1=0,得A ⎝ ⎛⎭⎪⎫3k -2k +1,-4k -1k +1,解方程组⎩⎪⎨⎪⎧y =k (x -3)+1x +y +6=0,得B ⎝ ⎛⎭⎪⎫3k -7k +1,-9k -1k +1. 由||AB =5,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+(-4k -1k +1+9k -1k +1)2=52.解之,得k =0,即所求的直线方程为y =1. 综上可知,所求l 的方程为x =3或y =1. (解法2)由题意,直线l 1、l 2之间的距离为d=||1-62=522,且直线l 被平行直线l 1、l 2所截得的线段AB 的长为5(如图).设直线l 与直线l 1的夹角为θ,则sinθ=52 25=22,故θ=45°.由直线l 1:x +y +1=0的倾斜角为135°,知直线l 的倾斜角为0°或90°.又直线l 过点P(3,1),故直线l 的方程为x =3或y =1.(解法3)设直线l 与l 1、l 2分别相交于A(x 1,y 1)、B(x 2,y 2),则x 1+y 1+1=0,x 2+y 2+6=0.两式相减,得(x 1-x 2)+(y 1-y 2)=5. ①又(x 1-x 2)2+(y 1-y 2)2=25, ②联立①②,可得⎩⎪⎨⎪⎧x 1-x 2=5,y 1-y 2=0 或⎩⎪⎨⎪⎧x 1-x 2=0,y 1-y 2=5,由上可知,直线l 的倾斜角分别为0°或90°. 故所求直线方程为x =3或y =1.题型3 点到直线及两平行直线之间的距离, 3) 已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1) 求a 的值;(2) 能否找到一点P ,使P 同时满足下列三个条件: ① 点P 在第一象限;② 点P 到l 1的距离是点P 到l 2的距离的12;③ 点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由.解:(1) 直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72. 又a >0,解得a =3.(2) 假设存在点P ,设点P(x 0,y 0),若P 点满足条件②,则P 点在与l 1,l 2平行的直线l′:2x -y +c =0上,且|c -3|5=12⎪⎪⎪⎪⎪⎪c +125,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=2|x 0+y 0-1|5×2,即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12;(舍去) 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718.所以存在P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件. 备选变式(教师专享)已知点P 1(2,3)、P 2(-4,5)和A(-1,2),求过点A 且与点P 1、P 2距离相等的直线方程.解:(解法1)设所求直线方程为y -2=k(x +1),即kx -y +k +2=0.由点P 1、P 2到直线的距离相等得||2k -3+k +2k 2+1=||-4k -5+k +2k 2+1. 化简得||3k -1=||-3k -3,则有3k -1=-3k -3或3k -1=3k +3,解得k =-13或方程无解.方程无解表明这样的k 不存在,但过点A ,所以直线方程为x =-1,它与P 1、P 2的距离都是3.∴所求直线方程为y -2=-13(x +1)或x =-1.(解法2)设所求直线为l ,由于l 过点A 且与P 1、P 2距离相等,所以l 有两种情况,如下图:①当P 1、P 2在l 的同侧时,有l∥P 1P 2,此时可求得l 的方程为y -2=5-3-4-2(x +1),即y -2=-13(x +1);②当P 1、P 2在l 的异侧时,l 必过P 1、P 2的中点(-1,4),此时l 的方程为x =-1.∴所求直线的方程为y -2=-13(x +1)或x =-1.题型4 对称问题, 4) 已知直线l :2x -3y +1=0,点A(-1,-2).求: (1) 点A 关于直线l 的对称点A′的坐标;(2) 直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3) 直线l 关于点A(-1,-2)对称的直线l′的方程. 解:(1) 设A′(x,y),再由已知得 ⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴ A ′⎝ ⎛⎭⎪⎫-3313,413. (2) 在直线m 上任取一点,如M(2,0),则M(2,0)关于直线l 的对称点必在m′上.设对称点为M′(a,b),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1.解得M′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N(4,3).∵ m ′经过点N(4,3),∴ 由两点式得直线方程为9x -46y +102=0.(3) 设P(x ,y)为l′上任意一点,则P(x ,y)关于点A(-1,-2)的对称点为P′(-2-x ,-4-y).∵ P ′在直线l 上,∴ 2(-2-x)-3(-4-y)+1=0,即2x -3y -9=0. 备选变式(教师专享)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P(如图).若光线QR 经过△ABC 的重心,则AP 等于________.答案:43解析:以AB 、AC 所在直线分别为x 轴、y 轴建立平面直角坐标系,则A(0,0),B(4,0),C(0,4),得△ABC 的重心D ⎝ ⎛⎭⎪⎫43,43,设AP =x ,从而P(x ,0),x ∈(0,4),由光的几何性质可知点P 关于直线BC 、AC 的对称点P 1(4,4-x),P 2(-x ,0)与△ABC 的重心D ⎝ ⎛⎭⎪⎫43,43共线,所以4343+x=43-(4-x)43-4,求得x=43.题型5三角形中的直线问题, 5) 直线y=2x是△ABC中∠C的平分线所在的直线,且A、B的坐标分别为A(-4,2)、B(3,1),求顶点C的坐标并判断△ABC的形状.解:由题意画出草图(如图所示).设点A(-4,2)关于直线l:y=2x的对称点为A′(a,b),则A′必在直线BC上.以下先求A′(a,b).由对称性可得⎩⎪⎨⎪⎧b-2a+4=-12,b+22=2·a-42,解得⎩⎪⎨⎪⎧a=4,b=-2,∴ A′(4,-2).∴直线BC的方程为y-1-2-1=x-34-3,即3x+y-10=0.由⎩⎪⎨⎪⎧y=2x,3x+y-10=0,得C(2,4).∴ k AC=13,k BC=-3,∴AC⊥BC.∴△ABC是直角三角形.备选变式(教师专享)已知△ABC的顶点为A(3,-1),AB边上的中线所在的直线方程为6x+10y-59=0,∠B的平分线所在的直线方程为x-4y+10=0,求BC边所在的直线方程.解:设B(4y1-10,y1),由AB的中点在6x+10y-59=0上,可得6·4y1-72+10·y1-12-59=0,解得y1= 5,所以B为(10,5).设A点关于x-4y+10=0的对称点为A′(x′,y′),则有⎩⎪⎨⎪⎧x′+32-4·y′-12+10=0,y′+1x′-3·14=-1A′(1,7).故BC边所在的直线方程为2x+9y-65=0.1. (2014·长沙模拟)已知过点A(-2,m)和点B(m,4)的直线为l1,直线2x+y-1=0为l2,直线x+ny+1=0为l3.若l1∥l2,l2⊥l3,则实数m+n=________.答案:-10解析:∵ l1∥l2,∴ k AB=4-mm+2=-2,解得m=-8.∵ l2⊥l3,∴⎝⎛⎭⎪⎫-1n×(-2)=-1,解得n=-2,∴ m+n=-10.2. 在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.答案:(2,4)解析:由题可知A(1,2),B(1,5),C(3,6),D(7,-1),四边形ABCD 对角线的交点到四点距离之和最小,直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1),由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得交点坐标为(2,4). 3. 与直线3x -4y +5=0关于x 轴对称的直线方程为________. 答案:3x +4y +5=0 解析:与直线3x -4y +5=0关于x 轴对称的直线方程是3x -4(-y)+5=0,即3x +4y +5=0.4. m 为何值时,直线l 1:4x +y -4=0,l 2:mx +y =0,l 3:2x -3my -4=0不能围成三角形?解:先考虑三条直线中有两条直线平行或重合的情况.① 若m≠0,则k 1=-4,k 2=-m ,k 3=23m ,当m =4时,k 1=k 2;当m =-16时,k 1=k 3;而k 2与k 3不可能相等.② 若m =0,则l 1:4x +y -4=0,l 2:y =0,l 3:x -2=0,此时三条直线能围成三角形.∴ 当m =4或m =-16时,三条直线不能围成三角形.再考虑三条直线共点的情况,此时m≠0且m≠4且m≠-16.将y =-mx 代入4x +y -4=0,得x =44-m,即l 1与l 2交于点P ⎝ ⎛⎭⎪⎫44-m,-4m 4-m ,将P 点坐标代入l 3的方程得84-m +12m 24-m -4=0,解得m =-1或m =23.∴ 当m =-1或m =23时,l 1,l 2,l 3交于一点,不能围成三角形.综上所述,当m 为-1或-16或23或4时,三条直线不能围成三角形.1. 若动点A 、B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为______.答案:3 2解析:依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离,设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2|m +7|=|m +5|m =-6,所以l 的方程为x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|6|2=3 2.2. (2014·济南模拟)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a =________.答案:-1或2解析:若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a≠0;当a≠0时,两直线若平行,则有a -11=2a ≠13,解得a =-1或2.3. (2014·金华调研)当0<k<12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.答案:二。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【大高考】2017版高考数学一轮总复习 第9章 平面解析几何 第1
节 直线与方程高考AB 卷 理
直线及其方程
(2013·全国Ⅱ,12)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭
⎪⎫1-
22,12 C.⎝ ⎛⎦
⎥⎤1-
22,13 D.⎣⎢⎡⎭
⎪⎫13,12 解析 (1)当直线y =ax +b 与AB 、BC 相交时(如图①),由⎩
⎪⎨⎪⎧y =ax +b ,x +y =1得y E =a +b
a +1,又易
知x D =-b a ,∴|BD |=1+b a ,由S △DBE =12×a +b a ×a +b a +1=1
2
得b =
11+1
a
+1
∈⎝ ⎛⎭
⎪⎫0,12.
图① 图②
(2)当直线y =ax +b 与AC 、BC 相交时(如图②),由S △FCG =12(x G -x F )·|CM |=12得b =1-
2
21-a 2
∈⎝ ⎛
⎭
⎪⎫
1-
22,1(∵0<a <1), ∵对于任意的a >0恒成立,
∴b ∈⎝ ⎛⎭⎪⎫0,12∩⎝ ⎛⎭⎪⎫1-22,1,即b ∈⎝ ⎛⎭⎪⎫1-22,12.故选B.
答案 B
直线及其方程
1.(2013·湖南,8)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 等于( )
A.2
B.1
C.83
D.43
解析 以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示
.
则A (0,0),B (4,0),C (0,4).
设△ABC 的重心为D ,则D 点坐标为⎝ ⎛⎭
⎪⎫43,43. 设P 点坐标为(m ,0),则P 点关于y 轴的对称点P 1为(-m ,0),因为直线BC 方程为x +y -4=0,
所以P 点关于BC 的对称点P 2为(4,4-m ), 根据光线反射原理,P 1,P 2均在QR 所在直线上, ∴k P 1D =k P 2D ,即43
43+m =4
3
-4+m 43-4,
解得,m =4
3
或m =0.
当m =0时,P 点与A 点重合,故舍去.∴m =4
3.
答案 D
2.(2014·广东,10)曲线y =e -5x
+2在点(0,3)处的切线方程为________.
解析 y ′=-5e
-5x
,曲线在点(0,3)处的切线斜率k =y ′|x =0=-5,故切线方程为y -3
=-5(x -0),即5x +y -3=0. 答案 5x +y -3=
两直线的位置关系
3.(2013·辽宁,9)已知点O (0,0),A (0,b ),B (a ,a 3
).若△OAB 为直角三角形,则必有( ) A.b =a 3。