空气动力学基础最新版本

合集下载

空气动力学理论基础

空气动力学理论基础

1 2 1 2 + p∞ + ρ v1 = p + ρ v 1 2 2 2 2 + − ⇒ p − p = ρ (v1 − v2 ) 1 2 1 2 − 2 p + ρ v = p∞ + ρ v 2 2 2
8
v1 + v2 1 2 2 ρ (v1 − v2 ) A = ρ Av (v1 − v2 ) 即 v = 2 2 引入速度减少率 a(轴向诱导因子): (轴向诱导因子): v1 − v a= v1 则 v2 = v1 (1 − 2a )
7
根据不可压缩流体连续性 方程 p∞ v1 A1 = vA = v2 A2
A1 p+ v1
A pv
A2 p∞ v2
据动量方程得风轮受到空 风轮 气的推力为 T = ρ Av (v1 − v2 ) 推力还应该等于风轮前后静压力差与风轮面积 + − 的乘积, 的乘积,即 T = ( p − p ) A 由伯努里方程得
CT = 1 ρ Av12 2 = 1 ρ Av12 2
= 4a (1 − a )
(3)贝茨极限为 )贝茨极限为0.593。实际上,由于风速、 。实际上,由于风速、 风向随机变化等复杂的气动问题, 风向随机变化等复杂的气动问题,以及叶片表 面粗糙度的摩擦损失等方面的影响, 面粗糙度的摩擦损失等方面的影响,一般认为 功率系数达到40%就比较满意了。 就比较满意了。 功率系数达到 就比较满意了
C P,d
1 3 Pw = ρ Av1 2
v1 v v2
P Tv Tv = = = = C Tε 1 2 v1 Pw 1 3 ρ Av1 ρ v1 vA 2 2 v
14
独立风轮
T
C P,0 = 4a(1 − a )2

《空气动力学基础》绪论

《空气动力学基础》绪论

飞行器适航工程系吴江浩空气动力学基础教材:1. 钱翼稷编著《空气动力学》2. 陈再新等编著《空气动力学》3. 吴子牛编著《空气动力学》主讲:交通科学与工程学院吴江浩Email:buaawjh@飞行器适航工程系吴江浩学习本课的几点要求•认真听讲,适当笔记-------空气动力学绝不是一门仅仅依靠自学和期末的几周突击就能学好的课程(提供课件)•积极思考,及时消化-------空气动力学概念多、方法新、公式多和大,但都具有明确的物理意义和实际的工程应用背景,需要紧密结合物理含义、运用数理基础和力学知识,认真消化吸收,完全能够很好掌握•回答随机提问;注意章末重点;每章必要时做简单测验;及时进行答疑;认真完成作业;平时成绩为出勤和作业。

•(课代表、答疑、交作业)课程结构飞行器适航工程系吴江浩一、空气动力学基本原理二、飞机空气动力学原理与应用三、飞行载荷与适航绪论飞行器适航工程系吴江浩一、几个基本的空气动力学问题二、空气动力学的研究对象三、空气动力学的发展进程简介四、空气动力学的发展新方向五、空气动力学的分类与研究方法一、几个基本的空气动力学问题飞行器适航工程系吴江浩人类虽然生活在流体环境中,但对一些流体运动现象却缺乏认识,比如:高尔夫球1. :表面光滑还是粗糙?2. :来自前部还是后部?汽车阻力机翼升力3. :来自下部还是上部?飞行器适航工程系吴江浩后来发现表面有很多划痕的旧球反而飞得更远。

这个谜直到世纪建立流体力学边界层理论后才解开。

20光滑的球表面有凹坑的球飞行器适航工程系吴江浩当时人们认为汽车高速前进时的阻力主要来自车前部对空气的撞击。

飞行器适航工程系吴江浩实际上,汽车阻力主要取决于后部形成的尾流。

飞行器适航工程系吴江浩目前在汽车外形设计中,流体力学性能研究已占主导地位,合理的外形使汽车具有更好的动力学性能和更低的耗油率。

飞行器适航工程系吴江浩20世纪30年代起,人们开始运用流体力学原理,改进了汽车的尾部形状,出现了甲壳虫型,阻力系数下降至0.6。

空气动力学基础要点[整理版]

空气动力学基础要点[整理版]

空气动力学基础(教学重点)绪论(1学时)第一章,,,,,,,,,,流体静力学(5学时)1、掌握连续介质假设的概念、意义和条件;2、了解掌握流体的基本物理属性,尤其是易流性、粘性、压缩性等属性的物理本质和数学表达;3、掌握流体力学中作用力的分类和表达、静止流体中压强的定义及其特性;4、初步掌握静止流体微团的力学分析方法,重点掌握流体平衡微分方程的表达及其物理意义;5、在流体平衡微分方程的应用方面,掌握重力场静止液体中的压强分布规律,重点掌握标准大气问题。

第二章,,,,,流体运动学与动力学基础(12学时)1、了解两种描述流场的方法的区别与特点,重点掌握欧拉法下加速度的表达和意义2、掌握流体微团的几种变形和运动及其数学表达,掌握流体微团的运动分解与刚体运动的异同;3、了解系统分析方法与控制体分析方法的区别与联系,了解雷诺输运方程的表达及意义;4、空气动力学基本方程是本章重点,积分形式方程要掌握质量方程、动量方程和能量方程的表达和意义,并会用它们解决实际工程问题;微分形式方程要重点掌握连续方程、欧拉方程和能量方程的表达和意义;掌握微元控制体分析方法;掌握伯努利方程的表达、意义、条件和应用;5、重点需要掌握的概念:流线、流量、散度、旋度、位函数、流函数、环量与涡的表达、意义及其相互之间的关系;第3章,,,,,,,,,,低速平面位流(6学时)3.1,,,,,,,,,,平面不可压位流的基本方程及其边界条件二维流动不可压无旋流动的基本方程是位函数满足的拉普拉斯方程不穿透条件(可滑移条件)拉普拉斯方程的叠加原理,速度也可叠加,压强不可叠加流函数也满足拉普拉斯方程3.2,,,,,,,,,,几种简单的二维位流各基本解的速度、位函数、流函数直匀流源,汇偶极子,偶极子的形成,轴线,方向点涡点涡的环量3.3,,,,,,,,,,一些简单的迭加举例直匀流加点源压强系数直匀流加偶极子达朗培尔疑题直匀流加偶极子加点涡儒可夫斯基升力定理了解二维对称物体绕流的数值解粘性流体动力学基础(4学时)流体粘性及其对流动的影响(流体的粘滞性,粘性流体运动特点)粘性流体的应力状态(理想流体与粘性流体作用面的受力特点,粘性流体的应力状态)广义牛顿内摩擦定理粘性流体动力学方程N-S方程粘性流体运动的基本性质(了解Re实验)边界层理论及其近似(6学时)边界层近似及其特征平面不可压缩流体层流边界层方程平板层流边界层相似解边界层动量积分方程(应用例子)边界层的分离现象第6,,,,,章,,,,,,,,,,高速可压流(12)6.1,,,,,,,,,,热力学基础知识(掌握)热力学的物系;平衡过程和可逆过程热力学一定律:内能和焓热力学第二定律,熵气体的状态方程完全气体等熵过程关系式6.2,,,,,,,,,,音速和马赫数(重点)现象微弱扰动传播过程与传播速度——音速音速公式马赫数6.3,,,,,,,,,,高速一维定常流(重点)一维定常绝热流的能量方程一维定常绝热流参数间的基本关系式总温T0,,总焓,临界点,,,,,,速度系数使用驻点参考量的参数关系式使用临界参考量的参数关系式等熵管流的速度与截面积关系,拉瓦尔管喷管的设计压强比,,,,,,M(λ)及流量的计算6.4,,,,,,,,,,微弱扰动的传播区,马赫锥(重点)马赫角6.5 ,,,,,,,,,,膨胀波(介绍)壁面外折dδ外折δ诸参数的变化趋势超音速流绕外钝角膨胀的计算6·6,,,,,,,,,,激波正激波(重点)正激波的形成,计算弱激波可以看作等熵波斜激波(介绍)波前波后气流参数的关系激波图线及应用压强决定激波圆锥激波(介绍)收敛—扩张喷管在非设计状态下的工作(介绍)。

空气动力学基础01大气物理学

空气动力学基础01大气物理学

1.1.3 大气压力

大气压力

大气层内空气的压强,即物体单位面 积上承受的空气的垂直作用力。

产生原因


上层空气的重力对下层空气造成了压 力 空气分子不规则的热运动

因为大气压力随高度和温度变化, 所以规定在海平面温度为15 ℃时 的大气压力为一个标准大气压
1.1.4 粘性

粘性

流体内两相邻流层的流速不同时,或流体与物体间发生相对 运动时,两个流层接触面上或流体和物体接触面上便产生相 互粘滞和相互牵扯的力,这种特性就是流体的粘性。
1.1.7 音速

音速

小扰动在介质中的传播速度。 不同介质下: 2 p
a1 T
1.2 大气层的构造

大气分为五 层


对流层 平流层 中间层 电离层( 热层) 散逸层
1.3 国际标准大气(ISA)

1.3.1 国际标准大气的制定



大气的物理性质是变化的,使航空器上产生的空气动力也发 生变化,影响飞行性能; 为便于设计、试验和分析航空器性能,需要建立一个统一的 标准,即标准大气。 国际民航组织(ICAO)根据对北纬40 °~50°区域的地球大 气多年观测的结果,加以模型化,给出的一种假想的大气模 型。
525.95 462.49 405.39 354.16 308.31 267.40 231.02 198.76 170.26 145.50
0.7846
0.6920 0.6085 0.5334 0.4660 0.4057 0.3519 0.3040 0.2615 0.2240 0.1915
1.0066

当大气流过飞行器表面时,在一些部位气流速度增加 ,气流的压力会减小,密度也会随之下降

第二章 空气动力学基础

第二章 空气动力学基础

U2为高空侦察机,为长时间翱翔,典型出 一次任务约10~12小时,U2展弦比为10.5
F104为高速拦截机,速度达2倍音速以上, 展弦比4.5,自然界也是如此,信天翁为长 时间遨翔,翅膀展弦比高,隼为掠食性动 物,为求高速、灵活,所以展弦比低。
• 第八节 基本飞行动作
升降舵:控制飞机的升降(抬头。、压头)。 升降舵面拉起,飞机以重心为轴,机头向上,机 尾向下,进行爬升。相反,舵面下压,进行下降。
• 第六节 雷诺数与失速
机翼的升力随攻角的增大而增加,攻角就是翼弦 线与气流的夹角
攻角为零度时对称翼此时不产生升力,但克拉克Y 翼及内凹翼仍有升力,后二种翼型要负攻角才不 产生升力,不产生升力的攻角叫零升攻角﹝如图 3-11﹞,
所以对称翼的零升攻角就是零度,谁都知道攻角 增加有一个上限,超过这上限就要失速,那机翼 什么时候会失速呢?﹝图3-12a﹞是飞机正常飞行 时流经机翼的气流,﹝图3-12b﹞是飞机失速时的 气流,这时上翼面产生强烈乱流,直接的结果是 阻力大增,而且气流冲击上翼面,使升力大减, 于是重力主控这架飞机,就是摔下去啦,那我们 想事先知道机翼什么时候会失速,这就有需要知 道雷诺数
• 第四节 飞行中的阻力
如何减少阻力是飞机设计的一大难题,飞行中飞 机引擎的推力全部用来克服阻力,如果可以减少 阻力则飞机可以飞得更快,不然可以把引擎改小 减少重量及耗油量,拿现代私人小飞机与一次大 战战斗机相比,引擎大约都差不多一百多匹马力, 现代私人小飞机光洁流线的机身相对于一次大战 战斗机整架飞机一堆乱七八糟的支柱与张线,现 代飞机速度几乎是它前辈的一倍,所以减少阻力 是我们设计飞机时需时时刻刻要注意的
液冷式发动机
空冷式发动机
• 我们先要了解阻力如何产生,一架飞行中飞机阻 力可分成四大类:

《空气动力学基础》第5章

《空气动力学基础》第5章

0.4
1% -0.16% -0.84%
0.6
1% -0.36% -0.64%
1.0
1% -1.0%
0%
1.2
1.3
1.6
1% -1.44% 0.44%
1% -1.96% 0.96%
1% -2.56% 1.56%
Ma<0.3时忽略压缩性影响(不可压);
0.3<Ma<1时,密度相对变化率小于速度相对变化率;
管道的最小截面不一定时临界截面。
22:31
9
第五章 一维定常可压缩管内流动
§5-1 理想气体在变截面管道中的流动
管道截面积变化对气流参数的影响
不同马赫数下气流的压缩性不同; 密度变化和速度变化的方向总是相反。
d dv dA 0 vA
Ma
参数
dv v
d
dA A
0.3
1% -0.09% -0.91%
流量函数q(λ)
qm
v a
a A
q(λ)
1
0
0 *
(
)
1 1 2
v a
11
0
2 11 1
p0 RT0
a
2
1
RT0
1
1
qm
()
1 1 2
2 1
1
p0 RT0
2 1
RT0
A
1
1
qm q
2 2 1
1
R
1
p0 A T0
2 1
R
1
p0 A q
气压强,已知:容器内的压强为7.0×105 Pa,温度为288K,大气压强为 1.0133×105 Pa,喷管出口面积为0.0015m2。求:①初始空气的出口速度ve 和通过喷管的流量qm;②设容器体积为1求此状态能保持多长时间?

空气动力学基础第二版课程设计

空气动力学基础第二版课程设计

空气动力学基础第二版课程设计介绍该课程设计是基于《空气动力学基础》第二版的学习内容设计的,目的是让学生深入了解空气动力学基础的知识,并能够应用所学知识解决实际问题。

课程目标通过学习本课程,学生应该具备以下能力:1.掌握基本的空气动力学原理和理论知识;2.熟练运用空气动力学的数学模型进行计算;3.能够应用所学知识解决实际的工程问题;4.具备独立思考和解决问题的能力。

课程内容本课程设计主要包含以下几个部分:第一部分:空气动力学基础本部分主要介绍空气动力学的基本原理,包括流体静力学和流体动力学的基本概念,探讨空气动力学方程以及流动的基本特性。

第二部分:空气动力学数学模型本部分主要介绍空气动力学的数学模型,包括欧拉方程、纳维-斯托克斯方程和边界层方程等,同时介绍经典的空气动力学问题的数学模型,如理想气体状态方程等。

第三部分:空气动力学实际应用本部分主要介绍空气动力学在实际工程中的应用,包括空气动力学设计、飞行器设计、风电场等。

课程设计任务本课程设计的任务如下:任务一:流体静力学和流体动力学的基本概念1.研究流体静力学和流体动力学的基本概念;2.掌握流体静力学和流体动力学的数学模型和理论;3.熟悉流体静力学和流体动力学的应用。

任务二:欧拉方程、纳维-斯托克斯方程和边界层方程1.研究欧拉方程、纳维-斯托克斯方程和边界层方程等数学模型;2.掌握欧拉方程、纳维-斯托克斯方程和边界层方程等的理论和应用;3.熟悉欧拉方程、纳维-斯托克斯方程和边界层方程等的应用案例。

任务三:空气动力学的实际应用1.研究空气动力学在实际工程中的应用;2.掌握空气动力学在飞行器设计、风电场等方面的应用;3.熟悉空气动力学在流体机械和环境保护等领域的应用案例。

评分标准学生作业的评分标准如下:1.任务一、任务二、任务三的完成情况每项占1/3分数;2.对于每个任务的完成情况,将分别考虑其实现的难度和实现的效果;3.作业提交时,应包含文本说明,代码实现,结果分析和评估等。

《空气动力学基础》第3章

《空气动力学基础》第3章

压强系数定义
Cp
p p
1 2
v2
Cp
1
v v
2
伯努利方程
p
1 2
v2
p
1 2
v2
Cp
sin 2
sin
2
22:34
28
第三章 不可压理想流体绕物体的流动
§3-2拉普拉斯方程的基本解
直匀流中的点源
直匀流+点源
钝头体低速流动
过驻点流线
固体壁面
外表面的压强系数
驻点处速度为零,压强系数等于1; 向后流动速度迅速增大,压强系数降低;
22:34
11
第三章 不可压理想流体绕物体的流动
§3-1不可压理想流体的无旋运动 §3-2 拉普拉斯方程的基本解 §3-3 绕圆柱的流动
22:34
12
第三章 不可压理想流体绕物体的流动
§3-2拉普拉斯方程的基本解
不可压位流的两个特性:
(1)所满足的基本方程为拉普拉斯方程。 (2)不可压位流的解具有可叠加的特性。
2 2
x2 y2 0
二维流动----平面势流
名称 : 势函数
流函数
条件: 无旋流
引入:
vy vx 0
z x y
定义:
vx x ,vy= y
等值线: Φ=C (等势线)
定常不可压
v vx vy 0
x y
vx y ,vy= x
Ψ=C (流线)
性质: 等势线与速度垂直
流线与等势线正交
位于原点处的点涡
vr 0
v
2 r
速度位 arctan y
2 2
x
流函数 ln r ln(x2 y2 )

空气动力学基础(刘沛清,2017,12)

空气动力学基础(刘沛清,2017,12)
2
当气流迎着翅膀(翼型)吹过时,会因为上下翼面产生 的气流速度差而产生压力差,通常是上翼面的空气流速快、 压力小,下翼面的气流速度慢、压力大,从而将翅膀向上托 起,产生升力。
1738年瑞士科学家伯努利给出理想流体能量方程式,建立了空气压强与速度 之间的定量关系,为正确认识升力提供了理论基础,特别是由该能量定理得 出,翼型上的升力大小不仅与下翼面作用的空气顶托力有关,也与上翼面的 吸力有关,后来的风洞试验证实:这个上翼面吸力约占翼型总升力的60%~ 70%。
(3)李林达尔,O.(18481896)
德国工程师和滑翔飞行家李 林达尔,是一位制造与实践固定 翼滑翔机航空先驱之一。李林达 尔制造了多架单翼或双翼滑翔机, 并在柏林附近试飞2000多次, 积累了丰富资料,虽然其最终未 能实现动力飞行,但他所积累的 大量飞行经验和数据,为日后美 国莱特兄弟实现动力飞行提供了 许多宝贵教益。 1889年,著《鸟类飞行──航空 基础》。
莱特兄弟 奥维尔(1871—1948) 维尔伯(1867—1912)
世人一般认为他们于 1903年12月17日首次完成 完全受控制、附机载外部 动力、机体比空气浮力大、 可持续飞行,并因此将发 明了世界上第一架实用飞 机的成就归功给他们。
1903年12月17日,世界 上第一架有动力、可操纵的 飞机由美国莱特兄弟驾驶试 飞成功。飞行者1号的起飞重 量仅仅360kg,勉强能载一个 人飞离地面,速度比汽车还 慢,只有48km/h,最成功一 次飞行只有59秒,距离260m。 但是就这么一架不起眼的小 飞机翻开了人类航空史上的 重要一页,从此人类实现了 带动力飞行的固定翼飞机, 让人类进入航空文明时代。
(1) 达·芬奇
15世纪70年代,达芬奇画出的一种由飞行员 自己提供动力的飞行器,并称这种飞行器为 “扑翼飞机”。

空气动力学基础 ppt课件

空气动力学基础 ppt课件
① 理想流体,不考虑流体粘性的影响。 ② 不可压流体,不考虑流体密度的变化,Ma<0.4。 ③ 绝热流体,不考虑流体温度的变化,Ma<0.4。
第二章 第 5 页
空气动力学基础
相对气流方向
自然风方向
运动方向
第二章 第 6 页
●空气动力学基础
只要相对气流速度相同,飞机产生的空气动力就相同。
第二章 第 7 页
●空气动力学基础
直流式风洞
第二章 第 8 页
回流式风洞
●空气动力学基础
第二章 第 9 页
●空气动力学基础
第二章 第 10 页
空气动力学基础
迎角就是相对气流方向与翼弦之间的夹角。
第二章 第 11 页
●空气动力学基础
第二章 第 12 页
●空气动力学基础
平飞中,可以通过机头高低判断迎角大小。而其他飞 行状态中,则不可以采用这种判断方式。
第二章 第 21 页
空气动力学基础
流体流过流管时,在同一时间流过流管任意截面的 流体质量相等。
质量守恒定律是连续性定理的基础。
第二章 第 22 页
●空气动力学基 础
1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v 1 A 1
单位时间内流过截面1的流体质量为1 v1 A1
同理,单位时间内流过截面2的流体质量为 2 v2 A2
P0
—总压(全压),它是动压和静压之和。总压可以理解为, 气流速度减小到零之点的静压。
第二章 第 27 页
●空气动力学基础 同一流线: 总压保持不变。 动压越大,静压越小。 流速为零的静压即为总压。
第二章 第 28 页
●空气动力学基础 同一流管: 截面积大,流速小,压力大。 截面积小,流速大,压力小。

空气动力学基础知识

空气动力学基础知识

1第一章空气动力学基础知识(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第四单元飞机与飞机系统第一章空气动力学基础知识大气层和标准大气地球大气层地球表面被一层厚厚的大气层包围着。

飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。

根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。

对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。

对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。

大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。

另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。

对流层内空气的组成成分保持不变。

从对流层顶部到离地面约30公里之间称为平流层。

在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。

同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下度,所以又称为同温层。

同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。

中间层从离地面30公里到80至100公里为止。

中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。

在这一层中,温度先随高度增加而上升,后来又下降。

中间层以上到离地面500公里左右就是电离层。

这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。

在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。

空气动力学理论基础

空气动力学理论基础


q qm m ,,d 0 (1 va1)A v1A1 aC CP P,,d 0
表明:闭式风轮的功率系数的相对增加等于质量流量的 相对增加。
CFD计算结果
1
0.8
0.6
CP
0.4
独立风轮理论值
0.2
独立风轮计算值
闭式风轮计算值
0
0.2 0.4 0.6 0.8 1
CT
闭式风轮的功率系数高于独立风轮的贝茨极限;但取决
(3)贝茨极限为0.593。实际上,由于风速、
风向随机变化等复杂的气动问题,以及叶片表
面粗糙度的摩擦损失等方面的影响,一般认为
功率系数达到40%就比较满意了。
(4) A 1 1 2 a
A2
二 阻力型风力发电机组的最大功率系数
放置在速度为v1的气流中的
物体所受阻力为
v1
FD
CD
1 2
Avr2
相对风速
风轮:多个叶片固定在轮毂上就构成了 风轮。 旋转平面:与风轮轴垂直,由叶片上距
R δr r
风轮轴线坐标原点等距的点旋转切线构
成的一组相互平行的平面。
风轮直径(D):风轮扫掠圆面对直径。
风轮的轮毂比(Dh/D):风轮轮毂直径Dh
与风轮直径之比。
U(1-a)
叶素:风轮叶片在风轮任意半径r处的 一个基本单元。它是由r处翼型剖面的

dCP da
CDa(23a)0
求解得 a=0 或 a=2/3
a=0舍去,故a=2/3,可得最大功率系数:
4 CP,max27CD0.148CD
第三节 闭式风轮
将风轮放到扩压管中, 其风能利用系数有可能 v1 超过贝茨极限。
v

空气动力学基础60912课件

空气动力学基础60912课件

流体动力学应用
航空航天
流体动力学在航空航天领域中有 着广泛的应用,如飞机、火箭和
卫星的设计与优化。
交通运输
流体动力学在交通运输领域中也有 着重要的应用,如汽车、船舶和高 速列车的空气动力学设计和优化。
能源工程
流体动力学在能源工程领域中同样 有着广泛的应用,如风力发电、水 力发电和火力发电中的流体动力学 的应用。
利用流体静压力转换原理 ,实现不同压力级别之间 的转换。
03
流体动力学基础
流体动力学基本概念
流体
流体是气体和液体的总称,具有流动性和不 可压缩性。
速度
流体在单位时间内流过单位面积的量,表示 为流速。
压力
流体作用于单位面积上的力,表示为压强。
密度
流体的质量与体积的比值,表示为密度。
流体动力学基本方程
THANKS
感谢观看
汽车设计
汽车的外形设计和内部空 气流动管理都涉及到气体 动力学的应用。
航天器设计
航天器的设计和运行过程 中,气体动力学发挥了重 要作用,如火箭推进、卫 星轨道等。
05
湍流基础
湍流基本概念
湍流定义
湍流产生原因
湍流是一种高度复杂的流动状态,其 中流体的速度、压力和方向在空间和 时间上都有随机变化。
湍流通常由流体内部的各种非线性相 互作用和外部扰动引起,如流体粘性 、边界条件和重力等。
04
气体动力学基础
气体动力学基本概念
气体
气体是由大量分子组成的连续介质,具有流动性和可压缩 性。
流场
流场是指气体流动的空间和区域。
流线
流线是气体流动路径上的点的集合,表示气体流动的方向 和速度。
流速、流量和流阻
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●流线谱的特点
➢ 流线谱的形状与流动速度无关。
➢ 物体形状不同,空气流过物体的流线谱不同。
➢ 物体与相对气流的相对位置(迎角)不同,空气流 过物体的流线谱不同。
➢ 气流受阻,流管扩张变粗,气流流过物体外凸处或 受挤压 ,流管收缩变细。
➢ 气流流过物体时,在物体的后部都要形成涡流区。
第二章 第 21 页
第二章 第 29 页
精品课件
●伯努利定理适用条件
➢ 气流是连续、稳定的,即流动是定常的。 ➢ 流动的空气与外界没有能量交换,即空气是绝热的。 ➢ 空气没有粘性,即空气为理想流体。 ➢ 空气密度是不变,即空气为不可压流。 ➢ 在同一条流线或同一条流管上。
第二章 第 30 页
精品课件
2.1.7 连续性定理和伯努利定理的应 用
1 2
v2
PP0
上式中第一项称为动压,第二项称为静压,第三项称为总压。
第二章 第 26 页
精品课件
●伯努利定理
1 2
v2
PP0
1 2
v 2—动压,单位体积空气所具有的动能。这是一种附加的压
力,是空气在流动中受阻,流速降低时产生的压力。
P —静压,单位体积空气所具有的压力能。在静止的空气中, 静压等于当时当地的大气压。
③ 与动压、静压相关的仪表
空速表
高度表
第二章 第 33 页
精品课件
升降速度表
●空速表
第二章 第 34 页
精品课件
●升降速度表
第二章 第 35 页
精品课件
●高度表
第二章 第 36 页
精品课件
本章主要内容
2.1 空气流动的描述 2.2 升力 2.3 阻力 2.4 飞机的低速空气动力特性 2.5 增升装置的增升原理
精品课件
●流线和流线谱
流线谱是所有流线的集合。
第二章 第 18 页
精品课件
●流线和流线谱的实例
第二章 第 19 页
精品课件
●流线的特点 ➢ 该曲线上每一点的流体微团速度与曲线在该点的切线 重合。 ➢ 流线每点上的流体微团只有一个运动方向。
➢ 流线不可能相交,不可能分叉。
第二章 第 20 页
精品课件
精品课件
●相对气流方向就是飞机速度的反方向
第二章 第 12 页
精品课件
●相对气流方向是判断迎角大小的依据
平飞中,可以通过机头高低判断迎角大小。而其 他飞行状态中,则不可以采用这种判断方式。
第二章 第 13 页
精品课件
●水平飞行、上升、下降时的迎角
上升
第二章 第 14 页
平飞
精品课件
下降
●迎角探测装置
① 用文邱利管测流量
1 A1, v1 ,P1
2 A2, v2 ,P2
1 2
v12
v1 P1
v2
A2 A1
1 2
v22
文邱利管测流量
v22P 1P 2/ 1A 2 2/A 1 2
P2
第二章 第 31 页
精品课件
② 空速管测飞行速度的原理
12v2PP0
第二章 第 32 页
精品课件
v 2(P0 P)
第二章 第 37 页
精品课件
2.2 升力
精品课件
升力垂直于飞行速度方向,它将飞机支托在空中, 克服飞机受到的重力影响,使其自由翱翔。
升力 Lift
拉力 Pull
第二章 第 39 页
重力 Weight
精品课件
阻力 Drag
P0
—总压(全压),它是动压和静压之和。总压可以理解为, 气流速度减小到零之点的静压。
第二章 第 27 页
精品课件
●深入理解动压、静压和总压
同一流线: 总压保持不变。 动压越大,静压越小。 流速为零的静压即为总压。
第二章 第 28 页
精品课件
●深入理解动压、静压和总压
同一流管: 截面积大,流速小,压力大。 截面积小,流速大,压力小。
第二章 第 15 页
精品课件
2.1.4 流线和流线谱
空气流动的情形一般用流线、流管和流线谱来描述。
流线:流场中一条空间曲线,在该曲线上流体微团的 速度与曲线在该点的切线重合。对于定常流,流线是 流体微团流动的路线。
第二章 第 16 页
精品课件
流管:由许多流线所围成的管状曲面。
第二章 第 17 页
只要相对气流速度相同,飞机产生的空气动力就相同。
第二章 第 7 页
精品课件
●对相对气流的现实应用
直流式风洞
第二章 第 8 页
回流式风洞
精品课件
●风洞实验段及实验模型
第二章 第 9 页
精品课件
●风洞的其它功用
第二章 第 10 页
精品课件
2.1.3 迎角
迎角就是相对气流方向与翼弦之间的夹角。
第二章 第 11 页
则根据质量守恒定律可得:
1v1A 12v2A 2 即 v1A 1v2A 2C 常 数
结论:空气流过一流管时,流速大小与截面积成反比。
第二章 第 23 页
精品课件
●日常的生活中的连续性定理
河水在河道窄的地方流 得快,河道宽的地方流
得慢
山谷里的风通常比平原大
高楼大厦之间的对流 通常比空旷地带大
第二章 第 24 页
精品课件
2.1.5 连续性定理
流体流过流管时,在同一时间流过流管任意截面 的流体质量相等。
质量守恒定律是连续性定理的基础。
第二章 第 22 页
精品课件
●连续性定理
1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v 1 A 1
单位时间内流过截面1的流体质量为1 v1 A1
同理,单位时间内流过截面2的流体质量为2 v2 A2
精品课件
2.1.1 流体模型化
① 理想流体,不考虑流体粘性的影响。 ② 不可压流体,不考虑流体密度的变化,Ma<0.4。 ③ 绝热流体,不考虑流体温度的变化,Ma<0.4。
第二章 第 5 页
精品课件
2.1.2 相对气流
相对气流方向
自然风方向
运动方向
第二章 第 6 页
精品课件
●飞机的相对气流方向与飞行速度方向相反
精品课件
2.1.6 伯努利定理
同一流管的任意截面上,流体的静压与动压之 和保持不变。
能量守恒定律是伯努力定理的基础。
第二章 第 25 页
精品课件
●伯努利定理
空气能量主要有四种:动能、压力能、热能、重力势能。 低速流动,热能可忽略不计;空气密度小,重力势能可忽略不计。 因此,沿流管任意截面能量守恒,即为:动能+压力能=常值。公 式表述为:
第二章
低速空气动力学基础
精品课件
本章主要内容
2.1 低速空气动力学 2.2 升力 2.3 阻力 2.4 增升装置的增升原理
第二章 第 2 页
精品课件
2.1 空气流动的描述
精品课件
空气动力是空气相对于飞机运动时产生的,要学习 和研究飞机的升力和阻力,首先要研究空气流动的基 本规律。

第二章 第 4 页
相关文档
最新文档