流体力学-第六章1-2

合集下载

流体力学第6章讲解

流体力学第6章讲解

2、射孔的形状,圆孔口和方孔显然其扩张的情况不会相同。不同的射口形状有 不
同的实验值。用φ表示这个影响因素, 对圆断面射流 φ=3.4,长条缝射孔 φ=2.44。
圆孔综口合射这流两:个t影g响因素K:x k=Kφα 3.4a
x
R 1 3.4 as 3.4( as 0.294)
r0
vm
vm r0 1
1
v0 R
2
1
[(11.5 )2 ]2d
0
9
第二节圆断面射流的运动分析
1
n
1
n
[(1 1.5 )2 ] d Bn; [(1 1.5 )2 ] d Cn
0
0
n
1
1.5
2
2.5
3
Bn
0.0985
0.064
0.0464
0.0359
0.0286
第一节无限空间淹没紊流射流特性
二、紊流系数a及几何特征
其斜率即:tga=常数=k。 对于不同的条件,k值是不同的常数,也叫实验常数。 通过实验发现,k值的影响因素有两个主要的因素:
1、射孔出口截面上气流的紊流强度。 紊流强度的大小用紊流系数a(A)来表示:a大紊流的强度就大,因此,紊
流 系数的大小可以反映出射流的扩张能力,所以,a也叫表征射流流动结构的 特征系数。另一方面,由于a反映的是射流混合能力的大小,因此,a还可以反 映孔口出口截面上的速度均匀程度。a越小,则混合能力越差,说明流速越均匀 。
二、断面流量Q
R
微环面的流量表达式 Q 2vydy Q0 r02v0
0
主体段:
R
Q
v r 0
y
y
2 ( )( )d( )

《工程流体力学》第六章 不可压缩流体平面有势流动

《工程流体力学》第六章  不可压缩流体平面有势流动

3) y = 0 将 y=0 代入
驻点:
把驻点坐标代入流函数y:
过驻点流函数值:y = 0
物体轮廓线方程为:
求物体半宽b/2: 把 x=0 代入物体轮廓线方程:
y:物体半宽b/2
已知流函数 -> 速度场,压强场 在物体前部:附面层很薄 粘性影响大的流动区域:很薄 计算结果:与实验较符合
在物体后部:附面层增厚 形成:尾部旋涡 无粘流势流理论:不再适用
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
一般称零流线
粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
每一流动都满足拉普拉斯方程:
什么条件? 无旋条件 二维不可压连续方程:
不可压平面有势流动的流函数方程
不可压连续方程和无旋条件 -> 流函数方程 流函数方程-拉普拉斯方程:仅适用于不可压平面有势流 动
不可压平面有旋流动或可压缩平面有势流动: 不存在流函数方程
三、边界条件: 流体:从无穷远流向某物体 条件:不分离 物面法向流体速度:0,即物面是一条流线
都存在流函数
只有无Байду номын сангаас流动:才存在势函数 平面流动:流函数更普遍

《工程流体力学》第六章 不可压缩流体平面有势流动

《工程流体力学》第六章  不可压缩流体平面有势流动
一般称零流线
粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
无旋流动:才存在势函数 平面流动:流函数更普遍
流函数与势函数一样:可以用来描述整个流场 由流函数:就可求出流速和压强分布
-流线微分方程
y=c曲线,即等流函数线:流线
给定一组常数值:就可得流线族
流体:不能穿越流线,也不能穿越固体表面 固体表面:可看作流线,通常是零流线
即y=0的流线:代替物体表面
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
过驻点的流函数值: 轮廓线方程:
可见 源的作用:是提前将前方来流的直匀流推开,与物体头部 作用相同
不同强度的源流:沿轴线排列 并:与直匀流叠加 可得到:直匀流绕实际钝头体物体的流动
三、直匀流与一对等强度源汇的叠加:
源:在x轴(-a, 0)处,强度 Q 汇:在x轴(a, 0 )处,强度 -Q 复合流动:直匀流与该源、汇叠加
注意: 三维流动:不存在流函数
不存在等流函数线 但存在流线
流函数与流量关系: 流动:二维 任意曲线:连接a、b两点 某瞬时过微元段ab的流量:

《流体力学》第六章气体射流

《流体力学》第六章气体射流
和圆断面射流相比,流量沿程的增加,流速沿 程的衰减都要慢些,这是因为运动的扩散被限 定在垂直于条缝长度的平面上的缘故。
.
射流参数的计算
段 名
参数名称
符号
圆断面射流
平面射流
扩散角 主
α tg3.4a tg2.44a

段 射流直径 或半高度
D b
D d0
6.8
as d0
0.147
b b0
2.44
0.095 as 0.147
d0
v1 0.492
v0
as 0.41
b0
v2
v2 v0
as
0.23 0.147
d0
v2 v0
0.833 as 0.41 b0
.
段名 参数名称
符 号
圆断面射流
平面射流

流量
Q
2
QQ0 10.76ar0s1.32ar0s
Q Q0
1 0.43 as b0

v 断面平均 流速
B0Kx
tgKxK3.4a
x
紊流系数
起始段
主体段
C
B
A
R
M
α r0
核心
0
D X0
边 E
界 层
Sn
F
S
X
射流结构
.
紊流系数与 出口断面上 紊流强度有 关,也与出 口断面上速 度分布的均 匀性有关。 (表6-1)
紊流系数
喷嘴种类 带有收缩口的喷嘴
a
0.066 0.071
圆柱形管
带有导风板的轴流式通风机 带导流板的直角弯管
已知射流直径D, v2,d0,a, 求S和Q0

流体力学第二版(蔡增基)第六章

流体力学第二版(蔡增基)第六章
②是否存在速度势函数?若存在,求出其表达式。 【解】(1)由不可压流体平面流动的连续性方程
ux u y (4 x) (4 y) 0 x y x y
该流动满足连续性方程。 (2)由于是平面流动
x y 0
1 u y u x 1 4 y 4 x z 0 2 x y 2 x y 该流动为无旋流动,存在速度势函数。
u y x u x y
平面流动为无旋流动。
平面无旋流动的速度势函数为: d u xdx u y dy 平面无旋流动的拉普拉斯方程:
2 x
2

2 y
2
0
【例2】有一不可压流体平面流动的速度分布为
u x 4 x,u y 4 y;
①该平面流动是否满足连续性方程;
o
D
C
E
把对角线EOF的旋转角速度定义为整个流 E' 体微团在xoy面的旋转角速度,用 z 表示。
1 u y u x 2 y x 1 u u y x z 2 z x
EOF的旋转角速度可看成是AOC和BOD角速度的平均:
左侧中心点沿x方向的流速为:
u x左 u x u x dx x 2
dz dy
u x dx x 2
dx
u x右 u x 右侧中心点沿x方向的流速为:
dt时间内沿x方向流入和流出的净体积流量为:
dQx (u x
dQx u x dxdydz dt x
如图(a)所示,虽然流体微团运动轨迹是圆形,但由 于微团本身不旋转,故它是无旋流动;
在图 (b)中,虽然流体微团运动轨迹是直线,但微团绕 自身轴线旋转,故它是有旋流动。

流体力学讲义第六章流动阻力及能量损失2

流体力学讲义第六章流动阻力及能量损失2

流体⼒学讲义第六章流动阻⼒及能量损失2第六章流动阻⼒及能量损失本章主要研究恒定流动时,流动阻⼒和⽔头损失的规律。

对于粘性流体的两种流态——层流与紊流,通常可⽤下临界雷诺数来判别,它在管道与渠道内流动的阻⼒规律和⽔头损失的计算⽅法是不同的。

对于流速,圆管层流为旋转抛物⾯分布,⽽圆管紊流的粘性底层为线性分布,紊流核⼼区为对数规律分布或指数规律分布。

对于⽔头损失的计算,层流不⽤分区,⽽紊流通常需分为⽔⼒光滑管区、⽔⼒粗糙管区及过渡区来考虑。

本章最后还阐述了有关的边界层、绕流阻⼒及紊流扩散等概念。

第⼀节流态判别⼀、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。

1.层流层流(laminar flow),亦称⽚流:是指流体质点不相互混杂,流体作有序的成层流动。

特点:(1)有序性。

⽔流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。

(2)粘性占主要作⽤,遵循⽜顿内摩擦定律。

(3)能量损失与流速的⼀次⽅成正⽐。

(4)在流速较⼩且雷诺数Re较⼩时发⽣。

2.紊流紊流(turbulent flow),亦称湍流:是指局部速度、压⼒等⼒学量在时间和空间中发⽣不规则脉动的流体运动。

特点:(1)⽆序性、随机性、有旋性、混掺性。

流体质点不再成层流动,⽽是呈现不规则紊动,流层间质点相互混掺,为⽆序的随机运动。

(2)紊流受粘性和紊动的共同作⽤。

(3)⽔头损失与流速的1.75~2次⽅成正⽐。

(4)在流速较⼤且雷诺数较⼤时发⽣。

⼆、雷诺实验如图6-1所⽰,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。

(2)ef段:当υ>υ''时,流动只能是紊流。

(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于⽔流的原来状态。

图6-1图6-2实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程⽔头损失与流线的⼀次⽅成正⽐。

第1学期大气科学专业流体力学第6章旋转流体动力学

第1学期大气科学专业流体力学第6章旋转流体动力学
该算子是联系惯性坐标系与旋转坐标系的普遍关系。
8
9
牛顿第二定理是建立在惯性坐标系的基础上的,即:
daVa
Fi
dt
i
以下分析得出适用于描述旋转流体的运动方程。
10
da A dA A dt dt
Va V r
daVa dt
dVa dt
Va
daVa
d
V r
V r
dt
dt
daVa dV 2V ( r ) dt dt
第六章 旋转流体动力学
前面讨论的流体运动,是在惯性坐标系下进行的, 并没有考虑地球的旋转效应。
地球自身以一定速度自转,而地球的旋转效应, 将会对地球大气、海洋等流体的运动产生很显著的影 响。
大多数的地球物理流体力学所关心的问题均属于 旋转流体动力学问题。
1
低压 高压
2
低压 高压
3
本章将主要介绍考虑旋转效应下的流体运动。 主要内容
根据矢量运算法则
(a b) (b • )a (a • )b a( • b) b( • a)
(k V ) (V • )k (k • )V k( •V ) V ( • k)
31
(k V ) (V • )k (k • )V k( •V ) V ( • k)


由于是 k 常矢量,
)V
1 R0
1 p
1 Fr
g
Ek2V 2k
V
21
特征罗斯贝数
R0
特征惯性力 特征偏向力
U2 /L U
U
/
L
是衡量旋转效应的一个重要量。
22
R0 U / L
由Rossby数的定义可知:

流体力学 第6章

流体力学 第6章

6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v

8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数

流体力学第六章 边界层理论

流体力学第六章 边界层理论
v ? y
流体力学第六章
流体力学第六章
Q
v
uv
u dy
udy U
y x 0 0 x
x 0

0
uK1
v y
dy
0
uK1
u x
dy
1 K
2
0
x
uK2dy
1 K
2
x
0
uK2dy
U K2
于是第二个积分
vuKudy
v
0
y K10 y
uK1
dyK1(x10u(dyU uK2)U dyK1UK2)
流体力学第六章
u
u x
v
u y
p x
2u y 2
已知普朗特方程组
p y
0
u x
v y
0
0
uk 1
udy x
0
ukv
udy y
p x
0
uk dy
0
uk
2u y2 dy
积分一
积分二
积分三
其中 (x)
(6 2 1)
流体力学第六章
b(x) a(x)
ddxx(x)dx
x 0
0
uk1
u y
2
dy
uk2dy Uk1
udy
k 1 x 0
k 1 x 0
p x
0
uk
dy
k
0
uk1
u y
2 dy
(6-2-3)
流体力学第六章
uk2dyUk1 udy
k1 x 0
k1x0
px0ukdyk0uk1uy2dy
(6-2-3)
上式为哥路别夫积分方程。

《流体力学》第六章_粘性流体绕物体的流动

《流体力学》第六章_粘性流体绕物体的流动

第四节 平面层流边界层的微分方程
❖ 在这一节里,将利用边界层流动的特点如流体的粘度大小、 速度与温度梯度大和边界层的厚度与物体的特征长度相比为 一小量等对N-S方程进行简化从而导出层流边界层微分方程。 在简化过程中,假定流动为二维不可压定常流,不考虑质量 力,则流动的控制方程N-S方程为:
vx
vx x
◆空间流动三维问题,N—S方程及其求解 ◆扰流阻力及其计算 ◆附面层的问题
第一节 不可压缩粘性流体的运动微分方程
以流体微元为分析对象,流体的运动方程可写为 如下的矢量形式:
DV F P
Dt
(8-1)
这里 :
DV V V V
Dt t
(8-2)
是流体微团的加速度,微分符号:
D Dt
t
V
p 2
vr r
p
3
2 r0
cos
( ) r, rr0
(1 vr r
v0 r
v ) v
r
r
3
sin
2 r0
(8-25)
对上述两式积分,可分别得到作用在球面上的压强和切应力 的合力。将这两个合力在流动方向的分量相加,可得到流体 作用在圆球上的阻力为:
FD 6 r0 3 d
2vy z 2
)
p z
(2vz
x 2
2vz y 2
2vz z 2
)
(8-18)
一、蠕动流动的微分方程
●如果流动是不可压缩流体,则连续性方程为:
vx v y vz 0 x y z
(8-19)
将式(8-18)依次求
2 x
p
2

2 y
p
2
、 2

《高等流体力学》第6章 不可压理想流体平面无旋流动

《高等流体力学》第6章 不可压理想流体平面无旋流动

(
( ) ( ) ( ) ( )
( )
)
其中:
∂Ω + v ⋅∇ Ω = 0 ∂t
( )
v ⋅∇ Ω= ∇ψ × k ⋅∇Ω k= ( ∇Ω × ∇ψ ) k k = ∇Ω × ∇ψ 2 Ω = −∇ ψ 再由: ∂ 2 2 可得: ∇ + ∇ ∇ ψ k ψ ) × ∇ψ = 0 ( ) ( ∂t
ϕ 和 ψ 构成一个复势,满足柯西-黎曼条件且可导。
二、等势线与等流线的正交性
v×v = ∇ϕ × ∇ψ × k = ∇ϕ ⋅ k ∇ψ − ( ∇ϕ ⋅∇ψ ) k = 0
(
) (
)
( ∇ϕ ⋅∇ψ ) k = 0 故:
对平面问题为0
即: ∇ϕ ⋅∇ψ = 0 可见等势线与等流线正交。
n
τ ×n = k
τ

∂ψ = 0 n ⋅ v = n ⋅ ∇ψ × k = ∇ψ k × n = −∇ψτ = − ∂l
(
)
(
)
故可提出无分离边界条件:
(ψ )b = const
§6-3 不可压理想流体平面无旋流动的速度 势与流函数的关系
一、柯西-黎曼条件 速度与势函数、流函数的关系:
( )
( )
引入流函数来满足连续性方程:
= ∇ ⋅V ∇ ⋅ ρV 1 ∂h2V1 ∂hV 1 2 流 = + 0 ∂q2 h1h2 ∂q1 函
拉格朗日 流函数
∂ψ ∂ψ = h2V1 , = −hV 1 2 ∂q2 ∂q1 ∂ψ ∂ψ = h2 ρV1 , = − h1 ρV2 ∂q2 ∂q1

《工程流体力学》 第六章 管内流动及水力计算

《工程流体力学》 第六章 管内流动及水力计算

r02
4
d dl
(p
gh)
l
vl max
vl
r0
ro2
4
d dl
(p
gh)
粘性流体在圆管中作层
所以,vl
2020/6/11
ro2 r 2
4
d dl
( p gh)
流流动时,流速的分布为
一旋转抛物面。
12
《工程流体力学》 第六章 管内流动和水力计算
§6.4 圆管中的层流流动
三、平均速度和流量
qV
0
0
H
h1 9m;h2 0.7m; hw 13m 求: H
2 h1
h2
2
解 : 由 伯努 利方 程( 地面 为0位 势)
(H
h1
)
pa
g
0
h2
pa
g
2
22
2g
hw
紊流流动: 1.0
得H
2 2
2g
hw
h2
h1
42 2 9.806
13 0.7 9
5.52
(m)
2020/6/11
4
《工程流体力学》 第六章 管内流动和水力计算
持前种情况下的流速不变,流动又为何状态?
解:(1) v
qV A
4qV d 2
4 0.01 1.27m / 0.12
s
Re vd 1.27 0.1 1.27 105 2000
1106
所以水为紊流状态。
(2)
Re
vd
1.27 0.1
1.14 104
1114
2000
2020/6/11
μt —流 体 的 脉 动 粘 度 ;

华中科技大学 流体力学第六章_1

华中科技大学 流体力学第六章_1

1、2 应该是无量纲的,所以
1 a 0 1 3a b c 0 2b 0
1 e 0 1 3e f g 0 1 f 0
解出
a 1 , b 2 , c 2 , e 1 , f 1 , g 1
第 6 章 量纲分析与相似原理
目的:
为了使实验流场与真实流场具有一定的对应关 系(相似性),实验中的各物理参数应该如何确定? 模型实验中的各种测量值应该如何被换算为实 物上的相应值?
如何科学地设计实验,正确有效地反映出相关物 理参数之间的实质性联系。
例 等截面水平圆管中的流动。压降 p 取决于管长 l、 平均流速 V、流体动力粘度 、流体密度 、管直 径 d、管壁粗糙度 。 涉及的物理参数: p 、 、l、 、 、V、d,
运动相似:各对应点上的速度方向一致,大小成比例;
动力相似:各对应点上的应力方向一致,大小成比例。
几何相似并不能保证动力相似。
例 用同一翼型模型在不同粘度的流体中测量升 力和阻力,由于升力与流体粘度无关,阻力 与粘度相关,所以在两个流场中测出的升力 相等而阻力却不等。
满足了几何相似的前提下,运动相似和动力相似 才有可能。 动力相似是流动相似的主导因素,只有满足动力 相似才能保证运动相似,从而达到流动相似。
dp c d
弹性力 对流惯性力
dp c2dຫໍສະໝຸດ c 2l022 2 v0 l0
2 2 2 v l v 0 0 Ma 2 0 c2l02 c2
马赫数(惯性力/弹性力)
(1) 雷诺准则
对流惯性力 m 对流惯性力 p
基本方程:
v p 2 v v f v t

流体力学第六章PPT课件

流体力学第六章PPT课件

A0――孔口所在壁面的全部面积。 上式的适用条件是,孔口处在壁面的中心位置,各方向上影响不完善收缩的程度近于
一致的情况。
想一想:为什么不完善收缩、不完全收缩的流量系数较完善收缩、完全收缩的流量系
数大?
第10页/共117页
3、淹没出流
当液体通过孔口流到充满液体的空间称为淹没出流。 由于惯性作用,水流经孔口流束形成收缩断面c-c,然后扩大。 列出上、下游自由液面1-1和2-2的伯诺里方程。式中水头损失项包括孔口的局部损 失和收缩断面c-c至2-2断面流束突然扩大局部损失。
则(1)式可写成:
H v02 vc2 vc2 (1 ) vc2
2g 2g 2g
2g

H0
H
,v0代2 入上式,整理得 2g
第5页/共117页
收缩断面流速为
1
vc 1
2gH0 2gH0
式中H0――作用水头,v0与vc相比,可忽略不计,则H=H0;
φ ――孔口的流速系数,
1 1
孔口出流的流量为
第19页/共117页
例: 某洒水车储水箱长l=3m,直径D=1.5m(如图所示)。底部设有泄水孔,孔口 面积A=100cm2,流量系数μ=0.62,试求泄空一箱水所需的时间。
解:水位由D降至0所需时间
t 1
0 dh
A 2g D h
式中水箱水面面积
lB l 2
D 2
2
h
D 2
2
2
(3)
将式(3)中圆括号的表达式按二项式分式展开,并取前四项
(a b)n an nan1b n(n 1) a b n2 2 n(n 1)(n 2) an3b3
2!
3!

流体力学第六章_伯努利积分和动量定理

流体力学第六章_伯努利积分和动量定理



m gΔh g ( z4 z3 ) ( m 1)gΔh ( c)

[例4.6] 文丘利流量计:沿总流的伯努利方程(3-3) 由连续性方程
V2 A1 V1 A2
( d)
将(d)式代入(c)式 ,整理后可得大管的平均速度为
V1 k 2 g h
上式中
( m / ) 1 k 2 ( A / A ) 1 1 2
动能 重力势能
2
(沿流线)
压强势能
b) 拉格朗日积分
rotv 0 , v grad
V grad P 0 2 t
2
V P F (t ) t 2
2
c) 伯努利-拉格朗日积分
V ~ V C 2
不可压缩重流体
2
V p C 2
2
可压缩均熵流体
V p C 2 1
2
说明1:
伯努利方程的限制条件 ①沿流线
1V12
2
条件的放宽
沿流束
gz1 p1


2V22
2
gz 2
p2

(沿流束)
②定常流
不定常流
(取α1=α2=1)
2 v V12 p1 V22 p2 gz1 gz2 ds 1 t 2 2
1/ 2
k称为流速系数,文丘利管的流量公式为
Q kA1 2 g h
沿流线伯努利方程的限制条件无粘性流体粘性流体gzgz无粘性流体粘性流体不可压缩流体可压缩流体常数62伯努利积分和拉格朗日积分的应用很大的容器表明自由面a静止不动从而这是个定常问题分析

工程流体力学 第六章 孔口、管嘴和有压管流.

工程流体力学 第六章 孔口、管嘴和有压管流.

2.流量比较
Q 孔口
A 2g
孔口 孔口
孔 H口
孔口 0.6 21
Q n
nA n 2gH n n 0.82
14
管流基本概念
简单管道是指管道直径不变且无分支的管道
复杂管道是指由两根以上管道组成管道系统。复杂管道又可 以分为串联管道、并联管道、分叉管道、沿程泄流管和管网。
短管是指管路中水流的流速水头和局部水头损失都不能忽 略不计的管道。
其中 K AC R
25
三、简单管道水力计算应用举例 1、虹吸管的水力计算
虹吸管是一种压力输水管道,顶部弯曲且其高程 高于上游供水水面。
虹吸管的工作原理图
26
虹吸灌溉
27
真空输水:世界 上最大直径的虹 吸管(右侧直径 1520毫米、左 侧600毫米),虹 吸高度均为八米, 犹如一条巨龙伴 游一条小龙匐卧 在浙江杭州萧山 区黄石垅水库大 坝上,尤为壮观, 已获吉尼斯世界 纪录 。
将产生汽化,破坏水流的连续性。故一般不使虹吸管
中的真空值大于7-8米。虹吸管应按短管计算。
31
例2:图示用直径d = 0.4m的钢筋混凝土虹吸管从河道向灌
溉渠道引水,河道水位为120m,灌溉渠道水位118m,虹
吸管各段长度为l1 = 10m,l2 =5m, l3 =12m,虹吸管进
口安装无底阀的滤网(ζ= 2.5),管道有两个60o的折角弯管 (ζ=0.55)。求:
0.03327 2.5 20.551.0
0.4
0.383
QcA 2gz
0.3830.7850.42 29.82 0.30m3 s
33
(2)计算虹吸管的最大安装高度 列河道水面和虹吸管下游转弯前过水断面的能量方程

流体力学第6章(1-6节)

流体力学第6章(1-6节)
x y z
全微分的充分必要条件。

d v x dx v y dy v z dz
d dx dy dz x y z
函数Φ的全微分为
比较两式,得到
vx , vy , vz x y z
函数Φ(x, y, z)称为速度势函数,无旋流动又称为有 势流动 。
复速度的三角函数 式和指数式:
dW v (cos i si n ) v e i dz
α O vx
V
vx-ivy
W(z)共轭复变数:
W i f ( z )
z x iy
dW i v x ivy V dz x x
dW dW 2 2 2 vx vy v dz dz
证明: 取微元线段 d s ,过微元线段的速度为 v ,
则单位厚度的微元流量dq的表达式为
dq v d s v x dy v y dx d
通过线段AB的流量为
q dq d B A
A A
B
B
q 2 1
特性3
证明:对于平面势流,有
v x v y 0 x y v y v x x y
由数学分析知,上式正是 v y dx v x dy 成为某一函 数Ψ(x, y)全微分的充分必要条件。

d v y dx v x dy
d dx dy x y
函数ψ的全微分为
比较两式,得到
证明:不可压缩流体的连续性方程为 v x v y v z 0 x y z 对于有势流动 得到
vx , vy , vz x y z
2 2 2 2 0 2 2 x y z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以保持流场的总环量等于零。
§2 流体漩涡运动的基本理论
五、亥姆霍兹旋涡定理
亥姆霍兹第一定理:正压性的理想流体在有势的质量力作用下,涡管永 远保持为有相同流体质点组成的涡管。 亥姆霍兹第二定理:在同一瞬间涡管各截面上的涡通量都相同。 亥姆霍兹第三定理:在有势的质量力作用下,正压性的理想流体中任何涡管 的旋涡强度不随时间而变化,永远保持定值。
该封闭周线内所有涡束的涡通量之和。 w v v u u w udx vdy wdz dydz dzdx dxdy y z z x x y C A
v u x y
必须指出,有旋流动和无旋流动仅有流体 微团本身是否发生旋转来决定,而与流体
微团本身的运动轨迹无关。
第六章 流体的有旋流动和无旋涡运动
§1 流体微团运动分析
§2 流体旋涡运动的基本理论
§3 平面势流问题
§4 几种简单的不可压缩流体的平面流动
§5 平面无旋流动的叠加
§6 叶栅的库塔-儒可夫斯基公式和库塔条件
对无限长直线涡

2
1
d r 4
sin 1 h d
1
1 0,2
V 2h 4h
对半限长直线涡
1 2 , 2
V 2R
V
对圆形涡环
第六章 流体的有旋流动和无旋涡运动
§1 流体微团运动分析
§2 流体旋涡运动的基本理论
§3 平面势流问题
3、空间任意曲面
A 上的斯托克斯定理
w v v u u w udx vdy wdz dydz dzdx dxdy y z z x x y C A
为移动、转动和发生变形运动三部分。
1、移动 2、线变形运动 3、角变形运动 4、旋转
§1 流体微团的运动分析
平移速度分量 线性变形率 角变形速度 旋转角速度
u
xx
u x
v
yy
w
v y
zz
w z
xy
.
1 w v 1 v u yz 2 y z 2 x y
关于速度间断面上的旋涡问题
abcda U 2l U1l l U 2 U1 0
z 0 2 x y
1 v u U1 U 2 U 2 U1 0
§2 流体漩涡运动的基本理论
四、汤姆逊定理——环量守恒定理
曲线称为涡线。与流线一样,涡线也不能相交和折转,不定常时涡线形状 随时间而变。
dx
x

dy
y

dz
z
3、涡管 —— 过涡场中任意一封闭曲线上所有 点作涡线,形成一个管状柱面,称为涡管。
§2
流体旋涡运动的基本理论
4、涡束——过涡管截面上所有点之涡线总体,称为涡束。涡束内部的流体可以像刚 体旋转那样,流体各微团都以相同的角速度作圆周运动;也可以是宏观上并不作圆 周运动而流体微团绕自身轴线旋转的有旋流场。 5、旋涡强度(涡通量)——穿过任意面积上的法向涡量与面积 的乘积定义为旋涡强度,也称为涡通量
汤姆逊定理: 在理想流体运动中,若质量力有势,流体满足正压条件,对某一封闭的流体 线的速度环量值不随时间而变化。即流体线上的环量等于常数(环量守恒定 理)
D 0 Dt
根据斯托克斯定理: 流体线内部区域的旋涡强度也不随时间变化,即原先是有旋的流体,则永远有旋,若 原先无旋则永远无旋。这说明,流场中的旋涡不可能凭空产生、也不可能凭空消失。 因为理想流体没有粘性,不存在切向应力,不能传递旋转运动,既不能让不旋转的 流体微团旋转起来,也不能使已经旋转的流体微团停止旋转。另外,正压性流体和 质量力有势的流场等压面与等密度面是平行的,不会产生对流。
处理
§3 平面势流问题
二、速度势函数
1、速度势函数

ห้องสมุดไป่ตู้
存在的条件:
在无旋流动中每一个流体微团的速度都要以下条件:
u w z x
速度的三个分量的关系为:
v u x y
w v y z
根据数学分析可知,满足以上条件的充分必要条件就是,存在某一函数
§4 几种简单的不可压缩流体的平面流动
§5 平面无旋流动的叠加
§6 叶栅的库塔-儒可夫斯基公式和库塔条件
§3 平面势流问题
一)平面流动
平面流动必须满足的条件: 1、平面上任何一点的速度、加速度都平行所在平面,无垂直该平面的分量 存在 2、相互平行的所有平面上的流动情况完全一样 3、实际情况不存在平行平面完全一样的流动,然 而这类问题完全可近似地作为二元流动问题来
第六章 流体的有旋流动和无旋涡运动
§1 流体微团运动分析
§2 流体旋涡运动的基本理论
§3 平面势流问题
§4 几种简单的不可压缩流体的平面流动
§5 平面无旋流动的叠加
§6 叶栅的库塔-儒可夫斯基公式和库塔条件
§1 流体微团的运动分析
一、流体微团运动的分析
刚体运动一般可分解为移动和转动两部分,而流体微团的运动一般可以分解
流体力学
(第六章 流体的无旋流动和有旋流动)
同济大学汽车学院
第六章,第七章
6-1,6-2,6-8 7-1,7-3,7-7
作业
7-11,7-18,7-22 第12周交

前言 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章

绪论 流体的物理性质及作用力 流体静力学 流体运动学 流体动力学的基本原理 流体的有旋流动和无旋流动 相似原理和量纲分析 粘性流体力学 气体动力学
C
V ds 2 dA
n A
§2 流体漩涡运动的基本理论
4、斯托克斯定理推得的结论
若区域内处处无旋,则区域周边的环量等于零; 若区域内处处有旋,则区域周边的环量一般不等于零; 若曲线上的环量不等于零,则所围区域内必定有旋;
若曲线上的环量等于零,则所围区域内不一定是无旋的。
§2 流体漩涡运动的基本理论
di 2i dAi di 2i dAi
任意曲线上的环量等于所围面积
A 中的旋涡强度
v u udx vdy x y dxdy 2 z dA C A A
以上斯托克斯定理只在单连通域的流场中成立
§2 流体漩涡运动的基本理论
关于非单连通域问题
b'dbaea'b' 0
b'dbaea'b' b'db ba aea' a'b' 0
b'db C
ba a'b'
aea' C'
C C '
包围机翼的任意封闭曲线上的环量等于机翼周线上 的环量值
§2 流体漩涡运动的基本理论
斯托克斯定理是研究有旋流动的一个重要定理:
1、它可以将对涡量的研究转化为对速度环量的研究,即将面积分转变为
线积分。
2、速度环量是否为零也可以决定流动是有旋还是无旋。
3、在用速度环量来判断流动是否有旋时必须注意:包围某区域的环量为 零,该区域内不一定是无旋流动,因为有可能有反向旋转的涡量存在。
§2 流体漩涡运动的基本理论
zx
1 u w 2 z x
1 w v x 2 y z
y
.
1 u w 2 z x
z
1 v u 2 x y
由此可见,流体微团各速度分量的第一项是平移速度分量,第二是线变形 运动、第三项是角变形运动、第四项是旋转运动,流体运动的线速度就是 有以上各项分量所引起的。
1、微元面积上的斯托克斯定理
d u AB dx vBC dy uCD dx vDA dy
v u d x y dxdy 2z dA
d 2z dA dI
§2 流体漩涡运动的基本理论
2、任意平面面积
A 上的斯托克斯定理
§2 流体旋涡运动的基本理论
一、流体旋涡运动的基本概念
由于流体在流动中存在粘性,所以自然界中的流体运动一般都是有旋的。
流体的旋涡运动分两种情况: 1、流体作圆周运动的旋涡运动 2、流体宏观流动并无明显旋转或 圆周运动,但流体微团的角速度不 为零。
§2
流体旋涡运动的基本理论
流体在整个流场中作旋涡运动,或者局部流场区域中存在绕自身轴线旋转的
§1 流体微团的运动分析
u1 u xx x1 xy y1 xz z1 y z1 z y1
1、平移项 2、线变形项 3、角变形项 4、旋转变形项
v1 v yy y1 yx y1 yz z1 z x1 x x1
w1 w zz z1 zx x1 xy y1 x y1 y x1
§2 流体漩涡运动的基本理论
六、毕奥——沙伐尔定理
涡强为 的直线涡段 AB 对垂直距离为 h 的任意位置 P 点处之诱导速度为:
V 4
式中:
sin dl , r L r 2 dl
sin dl, r sin
h r sin
dl
rd sin d
流体微团,于是便在该流场中形成一个用角速度表示的涡量场。在涡量场中引进 涡线、涡管、涡束和涡通量。 1、涡量、涡量场 涡量是流体微团的旋转角速度的两倍
w v x 2 x y z
.
u w y 2 y z x
相关文档
最新文档