流体力学-第六章1-2
流体力学第6章讲解

2、射孔的形状,圆孔口和方孔显然其扩张的情况不会相同。不同的射口形状有 不
同的实验值。用φ表示这个影响因素, 对圆断面射流 φ=3.4,长条缝射孔 φ=2.44。
圆孔综口合射这流两:个t影g响因素K:x k=Kφα 3.4a
x
R 1 3.4 as 3.4( as 0.294)
r0
vm
vm r0 1
1
v0 R
2
1
[(11.5 )2 ]2d
0
9
第二节圆断面射流的运动分析
1
n
1
n
[(1 1.5 )2 ] d Bn; [(1 1.5 )2 ] d Cn
0
0
n
1
1.5
2
2.5
3
Bn
0.0985
0.064
0.0464
0.0359
0.0286
第一节无限空间淹没紊流射流特性
二、紊流系数a及几何特征
其斜率即:tga=常数=k。 对于不同的条件,k值是不同的常数,也叫实验常数。 通过实验发现,k值的影响因素有两个主要的因素:
1、射孔出口截面上气流的紊流强度。 紊流强度的大小用紊流系数a(A)来表示:a大紊流的强度就大,因此,紊
流 系数的大小可以反映出射流的扩张能力,所以,a也叫表征射流流动结构的 特征系数。另一方面,由于a反映的是射流混合能力的大小,因此,a还可以反 映孔口出口截面上的速度均匀程度。a越小,则混合能力越差,说明流速越均匀 。
二、断面流量Q
R
微环面的流量表达式 Q 2vydy Q0 r02v0
0
主体段:
R
Q
v r 0
y
y
2 ( )( )d( )
《工程流体力学》第六章 不可压缩流体平面有势流动

3) y = 0 将 y=0 代入
驻点:
把驻点坐标代入流函数y:
过驻点流函数值:y = 0
物体轮廓线方程为:
求物体半宽b/2: 把 x=0 代入物体轮廓线方程:
y:物体半宽b/2
已知流函数 -> 速度场,压强场 在物体前部:附面层很薄 粘性影响大的流动区域:很薄 计算结果:与实验较符合
在物体后部:附面层增厚 形成:尾部旋涡 无粘流势流理论:不再适用
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
一般称零流线
粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
每一流动都满足拉普拉斯方程:
什么条件? 无旋条件 二维不可压连续方程:
不可压平面有势流动的流函数方程
不可压连续方程和无旋条件 -> 流函数方程 流函数方程-拉普拉斯方程:仅适用于不可压平面有势流 动
不可压平面有旋流动或可压缩平面有势流动: 不存在流函数方程
三、边界条件: 流体:从无穷远流向某物体 条件:不分离 物面法向流体速度:0,即物面是一条流线
都存在流函数
只有无Байду номын сангаас流动:才存在势函数 平面流动:流函数更普遍
《工程流体力学》第六章 不可压缩流体平面有势流动

粘性流体切向速度:0 理想流体切向速度:不受限制
第三节 基本解叠加原理 线性方程叠加原理:两个解的和或差也是该方程的解 平面不可压势流势函数和流函数方程:拉普拉斯方程 拉普拉斯方程:线性方程,可以应用叠加原理
复杂流场的解:可由若干简单流场的解叠加得到
两个有势流动势函数: j1,j2
无旋流动:才存在势函数 平面流动:流函数更普遍
流函数与势函数一样:可以用来描述整个流场 由流函数:就可求出流速和压强分布
-流线微分方程
y=c曲线,即等流函数线:流线
给定一组常数值:就可得流线族
流体:不能穿越流线,也不能穿越固体表面 固体表面:可看作流线,通常是零流线
即y=0的流线:代替物体表面
2)在源点左边x轴上,y=0:存在一点s 该点处:源点与直匀流速度:大小相等
方向相反
该点:驻点,复合流场合速度 = 0
求驻点,令: 驻点确在x负轴上
3)从源点流出流体到达驻点s后:不能继续向左流动 被迫分成上下两路 形成绕物体流动轮廓线—— 半无限体
现求半无限体轮廓线方程: 把驻点极坐标: 代入流函数中:
过驻点的流函数值: 轮廓线方程:
可见 源的作用:是提前将前方来流的直匀流推开,与物体头部 作用相同
不同强度的源流:沿轴线排列 并:与直匀流叠加 可得到:直匀流绕实际钝头体物体的流动
三、直匀流与一对等强度源汇的叠加:
源:在x轴(-a, 0)处,强度 Q 汇:在x轴(a, 0 )处,强度 -Q 复合流动:直匀流与该源、汇叠加
注意: 三维流动:不存在流函数
不存在等流函数线 但存在流线
流函数与流量关系: 流动:二维 任意曲线:连接a、b两点 某瞬时过微元段ab的流量:
或
《流体力学》第六章气体射流

.
射流参数的计算
段 名
参数名称
符号
圆断面射流
平面射流
扩散角 主
α tg3.4a tg2.44a
体
段 射流直径 或半高度
D b
D d0
6.8
as d0
0.147
b b0
2.44
0.095 as 0.147
d0
v1 0.492
v0
as 0.41
b0
v2
v2 v0
as
0.23 0.147
d0
v2 v0
0.833 as 0.41 b0
.
段名 参数名称
符 号
圆断面射流
平面射流
起
流量
Q
2
QQ0 10.76ar0s1.32ar0s
Q Q0
1 0.43 as b0
始
v 断面平均 流速
B0Kx
tgKxK3.4a
x
紊流系数
起始段
主体段
C
B
A
R
M
α r0
核心
0
D X0
边 E
界 层
Sn
F
S
X
射流结构
.
紊流系数与 出口断面上 紊流强度有 关,也与出 口断面上速 度分布的均 匀性有关。 (表6-1)
紊流系数
喷嘴种类 带有收缩口的喷嘴
a
0.066 0.071
圆柱形管
带有导风板的轴流式通风机 带导流板的直角弯管
已知射流直径D, v2,d0,a, 求S和Q0
流体力学第二版(蔡增基)第六章

ux u y (4 x) (4 y) 0 x y x y
该流动满足连续性方程。 (2)由于是平面流动
x y 0
1 u y u x 1 4 y 4 x z 0 2 x y 2 x y 该流动为无旋流动,存在速度势函数。
u y x u x y
平面流动为无旋流动。
平面无旋流动的速度势函数为: d u xdx u y dy 平面无旋流动的拉普拉斯方程:
2 x
2
2 y
2
0
【例2】有一不可压流体平面流动的速度分布为
u x 4 x,u y 4 y;
①该平面流动是否满足连续性方程;
o
D
C
E
把对角线EOF的旋转角速度定义为整个流 E' 体微团在xoy面的旋转角速度,用 z 表示。
1 u y u x 2 y x 1 u u y x z 2 z x
EOF的旋转角速度可看成是AOC和BOD角速度的平均:
左侧中心点沿x方向的流速为:
u x左 u x u x dx x 2
dz dy
u x dx x 2
dx
u x右 u x 右侧中心点沿x方向的流速为:
dt时间内沿x方向流入和流出的净体积流量为:
dQx (u x
dQx u x dxdydz dt x
如图(a)所示,虽然流体微团运动轨迹是圆形,但由 于微团本身不旋转,故它是无旋流动;
在图 (b)中,虽然流体微团运动轨迹是直线,但微团绕 自身轴线旋转,故它是有旋流动。
流体力学讲义第六章流动阻力及能量损失2

流体⼒学讲义第六章流动阻⼒及能量损失2第六章流动阻⼒及能量损失本章主要研究恒定流动时,流动阻⼒和⽔头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可⽤下临界雷诺数来判别,它在管道与渠道内流动的阻⼒规律和⽔头损失的计算⽅法是不同的。
对于流速,圆管层流为旋转抛物⾯分布,⽽圆管紊流的粘性底层为线性分布,紊流核⼼区为对数规律分布或指数规律分布。
对于⽔头损失的计算,层流不⽤分区,⽽紊流通常需分为⽔⼒光滑管区、⽔⼒粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻⼒及紊流扩散等概念。
第⼀节流态判别⼀、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流层流(laminar flow),亦称⽚流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
⽔流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作⽤,遵循⽜顿内摩擦定律。
(3)能量损失与流速的⼀次⽅成正⽐。
(4)在流速较⼩且雷诺数Re较⼩时发⽣。
2.紊流紊流(turbulent flow),亦称湍流:是指局部速度、压⼒等⼒学量在时间和空间中发⽣不规则脉动的流体运动。
特点:(1)⽆序性、随机性、有旋性、混掺性。
流体质点不再成层流动,⽽是呈现不规则紊动,流层间质点相互混掺,为⽆序的随机运动。
(2)紊流受粘性和紊动的共同作⽤。
(3)⽔头损失与流速的1.75~2次⽅成正⽐。
(4)在流速较⼤且雷诺数较⼤时发⽣。
⼆、雷诺实验如图6-1所⽰,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于⽔流的原来状态。
图6-1图6-2实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程⽔头损失与流线的⼀次⽅成正⽐。
第1学期大气科学专业流体力学第6章旋转流体动力学

8
9
牛顿第二定理是建立在惯性坐标系的基础上的,即:
daVa
Fi
dt
i
以下分析得出适用于描述旋转流体的运动方程。
10
da A dA A dt dt
Va V r
daVa dt
dVa dt
Va
daVa
d
V r
V r
dt
dt
daVa dV 2V ( r ) dt dt
第六章 旋转流体动力学
前面讨论的流体运动,是在惯性坐标系下进行的, 并没有考虑地球的旋转效应。
地球自身以一定速度自转,而地球的旋转效应, 将会对地球大气、海洋等流体的运动产生很显著的影 响。
大多数的地球物理流体力学所关心的问题均属于 旋转流体动力学问题。
1
低压 高压
2
低压 高压
3
本章将主要介绍考虑旋转效应下的流体运动。 主要内容
根据矢量运算法则
(a b) (b • )a (a • )b a( • b) b( • a)
(k V ) (V • )k (k • )V k( •V ) V ( • k)
31
(k V ) (V • )k (k • )V k( •V ) V ( • k)
①
②
由于是 k 常矢量,
)V
1 R0
1 p
1 Fr
g
Ek2V 2k
V
21
特征罗斯贝数
R0
特征惯性力 特征偏向力
U2 /L U
U
/
L
是衡量旋转效应的一个重要量。
22
R0 U / L
由Rossby数的定义可知:
流体力学 第6章

6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v
8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数
流体力学第六章 边界层理论

流体力学第六章
流体力学第六章
Q
v
uv
u dy
udy U
y x 0 0 x
x 0
而
0
uK1
v y
dy
0
uK1
u x
dy
1 K
2
0
x
uK2dy
1 K
2
x
0
uK2dy
U K2
于是第二个积分
vuKudy
v
0
y K10 y
uK1
dyK1(x10u(dyU uK2)U dyK1UK2)
流体力学第六章
u
u x
v
u y
p x
2u y 2
已知普朗特方程组
p y
0
u x
v y
0
0
uk 1
udy x
0
ukv
udy y
p x
0
uk dy
0
uk
2u y2 dy
积分一
积分二
积分三
其中 (x)
(6 2 1)
流体力学第六章
b(x) a(x)
ddxx(x)dx
x 0
0
uk1
u y
2
dy
uk2dy Uk1
udy
k 1 x 0
k 1 x 0
p x
0
uk
dy
k
0
uk1
u y
2 dy
(6-2-3)
流体力学第六章
uk2dyUk1 udy
k1 x 0
k1x0
px0ukdyk0uk1uy2dy
(6-2-3)
上式为哥路别夫积分方程。
《流体力学》第六章_粘性流体绕物体的流动

第四节 平面层流边界层的微分方程
❖ 在这一节里,将利用边界层流动的特点如流体的粘度大小、 速度与温度梯度大和边界层的厚度与物体的特征长度相比为 一小量等对N-S方程进行简化从而导出层流边界层微分方程。 在简化过程中,假定流动为二维不可压定常流,不考虑质量 力,则流动的控制方程N-S方程为:
vx
vx x
◆空间流动三维问题,N—S方程及其求解 ◆扰流阻力及其计算 ◆附面层的问题
第一节 不可压缩粘性流体的运动微分方程
以流体微元为分析对象,流体的运动方程可写为 如下的矢量形式:
DV F P
Dt
(8-1)
这里 :
DV V V V
Dt t
(8-2)
是流体微团的加速度,微分符号:
D Dt
t
V
p 2
vr r
p
3
2 r0
cos
( ) r, rr0
(1 vr r
v0 r
v ) v
r
r
3
sin
2 r0
(8-25)
对上述两式积分,可分别得到作用在球面上的压强和切应力 的合力。将这两个合力在流动方向的分量相加,可得到流体 作用在圆球上的阻力为:
FD 6 r0 3 d
2vy z 2
)
p z
(2vz
x 2
2vz y 2
2vz z 2
)
(8-18)
一、蠕动流动的微分方程
●如果流动是不可压缩流体,则连续性方程为:
vx v y vz 0 x y z
(8-19)
将式(8-18)依次求
2 x
p
2
、
2 y
p
2
、 2
《高等流体力学》第6章 不可压理想流体平面无旋流动

(
( ) ( ) ( ) ( )
( )
)
其中:
∂Ω + v ⋅∇ Ω = 0 ∂t
( )
v ⋅∇ Ω= ∇ψ × k ⋅∇Ω k= ( ∇Ω × ∇ψ ) k k = ∇Ω × ∇ψ 2 Ω = −∇ ψ 再由: ∂ 2 2 可得: ∇ + ∇ ∇ ψ k ψ ) × ∇ψ = 0 ( ) ( ∂t
ϕ 和 ψ 构成一个复势,满足柯西-黎曼条件且可导。
二、等势线与等流线的正交性
v×v = ∇ϕ × ∇ψ × k = ∇ϕ ⋅ k ∇ψ − ( ∇ϕ ⋅∇ψ ) k = 0
(
) (
)
( ∇ϕ ⋅∇ψ ) k = 0 故:
对平面问题为0
即: ∇ϕ ⋅∇ψ = 0 可见等势线与等流线正交。
n
τ ×n = k
τ
∂ψ = 0 n ⋅ v = n ⋅ ∇ψ × k = ∇ψ k × n = −∇ψτ = − ∂l
(
)
(
)
故可提出无分离边界条件:
(ψ )b = const
§6-3 不可压理想流体平面无旋流动的速度 势与流函数的关系
一、柯西-黎曼条件 速度与势函数、流函数的关系:
( )
( )
引入流函数来满足连续性方程:
= ∇ ⋅V ∇ ⋅ ρV 1 ∂h2V1 ∂hV 1 2 流 = + 0 ∂q2 h1h2 ∂q1 函
拉格朗日 流函数
∂ψ ∂ψ = h2V1 , = −hV 1 2 ∂q2 ∂q1 ∂ψ ∂ψ = h2 ρV1 , = − h1 ρV2 ∂q2 ∂q1
《工程流体力学》 第六章 管内流动及水力计算

r02
4
d dl
(p
gh)
l
vl max
vl
r0
ro2
4
d dl
(p
gh)
粘性流体在圆管中作层
所以,vl
2020/6/11
ro2 r 2
4
d dl
( p gh)
流流动时,流速的分布为
一旋转抛物面。
12
《工程流体力学》 第六章 管内流动和水力计算
§6.4 圆管中的层流流动
三、平均速度和流量
qV
0
0
H
h1 9m;h2 0.7m; hw 13m 求: H
2 h1
h2
2
解 : 由 伯努 利方 程( 地面 为0位 势)
(H
h1
)
pa
g
0
h2
pa
g
2
22
2g
hw
紊流流动: 1.0
得H
2 2
2g
hw
h2
h1
42 2 9.806
13 0.7 9
5.52
(m)
2020/6/11
4
《工程流体力学》 第六章 管内流动和水力计算
持前种情况下的流速不变,流动又为何状态?
解:(1) v
qV A
4qV d 2
4 0.01 1.27m / 0.12
s
Re vd 1.27 0.1 1.27 105 2000
1106
所以水为紊流状态。
(2)
Re
vd
1.27 0.1
1.14 104
1114
2000
2020/6/11
μt —流 体 的 脉 动 粘 度 ;
华中科技大学 流体力学第六章_1

1、2 应该是无量纲的,所以
1 a 0 1 3a b c 0 2b 0
1 e 0 1 3e f g 0 1 f 0
解出
a 1 , b 2 , c 2 , e 1 , f 1 , g 1
第 6 章 量纲分析与相似原理
目的:
为了使实验流场与真实流场具有一定的对应关 系(相似性),实验中的各物理参数应该如何确定? 模型实验中的各种测量值应该如何被换算为实 物上的相应值?
如何科学地设计实验,正确有效地反映出相关物 理参数之间的实质性联系。
例 等截面水平圆管中的流动。压降 p 取决于管长 l、 平均流速 V、流体动力粘度 、流体密度 、管直 径 d、管壁粗糙度 。 涉及的物理参数: p 、 、l、 、 、V、d,
运动相似:各对应点上的速度方向一致,大小成比例;
动力相似:各对应点上的应力方向一致,大小成比例。
几何相似并不能保证动力相似。
例 用同一翼型模型在不同粘度的流体中测量升 力和阻力,由于升力与流体粘度无关,阻力 与粘度相关,所以在两个流场中测出的升力 相等而阻力却不等。
满足了几何相似的前提下,运动相似和动力相似 才有可能。 动力相似是流动相似的主导因素,只有满足动力 相似才能保证运动相似,从而达到流动相似。
dp c d
弹性力 对流惯性力
dp c2dຫໍສະໝຸດ c 2l022 2 v0 l0
2 2 2 v l v 0 0 Ma 2 0 c2l02 c2
马赫数(惯性力/弹性力)
(1) 雷诺准则
对流惯性力 m 对流惯性力 p
基本方程:
v p 2 v v f v t
流体力学第六章PPT课件

A0――孔口所在壁面的全部面积。 上式的适用条件是,孔口处在壁面的中心位置,各方向上影响不完善收缩的程度近于
一致的情况。
想一想:为什么不完善收缩、不完全收缩的流量系数较完善收缩、完全收缩的流量系
数大?
第10页/共117页
3、淹没出流
当液体通过孔口流到充满液体的空间称为淹没出流。 由于惯性作用,水流经孔口流束形成收缩断面c-c,然后扩大。 列出上、下游自由液面1-1和2-2的伯诺里方程。式中水头损失项包括孔口的局部损 失和收缩断面c-c至2-2断面流束突然扩大局部损失。
则(1)式可写成:
H v02 vc2 vc2 (1 ) vc2
2g 2g 2g
2g
令
H0
H
,v0代2 入上式,整理得 2g
第5页/共117页
收缩断面流速为
1
vc 1
2gH0 2gH0
式中H0――作用水头,v0与vc相比,可忽略不计,则H=H0;
φ ――孔口的流速系数,
1 1
孔口出流的流量为
第19页/共117页
例: 某洒水车储水箱长l=3m,直径D=1.5m(如图所示)。底部设有泄水孔,孔口 面积A=100cm2,流量系数μ=0.62,试求泄空一箱水所需的时间。
解:水位由D降至0所需时间
t 1
0 dh
A 2g D h
式中水箱水面面积
lB l 2
D 2
2
h
D 2
2
2
(3)
将式(3)中圆括号的表达式按二项式分式展开,并取前四项
(a b)n an nan1b n(n 1) a b n2 2 n(n 1)(n 2) an3b3
2!
3!
流体力学第六章_伯努利积分和动量定理

m gΔh g ( z4 z3 ) ( m 1)gΔh ( c)
[例4.6] 文丘利流量计:沿总流的伯努利方程(3-3) 由连续性方程
V2 A1 V1 A2
( d)
将(d)式代入(c)式 ,整理后可得大管的平均速度为
V1 k 2 g h
上式中
( m / ) 1 k 2 ( A / A ) 1 1 2
动能 重力势能
2
(沿流线)
压强势能
b) 拉格朗日积分
rotv 0 , v grad
V grad P 0 2 t
2
V P F (t ) t 2
2
c) 伯努利-拉格朗日积分
V ~ V C 2
不可压缩重流体
2
V p C 2
2
可压缩均熵流体
V p C 2 1
2
说明1:
伯努利方程的限制条件 ①沿流线
1V12
2
条件的放宽
沿流束
gz1 p1
2V22
2
gz 2
p2
(沿流束)
②定常流
不定常流
(取α1=α2=1)
2 v V12 p1 V22 p2 gz1 gz2 ds 1 t 2 2
1/ 2
k称为流速系数,文丘利管的流量公式为
Q kA1 2 g h
沿流线伯努利方程的限制条件无粘性流体粘性流体gzgz无粘性流体粘性流体不可压缩流体可压缩流体常数62伯努利积分和拉格朗日积分的应用很大的容器表明自由面a静止不动从而这是个定常问题分析
工程流体力学 第六章 孔口、管嘴和有压管流.

2.流量比较
Q 孔口
A 2g
孔口 孔口
孔 H口
孔口 0.6 21
Q n
nA n 2gH n n 0.82
14
管流基本概念
简单管道是指管道直径不变且无分支的管道
复杂管道是指由两根以上管道组成管道系统。复杂管道又可 以分为串联管道、并联管道、分叉管道、沿程泄流管和管网。
短管是指管路中水流的流速水头和局部水头损失都不能忽 略不计的管道。
其中 K AC R
25
三、简单管道水力计算应用举例 1、虹吸管的水力计算
虹吸管是一种压力输水管道,顶部弯曲且其高程 高于上游供水水面。
虹吸管的工作原理图
26
虹吸灌溉
27
真空输水:世界 上最大直径的虹 吸管(右侧直径 1520毫米、左 侧600毫米),虹 吸高度均为八米, 犹如一条巨龙伴 游一条小龙匐卧 在浙江杭州萧山 区黄石垅水库大 坝上,尤为壮观, 已获吉尼斯世界 纪录 。
将产生汽化,破坏水流的连续性。故一般不使虹吸管
中的真空值大于7-8米。虹吸管应按短管计算。
31
例2:图示用直径d = 0.4m的钢筋混凝土虹吸管从河道向灌
溉渠道引水,河道水位为120m,灌溉渠道水位118m,虹
吸管各段长度为l1 = 10m,l2 =5m, l3 =12m,虹吸管进
口安装无底阀的滤网(ζ= 2.5),管道有两个60o的折角弯管 (ζ=0.55)。求:
0.03327 2.5 20.551.0
0.4
0.383
QcA 2gz
0.3830.7850.42 29.82 0.30m3 s
33
(2)计算虹吸管的最大安装高度 列河道水面和虹吸管下游转弯前过水断面的能量方程
流体力学第6章(1-6节)

全微分的充分必要条件。
即
d v x dx v y dy v z dz
d dx dy dz x y z
函数Φ的全微分为
比较两式,得到
vx , vy , vz x y z
函数Φ(x, y, z)称为速度势函数,无旋流动又称为有 势流动 。
复速度的三角函数 式和指数式:
dW v (cos i si n ) v e i dz
α O vx
V
vx-ivy
W(z)共轭复变数:
W i f ( z )
z x iy
dW i v x ivy V dz x x
dW dW 2 2 2 vx vy v dz dz
证明: 取微元线段 d s ,过微元线段的速度为 v ,
则单位厚度的微元流量dq的表达式为
dq v d s v x dy v y dx d
通过线段AB的流量为
q dq d B A
A A
B
B
q 2 1
特性3
证明:对于平面势流,有
v x v y 0 x y v y v x x y
由数学分析知,上式正是 v y dx v x dy 成为某一函 数Ψ(x, y)全微分的充分必要条件。
即
d v y dx v x dy
d dx dy x y
函数ψ的全微分为
比较两式,得到
证明:不可压缩流体的连续性方程为 v x v y v z 0 x y z 对于有势流动 得到
vx , vy , vz x y z
2 2 2 2 0 2 2 x y z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以保持流场的总环量等于零。
§2 流体漩涡运动的基本理论
五、亥姆霍兹旋涡定理
亥姆霍兹第一定理:正压性的理想流体在有势的质量力作用下,涡管永 远保持为有相同流体质点组成的涡管。 亥姆霍兹第二定理:在同一瞬间涡管各截面上的涡通量都相同。 亥姆霍兹第三定理:在有势的质量力作用下,正压性的理想流体中任何涡管 的旋涡强度不随时间而变化,永远保持定值。
该封闭周线内所有涡束的涡通量之和。 w v v u u w udx vdy wdz dydz dzdx dxdy y z z x x y C A
v u x y
必须指出,有旋流动和无旋流动仅有流体 微团本身是否发生旋转来决定,而与流体
微团本身的运动轨迹无关。
第六章 流体的有旋流动和无旋涡运动
§1 流体微团运动分析
§2 流体旋涡运动的基本理论
§3 平面势流问题
§4 几种简单的不可压缩流体的平面流动
§5 平面无旋流动的叠加
§6 叶栅的库塔-儒可夫斯基公式和库塔条件
对无限长直线涡
2
1
d r 4
sin 1 h d
1
1 0,2
V 2h 4h
对半限长直线涡
1 2 , 2
V 2R
V
对圆形涡环
第六章 流体的有旋流动和无旋涡运动
§1 流体微团运动分析
§2 流体旋涡运动的基本理论
§3 平面势流问题
3、空间任意曲面
A 上的斯托克斯定理
w v v u u w udx vdy wdz dydz dzdx dxdy y z z x x y C A
为移动、转动和发生变形运动三部分。
1、移动 2、线变形运动 3、角变形运动 4、旋转
§1 流体微团的运动分析
平移速度分量 线性变形率 角变形速度 旋转角速度
u
xx
u x
v
yy
w
v y
zz
w z
xy
.
1 w v 1 v u yz 2 y z 2 x y
关于速度间断面上的旋涡问题
abcda U 2l U1l l U 2 U1 0
z 0 2 x y
1 v u U1 U 2 U 2 U1 0
§2 流体漩涡运动的基本理论
四、汤姆逊定理——环量守恒定理
曲线称为涡线。与流线一样,涡线也不能相交和折转,不定常时涡线形状 随时间而变。
dx
x
dy
y
dz
z
3、涡管 —— 过涡场中任意一封闭曲线上所有 点作涡线,形成一个管状柱面,称为涡管。
§2
流体旋涡运动的基本理论
4、涡束——过涡管截面上所有点之涡线总体,称为涡束。涡束内部的流体可以像刚 体旋转那样,流体各微团都以相同的角速度作圆周运动;也可以是宏观上并不作圆 周运动而流体微团绕自身轴线旋转的有旋流场。 5、旋涡强度(涡通量)——穿过任意面积上的法向涡量与面积 的乘积定义为旋涡强度,也称为涡通量
汤姆逊定理: 在理想流体运动中,若质量力有势,流体满足正压条件,对某一封闭的流体 线的速度环量值不随时间而变化。即流体线上的环量等于常数(环量守恒定 理)
D 0 Dt
根据斯托克斯定理: 流体线内部区域的旋涡强度也不随时间变化,即原先是有旋的流体,则永远有旋,若 原先无旋则永远无旋。这说明,流场中的旋涡不可能凭空产生、也不可能凭空消失。 因为理想流体没有粘性,不存在切向应力,不能传递旋转运动,既不能让不旋转的 流体微团旋转起来,也不能使已经旋转的流体微团停止旋转。另外,正压性流体和 质量力有势的流场等压面与等密度面是平行的,不会产生对流。
处理
§3 平面势流问题
二、速度势函数
1、速度势函数
ห้องสมุดไป่ตู้
存在的条件:
在无旋流动中每一个流体微团的速度都要以下条件:
u w z x
速度的三个分量的关系为:
v u x y
w v y z
根据数学分析可知,满足以上条件的充分必要条件就是,存在某一函数
§4 几种简单的不可压缩流体的平面流动
§5 平面无旋流动的叠加
§6 叶栅的库塔-儒可夫斯基公式和库塔条件
§3 平面势流问题
一)平面流动
平面流动必须满足的条件: 1、平面上任何一点的速度、加速度都平行所在平面,无垂直该平面的分量 存在 2、相互平行的所有平面上的流动情况完全一样 3、实际情况不存在平行平面完全一样的流动,然 而这类问题完全可近似地作为二元流动问题来
第六章 流体的有旋流动和无旋涡运动
§1 流体微团运动分析
§2 流体旋涡运动的基本理论
§3 平面势流问题
§4 几种简单的不可压缩流体的平面流动
§5 平面无旋流动的叠加
§6 叶栅的库塔-儒可夫斯基公式和库塔条件
§1 流体微团的运动分析
一、流体微团运动的分析
刚体运动一般可分解为移动和转动两部分,而流体微团的运动一般可以分解
流体力学
(第六章 流体的无旋流动和有旋流动)
同济大学汽车学院
第六章,第七章
6-1,6-2,6-8 7-1,7-3,7-7
作业
7-11,7-18,7-22 第12周交
目
前言 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
录
绪论 流体的物理性质及作用力 流体静力学 流体运动学 流体动力学的基本原理 流体的有旋流动和无旋流动 相似原理和量纲分析 粘性流体力学 气体动力学
C
V ds 2 dA
n A
§2 流体漩涡运动的基本理论
4、斯托克斯定理推得的结论
若区域内处处无旋,则区域周边的环量等于零; 若区域内处处有旋,则区域周边的环量一般不等于零; 若曲线上的环量不等于零,则所围区域内必定有旋;
若曲线上的环量等于零,则所围区域内不一定是无旋的。
§2 流体漩涡运动的基本理论
di 2i dAi di 2i dAi
任意曲线上的环量等于所围面积
A 中的旋涡强度
v u udx vdy x y dxdy 2 z dA C A A
以上斯托克斯定理只在单连通域的流场中成立
§2 流体漩涡运动的基本理论
关于非单连通域问题
b'dbaea'b' 0
b'dbaea'b' b'db ba aea' a'b' 0
b'db C
ba a'b'
aea' C'
C C '
包围机翼的任意封闭曲线上的环量等于机翼周线上 的环量值
§2 流体漩涡运动的基本理论
斯托克斯定理是研究有旋流动的一个重要定理:
1、它可以将对涡量的研究转化为对速度环量的研究,即将面积分转变为
线积分。
2、速度环量是否为零也可以决定流动是有旋还是无旋。
3、在用速度环量来判断流动是否有旋时必须注意:包围某区域的环量为 零,该区域内不一定是无旋流动,因为有可能有反向旋转的涡量存在。
§2 流体漩涡运动的基本理论
zx
1 u w 2 z x
1 w v x 2 y z
y
.
1 u w 2 z x
z
1 v u 2 x y
由此可见,流体微团各速度分量的第一项是平移速度分量,第二是线变形 运动、第三项是角变形运动、第四项是旋转运动,流体运动的线速度就是 有以上各项分量所引起的。
1、微元面积上的斯托克斯定理
d u AB dx vBC dy uCD dx vDA dy
v u d x y dxdy 2z dA
d 2z dA dI
§2 流体漩涡运动的基本理论
2、任意平面面积
A 上的斯托克斯定理
§2 流体旋涡运动的基本理论
一、流体旋涡运动的基本概念
由于流体在流动中存在粘性,所以自然界中的流体运动一般都是有旋的。
流体的旋涡运动分两种情况: 1、流体作圆周运动的旋涡运动 2、流体宏观流动并无明显旋转或 圆周运动,但流体微团的角速度不 为零。
§2
流体旋涡运动的基本理论
流体在整个流场中作旋涡运动,或者局部流场区域中存在绕自身轴线旋转的
§1 流体微团的运动分析
u1 u xx x1 xy y1 xz z1 y z1 z y1
1、平移项 2、线变形项 3、角变形项 4、旋转变形项
v1 v yy y1 yx y1 yz z1 z x1 x x1
w1 w zz z1 zx x1 xy y1 x y1 y x1
§2 流体漩涡运动的基本理论
六、毕奥——沙伐尔定理
涡强为 的直线涡段 AB 对垂直距离为 h 的任意位置 P 点处之诱导速度为:
V 4
式中:
sin dl , r L r 2 dl
sin dl, r sin
h r sin
dl
rd sin d
流体微团,于是便在该流场中形成一个用角速度表示的涡量场。在涡量场中引进 涡线、涡管、涡束和涡通量。 1、涡量、涡量场 涡量是流体微团的旋转角速度的两倍
w v x 2 x y z
.
u w y 2 y z x