聚合氯化铝检测方法
氢化物原子荧光法测定聚合氯化铝中汞的含量
汞标 准使 用 液 : 汞 标 准储 备液 用 重 铬酸 钾硝 将
酸溶液逐 级稀 释至最 终浓 度为 10 I / 0 gI x
结 果表 明 , 该方 法精 密度好 , 回收率 高 , 操作 简单 , 用于测 定聚合 氯化铝 中汞 的含量 。 可
关键词 : 氢化物 原子 荧光法 ; 聚合 氯化 铝 ; 汞
中图分 类号 :0 5 . 67 3
文献 标志 码 :C
文章 编号 :17 9 5 (0 0 0 0 5 0 6 3— 3 3 2 1 ) 2— 0 3— 2
I % 盐酸为介 质 ,5g L硼 氢化钠 为还 原荆 。 实验 得到 , O 1 / 该方 法线性 范 围为 0~1 . g L 相 关 系 00 / , 数 r 0 9 96 检 出限 为 0 0 4 g I 相对 标 准偏 差 为 I 7 % , : .9 , . 5 / , . 8 回收 率 为 9 . % ~13 7 。 实验 46 0.%
1 4 实验 方法 .
1 4 1 仪 器工作 参数 .. 负高压 :5 灯 电 流 :5 m 炉 高 : m; 2 0 V; 2 A; 8 m 载 气 流 量 :0 I i ; 蔽 气 流 量 :0 I i ; 4 0 m Jm n 屏 9 0 m Jm n 测 量 方式 : 准 曲线 法 ; 数方 式 : 面 积 ; 数 时 间 : 标 读 峰 读
1 延 迟 时间 : s 2S; 1 。
测 定其荧 光强度 并 与标 准 系 列 比较 , 即可 求 出样 品
聚合氯化铝铁质量检测方法规范20150211
聚合氯化铝铁质量检测方法规范
20150211
该文档旨在规范聚合氯化铝铁质量检测方法,以确保产品质量符合相关标准。
以下是该方法规范的主要内容:
1. 引言
本部分介绍了该方法规范的目的和适用范围。
2. 定义
本部分对一些关键术语和定义进行了解释和澄清,以便读者能够明确理解该规范的内容。
3. 检测设备和试剂
本部分列出了进行聚合氯化铝铁质量检测所需的设备和试剂,并对其进行了简要描述。
同时,还包括了设备和试剂的管理要求。
4. 检测方法
本部分详细介绍了聚合氯化铝铁质量检测的具体步骤和方法。
包括样品的准备、试剂的配制、检测仪器的使用方法等。
5. 检测结果的处理与评定
本部分说明了如何处理聚合氯化铝铁质量检测所得的结果,并
给出了相应的评定标准。
6. 报告和记录要求
本部分规定了聚合氯化铝铁质量检测报告和记录的要求,包括
格式、内容、签名等。
7. 质量控制
本部分对聚合氯化铝铁质量检测中的质量控制要求进行了说明,以确保检测结果的准确性和可靠性。
8. 安全注意事项
本部分列出了聚合氯化铝铁质量检测过程中的一些安全注意事项,以保障操作人员和环境的安全。
9. 参考文献
本部分列出了在编写该规范时所参考的相关文献和标准。
以上是《聚合氯化铝铁质量检测方法规范20150211》的主要内容,希望能对聚合氯化铝铁质量检测工作提供一定的指导。
聚合氯化铝检测方法
聚合氯化铝检测方法聚合氯化铝(polyaluminum chloride,简称PAC)是一种常用的水处理药剂,广泛应用于污水处理、饮用水净化和工业废水处理等领域。
为了确保PAC的质量和控制其使用剂量,需要进行PAC的检测。
本文将介绍几种常用的PAC检测方法。
一、目前常用的PAC检测方法有:1.化学法2.物理法3.光谱法4.电化学法5.色谱法以下将对每种方法进行详细介绍:化学法是目前最常用的PAC检测方法之一、其原理是通过与PAC中的活性氯化铝基团反应产生化学反应,进而测定PAC的含量。
常用的化学法包括Mohr法、碘量法和铁量法等。
这些方法的优点是简单、快速、准确,但缺点是需要使用一些有害物质,如含铁液和重金属盐。
物理法是通过测定PAC的物理性质来检测其含量。
常用的物理法包括粘度法、密度法和电导率法等。
这些方法的优点是操作简便,无需使用有害物质,但缺点是测量结果受样品处理过程和环境因素的影响较大。
光谱法是一种利用光谱仪测量PAC溶液的吸光度来确定其含量的方法。
常用的光谱法有紫外-可见吸收光谱法和红外光谱法。
这些方法的优点是操作简便,无需样品处理,可以实时监测,但缺点是需要专业仪器,且结果受其他物质的干扰较大。
电化学法是通过测量PAC溶液中的电流或电位来确定其含量。
常用的电化学法有极谱法和电导法。
这些方法的优点是高灵敏度、准确度高,可以实时监测,但缺点是需要专业仪器,且结果受条件控制和其他物质影响较大。
色谱法是通过将PAC溶液进样进入色谱柱进行分离和检测来确定其含量。
常用的色谱法有高效液相色谱法和气相色谱法。
这些方法的优点是分离效果好,准确度高,可以检测多种成分,但缺点是需要专业仪器和较长的分析时间。
总结起来,PAC检测方法多种多样,不同的方法适用于不同的实际情况。
在实际应用中,可以根据需要选择合适的检测方法,以确保PAC的质量和控制其使用剂量。
聚合氯化铝
聚合氯化铝简介中文名称:聚合氯化铝(简称聚合铝)中文别名:碱式氯化铝;多氯化铝;羟基氯化铝;PAC CASNO:1327-41-9;101707-17-9;11097-68-0;114442-10-3;英文名称:PolyaluminiumChloride,缩写为PAC EINECS:215-477-2分子式:Al2(OH)nCl6-n 分子量:174.45技术标准:饮用水产品质量符合国家GB15892-2005标准。
产品外观:白色、金黄色、黄褐色、红褐色颗粒状/片状产品形态:粉状固体液体物理性质:无色或黄色树脂状固体。
其溶液为无色或黄褐色透明液体,有时因含杂质而呈灰黑色粘液。
高效聚合氯化铝技术参数:Item 饮用水级一般用标准:GB15892-2009标准:GB/T22627-2008液体固体液体固体Al2O3含量,wt%≥10.0 29.0 6.0 28.0盐基度,% 40~90 30~95密度(20℃),g/cm3≥ 1.12 - 1.10 -水不溶物,%≥0.2 0.6 0.5 1.5pH值(10g/L水溶液) 3.5~5.0 3.5~5.0砷,wt%≤0.0002 0.0005 0.0015 铅,wt%≤0.001 0.002 0.006 镉,wt%≤0.0002 - -汞,wt%≤0.00001 - -6价铬,wt%≤0.0005 - -铁,wt%≤- 2.0 5.0聚合氯化铝作用聚(合)氯化铝其絮凝作用表现如下:a、水中胶体物质的强烈电中和作用。
b、水解产物对水中悬浮物的优良架桥吸附作用。
c、对溶解性物质的选择性吸附作用。
聚合氯化铝注意事项聚合氯化铝使用注意事项以及投加量1、根据原水不同情况,使用前可先做小试求得最佳药量。
为便于计算,小试溶液配置按重量比(W/W),一般以2~5%配为好。
如配3%溶液:称聚氯化铝固体3g,盛入洗净的200ml量筒中,加清水约50ml,待溶解后再加水稀释至100ml刻度,摇匀即可。
聚合氯化铝检测方法(DOC)
聚合氯化铝检测方法(DOC)本文介绍了聚合氯化铝的检验指标,包括氧化铝、盐基度、PH值、铅、铬、砷、镉、汞和水不溶物等。
在液体和固体两种形态下,优等品和一等品的检验标准略有不同。
检测方法采用聚合氯化铝国标,其中氧化铝含量的测定方法涉及加酸解聚、络合、滴定等步骤,并使用了多种试剂和材料。
聚合氯化铝的检验指标包括氧化铝、盐基度、PH值、铅、铬、砷、镉、汞和水不溶物等。
其中,液体和固体的检验标准略有不同,优等品和一等品的标准也有所区别。
检测方法采用聚合氯化铝国标,其中氧化铝含量的测定方法包括加酸解聚、络合、滴定等步骤。
具体来说,首先在试样中加酸使其解聚,然后加入过量的乙二胺四乙配二钠溶液,使其与铝及其他金属离络合。
接着用氯化锌标准滴定溶液滴定剩余的乙二胺四乙酸二钠,再用氟化钾溶液解析出络合铝离子,最后用氯化锌标准滴定溶液滴定解析出的乙二胺四乙酸二钠。
在氧化铝含量的测定过程中,需要使用多种试剂和材料,包括硝酸、乙二胺四乙酸二钠、乙酸钠缓冲溶液、氟化钾、硝酸银和氯化锌等。
其中,硝酸银溶液用于检测氯离子的含量,氟化钾溶液则用于解析出络合铝离子。
To prepare the n。
500g of potassium fluoride is XXX 200mL of distilled water free of carbon xide。
XXX 1000mL。
2mL of XXX (4.3.2.3) is added and the XXX red color with either XXX (4.3.2.3) or XXX (4.3.2.1)。
After filtering out any insoluble material。
XXX。
For the analysis。
approximately 1.8g of liquid sample or 0.6g of solid sample is XXX 0.0002g。
聚合氯化铝执行标准2020
聚合氯化铝执行标准2020聚合氯化铝(Polyaluminum Chloride,简称PAC)是一种常用的水处理剂,用于混凝、沉淀、过滤等工艺中。
为了规范聚合氯化铝的生产和质量控制,中国制定了GB 15892-2020《生活饮用水用聚合氯化铝》国家标准。
本文将详细介绍聚合氯化铝执行标准2020的主要内容。
一、标准概述GB 15892-2020是关于生活饮用水用聚合氯化铝的国家标准,于2020年12月30日发布,2021年12月1日实施。
该标准规定了生活饮用水用聚合氯化铝的技术要求、试验方法、检验规则及标志、包装、运输和贮存等要求。
二、技术要求1.原料要求:聚合氯化铝的生产原料应符合相关标准和规定,如不得使用含有毒有害物质的原料。
2.产品质量要求:聚合氯化铝的产品质量应符合表1的要求。
表1 聚合氯化铝的质量要求3.使用要求:使用聚合氯化铝时应按照规定的用量和使用条件,不得超量使用或与其他净水剂混合使用。
4.安全要求:聚合氯化铝应符合国家相关安全规范和标准,如储存、运输过程中需遵守危险化学品安全管理规定。
三、试验方法与检验规则1.试验方法:按照GB/T 15892-2020规定的试验方法进行聚合氯化铝的各项指标测试。
2.检验规则:每批产品应进行出厂检验,并按照表1的要求对各项指标进行检测。
产品应符合各项指标要求才能出厂销售。
如检验结果不符合要求,应重新取样进行复检,若仍不符合要求则判定该批产品为不合格品。
3.取样规则:每批产品应按生产日期和批次进行取样,取样数量应能满足表1中各项指标的检测需要。
取样后应将样品封存好,并标明取样日期和产品名称等信息。
样品保质期为6个月。
4.标志、包装、运输和贮存:聚合氯化铝产品的标志、包装、运输和贮存应符合相关规定和标准的要求。
产品标志应清晰、易读,包装应牢固、密封性好,运输过程中不得破损或泄漏,贮存环境应干燥、通风良好,避免阳光直射和高温等不利因素的影响。
聚合氯化铝检测方法国标
聚合氯化铝检测方法国标
聚合氯化铝是一种常用的净水剂,用于处理工业和自来水中的悬浮物和有机物。
为确保其质量和安全性,需要制定相应的检测方法国标。
聚合氯化铝的检测方法国标主要包括以下几个方面:
1. 总铝含量测定:聚合氯化铝主要由铝离子组成,因此测定总铝的含量可以反映聚合氯化铝的含量。
常用的测定方法有原子吸收光谱法、电感耦合等离子体质谱法等。
2. 铁含量测定:铁是聚合氯化铝的重要杂质之一,高铁含量会降低聚合氯化铝的净化效果。
常用的测定方法有原子吸收光谱法、原子荧光光谱法等。
3. pH值测定:聚合氯化铝的pH值对其净化效果和稳定性有重要影响。
国标中通常要求在一定条件下测定聚合氯化铝溶液的pH值,常用的测定方法有玻璃电极法、指示剂法等。
4. 氯化铝含量测定:聚合氯化铝中的氯化铝含量也是一个重要指标,常用的测定方法有滴定法、离子色谱法等。
5. 残留铁含量测定:聚合氯化铝在水处理过程中会与水中的铁发生反应,形成沉淀物。
为了评估聚合氯化铝的净化效果,需要测定残留铁的含量。
常用的测定方法有原子吸收光谱法、原子荧光光谱法等。
以上是聚合氯化铝检测方法国标中的主要内容,制定相关国标有助于确保聚合氯化铝产品的质量和安全性。
此外,还应不断完善和更新检测方法,以适应不断发展的水处理技术和需求。
聚合氯化铝检测标准
聚合氯化铝检测标准聚合氯化铝是一种常用的水处理药剂,广泛应用于污水处理、饮用水净化和工业循环水处理等领域。
为了确保其质量和安全性,对聚合氯化铝的检测标准至关重要。
本文将介绍聚合氯化铝的检测标准,以及相关的检测方法和要求。
一、聚合氯化铝的检测标准。
1.外观检测,应为无色或微黄色透明液体,无机悬浮物和机械杂质。
2.含铝量检测,含铝量是评价聚合氯化铝质量的重要指标,通常采用滴定法、原子吸收光谱法等进行检测。
3.基本盐量检测,基本盐量是指未反应的氯化铝和氢氧化铝的量,其含量应符合相关标准要求。
4.铁含量检测,铁是聚合氯化铝中的一种杂质,其含量应符合国家标准规定。
5.水不溶物检测,水不溶物是指聚合氯化铝中不溶于水的杂质,应符合国家标准规定。
二、聚合氯化铝的检测方法。
1.外观检测,取适量样品置于透明玻璃瓶中,观察其外观是否符合标准要求。
2.含铝量检测,采用滴定法,将样品与标准溶液进行滴定,计算含铝量。
3.基本盐量检测,将样品溶解后,用盐酸滴定至中性,再用甲基橙指示剂进行滴定,计算基本盐量。
4.铁含量检测,采用分光光度法或原子吸收光谱法进行检测,计算铁的含量。
5.水不溶物检测,将样品溶解后,过滤,干燥后称重,计算水不溶物的含量。
三、聚合氯化铝的检测要求。
1.检测人员应具备相关的化学分析技能和操作经验,熟悉检测方法和仪器的操作规程。
2.检测设备应符合国家标准,保证检测结果的准确性和可靠性。
3.样品采集和保存应符合相关规定,避免外界污染和样品变质。
4.检测过程中应严格按照标准操作程序进行,避免操作失误和数据误差。
5.检测结果应及时记录和报告,对不合格样品应及时处理和通知相关部门。
结语。
聚合氯化铝的检测标准是保证其质量和安全的重要保障,只有严格按照标准要求进行检测,才能确保产品的质量和可靠性。
希望本文介绍的内容能够对聚合氯化铝的检测工作有所帮助,提高产品质量和安全性水平。
聚合氯化铝检测方法
聚合氯化铝检验指标检测方法:聚合氯化铝国标4.2 氧化铝(AI 2O 3)含量的测定 4.2.1 方法提要在试样中加酸使试样解聚。
加入过量的乙二胺四乙配二钠溶液,使其与铝及其他金属离络合。
用氯化锌标准滴定溶液滴定剩余的乙二胺四乙酸二钠。
再用氟化钾溶液解析出络合铝离子,用氯化锌标准滴定溶液滴定解析出的乙二胺四乙酸二钠。
4.2.2 试剂和材料硝酸(GB/T 626):1+12溶液;乙二胺四乙酸二钠(GB/T 1401):c(EDTA)约0.05mol/L 溶液。
乙酸钠缓冲溶液:称取272g 乙酸钠(GB/T 693)溶于水,稀释至1000mL ,摇匀。
氟化钾(GB/T 1271):500g/L 溶液,贮于塑料瓶中。
硝酸银(GB/T 670):1g/L 溶液;氯化锌:c(ZnCI 2)=0.0200mol/L 标准滴定溶液;称取1.3080g 高纯锌(纯度99.99%以上),精确至0.0002g ,置于100mL 烧杯中。
加入6~7mL 盐配(GB/T 622)及少量水,加热溶解。
在水浴上蒸发到接近干涸。
然后加水溶解,移入1000mL 容量瓶中,用水稀释至刻度,摇匀。
二甲酚橙:5g/L 溶液。
4.2.3 分析步骤称取8.0~8.5g 液体试样或2.8~3.0g 固体试样,精确至0.0002g ,加水溶解,全部移入500mL 容量瓶中,用水稀释至刻度,摇匀。
用移液管移取20mL ,置于250mL 锥形瓶中,加2mL 硝酸溶液(,煮沸1min 。
冷却后加入20mL 乙二胺四乙酸二钠溶液(,再用乙酸钠缓冲溶液(,煮沸2min 。
冷却后加入10mL 乙酸钠缓冲溶液(,用氯化锌标准滴定溶液(加入10mL 氟化钾溶液(,加热至微沸。
冷却,此时溶液应呈黄色。
若溶液呈红色,则滴加硝酸(,溶液颜色从淡黄色变为微红色即为终点。
记录第二次滴定消耗的氯化锌标准滴定溶液的体积(V)。
4.2.4 分析结果的表述项目名称 液体 固体 备注 优等品 一等品 氧化铝(Al 2O 3),% ≥10 ≥30 ≥28 液体 固体 盐基度B ≥50 40-90 40-90 外观外观PH 值 3.5-5.0 1%液≥5 1%液≥5黄色乳状 黄色粉末铅(Pb) PPM ≤2 ≤5 ≤12 铬(Cr+6) ≤2 ≤4 ≤4 砷(As) 0 0 0 镉(Cd) 0 0 0 汞(Hg) 0 0 0 水不溶物, %≤0.2-0.5≤0.5≤1.0以质量百分数表示的氧化铝(AI2O3)含量(x1)按式(1)计算:x1=Vc×0.050 98/m×20/500 × 100=Vc×127.45/m(1)式中:V——第二次滴定消耗的氯化锌标准滴定溶液的体积mL;C——氯化锌标准滴定溶液的实际浓度,mol/L;m——试料的质量,g;0.050 98——与1.00mL氯化锌标准滴定溶液[c(ZnCI2)=1.000mol/L]相当的以克表示的氧化铝的质量。
聚合氯化铝检测方法
聚合氯化铝检验指标备注项目名称液体优等品一等品氧化铝(AI2O3),%> 10> 30> 28液体固体盐基度B> 5040-9040-90外观外观PH值 3.5-5.01%液》51%液》5铅(Pb) PPM<2<5< 12铬(6+6)<2<4<4砷(As)000黄色乳状黄色粉末镉(Cd)000汞(Hg)000水不溶物,%< 0.20.5< 0.5< 1.0检测方法:聚合氯化铝国标4.2氧化铝(AI 203)含量的测定4.2.1 方法提要在试样中加酸使试样解聚。
加入过量的乙二胺四乙配二钠溶液,使其与铝及其他金属离络合。
用氯化锌标准滴定溶液滴定剩余的乙二胺四乙酸二钠。
再用氟化钾溶液解析岀络合铝离子,用氯化锌标准滴定溶液滴定解析出的乙二胺四乙酸二钠。
4.2.2试剂和材料4.2.2.1 硝酸(GB/T 626) : 1+12 溶液;422.2 乙二胺四乙酸二钠(GB/T 1401) : c(EDTA)约0.05mol/L 溶液。
422.3乙酸钠缓冲溶液:称取272g乙酸钠(GB/T 693)溶于水,稀释至1000mL,摇匀。
4.2.2.4 氟化钾(GB/T 1271) : 500g/L溶液,贮于塑料瓶中。
4.2.2.5 硝酸银(GB/T 670) : 1g/L 溶液;4.2.2.6 氯化锌:c(ZnCI 2)=0.0200mol/L 标准滴定溶液;称取1.3080g高纯锌(纯度99.99%以上),精确至0.0002g,置于100mL烧杯中。
加入6〜7mL盐配(GB/T 622)及少量水,加热溶解。
在水浴上蒸发到接近干涸。
然后加水溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
4.2.2.7 二甲酚橙:5g/L溶液。
4.2.3分析步骤称取8.0〜8.5g液体试样或2.8〜3.0g固体试样,精确至0.0002g,加水溶解,全部移入500mL容量瓶中,用水稀释至刻度,摇匀。
聚合氯化铝的检测方法以及注意事项
固体:清水=1:5左右先混合溶解后, 再加水稀释至上-3%(M/V)溶液即 可。
液体可配成:原液:清水=58%(M/V)溶液即可。低于1%的溶液 易水解,会降低使用效果,浓度 太高,不易掌握,易造成浪费。
3:加药:按求得的最佳投加量投 加,并在运行中注意观察调整。 如果沉淀池中矾花少,余浊大, 水纹线不清,则投加量过小,如 见沉淀池矾花大且上翻,余浊高, 则加入过量,应适量调整。
如果沉淀池中矾花少余浊大水纹线不清则投加量过小如见沉淀池矾花大且上翻余浊高则加入过量应适量调整
聚合氯化铝的检测方法以及注 意事项
聚合氯化铝使用方法:
1:在正式采用本厂聚合氯化铝产 品之前,根据原水不同情况,应 先进行小型试验,以便确定最佳投 药量和使用条件。
2:为便于计算,小试溶液配置按 质量体积比(M/V),一般以1-5%为 好。如配3%溶液:称PAC3g,盛入 洗净的200ml量筒中,加清水约 50ml,特溶解后再加水稀释至100 刻度,摇匀即可。
5:聚合氯化铝水溶液为酸性液 体,应避免与衣物接触。
1:聚合氯化铝使用注意事项:
2:储存于阴凉、干燥处、防日 晒雨淋,切勿受潮。
3:聚合氯化铝易吸湿潮解,但 吸湿潮后对使用效果无大影响。
4:聚合氯化铝本身无毒,但不 得与有毒、有害物质混运共储d7m 聚合氯化铝 聚丙烯酰胺
聚合氯化铝检测方法
聚合氯化铝检验指标检测方法:聚合氯化铝国标4.2 氧化铝(AI 2O 3)含量的测定 4.2.1 方法提要在试样中加酸使试样解聚。
加入过量的乙二胺四乙配二钠溶液,使其与铝及其他金属离络合。
用氯化锌标准滴定溶液滴定剩余的乙二胺四乙酸二钠。
再用氟化钾溶液解析出络合铝离子,用氯化锌标准滴定溶液滴定解析出的乙二胺四乙酸二钠。
4.2.2 试剂和材料4.2.2.1 硝酸(GB/T 626):1+12溶液;4.2.2.2 乙二胺四乙酸二钠(GB/T 1401):c(EDTA)约0.05mol/L 溶液。
4.2.2.3 乙酸钠缓冲溶液:称取272g 乙酸钠(GB/T 693)溶于水,稀释至1000mL ,摇匀。
4.2.2.4 氟化钾(GB/T 1271):500g/L 溶液,贮于塑料瓶中。
4.2.2.5 硝酸银(GB/T 670):1g/L 溶液;4.2.2.6 氯化锌:c(ZnCI 2)=0.0200mol/L 标准滴定溶液;称取1.3080g 高纯锌(纯度99.99%以上),精确至0.0002g ,置于100mL 烧杯中。
加入6~7mL 盐配(GB/T 622)及少量水,加热溶解。
在水浴上蒸发到接近干涸。
然后加水溶解,移入1000mL 容量瓶中,用水稀释至刻度,摇匀。
4.2.2.7 二甲酚橙:5g/L 溶液。
4.2.3 分析步骤称取8.0~8.5g 液体试样或2.8~3.0g 固体试样,精确至0.0002g ,加水溶解,全部移入500mL 容量瓶中,用水稀释至刻度,摇匀。
用移液管移取20mL ,置于250mL 锥形瓶中,加2mL 硝酸溶液(4.2.2.1),煮沸1min 。
冷却后加入20mL 乙二胺四乙酸二钠溶液(4.2.2.2),再用乙酸钠缓冲溶液(4.2.2.3)调节pH 约为3(用精密pH 试纸检验),煮沸2min 。
冷却后加入10mL 乙酸钠缓冲溶液(4.2.2.3)和2~4滴二甲酚橙指示液(4.2.2.7),用氯化锌标准滴定溶液(4.2.2.6)滴定至溶液由淡黄色变为微红色即为终点。
聚合氯化铝国标
聚合氯化铝国标引言聚合氯化铝(Polyaluminum Chloride,简称PAC)是一种重要的水处理药剂,广泛应用于水污水处理领域。
为了保证聚合氯化铝的质量和使用效果,各国纷纷制定了相应的国家标准。
本文将对聚合氯化铝国标进行全面、详细、完整的探讨,以便更好地了解和应用聚合氯化铝。
概述聚合氯化铝国标是对聚合氯化铝产品的质量要求和检测方法进行规范的标准文档。
不同国家和地区的聚合氯化铝国标各有差异,但其基本原理和要求是相似的。
以下是聚合氯化铝国标的一般要求:物理性质聚合氯化铝产品的物理性质是判断其质量的重要指标之一。
国际标准通常对聚合氯化铝产品的外观、颗粒度、溶解性、相对密度等进行了规定。
这些物理性质的指标可以帮助我们对聚合氯化铝进行初步的判断和评价。
化学成分聚合氯化铝的化学成分对其水处理效果和安全性有着重要影响。
国际标准一般规定了聚合氯化铝中主要成分以及其他可能存在的杂质的含量范围。
了解聚合氯化铝的化学成分可以帮助用户选择适合自己需求的产品。
性能指标聚合氯化铝的性能指标是评价其水处理效果的关键指标。
国际标准一般对聚合氯化铝的净水效果、絮凝速度、絮凝效力、余铝含量等进行了规定。
了解聚合氯化铝的性能指标可以帮助用户判断其是否适合自己的水处理工艺。
国际标准对聚合氯化铝的检测方法进行了详细的规定,以确保产品的质量和一致性。
这些检测方法包括物理性质的测试方法、化学成分的分析方法以及性能指标的评估方法。
了解检测方法可以帮助用户正确评价聚合氯化铝的质量。
国际标准各国制定了相应的聚合氯化铝国标,其中比较有代表性的有以下几个:美国标准美国标准对聚合氯化铝的质量要求和测试方法进行了详细的规定。
其标准文件为ASTM D 4004-02,其中包含了聚合氯化铝的物理性质、化学成分和性能指标的测试方法。
欧洲标准欧洲标准采用的标准文件为EN 883:2013,对聚合氯化铝的物理性质、化学成分和性能指标进行了规范。
欧洲标准还规定了聚合氯化铝产品的包装、贮存和运输要求。
聚氯化铝水不溶物检测方法
聚氯化铝水不溶物检测方法
聚氯化铝水不溶物的检测方法主要有以下两种:
方法一:观察溶解后的水溶液。
一般情况下,溶解后的水溶液较为浑浊时,表示聚氯化铝中的水不溶物较多;反之,溶解后的水溶液越清澈,则表示水不溶物含量越低。
需要注意的是,这种方法在固体状态下很难直接分辨聚合氯化铝中水不溶物的情况。
方法二:通过过滤、洗涤、烘干并计算出不溶物的含量。
具体步骤如下:将试样用酸性水溶解,经过滤、洗涤、烘干至恒量,最后计算出不溶物的含量。
以上两种方法都可以用于检测聚氯化铝中的水不溶物,可以根据实际情况选择合适的方法进行检测。
PAC药剂烧杯实验方法
聚合氯化铝(PAC)药剂烧杯
实验方法
药剂配制:取1g PAC药剂,用水稀释并定容至100mL。
水样选择:取生化池末端未加药水样,呈泥水混合物(若末端已加药,取水点前移约2m)。
实验过程:
1、使用1000mL量筒称量水样(称量前水样需搅拌均匀),然后放入1000mL烧杯中,每组实验需5-6个烧杯进行不同投加量;
2、使用吸管向水样中投加2、4、6、8、10mL稀释后的药剂(折算为干固体投加量分别为20、40、60、80、100mg/L),该投加量可根据实际情况进行调整;
3、使用玻璃棒对水样进行搅拌,注意各个烧杯搅拌的均匀性、一致性,搅拌速度控制在30r/min,搅拌时间10分钟,然后自然沉降30min;
4、取经沉淀后上清液(包含未加药的水样上清液)进行总磷检测,计算不同投加量下的去除率,以确定并选择最佳投加量。
实验数据汇总。
聚合氯化铝水质检测中戊酮(甲基异丁基甲酮)_测定标准及内容
HG/T 3481—1999化学试剂4-甲基-2-戊酮(甲基异丁基甲酮)代替 HG/T 3481—1977Chemical reagent—4-Methyl-2-pentanone示性式:CH3COCH2CH(CH3)2相对分子质量:100.16(根据1995年国际相对原子质量)1 范围本标准规定了化学试剂4-甲基-2-戊酮(甲基异丁基甲酮)的要求、试验方法、检验规则、包装及标志。
引用标准下列标准包含的条文,通过在本标准中引用而构成为本标准聚合氯化铝的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB/T 601—1988 化学试剂滴定分析(容量分析)用标准溶液的制备GB/T 603—1988 化学试剂试验方法中所用制剂及制品的制备GB/T 605—1988 化学试剂色度测定通用方法(eqv ISO 6353-1:1982)GB/T 606—1988 化学试剂水分测定通用方法(卡尔·费休法)(eqv ISO 6353-1:1982)GB/T 611—1988 化学试剂密度测定通用方法(eqv ISO 6353-1:1982)GB/T 619—1988 化学试剂采样及验收规则GB/T 6682—1992 分析实验室用水规格和试验方法(neq ISO 3696:1987)GB/T 9722—1988 化学试剂气相色谱法通则GB/T 9741—1988 化学试剂蒸发残渣测定通用方法(eqv ISO 6353-1:1982)GB 15346—1994 化学试剂包装及标志3 性状本试剂为无色透明液体,能与乙醇、乙醚、丙酮、苯等混溶,微溶于水。
4 规格4-甲基-2-戊酮的规格见表1。
表1 4-甲基-2-戊酮的规格5 试验本章中除另有规定外,所用标准滴定溶液、制剂及制品、pH缓冲溶液,均按GB/T 6聚氯化铝01、GB/T 603、的规定制备;实验用水应符合GB/T 6682中三级水规格;样品均按精确至0.01g称量。
聚合氯化铝的铝离子含量
聚合氯化铝的铝离子含量
首先,聚合氯化铝(PAC)是一种广泛应用于净水工艺中的一种水处理剂。
作为一种高效的混凝剂,PAC可有效地去除水中的悬浮物、胶体与有机物,从而提高水质。
但是,PAC的铝离子含量也是我们需要考虑的问题。
那么,以下是关于PAC铝离子含量的几点介绍:
一、PAC含有铝离子
PAC是由多种高聚体形成的混合物,其中含有许多铝离子。
这些铝离子具有良好的混凝和絮凝能力,可以有效地将水中的有机物和悬浮物沉淀出来。
但是,如果使用不当,铝离子的含量可能会超标。
二、PAC铝离子含量的测量方法
通常情况下,我们可以通过分析PAC中的烧失量来确定其中的铝离子含量。
对于不同类型的PAC,其烧失量会有所不同,因此需要根据实际情况进行检测。
三、铝离子含量的控制方法
为了避免PAC中铝离子含量超标,我们可以通过以下几种方法进行控制:
1. 选择合适的PAC型号。
不同型号的PAC中铝离子含量不同,因此可
以根据需要选择合适的型号。
2. 控制投药量。
投入PAC的数量与水质负荷有关,应根据实际需要进
行控制。
3. 综合使用多种水处理剂。
可以将PAC与其他水处理剂进行综合应用,以提高混凝效果,并降低铝离子含量。
总之,PAC是一种高效的混凝剂,但是其中的铝离子含量也需要注意。
通过合适的选择与控制方法,可以有效地减少铝离子含量,保证水质
安全与可靠。
聚合氯化铝检测
聚合氯化铝的检测一、水不溶物的测定:称取约3 g固体试样,精确至0.01 g。
置于1000ml烧杯中,加入500 ml水,充分搅拌,使样品最大限度溶解。
然后,在布氏漏斗中,用定量滤纸抽滤。
将滤纸连同滤渣于100~105℃干燥至质量恒定。
水不溶物=(W1-W2)/ W×100式中,W1——滤纸和滤渣的重量,gW2——滤纸的重量,gW——试样的重量,g二、Al2O3含量的测定:1、原理:在试样中加酸使试样解聚,加入过量的EDTA溶液,使其与铝及其它金属离子络合。
用氯化锌标准溶液滴定剩余的EDTA。
再用氟化钾溶液解析出络合的铝离子,用氯化锌标准溶液滴定解析出的EDTA。
2、试剂硝酸:1+12溶液EDTA(乙二胺四乙酸二钠):约0.05mol/L乙酸钠缓冲溶液:称取272g乙酸钠溶于水,稀释至1000ml,摇匀氟化钾:500 g/L溶液,贮于塑料瓶中氯化锌:c(ZnCl2)=0.0200mol/L标准溶液;称取1.3080 g高纯锌(纯度99.99%以上),精确至0.0002 g,置于100 ml烧杯中。
加入6~7 ml浓盐酸及少量水,加热溶解。
在水浴上蒸发到接近干涸。
然后加水溶解,移入1000 ml容量瓶中用水稀释至刻度,摇匀。
二甲酚橙:5 g/L溶液3、分析步骤称取2.8~3.0 g固体试样(或8.0~8.5 g液体试样),精确至0.0002 g,加水溶解,全部移入500 ml容量瓶中,用水稀释至刻度,摇匀。
用移液管移取20 ml,置于250 ml锥形瓶中。
加入2 ml(1+12)硝酸溶液,煮沸1min。
冷却后加入20 mlEDTA溶液,再用乙酸钠缓冲溶液调节PH约为3(用PH酸度计测),煮沸2 min。
冷却后加入10 ml乙酸钠缓冲溶液和2~4滴二甲酚橙指示液,用氯化锌标准滴定溶液滴定至溶液由淡黄色变为微红色即为终点。
加入10 ml氟化钾溶液,加热至微沸。
冷却,此时溶液应呈黄色。
若溶液呈红色,则滴加(1+12)硝酸溶液至溶液呈黄色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚合氯化铝检验指标检测方法:聚合氯化铝国标4.2 氧化铝(AI 2O 3)含量的测定 4.2.1 方法提要在试样中加酸使试样解聚。
加入过量的乙二胺四乙配二钠溶液,使其与铝及其他金属离络合。
用氯化锌标准滴定溶液滴定剩余的乙二胺四乙酸二钠。
再用氟化钾溶液解析出络合铝离子,用氯化锌标准滴定溶液滴定解析出的乙二胺四乙酸二钠。
4.2.2 试剂和材料4.2.2.1 硝酸(GB/T 626):1+12溶液;4.2.2.2 乙二胺四乙酸二钠(GB/T 1401):c(EDTA)约0.05mol/L 溶液。
4.2.2.3 乙酸钠缓冲溶液:称取272g 乙酸钠(GB/T 693)溶于水,稀释至1000mL ,摇匀。
4.2.2.4 氟化钾(GB/T 1271):500g/L 溶液,贮于塑料瓶中。
4.2.2.5 硝酸银(GB/T 670):1g/L 溶液;4.2.2.6 氯化锌:c(ZnCI 2)=0.0200mol/L 标准滴定溶液;称取1.3080g 高纯锌(纯度99.99%以上),精确至0.0002g ,置于100mL 烧杯中。
加入6~7mL 盐配(GB/T 622)及少量水,加热溶解。
在水浴上蒸发到接近干涸。
然后加水溶解,移入1000mL 容量瓶中,用水稀释至刻度,摇匀。
4.2.2.7 二甲酚橙:5g/L 溶液。
4.2.3 分析步骤称取8.0~8.5g 液体试样或2.8~3.0g 固体试样,精确至0.0002g ,加水溶解,全部移入500mL 容量瓶中,用水稀释至刻度,摇匀。
用移液管移取20mL ,置于250mL 锥形瓶中,加2mL 硝酸溶液(4.2.2.1),煮沸1min 。
冷却后加入20mL 乙二胺四乙酸二钠溶液(4.2.2.2),再用乙酸钠缓冲溶液(4.2.2.3)调节pH 约为3(用精密pH 试纸检验),煮沸2min 。
冷却后加入10mL 乙酸钠缓冲溶液(4.2.2.3)和2~4滴二甲酚橙指示液(4.2.2.7),用氯化锌标准滴定溶液(4.2.2.6)滴定至溶液由淡黄色变为微红色即为终点。
项目名称 液体 固体 备注 优等品 一等品 氧化铝(Al 2O 3),% ≥10 ≥30≥28液体 固体 盐基度B ≥50 40-90 40-90 外观外观PH 值 3.5-5.0 1%液≥5 1%液≥5黄色乳状 黄色粉末铅(Pb) PPM ≤2 ≤5 ≤12 铬(Cr+6) ≤2 ≤4 ≤4 砷(As) 0 0 0 镉(Cd) 0 0 0 汞(Hg) 00 水不溶物, %≤0.2-0.5 ≤0.5≤1.0加入10mL氟化钾溶液(4.2.2.4),加热至微沸。
冷却,此时溶液应呈黄色。
若溶液呈红色,则滴加硝酸(4.2.2.1)至溶液呈黄色。
再用氯化锌标准滴定溶液(4.2.2.6)滴定,溶液颜色从淡黄色变为微红色即为终点。
记录第二次滴定消耗的氯化锌标准滴定溶液的体积(V)。
4.2.4 分析结果的表述以质量百分数表示的氧化铝(AI2O3)含量(x1)按式(1)计算:x1=Vc×0.050 98/m×20/500 × 100=Vc×127.45/m (1)式中:V——第二次滴定消耗的氯化锌标准滴定溶液的体积mL;C——氯化锌标准滴定溶液的实际浓度,mol/L;m——试料的质量,g;0.050 98——与1.00mL氯化锌标准滴定溶液[c(ZnCI2)=1.000mol/L]相当的以克表示的氧化铝的质量。
4.2.5 允许差取平行测定结果的算术平均值为测定结果,平行测定结果的绝对差值,液体产品不大于0.1%,固体样品不大于0.2%。
4.3盐基度的测定4.3.1 方法提要在试样中加入定量盐酸溶液,以氟化钾掩蔽铝离子,以氢氧化钠标准滴定溶液滴定。
4.3.2 试剂和材料4.3.2.1 盐酸(GB/T 622):c(HCI)约0.5mol/L溶液;4.3.2.2 氢氧化钠(GB/T 629):c(NaOH)约0.5mol/L标准滴定溶液;4.3.2.3 酚酞(GB/T 10729):10g/L乙醇溶液;4.3.2.4 氟化钾(GB/T 1271):500g/L溶液。
称取500g氟化钾,以200mL不含二氧化碳的蒸馏水溶解后,稀释至1000mL 。
加入2mL酚酞指示液(4.3.2.3)并用氢氧化钠溶液(4.3.2.3)或盐酸溶液(4.3.2.1)调节溶液呈微红色,滤去不容物后贮于塑料瓶中。
4.3.3 分析步骤称取约1.8g液体试样或约0.6g固体试样,精确到0.0002g。
用20~30mL水移入250mL锥形瓶中。
再用移液管加入25mL盐酸溶液。
盖上表面皿,在沸水浴上加热10min,冷却至室温。
加入25mL氟化钾溶液(4.3.2.4),摇匀。
加入5滴酚酞指示液(4.3.2.3),立即用氢氧化钠标准滴定溶液(4.3.2.2)滴定至溶液呈现微红色即为终点。
同时用不含二氧化碳的蒸馏水作空白试验。
4.3.4 分析结果的表述以百分比表示的盐基度(x2)按式(2)计算:x2 = (V0-V)c×0.01699/mx1/100 × 100 = (V0-V)c×169.9/mx1 (2)式中:V0——空白试验消耗氢氧化钠标准滴定溶液的体积,mL;V——测定试样消耗氢氧化钠标准滴定溶液的体积,mL;c——氢氧化钠标准滴定溶液的实际浓度,mol/L;m——试料的质量,g;x1——4.2条测得的氧化铝含量,%;0.01699——1.00mL氢氧化钠标准滴定溶液[c(NaOH)=1.000mol/L]相当的以克表示的氧化铝(AI2O3)的质量。
4.3.5 允许差取平行测定结果的算术平均值作为测定结果,平行测定结果的绝对差值不大于2.0%。
4.4水不溶物含量的测定4.4.1 仪器、设备电热恒温干燥箱:10~200ºC。
4.4.2 分析步骤称取约10g液体试样或约3g固体试样,精确至0.01g。
置于1000mL烧杯中,加入500mL水,充分搅拌,使试样最大限度溶解。
然后,在布氏漏斗中,用恒重的中速定量滤纸抽滤。
将滤纸连同滤渣于100~105ºC干燥至恒重。
4.4.3 分析结果的表述以质量百分数表示的水不溶物含量(x3)按式(3)计算:x3 = m1-m2/m × 100 (3)式中:m1——滤纸和滤渣的质量,g;m2——滤纸的质量,g;m——试料的质量,g;4.4.4 允许差取平行测定结果的算术平均值作为测定结果。
平行测定结果的绝对差值,液体样品不大于0.03%,固体样品不大于0.1%。
4.5pH的测定4.5.1 试剂和材料4.5.1.1 pH=4.00的苯二甲酸氢钾(GB 6857)pH值标准溶液;4.5.1.2 pH=9.18的四硼酸钠(GB 6856)pH值标准溶液;4.5.2 仪器、设备4.5.2.1 酸度计:精度0.1pH;4.5.2.2 玻璃电极;4.5.2.3 甘汞电极。
4.5.3 分析步骤称取1.0g试样,精确至0.01g。
用水溶解后,全部转移到100mL容量瓶中,稀释至刻度,摇匀。
用pH4.00及pH9.18的标准溶液进行酸度计定位。
再将试样溶液倒入烧杯,将甘汞电极和玻璃电极浸入被测溶液中,测其pH值(1min内pH值的变化不大于0.1)。
4.6硫酸根(SO42-)含量的测定(重量法)4.6.1 方法提要在0.04~0.07mol/L的盐酸介质中,硫酸盐与氯化钡反应生成硫酸钡沉淀,将沉淀灰化灼烧后,称重即可计算出硫酸根的含量。
4.6.2 试剂和材料4.6.2.1 盐酸(GB/T 622):1+23溶液;4.6.2.2 氯化钡(GB/T 652):50g/L溶液;4.6.2.3 硝酸银(GB/T 670):1g/L溶液;4.6.3 分析步骤称取约1.8g液体试样或约0.6g固体试样,精确至0.001g。
置于是400mL烧杯中,加入200mL水和35mL 盐酸溶液(4.6.2.1)煮沸2min。
趁热缓慢滴加10mL氯化钡溶液(4.6.2.2),继续加热煮沸后冷却放置8h 以上。
用慢速定量滤纸过滤,用热蒸馏水洗涤至滤液无CI-[用硝酸银溶液(4.6.2.3)检验]。
将滤纸与沉淀置于已在800ºC下恒重的坩埚内,在电炉上灰化后移至高温炉内,于800±25ºC下灼烧至恒重。
4.6.4 分析结果的表述以质量百分数表示的硫酸根(SO42-)含量(x4)按式(4)计算:x4=(m1-m2)×0.4116/m × 100=(m1-m2)×41.16 / m (4)式中:m1——硫酸钡沉淀和坩埚的质量,g;m2——坩埚的质量,g;m——试料的质量,g;0.4116——硫酸钡换算成硫酸根的系数。
4.6.5 允许差取平行测定结果的算术平均值作为测定结果,平行测定结果的绝对差值不大于0.1%。
4.7氨态氮(N)含量的测定4.7.1 方法提要在试样中加入碳酸钠溶液使试样在pH小于7 的条件下均相沉淀,取其上层清液用钠氏比色法测定氨态氮。
4.7.2 试剂和材料4.7.2.1 硫酸(GB/T 625):1+35溶液;4.7.2.2 碳酸钠(GB/T 639):30g/L溶液;4.7.2.3 酒石酸钾钠(GB/T 1288):50g/L溶液;4.7.2.4 无氨蒸馏水;4.7.2.5 氨态氮标准储备溶液:1.00mL溶液中含0.1mgN;4.7.2.6 氨态氮标准溶液:1.00mL溶液含有0.010mgN;用移液管移取10mL氨态氮标准储备溶液(4.7.2.5) ,移入100mL容量瓶中,用无氨蒸馏水平线(4.7.2.4)稀释至刻度,摇匀。
此溶液用时现配。
4.7.2.7 纳氏试剂。
4.7.3 仪器、设备分光光度计。
4.7.4 分析步骤4.7.4.1 工作曲线的绘制a. 在六只50mL比色管中依次加入氨态氮标准溶液(4.2.7.6)0、2.00、4.00、6.00、8.00、10.00mL,加入无氨蒸馏水(4.7.2.4)至刻度。
b. 加入1mL酒石酸钾钠溶液(4.7.2.3),塞紧摇匀。
然后再加入2mL 纳氏试剂(4.7.2.7) ,塞紧摇匀。
静置显色10~15min。
c. 在波长425cm处,用1cm吸收池,以试剂空白为参比,测定吸光度。
d. 以氨态氮含量(µg)为横坐标,对应的吸光度为纵坐标,绘制工作曲线。
4.7.4.2 测定称取约10g 液体试样或约3.3.g固体试样,精确至0.01g。
用无氨蒸馏水(4.7.2.4),溶解后移入100mL 容量瓶中,用无氨蒸馏水(4.7.2.4)稀释至刻度,摇匀。
用移液管移取5mL此溶液,置于100mL容量瓶中,加入1.5mL硫酸溶液(4.7.2.1) 和20mL无氨蒸馏水(4.7.2.4) 摇匀。