解析函数与调和函数的关系
调和函数、解析函数与调和函数的关系
2
y 2
=
0,
则称 (x, y) 为区域������内的调和函数.
定理1:区域������内的解析函数的实部与虚部,都是������内的调和函数.
证明:设 w = f (z) = u(x, y) + iv(x, y) 是区域������内的解析函数,
那么在区域������内满足柯西-黎曼方程:u = v , u = − v x y y x
由 f (0) = i ,得 C = 1,从而 f (z) = x3 − 3xy2 + i(3x2 y − y3 +1).
另外,还可以通过不定积分的方法,由已知调和函数直接求 得解析函数. 解析函数 f (z) = u(x, y) + iv(x, y) 的导数仍为解析函数,
f ' (z) = ux + ivx = ux − iuy = vy + ivx
=
6x;u y
=
−6xy,2u y2
=
−6x
从而
2u x2
+
2u y 2
= 0,所以:u(x, y) =
x3
− 3xy2 是调和函数.
( ) 由 v = u = 3x2 − 3y2 ,得 v(x, y) = 3x2 − 3y2 dy = 3x2 y − y3 + c(x) y x
定义2:设 u(x, y) 为区域������内的调和函数,称满足柯西-黎曼方程
u = v , u = − v x y y x
的调和函数 v(x, y) 为 u(x, y) 的共轭调和函数.
说明:(1)区域������内的解析函数的实部与虚部为共轭调和函数;
(2)如果已知一个调和函数u(x, y),则可利用柯西-黎曼方 程求得它的共轭调和函数 v(x, y),从而构成一个解析函数
第六讲_解析函数与调和函数的关系
2
2
又解 f'(z)uxivx uxiuy
(2xy)i(x2y)
不
2(xiy)i(xiy)
定
(2i)(xiy)
积
2iz
分
f(z)2i z2ic
法
2
f(z ) (x 2 y 2 x) y i( 1 x 2 2 x y 1 y 2 c )
2
2
第四章 级数
CH4§4.1 复数项级数
1. 复数列的极限 2. 级数的概念
要想 u使 iv在 D内解 ,u及 析 v还必须 C满 R 足 方程v, 必即 须 u的 是共轭调 .由和 此函 ,数
已知一个解析函数 部u的 (x,实 y),利用CR方 (虚 部 v(x, y))
程可求得它的v(虚 x, y部),从而构成解析函数
uiv.
(实 部 u(x, y))
设D一单连通,u(区 x,y域 )是区D域 内的调和
(2)
8in
8n收
敛 , (8i)n绝
对
收
n0 n! n0n!
n0 n!
(3 ) n 1( n 1 )n 收n 1 敛 2 1 n 收 , 敛 n 1(( n 1 ), n2 in)收 . 敛
又
(1)n
条
件 收
敛 原 ,级 数 非
绝.
对
n1 n
例3
讨论
zn的 敛 散 性 。
分
22
法
x2
y2
v(x,y) 2x y c
2
2
f(z ) (x 2 y 2 x) y i( 1 x 2 2 x y 1 y 2 c )
2
2
又解 v2xy v2x yy2(x)
解析函数与调和函数的关系
定义 若二元实变函数 ϕ ( x , y )在 D内具有二阶连
续偏导数且满足 Laplace 方程 : ∂ 2ϕ ∂ 2ϕ + 2 =0 2 ∂x ∂y 即( ∆ ϕ = 0 )
则称 ϕ ( x , y )为 D内的调和函数 .
ϕ ( x, y ) = x 2 + xy − y 2 ϕ ( x, y ) = ln x 2 + y 2 例:
定理 若f ( z ) = u( x , y ) + iv( x , y )在区域D内解析
内的调和函数。 ⇒ u = u( x , y ),v = v ( x , y )是D内的调和函数 。
证明:设f (z)=u(x,y)+i v(x,y)在区域 内解析,则 证明: 在区域D内解析, 在区域 内解析
内的调和函数。 ∴ u = u( x , y ),v = v ( x , y )是D内的调和函数 。
思考:
若u , v是任意选取的在区域 D内的两个调和函数 , 则u + iv在D内一定解析吗?
答:不一定,
u = x + y , v = x + y.
要想使 u + iv 在 D 内解析 , u 及 v还必须满足 C − R 方程 .
练习:证明 u = −3 xy + x 为调和函数,
2 3
并求其共轭调和函数 v ( x, y )和由他们 构成的解析函数 f ( z ),使 f (0) = i。
例1
证明u ( x, y ) = x 2 + xy − y 2为调和函数,并求其 共轭调和函数v( x, y )和由它们构成的解析函数 f ( z )使f (i ) = −1 + i.43; y ⇒ v = 2 xy + + g ( x) ∂y 2 ∂v ⇒ = 2 y + g ' ( x) = 2 y − x ∂x
调和函数和解析函数的关系
调和函数和解析函数的关系1. 引言调和函数和解析函数是数学中两个重要的函数类别,在分析学和复变函数研究中具有广泛的应用。
两者有着密切的联系,本文将对两者的定义、性质、用途和工作方式等进行详细解释。
2. 调和函数的定义调和函数是指定义在欧几里德空间中的函数,满足拉普拉斯方程,即:Δf=∂2f∂x12+∂2f∂x22+⋯+∂2f∂x n2=0其中Δ是拉普拉斯算子,f是调和函数。
对于二维空间中的调和函数,即n=2的情况,拉普拉斯方程可以简化为:Δf=∂2f∂x2+∂2f∂y2=0调和函数的定义可以扩展到更高维空间,由此可见,调和函数的概念是多维的。
3. 解析函数的定义解析函数是指定义在复平面上的函数,满足柯西-黎曼方程,即:∂u ∂x =∂v∂y 和 ∂u∂y=−∂v∂x其中u(x,y)是解析函数的实部,v(x,y)是解析函数的虚部。
柯西-黎曼方程表明解析函数是复可微的,它可以展开成幂级数的形式,具有无穷次可导的性质。
4. 调和函数和解析函数的联系调和函数和解析函数在某些条件下是可以联系起来的。
具体而言,二维空间中的调和函数可以通过某个复数函数的实部或虚部来表示。
设f(z)=u(x,y)+iv(x,y)是一个解析函数,其中z=x+iy,u和v分别是f的实部和虚部。
由柯西-黎曼方程可知,∂u ∂x =∂v∂y 和 ∂u∂y=−∂v∂x可以求出u和v的偏导数。
进一步,可以验证u和v满足拉普拉斯方程:∂2u ∂x2+∂2u∂y2=∂2v∂y2−∂2v∂x2=0∂2v ∂x2+∂2v∂y2=−∂2u∂y2−∂2u∂x2=0因此,u和v分别是调和函数。
这就是调和函数和解析函数的联系。
5. 调和函数和解析函数的性质调和函数和解析函数具有一些重要的性质,这些性质使得它们在数学和物理学中具有广泛的应用。
5.1 调和函数的性质•调和函数的线性组合仍然是调和函数。
即如果f1(x,y),f2(x,y),…,f n(x,y)都是调和函数,那么对于任意实数c1,c2,…,c n,函数g(x,y)=c1f1(x,y)+c2f2(x,y)+⋯+c n f n(x,y)也是调和函数。
解析函数与调和函数的关系
已知实部u,求虚部v(或者已知v,求u),使 f(z)=u(x,y)+iv(x,y)解析.
例:已知 u x y ,可以求得 v 2 xy C
2 2
f ( z) x y i(2xy C) z C'
2 2 2
(1)
则称 H ( x, y)为区域D 内的调和函数(harmonic function).
2 2 注:运算符号 ,称为拉普拉斯算子. 2 2 x y
2 2 H H 方程 0 ,记作 H 0 称为拉普拉斯方程. 2 2 x y
2.解析函数与调和函数的关系
定理2.2 若函数 f(z)=u(x,y)+iv(x,y) 是区域D
内的解析函数,则 u(x,y)和v(x,y) 均为区域D 内的
调和函数. 思考 如果 u, v 是任意选取的在区域D 内的两个
调和函数,那么 f(z)=u(x,y)+iv(x,y) 在D 内一定解
析吗?
定义2.5 在区域D 内,满足C-R方程
满足C-R方程
v 为u 在区域D内的共轭调和函数
解析函数与调和函数的关系 解析函数
f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)
调和函数
u(x,y),v(x,y) 为调和函数 v为u的共轭调和函数
注:研究复变量的问题转化为研究实变量的问题.
验证:解析函数的实、虚部的任意阶偏导数 也是调和函数. 应用 构造解析函数
§2.2
解析函数与调和函数的关系
引言
解析函数 f(z)=u(x,y)+iv(x,y) u,v满足C-R方程 解析函数具有无穷可微性 u,v为调和函数
调和函数和解析函数的关系
调和函数和解析函数的关系调和函数和解析函数在数学中都是非常重要的概念,它们之间的关系也是我们需要深入了解的。
调和函数是指满足拉普拉斯方程的函数,而解析函数则是指在某个区域内可以展开成幂级数的函数。
在实际应用中,我们常常需要研究调和函数和解析函数之间的联系,以便更好地理解它们的性质和特点。
我们可以从数学定义上来看调和函数和解析函数的关系。
调和函数满足拉普拉斯方程,而解析函数则有复变函数的性质。
在某些情况下,调和函数可以通过某些方法转化为解析函数,比如通过傅里叶变换或者柯西积分公式等。
这种转化的过程可以帮助我们更好地理解两者之间的联系,并且在实际问题中起到重要作用。
我们可以从几何意义上来理解调和函数和解析函数的关系。
调和函数在物理学中有很多应用,比如电场、热场等问题都可以通过调和函数来描述。
而解析函数则在复平面上有很好的几何性质,比如保角映射等。
通过研究调和函数和解析函数之间的关系,我们可以更好地理解数学和物理之间的联系,以及复平面上的几何性质。
调和函数和解析函数在实际问题中也有很多应用。
比如在工程领域中,我们常常需要研究电场、热场等问题,这些都可以通过调和函数来描述。
而在信号处理领域中,解析函数则有很多应用,比如在频域分析中可以通过解析函数来描述信号的频谱特性。
通过研究调和函数和解析函数之间的关系,我们可以更好地解决实际问题,提高工程和技术的应用水平。
总的来说,调和函数和解析函数之间的关系是非常密切的,它们在数学、物理和工程等领域都有重要的应用。
通过深入研究两者之间的联系,我们可以更好地理解它们的性质和特点,从而更好地解决实际问题。
希望通过本文的介绍,读者能够对调和函数和解析函数有更深入的了解,并且在实际问题中能够灵活运用这些概念,提高问题的解决效率和准确性。
§3.7 解析函数与调和函数的关系
0,0
( x, y )
u u dx dy C y x
0,0
x 0
2 x 1 dx 2 ydy C
y 0
2 x 1 dx 2 ydy C
x2 2 x y 2 C
f z u iv 2 x 1 y x 2 2 x y 2 C i
例2(P103 30题(3))
已知f(z)=u+iv解析,u=2(x-1)y,f(2)=-i,求f(z). 方法1 不定积分法
u u 2 y, 2 x 1 x y u u f z i 2 y 2 x 1 i x y
2i x iy 2i 2iz 2i
得证!
注:解析函数中u与v不独立即是一对矛盾,已知u 求v, 或已知v求u均可.
例1 已知f(z)=u+iv解析,v=2xy,求f(z).
方法1 线积分法 u u du dx dy x y
u
( x, y )
0,0
( x, y )
u u dx dy C x y
§3.7 解析函数与调和函数的关系 一、分析上解析函数是调和函数
若二元实函数u(x,y) 满足Laplace方程
2u 2u 2 0 2 x y
则称u(x,y) 是调和函数。 定理1 若 w f z u iv 是解析函数,则U和V均为调 和函数.
证明: f z 是解析函数
2 iz 2 zi C f z 2iz 2i dz
f 2 C i
f z iz 2 2 zi i
解析函数与调和函数的关系
定义 2:对于给定的调和函数 u(x, y) ,把使 u iv 构成解
析函数的调和函数 v(x, y) 称为 u(x, y) 的共轭调和函数。 注:解析函数的虚部是实部的共轭调和函数。但是,一
解析函数 f (z) 。 例 5:用不定积分法求例 2 中的 f (z) 。 例 6:已知 u v (x y)(x2 4xy y2 ) 2(x y) ,试
确定解析函数 f (z) u iv 。
般来说,解析函数的实部不是虚部的共轭调和函数。 3.如何求解析函数
问题:如给定实部(或虚部),如何选择虚部(或实部), 使 f (z) u iv 解析?
1)偏积分法
------如果已知调和函数 u ,可利用条件,求它的共轭调
和函数 v ,以构成解析函数。
例 1:证明: u y3 3x2 y 为调和函数,并求其共轭调和
2.4解析函数与调和函数的关系
设 f (z) u(x, y) iv(x, y) 在区域 E 上解析,由 C R 条件,
解析函数的高阶导数定理即得在 E 上有
2u x2
2u y 2
0及
2v x2
2v y 2
0
一、调和函数
定义 1:若二元实函数(x, y) 在区域 E 内具有连续的二
f (z) f (z)dz U(z)dz c ---适用于已知 u ,求 v 。 f (z) f (z)dz V (z)dz c ---适用于已知 v ,求 u 。
【学习课件】第六讲_解析函数与调和函数的关系
在 D内满 C足 R方程 :uxvy,uy vx的两个 调和u 函 ,v,v数 必u 为 的共轭调 . 和函 现在研究反过来的问题:若u,v是任意选取的
区域 D内的两个调,和 则u函 i数 v在D内就不 一定解. 析
ppt课件
6
如 vxy不是 uxy的共轭调.和
( f(z)uiv(xy)i(xy)在 z平 面 上 处 处 不 ux解 1vy析 uy1vx)
要想 u使 iv在 D内解 ,u及 析 v还必须 C满 R 足 方程v, 必即 须 u的 是共轭调 .由和 此函 ,数
已知一个解析函数 部u的 (x,实 y),利用CR方 (虚 部 v(x, y))
程可求得它的v(虚 x, y部),从而构成解析函数
uiv.
(实 部 u(x, y))
ppt课件
7
设D一 单 连 通,u(区 x, y域 )是 区D域 内 的 调 和
11
例1 由下列条件求解f析 (z)函 u数 iv
u x2 xy y2
f (i) 1i
解vu2xy vu2yx
y x
x y
dvvdxvdy(2yx)dx(2xy)dy x y
( x, y)
v(x, y) (2y x)dx(2x y)dyc (0,0)
x
y
o xdx0 (2x y)dyc
x2
u0,
v0
其
中
2 x2
2 y2
uu(x,y),vv(x,y)是D内的调和函
定义 设u(x,y)为D内的调和 ,称函 使u数 得 iv 在D内构成解析函 函数 数 v(x,的 y)为 调 u(x,和 y) 的共轭调. 和函数
ppt课件
5
上面定理说明:
解析函数与调和函数的关系
第六讲解析函数与调和函数的关系§3.7 解析函数与调和函数的关系内容简介在§3.6我们证明了在D内的解析函数,其导数仍为解析函数,所以解析函数有任意阶导数。
本节利用这一重要结论研究解析函数与调和函数之间的关系。
.),()00:),(2222内的调和函数为则称即(方程续偏导数且满足内具有二阶连在若二元实变函数D y x y x Laplace D y x ϕϕϕϕϕ=∆=∂∂+∂∂定义 内的调和函数。
是,内解析在区域若D y x v v y x u u D y x iv y x u z f ),(),(),(),()( ==⇒+=定理证明:设f (z )=u (x ,y )+i v (x ,y )在区域D 内解析,则x v y u y v xu R C ∂∂-=∂∂∂∂=∂∂- 方程由yx v y u x y v x u ∂∂∂-=∂∂∂∂∂=∂∂222222从而有xy v y x v y x v y x u ∂∂∂=∂∂∂∴⇒22.),(),,(具有任意阶的连续导数理由解析函数高阶导数定,0 D 2222=∂∂+∂∂y u x u 内有故在0 2222=∂∂+∂∂y v x v 同理有0,0=∆=∆v u 2222y x ∂∂+∂∂≡∆其中即u 及v 在D 内满足拉普拉斯(Laplace )方程: 内的调和函数。
是,D y x v v y x u u ),(),(==∴.),(),(D ,),(的共轭调和函数为函数内构成解析函数的调和在称使得内的调和函数为设y x u y x v iv u D y x u +定义上面定理说明:.部的共轭调和函数内解析函数的虚部是实D .),(),(),(),()(,的共轭调和函数必为内在内解析在即y x u u y x v D D y x iv y x u z f =⇒+=由解析的概念得:.,,,:的共轭调和函数必为调和函数的两个方程内满足在u v v u v u v u R C D x y y x -==-.,, 一定解析内就不在则内的两个调和函数区域是任意选取的在若D iv u D v u +现在研究反过来的问题:.的共轭调和函数不是y x u y x v +=+=如 )11)()()(x y y x v u v u z y x i y x iv u z f -≠===+++=+=处处不解析平面上在( 由此,的共轭调和函数必须是方程,即还必须满足及内解析在要想使.,u v R C v u D iv u -+.),,(),,(iv u y x v R C y x u +-从而构成解析函数程可求得它的虚部方利用部已知一个解析函数的实)),((y x v 虚部)),((y x u 实部0,),(,2222=∂∂+∂∂yu x u D y x u D 则函数内的调和是区域一单连通区域设内有连续一阶偏导数在、即D xu y u ∂∂∂∂-,dy xu dx y u dy y v dx x v x u x y u y ∂∂+∂∂-=∂∂+∂∂∂∂∂∂=∂∂-∂∂ )()(且),(y x dv v ∃=)(),(),(),(00*+∂∂+∂∂-=⎰c dy x u dx y u y x v y x y x..内解析在方程满足D iv u R C xu y v y u x v +∴-∂∂=∂∂∂∂-=∂∂ .)(),,()(,),(内解析在使得式所确定的则内调和函数在单连通设D iv u z f y x v D y x u +=*定理公式不用强记!可如下推出:dy x v dx y v dy y v dx x v du R C ∂∂-∂∂=∂∂+∂∂=-方程由然后两端积分。
复变函数(3.5.3)--解析函数与调和函数的关系
1 2p
2p 0
| f (z) |
|
z
-
1 2
|2
dq
ᄁ
1 2p
2p 0
|
|fz(|z=)1- z | + |
(|
z
|
-
1 2
)2
z
|
dq
ᄁ
1 2π
2p 0
2 1
dq
=
8.
4
()
| z - CDzu0 |= r
7、 如果是区域内的调和函数,为内以为圆心的正向圆周:,它的内部全含于,
试证:
证 (1)由柯西公式:
第三章 复变函数的积分
例题
是实常数,于是
f (z) = C1C(1- i)z + C
由此
(是复常数)
| f| (fz|ᄁ)(zf12-(|<ᄁ=)zz|)1ᄁ|ᄁ8| .z |
6、 设在内解析,在上连续,且在上,证明
ᄁ |
f
ᄁ(12) |=
1 2πi
|z|=1
f (z)
(
z
-
1 2
)2
dz
证
� � � ᄁ
uyy = -uxx = -2 = a ᄁᄁ( y)
第三章 复变函数的积分
例题
a ( y) = - y2 + C1 y + C2
由 C-R 条件,
ux = 2x = vy -uy = 2 y + C1 = vx
而 因此 由得 由得,
v = 2xy + C1x + C3 C2f =(0C) 3==00 fCᄁ(10=) =00
因此 (3).(线积分法)
解析函数与调和函数的关系
第三章
解析函数与调和函数的关系
一、调和函数的定义 二、解析函数与调和函数的关系
盐城工学院基础部应用数学课程组
目录
上页
下页
返回
结束
一、调和函数的定义
定义 如果二元实变函数 ( x , y ) 在区域 D内具
有二阶连续偏导数, 并且满足拉普拉斯方程 2 2 2 2 0, x y 那末称 ( x , y ) 为区域 D 内的调和函数.
3 w f ( z ) i ( z c ). 即
盐城工学院基础部应用数学课程组
目录
上页
下页
返回
结束
内容小结
1.调和函数的概念
2.解析函数与调和函数的关系以及共轭调和函数
的概念.
1. 任意两个调和函数 u与v所构成的函数 u+iv不一定 是解析函数. 2. v称为u的共轭调和函数, u与v注意的是地位不能 颠倒.
2 u u 因为 6 xy, 6 y , 2 x x 2 u u 2 2 3 y 3x , 6 y, 2 y y
2u 2u 于是 2 0, 故 u( x , y ) 为调和函数. 2 x y
盐城工学院基础部应用数学课程组
目录 上页 下页 返回 结束
调和函数在流体力学和电磁场理论等实际 问题中有很重要的应用.
盐城工学院基础部应用数学课程组
目录
上页
下页
返回
结束
二、解析函数与调和函数的关系
1. 两者的关系
任何D 内的解析函数,它的实部和虚部都是 D 内
的调和函数. 2. 共轭调和函数的定义
设解析函数u iv的实部u( x, y ) 是一调和函数, 则虚部v( x, y ) 称为 u( x, y ) 的共轭调和函数.
解析调和与级数
§4 解析函数与调和函数的关系一、概念与结论1.定义与定理设()y x g ,具有二阶连续偏导数,且满足拉普拉斯方程:02222=∂∂+∂∂ygx g 则称()y x g ,为调和函数。
若还有调和函数()y x f ,,与()y x g ,满足柯西——黎曼方程,则相互称其为共轭调和函数。
定理 解析函数的实部和虚部皆为调和函数,但反之不然。
证明 设()iv u z f +=解析,∴y v x u ∂∂=∂∂,xv y u ∂∂-=∂∂,且 x x u x u ∂∂=∂∂∂∂22x y v x y v ∂∂∂=∂∂=∂∂2,又()y y yu xv y u ∂-∂=∂∂=∂∂∂∂∂∂22y x v ∂∂∂-=2, 又()z f ' 解析,故二阶偏导连续,从而,02222=∂∂+∂∂y u x u 。
同理可证02222=∂∂+∂∂yvx v 。
反之,如y v x u -==,,易见v u ,满足Laplace 方程,但是,()z yi x z f =-=处处不解析。
例1 若v u ,都是区域D 内的调和函数,且满足柯西黎曼方程:yvx u ∂∂=∂∂,xvy u ∂∂-=∂∂,则()()()y x iv y x u z f ,,+=在区域D 内 A.是解析函数 B.不是解析函数 C.不一定是解析函数 D.不一定是连续函数解 A.正确。
y v x u ∂∂=∂∂,xv y u ∂∂-=∂∂是()iv u z f +=解析的充要条件。
2.主要题型○1调和函数的正问题和反问题; ○2对给定调和函数,求满足R C -条件:y v x u ∂∂=∂∂,xvy u ∂∂-=∂∂的共轭调和函数,构成解析函数()iv u z f +=。
二、应用举例例 2 证明:22y x u -=为调和函数,并求其共轭及其构成的解析函数iv u +。
证明 02,2;2,2=+⇒-=-===yy xx yy y xx x u u u y u u x u ,∴22y x u -=为调和函数;令xv∂∂()y g xy ydx v y y u +==⇒=∂∂-=⎰222,()y g x y v '+=∂∂∴2,又有()()1,02C y g y g x xu y v =='⇒=∂∂=∂∂ 从而,12C xy v +=;()()1222C xy i y x iv u z f ++-=+=()()C z i C yi x i C yi xyi x +=++=+++=121222即为所求。
3-7解析函数与调和函数的关系
u e x x cos y y sin y x g y 代入 u v 得
故
于是
x
g y 1
g y y c
u x, y e x x cos y y sin y x y c
所以 f(z)=u+iv
u v , x y u v , y x
2v 2 u 2v 2v 2 u 2 u , , 2 0. 2 2 x y y x x y y x y 2u 2v 2v 2u 2u 2 u 2v 2v , 2 , , 2 0. 2 2 x y y x yx xy x y x y 定义 设u(x,y)为区域D内给定的调和函数,我们把使u+iv在D 内构成解析函数的调和函数v(x,y)称为u(x,y)的共轭调和函数. 因此,区域D内的解析函数的虚部为实部的共轭调和函数.
v v i y x
e ze 1 i
z z
因此
f z e z ze z 1 i dz ze z 1 i z c
由于己知f(z)的虚部v(x,y)中不含任意常数,故C为实常数.
3i x 2 2 xiy i 2 y 2 3iz 2
因此
f z i 3 z 2dz iz 3 c1 由于已知f(z)的实部u不含
任何实常数,故c1为纯虚数,令c1=ic,则 f(z)=i(z3+c) .
例2 中,
f z
v e x y cos y x sin y x y
例1 证明u(x,y)=y3-3x2y为调和函数,并求其共轭调和函数v(x,y)
解析函数与调和函数的关系
数学学院
共轭调和函数的定义 定义 设u(x,y)为区域D内的调和函数,如果区 域D内的另一函数v(x,y),使u+iv在D内构成解析函数, 则称v(x,y)为u(x,y)的共轭调和函数.
定理 若调和函数u和v满足C-R方程,则v(x,y)为 u(x,y)的共轭调和函数, u+iv在D内构成解析函数.
f (z) ex cos y ie x sin y 1
数学学院
例3 已知调和函数 v e x y cos y x sin y x y,
试求一解析函数 f z u iv,使f (0) 0.
数学学院
同学们辛苦了
数学学院
例1 证明 u( x, y) x3 3xy2 为调和函数,
求其共轭调和函数 v x, y ,使 f (z) u iv 解析.
解 (1) ux 3x2 3 y2 , uxx 6 x,
uy 6xy,
uyy 6x,
uxx uyy 0.
(2) ux 3x2 3 y2 vy ,
数学学院
第三章 复变函数的积分
第五节解析函数与调和函数的关系
数学学院
调和函数定义:
定义 如果二元实变函数 x, y在区域D内具有
二阶连续偏导数,且满足Lapalace方程,
2 2
x2 y2 0
则称 x, y 为区域D内的调和函数.
数学学院
定理 (解析函数与调和函数的关系)
在区域D内的解析函数,其实部和虚部都是调和函数.
f z u iv,使f (0) 0.
解 ux v y e x cos y,
u vydx e x cos ydx ex cos y C( y)
uy e x sin y C( y) vx e x sin y, C( y) 0, C( y) C.
解析函数与调和函数关系
y,
u3y2 3x2, y
2u y2
6
y,
于是x2u2 y2u2 0, 故u(x,y)为调和函 . 数 因为 vu6xy,
y x
v6xd yy3x2yg(x),
v3y2g(x), x 又 因 为 v u3y23x2,
x y
求解析函数不 的定 方积 法 . 分 称法 为
不定积分法的实施过程: 解析 f(z)函 u i的 v 数导 f(z)仍 数为,解 且 f(z) u x ix v uxiuy vyivx 把 u x iy u 与 vy ix v用 z来,表示
f(z) u x iy u U (z),f(z) v y ix v V (z),
调和函数在流体力学和电磁场理论等实际 问题中有很重要的应用.
二、解析函数与调和函数的关系
1. 两者的关系 定理 任何在区域 D 内解析的函数,它的实部 和虚部都是 D 内的调和函数. 证 设 wf(z)uiv为 D内的一个, 解
那末 uv, uv. x y y x
从 而 x 2u 2 y2 vx, y 2u 2 x 2 vy.
f(z)uiv x x e i e y ix y e i y x e ( 1 i ) i( 1 y i ) c zze(1i)zc, 由f(0)0, 得c0, 所求解析函数为 f(z)zze (1i)z.
4. 不定积分法 已知调u和 (x,y函 )或v数 (x,y),用不定积
们把u使iv在D内构成解析函数 函的 数调和 v(x,y)称为 u(x,y)的共轭调和 . 函数
换句话 ,在D 说 内满足u 方 程 v, uv的 x y y x
两个调和,v函 称数 为 u的中 共轭调. 和函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析函数与调和函数的关系
§3.7 解析函数与调和函数的关系
内容简介
在§3.6我们证明了在D内的解析函数,其导数仍为解析函数,所以解析函数有任意阶导数。
本节利用这一重要结论研究解析函数与调和函数之间的关系。
.
),()
00:
),(2222内的调和函数为则称即(方程续偏导数且满足内具有二阶连在若二元实变函数
D y x y x Laplace D y x ϕϕϕϕϕ=∆=∂∂+∂∂定义是,内解析在区域若D
y x v v y x u u D y x iv y x u z f ),(),(),(),()( ==⇒+=定理
证明:设f (z )=u (x ,y )+i v (x ,y )在区域D 内解析,则
x v y u y v x
u R C ∂∂-=∂∂∂∂=∂∂- 方程由y
x v y u x y v x u ∂∂∂-=∂∂∂∂∂=∂∂222222从而有x
y v y x v y x v y x u ∂∂∂=∂∂∂∴⇒22.)
,(),,(具有任意阶的连续导数理由解析函数高阶导数定,0 D 2222=∂∂+∂∂y u x u 内有故在0 22
22=∂∂+∂∂y v x v 同理有
0,0=∆=∆v u 2222y x ∂∂+∂∂≡∆其中即u 及v 在D 内满足拉普拉斯(Laplace )方程:是,D
y x v v y x u u ),(),(==∴.
),(),(D ,),(的共轭调和函数为函数内构成解析函数的调和在称使得内的调和函数
为设y x u y x v iv u D y x u +定义
上面定理说明:
.部的共轭调和函数内解析函数的虚部是实D ),(),(),(),()(,的共轭调和函数必为内在内解析在即y x u u y x v D D y x iv y x u z f =⇒
+=由解析的概念得:
.,,,:的共轭调和函数必为调和函数的两个方程内满足在u v v u v u v u R C D x y y x -==-,, 一定解析
内就不在则内的两个调和函数区域是任意选取的在若D iv u D v u +现在研究反过来的问题:
.
的共轭调和函数不是y x u y x v +=+=如)11)()()(x y y
x v u v u z y x i y x iv u z f -≠===+++=+=处处不解析平面上在( 由此,的共轭调和函数必须是方程,即还必须满足及内解析在要想使.,u v R C v u D iv u -+.),,(),,(iv u y x v R C y x u +-从而构成解析函数程可求得它的虚部方
利用部已知一个解析函数的实))
,((y x v 虚部))
,((y x u 实部
0,),(,22
22=∂∂+∂∂y
u x u D y x u D 则函数内的调和
是区域一单连通区域设内有连续一阶偏导数在、即D x
u y u ∂∂∂∂-,dy x
u dx y u dy y v dx x v x u x y u y ∂∂+∂∂-=∂∂+∂∂∂∂∂∂=∂∂-∂∂ )()(且),(y x dv v ∃=)
(),(),(),(00*+∂∂+∂∂-=⎰c dy x u dx y u y x v y x y x
.
.内解析在方程满足D iv u R C x
u y v y u x v +∴-∂∂=∂∂∂∂-=∂∂ .
)(),,()(,
),( 内解析在使得式所确定的则内调和函数在单连通设D iv u z f y x v D y x u +=*定理
公式不用强记!可如下推出:
dy x v dx y v dy y v dx x v du R C ∂∂-∂∂=∂∂+∂∂=-方程由然后两端积分。
由求其共轭调和函数已知:方程dy u dx u dy y
v dx x v dv y x v y x u x y R C +-=∂∂+∂∂=-:),(),,(类似地,然后两端积分得,
)
(),()
,()
,(00**+-=⎰
c
dy v dx v y x u y x y x x y
调和函数在流体力学和电磁场理论等实际
问题中都有重要应用。
本节介绍了调和函数与解析函数的关系。
i
i f y
xy x u iv u z f +-=-+=+=1)()(2
2
由下列条件求解析函数
例1dy
y x dx x y dy y v
dx x v dv x y y
u x v y
x x
u
y v )2()2(22++-=∂∂+∂∂=∴+-=∂∂=∂∂-+=∂∂=∂∂ 解c
y
xy x c
dy y x xdx c
dy y x dx x y y x v y
x
o
y x +++-=+++-=
+++-=⎰⎰
⎰2
22)2()2()2(),(2
2
)
,()0,0(曲线积分法
ic
z i ic iy x i iy x c y xy x i xy y x z f +-=++-+=+++-++-=22
22
22
2
)2
11()(2)()
2
1221()()(故2
)21()(211)2
1(1)(22
i z i z f c i
ic i i i i f +
-==∴+-=+-+-=代入上式得, )
(21
),
(21
z z i
y z z x -=+=
)(2
222
x y xy v y x y v ϕ++=⇒+=∂∂ )
2
1221()()(2
22
2
c y xy x i xy y x z f +++-++-=又解偏积
分法
x y x y x
v x
v -=+=∂∂⇒∂∂2)('2 ϕc
x
x +-=2
)(2ϕc
x
y xy y x v +-+=∴2
22),(2
2x x -=)('ϕ
)
2()2()('y x i y x iu u iv u z f y
x x x --+=-=+=)
2
1221()()(2
22
2
c y xy x i xy y x z f +++-++-=又解不定积
分法
))(2()()(2iy x i iy x i iy x +-=+-+=()z
i -=2ic
z i z f +-=∴2
2
2)(。