解三角形——求取值范围问题

合集下载

解三角形——求取值范围问题

解三角形——求取值范围问题

所以 a+b= 因为锐角△ABC,C=60°,则 30°<A<90°,所以 a+b∈(2 ∴a+b 的取值范围为(2 ,4].
=4sin(A+30°) ,4]
8.已知角 A、B、C 为△ABC 的三个内角,其对边分别为 a、b、c,若 a2=b2+c2+bc,且 a=2 3. (Ⅰ)若△ABC 的面积 S= 3,求 b+c 的值; (Ⅱ)求 b+c 的取值范围. 【解析】 (1)∵a2=b2+c2+bc,∴ cos A
2 1 . 又由 S△ABC= bcsinA= 3,所以 bc=4, 3 2 2 由余弦定理得:12=a2=b2+c2-2bc·cos =b2+c2+bc,∴16=(b+c)2,故 b+c=4. 3 2 3 b c a (2)由正弦定理得: = = = =4,又 B+C=-A= , 3 sinB sinC sinA sin2 3 ∴b+c=4sinB+4sinC=4sinB+4sin( -B)=4sin(B+ ), 3 3 又∵A∈(0,π),∴A=
,AB=3,则△ABC 的周长为( B. C.
D. )
,则△ABC 的周长为( B. D.
4.在 ABC 中, a, b, c 分别为内角 A, B, C 所对的边,若 a ( A.4 ) B. 3 3 C. 2 3 D.2
3, A
,则 b c 的最大值为 3
5.在 ABC 中,角 A , B , C 所对的边分别为 a , b , c ,已知 a 3 ,1 的最大值为___6____. 6.在锐角△ABC 中, a,b,c 分别为角 A,B,C 所对的边,且 (1)确定角 C 的大小;(2)若 c= 3,求△ABC 周长的取值范围. 解:(1)已知 a,b,c 分别为角 A,B,C 所对的边, 由 3a=2csin A,得

解三角形中的最值、范围问题

解三角形中的最值、范围问题

Җ㊀山东㊀冯海侠㊀㊀在新高考形势下, 解三角形 应该会出现在第17题或第18题的位置,一般都属于中等或中等偏下难度的题目,是学生必拿分的题.高考对正弦定理和余弦定理的考查较为灵活,题型多变㊁综合性强,有利于培养学生的创新意识.这类问题简单,但部分学生却拿不到满分,尤其是求最值或范围的问题.下面笔者以两道高考题为例来归纳这类问题的解答方法及技巧,希望能帮助读者突破瓶颈,提高学习效率.例1㊀(2019年全国卷Ⅲ理18)әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a s i nA +C2=b s i n A .(1)求B ;(2)若әA B C 为锐角三角形,且c =1,求әA B C 面积的取值范围.(1)由a s i n A +C2=b s i n A ,可得s i n A s i n π-B 2=s i n B s i n A ,即s i n A c o s B2=s i n B s i n A ,因为s i n A ʂ0,所以c o s B 2=s i n B =2s i n B 2c o s B2.又因为B ɪ(0,π),所以B 2ɪ(0,π2),则c o s B 2ʂ0,所以s i n B 2=12,则B 2=π6,即B =π3.(2)由c =1,a s i n A =c s i n C,可得a =c s i n A s i n C =s i n A s i n C.所以S әA B C =12a c s i n B =12ˑ32a =34a =34s i n A s i n C =34s i n (B +C )s i n C=34ˑ32c o s C +12s i n Cs i n C =38+38ˑ1t a n C.又因为әA B C 是锐角三角形,故0<C <π2且0<2π3-C <π2,所以π6<C <π2,则t a n C >33,即0<1t a n C <3,所以S әA B C ɪ(38,32).例2㊀(2013年全国卷Ⅱ理17)әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b c o s C +c s i n B .(1)求B ;(2)若b =2,求әA B C 面积的最大值.(1)由已知条件及正弦定理得s i n A =s i n B c o s C +s i n C s i n B .①又因为A =π-(B +C ),故s i n A =s i n (B +C )=s i n B c o s C +c o s B s i n C .②由①②得s i n B =c o s B ,又B ɪ(0,π),所以B =π4.(2)әA B C 的面积S =12a c s i n B =24a c ,由已知条件及余弦定理得4=a 2+c 2-2a c c o sπ4ȡ2a c -2a c ,故a c ɤ42-2=2(2+2),当且仅当a =c 时,等号成立.因此,S =12a c s i n B =24a c ɤ24ˑ2(2+2)=2+1,即әA B C 面积的最大值为2+1.解三角形中的最值及范围问题主要有两种方法,其一是利用基本不等式求最大值或最小值,这类问题多与余弦定理相结合,常见形式如下.(1)a 2=b 2+c 2-2b c c o s A ȡ2b c -2b c c o s A ,从而求出b c 的最大值;(2)a 2=b 2+c 2-2b c c o s A =(b +c )2-(2-2c o s A )b c ȡ(b +c )2-(2-2c o s A )(b +c 2)2.在使用基本不等式时一定不要忘了等号的验证,同时,要将所求式子转化为含有一个未知数的函数,大多情况下是转化成关于某个角的函数,利用三角函数性质及角的条件求解,有时也转化为某个边的函数,再结合边的范围求解.解三角形中的最值和范围问题是重点也是难点,综合性较强,所以学生不仅要有扎实的基本功,还要灵活应变,掌握做题技巧,这样在高考中才能取得满意的成绩.(作者单位:山东省菏泽市巨野县第一中学)3。

解三角形中取值范围的求解策略例谈

解三角形中取值范围的求解策略例谈

技法点拨摘要:解三角形是高考数学考查的重点内容,从历年高考真题来看题型难度中等。

有关取值范围的问题是一个难点,涉及的问题主要有三角形边或边的比值的取值范围、角的取值范围、面积和周长等几类。

关键词:解三角形;取值范围;高考解三角形是普通高中数学重要的内容之一,主要研究三角形中边和角的关系,其中有关取值范围的考题是历年高考的重点和热点。

解三角形中的取值范围问题通常有三类,一是边或边的比值的取值范围;二是角的取值范围;三是三角形的周长或面积的取值范围。

本文结合实例,分析求解解三角形取值范围的常用策略。

一、运用函数思想方法求解取值范围函数思想方法,是破解取值范围和最值问题的强大武器。

运用函数思想方法的关键是合理选择自变量,在解三角形的取值范围中,主要以角为自变量,通过三角函数的有界性求解。

例1.(2020年浙江卷)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin A -3a =0.(1)求角B 的大小;(2)求cos A +cos B +cos C 的取值范围.解:(1)B =π3(过程略).(2)由A +B +C =π得C =2π3-A ,由△ABC 是锐角三角形,得ìíîïïïï0<A <π20<C <π2,即ìíîïïïï0<A <π20<2π2-A <π2,解得π6<A <π2.由cos C =cos(2π3-A )=-12cos A+A ,得cos A +cos B +cos C=A +12cos A +12=sin(A +π6)+12,因为π3<A +π6<2π3,sin(A +π6)≤1,<sin(A +π6)+12≤32,得cos A +cos B +cosC∈(32].故cos A +cos B +cosC ∈(3+12,32].点评:本题把求解的式子转化为关于角A 的三角函数,也可以转化为角C 的三角函数,无论转化为哪一种都有求出角的范围。

解三角形解答题中范围问题归纳总结

解三角形解答题中范围问题归纳总结

解三角形解答题中范围问题归纳总结一、与三角形的边相关的范围问题1.设函数()24cos 22cos 3f x x x π⎛⎫=-+ ⎪⎝⎭. (1)求()f x 的对称轴方程;(2)已知ABC 中,角,,A B C 的对边分别是,,a b c ,若122A f ⎛⎫=⎪⎝⎭, 2b c +=,求a 的最小值. 2.在ABC 中,角,,A B C 所对的边分别是,,a b c ,已知函数()2223sin cos sin cos f x x x x x =+-,当x A =时, ()f x 取得最大值.(1)求角A 的大小;(2)若2a =,求BC 边的中线AD 长度的最大值.3.在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+. (1)求角C ;(2)若ABC 的面积为32S c =,求ab 的最小值. 4.设函数()22cos 22cos 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求()f x 的最大值,并写出使()f x 取最大值时x 的集合; (2)已知ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()32f A =, 2b c +=,求a 的最小值. 5.在平面直角坐标系xOy 中,角α的顶点是原点,始边与x 轴的正半轴重合,终边交单位圆于点D ,且()0,απ∈,点E 的坐标为()1,3-.(1)若OE OD ⊥,求点D 的坐标;(2)若(0)OE tOD t =>,且在ABC ∆中,角A , B , C 的对边分别为a , b , c , 2=B α, 3b =求a c +的最大值.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos cos 3sin cos C A B A B +=. (1)求cos B 的值;(2)若1a c +=,求b 的取值范围.7.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足:①ABC ∆的外心在三角形内部(不包括边); ②()()()222sin 3cos b a c B C ac A C --+=+. (1)求A 的大小; (2)求代数式b ca+的取值范围. 8.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2sin tan tan cos CA B A+=. (1)求角B 的大小;(2)若4a c +=,求b 的取值范围.9.已知ABC △的内角,,A B C 的对边长分别为,,a b c 3tan tan cA B =+.(1)求角A 的大小;(2)设AD 为BC 边上的高,3a =AD 的范围.【总结】三角形中最值或范围问题,一般转化为条件最值或范围问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.二、与三角形的角相关的范围问题1.已知cos 14x m ⎛⎫= ⎪⎝⎭,, 23sin cos 44x x n ⎛⎫= ⎪⎝⎭,,设函数()f x m n =⋅ (1)求函数()f x 的单调增区间;(2)设ABC 的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【思路引导】由a , b , c 成等比数列,可得2b ac =,再根据余弦定理结合基本不等式可得222221cos 222a cb ac ac B ac ac +-+-==≥,从而可得角B 的范围,进而可得()f B 的取值范围.2.已知函数()21sin cos sin 2f x x x x =-+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)在 ABC 中, ,,a b c 为角,,A B C 的对边,且满足cos2cos sin b A b A a B =-02A π<<求()f B 的取值范围.【思路引导】由cos2cos sin b A b A a B =-,根据正弦定理可得sin cos2sin cos sin sin B A B A A B =-,再根据三角形的性质以及二倍角的余弦公式可得()()cos sin cos sin 10A A A A -+-=,求出4A π=.从而可得72444B πππ<+<,进而利用正弦函数的单调性可得()f B 的取值范围. 3.在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,且()3cos 23cos .a C b c A =- (1)求角A 的大小; (2)求25πcos 2sin 22C B ⎛⎫--⎪⎝⎭的取值范围.【思路引导】先对三角式子进行恒等变形化简,然后利用角A 得到角B 的取值范围,通过三角函数的有界性,确定所给条件的取值范围.4.已知在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足2cos cos 0a B b A +=. (1)若2a c =,求角B ; (2)求cos C 的最小值.【思路引导】根据(1)可知222cos 2a c b c a B a ac +-=-=-⋅,即()22213c b a =-,由余弦定理得222cos 2a b cC ab+-==()2222132a b b a ab+--=22426a b ab +,根据基本不等式可得结果. 5.已知锐角ABC ∆的三个内角A 、B 、C 满足sin sin B C = ()222sin sin sin tan B C A A +-. (Ⅰ)求角A 的大小;(Ⅱ)若ABC ∆的外接圆的圆心是O ,半径是1,求()OA AB AC ⋅+的取值范围. 【思路引导】根据向量减法的三角形法则及平面向量的数量积公式可得()()2?3cos 226OA AB AC OA OB OC OA B π⎛⎫⋅+=⋅+-=+- ⎪⎝⎭,根据ABC ∆是锐角三角形,可得572666B πππ<+<,再由三角函数的有界性可得结果. 6.设ΔABC 三个内角,,A B C 的对边分别为,,a b c , ΔABC 的面积S 满足22243S a b c =+-. (1)求角C 的值;(2)求sin cos B A -的取值范围.【思路引导】由三角形的内角和定理,可得5π6B A =-,运用两角和差的正弦公式,结合正弦函数的图象和性质,即可得到所求范围.7.在ΔABC 中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A a C =. (1)求角C 的大小;(2)求π3sin cos 4u A B ⎛⎫=-+⎪⎝⎭的取值范围. 【思路引导】由(1)知3π4B A =-,化简π2sin 6u A ⎛⎫=+ ⎪⎝⎭,结合正弦函数的性质求解即可.8.ABC 的内角A 、B 、C 所对的边分别为a b c ,,,且sin sin sin 2sin a A b B c C a B +=+()1求角C ;()2求3sin cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值.【思路引导】由第一问得到原式等价于33sin cos 44A A ππ⎛⎫--+ ⎪⎝⎭,化简后为2sin 6A π⎛⎫=+ ⎪⎝⎭,再根据角的范围得到三角函数的范围即可。

三角函数ω的取值范围及解三角形中的范围与最值问题(学生版)-高中数学

三角函数ω的取值范围及解三角形中的范围与最值问题(学生版)-高中数学

三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.832(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,833(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.44(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞B.32,73∪52,+∞C.136,3 ∪196,+∞ D.12,+∞ 02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.3(2024·宁夏银川·二模)已知平面四边形ABCD中,∠A+∠C=180°,BC=3.(1)若AB=6,AD=3,CD=4,求BD;(2)若∠ABC=120°,△ABC的面积为932,求四边形ABCD周长的取值范围.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C=3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.3(2024·河北衡水·一模)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,三角形面积为S ,若D 为AC 边上一点,满足AB ⊥BD ,BD =2,且a 2=-233S +ab cos C .(1)求角B ;(2)求2AD+1CD 的取值范围.4(2024·陕西安康·模拟预测)已知锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a =8,ac =1+sin 2A -sin 2C sin 2B ,且a ≠c .(1)求证:B =2C ;(2)已知点M 在线段AC 上,且∠ABM =∠CBM ,求BM 的取值范围.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,62已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163 ;则正确的个数为()A.0B.1C.2D.33设函数f x =sin 2ωx -cos 2ωx +23sin ωx cos ωx ω>0 ,当x ∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,133B.73,133C.83,143D.83,1434将函数f x =sin ωx -cos ωx (ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.565已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为() A.23B.13C.1D.126(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+37已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.9已知函数f x =sin ωx +φ ω>0 满足f x ≥f π12,且f x 在区间-π3,π3 上恰有两个最值,则实数ω的取值范围为.10已知函数f (x )=-sin ωx -π4(ω>0)在区间π3,π 上单调递减,则ω的取值范围是.11若函数f x =cos ωx -π6ω>0 在区间π3,2π3 内单调递减,则ω的最大值为.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.13在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B ;(2)求sin A +sin C 的取值范围.15在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2b sin A -3a =0.(1)求角B 的大小;(2)求cos A +cos C 的取值范围.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求cb的取值范围.20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n.(1)求B ;(2)求b 2a 2+c 2的最小值.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.。

三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)

三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)

三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.83【答案】B【解析】因为y=3sinωx+cosωx=2sinωx+π6,又ω>0,由-π2+2kπ≤ωx+π6≤π2+2kπ,k∈Z,得到-2π3+2kπω≤x≤π3+2kπω,k∈Z,所以函数y=3sinωx+cosωx的单调增区间为-2π3+2kπω,π3+2kπω(k∈Z),依题有-π4,2π3⊆-2π3+2kπω,π3+2kπω(k∈Z),则2π3≤π3ω-2π3ω≤-π4,得到0<ω≤12,故选:B.2(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,83【答案】B【解析】因为0≤x≤π,所以-2π3≤ωx-2π3≤ωπ-2π3,因为函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,结合正弦函数的图象可知2π≤ωπ-2π3<3π,解得83≤ω<113,故选:B.3(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.4【答案】C【解析】①因为f7π12=-f3π4 且7π12+3π42=2π3,所以f2π3=0.①正确.②因为f5π6-x=f(x)所以f(x)的对称轴为x=5π62=5π12,2π3-5π12=π4=T4⇒T=π.②正确.③在一个周期内f x =1只有一个实数解,函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3.当T=2π3时,f x =sin3x,f x =1在区间0,2π上实数解最多为π6,5π6,3π2共3个.③正确.④函数f x 在区间2π3,13π6上恰有5个零点,2T<13π6-2π3≤5T2⇒2⋅2πω<13π6-2π3≤52⋅2πω,解得83<ω≤103;又因为函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3,即2πω≥2π3⇒ω≤3,所以ω∈83,3.④错误故选:C4(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞ B.32,73 ∪52,+∞ C.136,3 ∪196,+∞ D.12,+∞ 【答案】A【解析】令2sin ωx -π6 -1=0得sin ωx -π6 =12,因为ω>0,所以ωx -π6>-π6,令sin z =12,解得z =π6+2k π,k ∈Z 或z =5π6+2k 1π,k 1∈Z ,从小到大将sin z =12的正根写出如下:π6,5π6,13π6,17π6,25π6,29π6⋯⋯,因为x ∈π,2π ,所以ωx -π6∈ωπ-π6,2ωπ-π6,当ωπ-π6∈0,π6 ,即ω∈16,13 时,2ωπ-π6≥5π6,解得ω≥12,此时无解,当ωπ-π6∈π6,5π6 ,即ω∈13,1 时,2ωπ-π6≥13π6,解得ω≥76,此时无解,当ωπ-π6∈5π6,13π6 ,即ω∈1,73 时,2ωπ-π6≥17π6,解得ω≥32,故ω∈32,73,当ωπ-π6∈13π6,17π6 ,即ω∈73,3 时,2ωπ-π6≥25π6,解得ω≥136,故ω∈73,3,当ω≥3时,2ωπ-π6-ωπ-π6=ωπ≥3π,此时f x 在π,2π 上至少有两个不同零点,综上,ω的取值范围是32,+∞ .故选:A02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.【解析】(1)由正弦定理可得,2sin A cos 2B +2sin B cos A cos B =sin C ,所以2sin A cos 2B +2sin B cos A cos B =sin A cos B +cos A sin B ,所以sin A cos B (2cos B -1)+cos A sin B (2cos B -1)=0,即(2cos B -1)sin (A +B )=0,由0<A +B <π,可知sin (A +B )≠0,所以2cos B -1=0,即cos B =12,由0<B <π,知B =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B ,即16=a 2+c 2-ac ,所以16=a +c 2-3ac ,即ac =13a +c 2-16 ,因为S =12ac sin B =34ac ,L =a +b +c ,所以S L =3ac 4a +c +4=3a +c 2-1612a +c +4,所以S L=312a +c -4 ,又ac ≤a +c 24(当且仅当a =c 时取等号),所以16=a +c 2-3ac ≥a +c24(当且仅当a =c =4时取等号),所以a +c ≤8(当且仅当a =c =4时取等号),所以S L=312a +c -4 ≤312×8-4 =33(当且仅当a =c =4时取等号),即S L的最大值为33.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.【解析】(1)选条件①,由3AB ⋅AC =2S ,得3bc cos A =2×12bc sin A ,整理得tan A =3,而0<A <π,所以A =π3.选条件②,由a sin B =b cos A -π6 及正弦定理,得sin A sin B =sin B cos A -π6,而sin B >0,则sin A =cos A -π6 =32cos A +12sin A ,整理得tan A =3,而0<A <π,所以A =π3.(2)由(1)知A =π3,由正弦定理得b sin B =c sin C =a sin A =6sin π3=22,因此b +c =22sin B +22sin C =22sin B +sin π3+B =2232sin B +32cos B=26sin B +π6由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,解得π6<B <π2,因此π3<B +π6<2π3,则32<sin B +π6≤1,于是32<b +c ≤26,32+6<a +b +c ≤36,所以△ABC 周长的取值范围是(32+6,36].3(2024·宁夏银川·二模)已知平面四边形ABCD 中,∠A +∠C =180°,BC =3.(1)若AB =6,AD =3,CD =4,求BD ;(2)若∠ABC =120°,△ABC 的面积为932,求四边形ABCD 周长的取值范围.【解析】(1)在△ABD 中,由余弦定理得cos ∠A =32+62-BD 22×3×6,在△BCD 中,由余弦定理得cos ∠C =32+42-BD 22×3×4,因为∠A +∠C =180°,所以cos ∠A +cos ∠C =0,即32+62-BD 22×3×6+32+42-BD 22×3×4=0,解得BD =33.(2)由已知S △ABC =12×3×AB ×32=932,得AB =6,在△ABC 中,∠ABC =120°,由余弦定理得AC 2=32+62-2×3×6×cos120°=63,则AC =37,设AD=x,CD=y,(x,>0,y>0),在△ACD中,由余弦定理得372=x2+y2-2xy⋅cos60°=x+y2-3xy,则x+y2=63+3xy≤63+3×x+y22,得x+y24≤63,所以x+y≤67,当且仅当x=y=37时取等号,又x+y>AC=37,所以四边形ABCD周长的取值范围为37+9,67+9.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)因为△ABC中,sin B=23cos2A+C2,即2sinB2cos B2=23cos2π-B2=23sin2B2,而0<B<π,∴sin B2>0,故cos B2=3sin B2,故tan B2=33,又0<B<π,∴0<B2<π2,则B2=π6,∴B=π3;(2)由(1)以及题设可得S△ABC=12ac sin B=34a;由正弦定理得a=c sin Asin C=c sin2π3-Csin C=c sin2π3cos C-cos2π3sin Csin C=32cos C+12sin Csin C=32tan C+12,因为△ABC为锐角三角形,0<A<π2,0<C<π2,则0<2π3-C<π2,∴π6<C<π2,则tan C>33,∴0<1tan C<3,则12<32tan C+12<2,即12<a<2,则38<S△ABC<32,即△ABC面积的取值范围为38,32 .03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C= 3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.【解析】(1)在△ABC中,由3b-a sin C=3a cos C及正弦定理,得3sin B-sin A sin C=3sin A cos C,则3sin A cos C+sin A sin C=3sin(A+C)=3sin A cos C+3cos A sin C,即sin A sin C=3cos A sin C,而sin C>0,于是tan A=3,又0<A<π,所以A=π3.(2)由(1)知,A=π3,由正弦定理得b=c sin Bsin C=2sin2π3-Csin C=3cos C+sin Csin C=3tan C+1,由△ABC为锐角三角形,得0<C<π20<2π3-C<π2,解得π6<C<π2,则tan C>13,∴1tan C<3,则1<b<4,所以b的取值范围是1<b<4.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.【解析】(1)因为2sin B sin C+cos2C=1+cos2A-cos2B,所以2sin B sin C+1-2sin2C=1+1-2sin2A-1+2sin2B,则sin B sin C-sin2C=-sin2A+sin2B,由正弦定理可得bc-c2=-a2+b2,即bc=b2+c2-a2,所以cos A=b2+c2-a22bc=bc2bc=12,又A∈0,π2,故A=π3,由A+B+C=π,故B+C=π-A=2π3=2A;(2)由(1)得sin A=32,cos A=12,因为sin B=sin A+C=sin A cos C+cos A sin C=32cos C+12sin C,所以由正弦定理得c-ba=sin C-sin Bsin A=23sin C-32cos C-12sin C=2312sin C-32cos C=23sin C-π3,又锐角△ABC中,有0<C<π20<π-π3-B<π2,解得π6<C<π2,所以-π6<C-π3<π6,则-12<sin C-π3<12,所以-33<23sin C-π3<33,即-33<23sin C-π3<33,故c-ba的取值范围为-33,33.3(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.【解析】(1)∵a2=-233S+ab cos C,∴a2=-33ab sin C+ab cos C,即a=-33b sin C+b cos C,由正弦定理得,sin A=-33sin B sin C+sin B cos C,∴sin B+C=-33sin B sin C+sin B cos C,∴cos B sin C=-33sin B sin C,∵sin C≠0,∴tan B=-3,由0<B<π,得B=2π3.(2)由(1)知,B=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6,在△BCD中,由正弦定理得DCsin∠DBC=BDsin C,即DC=2sinπ6sin C=1sin C,在Rt△ABD中,AD=BDsin A=2sin A,∴2 AD +1CD=22sin A+11sin C=sin A+sin C,∵∠ABC=2π3,∴A+C=π3,∴2 AD +1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sin C+π3,∵0<C<π3,∴C+π3∈π3,2π3,∴sin C+π3∈32,1,所以2AD+1CD的取值范围为32,1.4(2024·陕西安康·模拟预测)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,其中a=8,ac=1+sin2A-sin2Csin2B,且a≠c.(1)求证:B=2C;(2)已知点M在线段AC上,且∠ABM=∠CBM,求BM的取值范围.【解析】(1)因为ac=1+sin2A-sin2Csin2B,即a-cc=sin2A-sin2Csin2B,由正弦定理可得a-cc=a2-c2b2=a+ca-cb2,又a≠c,即a-c≠0,所以1c=a+cb2,整理得b2=c2+ac,由余弦定理得b2=a2+c2-2ac cos B,整理得c=a-2c cos B,由正弦定理得sin C=sin A-2sin C cos B,故sin C=sin B+C-2sin C cos B,即sin C=sin B cos C+sin C cos B-2sin C cos B,整理得sin C=sin B-C,又因为△ABC为锐角三角形,则C∈0,π2,B∈0,π2,可得B-C∈-π2,π2,所以C=B-C,即B=2C.(2)因为点M在线段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又B=2C,所以∠C=∠CBM,则∠BMC=π-C-∠CBM=π-2C,在△MCB中,由正弦定理得BCsin∠BMC=BMsin C,所以BM=BC sin Csin∠BMC=8sin Csin2C=8sin C2sin C cos C=4cos C,因为△ABC为锐角三角形,且B=2C,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4.故22<cos C<32,所以833<BM<42.因此线段BM 长度的取值范围833,42.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,6【答案】C【解析】由正弦定理得a sin A =b sin B ,即b =a sin B sin A =3sin B sin60°=23sin B ,又△ABC 为锐角三角形,C =180°-A -B =120°-B ,又0°<B ,C <90°,则0°<120°-B <90°,解得30°<B <90°,而当30°<x <90°时,y =sin x 单调递增,故sin B ∈12,1,所以b =23sin B ∈3,23 .故选:C2已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163;则正确的个数为()A.0 B.1C.2D.3【答案】C【解析】对于①,因为x =π6+π32=π4时,f x 有最小值,所以sin ωπ4+π3=-1,所以ωπ4+π3=2kπ+3π2k∈Z,得到ω=8k+143k∈Z,因为f x 在区间π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k=0,得ω=143,故①错误;对于②,根据题意,有ωπ4+φ=2k1π+π2k1∈Z5ωπ3+φ=k2πk2∈ZT2=πω≥5π6-π4=7π12,得出ω=-12(2k1-k2)+617,k1,k2∈Z0<ω≤127,即ω=-12k+617,k∈Z0<ω≤127,得到ω=617或1817,故②正确;对于③,令ωx+φ=2kπ+π6k∈Z或ωx+φ=2kπ+5π6k∈Z,则x=-φ+2kπω+π6ωk∈Z或x=-φ+2kπω+5π6ωk∈Z,故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2πω≤π2,8π3ω>π2,,解得ω∈4,16 3,故③正确,故选:C.3设函数f x =sin2ωx-cos2ωx+23sinωx cosωxω>0,当x∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,13 3B.73,133C.83,143D.83,143【答案】C【解析】由已知易知f x =3sin2ωx-cos2ωx=2sin2ωx-π6,当x∈0,π2时2ωx-π6∈-π6,πω-π6,所以要满足题意有5π2≤πω-π6<9π2⇒ω∈83,143.故选:C4将函数f x =sinωx-cosωx(ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.56【答案】C【解析】由题意可得f x =222sinωx-22cosωx=2sinωx-π4,所以将f x 的图象向左平移π4个单位长度后,得到函数h x =2sin ωx +π4 -π4=2sin ωx +ωπ4-π4的图象,再把所得图象上点的横坐标缩短为原来的一半,得到函数g x =2sin 2ωx +ωπ4-π4的图象,因为点π2,0 是g x 图象的一个对称中心,所以πω+ωπ4-π4=k π,k ∈Z ,解得ω=45k +15,k ∈Z ,又ω>0,所以ω的最小值为15.故选:C5已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A6(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+3【答案】ABD【解析】对于A ,因为AB ⋅AC =23S ,所以bc cos A =23×12bc sin A ,则tan A =33,因为A ∈0,π ,所以A =π6,故A 正确;对于B ,因为b =2=a ,则B =A =π6,C =2π3,故△ABC 只有一解,故B 正确;对于C ,若△ABC 为锐角三角形,则B ∈0,π2 ,C ∈0,π2,则0<B <π20<π-π6-B <π2,则π3<B <π2,即sin B ∈32,1,由正弦定理可知:b =a sin Bsin A=4sin B ∈23,4 ,故C 错误;对于D ,若D 为BC 边上的中点,则AD =12AB +AC,所以AD 2=14AB 2+2AB ⋅AC +AC 2=14b 2+c 2+3bc由余弦定理知a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc =4,得b 2+c 2=3bc +4,又b 2+c 2=3bc +4≥2bc ,所以bc ≤42-3=43+8,当且仅当b =c =2+6时取得等号,所以AD 2=14b 2+c 2+3bc =144+23bc ≤144+23×43+8 =7+43,即AD ≤7+43=2+3,故D 正确.故选:ABD .7已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.【答案】56,43【解析】因为f x =12+3sin ωx cos ωx -cos 2ωx =32sin2ωx -12cos2ωx =sin 2ωx -π6,因为f x 的图象在0,π 上有且仅有两条对称轴,所以3π2≤2ωπ-π6<5π2,解得56≤ω<43,所以ω的取值范围是56,43 .故答案为:56,43.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.【答案】ω=32或ω≥52【解析】设θ=ωx,x∈π3,π,则θ∈π3ω,πω,所以问题转化为y=sinθ在θ∈π3ω,πω上存在最大值和最小值,由正弦函数图象可得,π3ω≤kπ+π2kπ+π2+π≤πω,解得k+32≤ω≤3k+32,所以k≥0,k∈Z,当k=0时,32≤ω≤32,∴ω=32;当k=1时,52≤k≤92,当k=2时,72≤ω≤152,当k=3时,92≤ω≤212,当k=n,n∈N*时,n+32≤ω≤3n+32,当k=n+1时,n+52≤ω≤3n+92,而n+52-3n+32=-2n+1<0,即n+52<3n+32,所以k∈N*时,所有情况的ω范围的并集为ω≥52;综上,实数ω的取值范围是ω=32或ω≥52.故答案为:ω=32或ω≥52.9已知函数f x =sinωx+φω>0满足f x ≥fπ12,且f x 在区间-π3,π3上恰有两个最值,则实数ω的取值范围为.【答案】125,4【解析】因为f x ≥fπ12,所以fπ12 =sinπ12ω+φ=-1,所以π12ω+φ=2kπ+3π2,k∈Z,即φ=2kπ-π12ω+3π2,k∈Z,所以f x =sinωx+2kπ-π12ω+3π2 =-cosωx-π12.当-π3≤x≤π3时,-5πω12≤ωx-π12≤πω4ω>0.因为f x 在区间-π3,π3上恰有两个最值,且-5πω12>πω4 ,所以ω>0-2π<-5πω12≤-π0<πω4<π,解得125≤ω<4.故答案为:125,4.10已知函数f (x )=-sin ωx -π4 (ω>0)在区间π3,π 上单调递减,则ω的取值范围是.【答案】0,34【解析】当x ∈π3,π时, ωπ3-π4<ωx -π4<ωπ-π4,又y =-sin x 的单调递减区间为2k π-π2,2k π+π2(k ∈Z ),所以ωπ3-π4≥2k π-π2ωπ-π4≤2k π+π2(k ∈Z ),解得6k -34≤ω≤2k +34(k ∈Z ),且2k +34≥6k -34(k ∈Z ),解得k ≤38,又ω>0,所以k =0,所以ω的取值范围为0,34.故答案为:0,3411若函数f x =cos ωx -π6ω>0 在区间π3,2π3内单调递减,则ω的最大值为.【答案】74【解析】由题得:12T ≥2π3-π3⇒0<ω≤3,令t =ωx -π6⇒t ∈πω3-π6,2πω3-π6,则y =cos t 在t ∈πω3-π6,2πω3-π6单调递减,故πω3-π6≥2k π2πω3-π6≤2k π+π⇒6k +12≤ω≤3k +74,由0<ω≤3,故ω∈12,74,所以ω的最大值为74,故答案为:74.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.【答案】0,2π8【解析】依题意,函数f (x )的值域为[-4,4],g (x )的值域为[b -4,b +4],由∀x 1,x 2∈R ,f (x 1)-g (x 2) ≤8,得|(b -4)-4|≤8,且|(b +4)-(-4)|≤8,解得b =0,g (x )=4cos ωx -π3 =4sin ωx +π6 ,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,得h (x )=4sin ωx -π3ω =4sin ωx -π3,在同一坐标系内作出函数y =g (x ),y =h (x )的图象,观察图象知,|AC |=2πω,取AC 中点D ,连接BD ,由对称性知|AB |=|BC |,BD ⊥AC ,由BA ⋅BC <0,得∠ABC >π2,即∠ABD >π4,|AD |>|BD |,由h (x )=g (x ),得sin ωx -π3 =sin ωx +π6 ,则ωx -π3+ωx+π6=π+2k π,k ∈Z ,解得ωx =712π+k π,k ∈Z ,于是y =4sin 712π+k π-π3=±22,则|BD |=42,因此πω>42,解得0<ω<2π8,所以ω的取值范围是0,2π8.故答案为:0,2π813在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.【答案】18【解析】如图所示,则△ABC 的面积为12ac sin 2π3=12a ⋅2sin π3+12c ⋅2sin π3,则ac =2a +2c ,所以1a +1c =12,显然a ,c >0,故a +4c =(a +4c )1a +1c ×2=2×5+4c a +a c ≥25+24c a ⋅a c=18,当且仅当4ca =a c 1a +1c =12,即a =6c =3时取等号.所以a +4c 的最小值为18.故答案为:18.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B;(2)求sin A+sin C的取值范围.【解析】(1)∵2b sin A-3a=0,∴2sin A sin B-3sin A=0,又∵A∈0,π2,∴sin A≠0,∴sin B=32,B∈0,π2,∴B=π3.(2)由(1)可知,B=π3,且△ABC为锐角三角形,所以0<A<π20<C=2π3-A<π2,∴A∈π6,π2,则sin A+sin C=sin A+sin2π3-A=32sin A+32cos A=3sin A+π6,因为π3<A+π6<2π3,∴sin A+sin C∈32,3.15在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【解析】(1)因为2b sin A-3a=0,由正弦定理边化角得:2sin B sin A-3sin A=0,所以2sin B-3sin A=0,由于在△ABC中,sin A≠0,所以2sin B-3=0,即sin B=32,又0<B<π2,所以B=π3.(2)由(1)可知B=π3,所以A+C=2π3,所以cos A+cos C=cos A+cos2π3-A=cos A+cos2π3cos A+sin2π3sin A=cos A-12cos A+32sin A=12cos A+32sin A=sin A+π6由于在锐角△ABC中,0<2π3-A<π2 0<A<π2,所以π6<A<π2,所以π3<A+π6<2π3,所以sinπ3<sin A+π6≤sinπ2,所以32<sin A+π6≤1,所以cos A+cos C的取值范围为32,1.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.【解析】(1)∵b2+c2-b cos C+c cos B2=bc,由余弦定理可得b2+c2-b⋅a2+b2-c22ab+c⋅a2+c2-b22ac2=bc,化简整理得b2+c2-a2=bc,又b2+c2-a2=2bc cos A,∴cos A=12,又0<A<π2,所以A=π3.(2)因为三角形外接圆半径为R=3,所以b=23sin B,c=23sin C,∴bc=12sin B sin C,由(1)得B+C=2π3,所以bc=12sin B sin C=12sin B sin2π3-B=12sin B32cos B+12sin B=63sin B cos B+6sin2B=33sin2B+31-cos2B=632sin2B-12cos2B+3 =6sin2B-π6+3,因为△ABC是锐角三角形,且B+C=2π3,所以π6<B<π2,∴π6<2B-π6<5π6,∴12<sin2B-π6≤1,∴6<6sin2B-π6+3≤9,即6<bc≤9.所以bc的取值范围为6,9.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.【解析】(1)由cos2B+sin2B=1cos2B-sin2B=-12,得cos2B=14,则cos B=±12,又0<B<π,所以B=π3或2π3.当B=π3时,sin B+π6=sinπ2=1;当B=2π3时,sin B+π6=sin5π6=12.(2)若△ABC为锐角三角形,则B=π3,有0<C<π20<A=2π3-C<π2,解得π6<C<π2.由正弦定理,得asin A=csin C=bsin B=332=2,则a=2sin A,c=2sin C,所以a+2c=2sin A+4sin C=2sin2π3-C+4sin C=232cos C+12sin C+4sin C=5sin C+3cos C=27sin(C+φ),其中tanφ=35,又tanφ=35<33=tanπ6,所以0<φ<π6,则π3<C+φ<2π3,故当C+φ=π2时,sin(C+φ)取到最大值1,所以a+2c的最大值为27.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【解析】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos2θ-1=2cosθ,AB=12+32 2-2×1×32⋅cosπ-2θ=134+3cos2θ=134+32cos2θ-1=6cos2θ+1 4,在△ABD中,因为θ∈0,π2,所以由正弦定理可知:ABsin∠ADB =ADsin B⇒sin∠ADBsin B=ABAD=6cos2θ+142cosθ=14×24cos2θ+1cos2θ=14×24+1cos2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B 的取值范围为54,+∞ ..19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求c b的取值范围.【解析】(1)证明:由2sin B sin C +cos2C =1+cos2A -cos2B ,得2sin B sin C +1-2sin 2C =1+1-2sin 2A -1+2sin 2B ,即sin B sin C -sin 2C =-sin 2A +sin 2B ,由正弦定理可得bc -c 2=-a 2+b 2,即a 2=b 2+c 2-bc ,由余弦定理可得a 2=b 2+c 2-2bc cos A ,故cos A =12,又A ∈0,π2 ,故A =π3,由A +B +C =π,故B +C =π-A =2π3=2A ;(2)由正弦定理可得:c b=sin C sin B =sin π-A -B sin B =sin π3+B sin B =12sin B +32cos B sin B =12+32tan B ,又锐角△ABC 中,有0<B <π2,0<π-π3-B <π2,解得π6<B <π2,即tan B ∈33,+∞,即1tan B ∈0,3 ,故c b=12+32tan B ∈12,2 .20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.【解析】(1)∵a +b +c a +b -c =3,∴3=(a +b )2-c 2=a 2+b 2-c 2+2ab 结合余弦定理得3=2ab cos C +2ab =2ab 1+cos C ,∴ab =321+cos C ,∵S △ABC =12ab sin C =334,∴sin C 1+cos C =3,即2sin C 2cos C 2cos 2C 2=tan C 2=3,又∵C 2∈0,π2 ,∴C 2=π3,故C =2π3;(2)由(1)知:C =2π3,ab =321+cos C=3,∵AD =2DB ,∴CD =13CA +23CB ,∴CD 2=13CA +23CB 2=19b 2+49a 2+49ab cos C =19b 2+49a 2-23,又19b 2+49a 2-23≥219b 2⋅49a 2-23=2×23-23=23,当且仅当b =2a =6时,CD 长取最小值,此时CD =23=63,∴CD 长的最小值为63.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.【解析】(1)f x =12-sin 2ωx +32sin2ωx =12-1-cos2ωx 2+32sin2ωx =32sin2ωx +12cos2ωx =sin 2ωx +π6.因为T =2π2ω=4π,所以ω=14,故f x =sin 12x +π6.由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z ,解得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,当k =0时,-4π3≤x ≤2π3,又x ∈0,π ,所以f x 在0,π 上的单调递增区间为0,2π3.(2)由2a -c cos B =b ⋅cos C ,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C =sin B +C =sin A .因为sin A ≠0,所以cos B =12,又B ∈0,π ,所以B =π3,又三角形为锐角三角形,则0<A <π20<2π3-A <π2,则π6<A <π2,所以π4<A 2+π6<5π12,又f A =sin A 2+π6,sin 5π12=sin π4+π6 =sin π4cos π6+cos π4sin π6=2+64,则22<sin A 2+π6 <2+64,所以f A 的取值范围为22,2+64.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.【解析】(1)因为1-cos A 2-sin A =0,所以sin 2A 2=sin A , 因为0<A 2<π2,sin A 2>0,则sin A 2=2sin A 2cos A 2,故cos A 2=12, 所以A 2=π3,A =2π3,(2)因为BD =2DC ,则BD =2DC ,所以AD -AB =2AC -AD ,故AD =13AB +23AC , 因为△ABC 的面积为3,所以12bc sin A =3,所以bc =4|AD |2=13AB +23AC 2=19c 2+49b 2+49AB ⋅AC =19c 2+49b 2-29bc ≥49bc -29bc =89上式当且仅当c =2b ,即c =22,b =2时取得“=”号,所以AD 的最小值是223.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.【解析】(1)由题意得2sin B cos A -sin C cos A =sin A cos C ,即2sin B cos A =sin A cos C +sin C cos A =sin B ,∵sin B ≠0,∴2cos A =1,∴cos A =12,又0<A <π,∴A =π3;(2)解法一:令DC =t ,则BD =3t ,∵cos ∠ADC =-cos ∠ADB ,∴AD 2+DC 2-AC 22AD ⋅DC =-AD 2+BD 2-AB 22AD ⋅BD ,即9+t 2-b 26t =-9+9t 2-c 218t ,∴12t 2=-36+3b 2+c 2①,又∵cos ∠BAC =12=b 2+c 2-16t 22bc ,∴16t 2=b 2+c 2-bc ②,∵联立①②,得144-3bc =9b 2+c 2≥6bc (当且仅当c =3b 时取等号),即bc ≤16,∴S △ABC =12bc sin ∠BAC =34bc ≤43,∴△ABC 面积的最大值为43.解法二:依题意AD =14AB+34AC,∴AD 2=14AB+34AC 2=116AB 2+9AC 2+6AB ⋅AC,即9=116AB 2+9AC 2+6AB AC cos π3=116AB 2+9AC 2+3AB AC,∵AB 2+9AC 2≥6AB AC (当且仅当AB =3AC 时取等号),∴AB AC ≤16,∴S △ABC =12AB ACsin ∠BAC ≤34×16=43,∴△ABC 面积的最大值为43.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c 2的最小值.【解析】(1)因为m ⎳n ,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b2a2+c2=a2+c2-aca2+c2=1-aca2+c2,1-aca2+c2≥1-ac2ac=1-12=12,当且仅当a=c时等号成立,故b2a2+c2的最小值为12.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.【解析】(1)因为sin2C=sin2B+sinπ3+Bcosπ6+B=sin2B+12sinπ2+2B+sinπ6=sin2B+12cos2B+12=sin2B+121-2sin2B+14=34,因为sin C>0,所以sin C=3 2,由△ABC为钝角三角形且a<c,b<c知,C为钝角,所以cos C=-12,即tan C=-3,所以tan(A+B)=tanπ-C=-tan C=3.(2)因为S△ABC=12ab sin C=34ab=123,所以ab=48,由余弦定理,c2=a2+b2-2ab cos C=a2+b2+ab≥3ab=144,当且仅当a=b=43时,等号成立,此时c2的最小值为144,所以c的最小值为12.。

解三角形中的最值与范围问题4大题型

解三角形中的最值与范围问题4大题型

解三角形中的最值与范围问题4大题型解三角形中的最值与范围问题是近几年高考数学的热点,这类试题主要考查学生数形结合、等价转化、数学运算和逻辑推理的能力。

一般为中等难度,但题目相对综合,涉及知识较多,可通过三角恒等变换、构造函数或构造基本不等式等方法加以解决。

一、三角形中的最值范围问题处理方法1、利用基本不等式求最值-化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。

2、转为三角函数求最值-化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。

要注意三角形隐含角的范围、三角形两边之和大于第三边。

二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a、b、c的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.【题型1与角或三角值有关的问题】【例1】(2023春·江西赣州·高三统考阶段练习)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知1a =,且cos cos 1b A B -=22sin B A +的取值范围是()A.()1+B .()1C .(]1,3D .(]2,3【变式1-1】(2023·四川泸州·统考二模)在ABC 中,2,2BC AB AC ==,D 为BC 的中点,则tan ADC ∠的最大值为______.【变式1-2】(2023·福建福州·统考二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值:(2)求C 的最大值.【变式1-3】(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.【变式1-4】(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角ABC中,角,,A B C 所对的边分别是,,a b c ,满足()2c b b a =+.(1)求证:2C B =;(2)求113sin tan tan C B C-+的取值范围.【题型2求周长的最值与范围问题】【例2】(2023春·四川成都·高三四川省成都市玉林中学校考阶段练习)在ABC 中,sin cos c B C =.(1)求C ∠;(2)若6a b +=,求ABC 周长的最小值.【变式2-1】(2023·云南昆明·已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且)222sin 2a c b A bc+-=.(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =,求△ABC 的周长的取值范围.【变式2-2】(2023·全国·高三专题练习)已知函数21()cos ())cos()2f x x x x ωωω=-,其中0ω>,且函数()f x 的两个相邻零点间的距离为π2,(1)求ω的值及函数()f x 的对称轴方程;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=求ABC周长的取值范围.【变式2-3】(2023·湖南·模拟预测)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为S ,且22sin sin 2sin sin C ASa b sinA B C+=+()().(1)求C 的值;(2)若a ABC 周长的取值范围.【变式2-4】(2023春·河北邢台·高三邢台市第二中学校考阶段练习)在四边形ABCD 中,,,,A B C D 四点共圆,5AB =,3BC =,3cos 5ABC ∠=-.(1)若sin 5ACD ∠=,求AD 的长;(2)求四边形ABCD 周长的最大值.【题型3求面积的最值与范围问题】【例3】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()()()2πcos 2cos f x x x x x =-⋅-∈R .(1)求函数()f x 的值域;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()2f A =-,a =求△ABC 的面积S 的最大值.【变式3-1】(2023·浙江嘉兴·统考模拟预测)已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2tan 11cos 2tan 1B C B C +=+-.(1)求角A 的大小;(2)设AD 是BC 边上的高,且2AD =,求ABC 面积的最小值.【变式3-2】(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【变式3-3】(2023·全国·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()sin sin 4sin C B a C =-.(1)求A ;(2)若O 是ABC 的内心,2a =,且224b c +>,求OBC △面积的最大值.【变式3-4】(2023·江苏南通·校联考模拟预测)如图,在平面四边形ABCD 中,1AB =,AD =,2CD =,BC =(1)若BC CD ⊥,求sin ADC ∠;(2)记ABD △与BCD △的面积分别记为1S 和2S ,求2212S S +的最大值.【题型4与边有关的最值与范围问题】【例4】(2023·江西南昌·统考一模)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,若1,60a B == ,则b 的取值范围为______.【变式4-1】(2023春·湖南·高三校联考阶段练习)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,()()cos sin cos a B C B a A -=-.(1)求角A ;(2)若ABC22b a b+的取值范围.【变式4-2】(2023·广东江门·统考一模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列.(1)求2a bc的值;(2)若b c >,求222b c a+的取值范围.【变式4-3】(2023·江苏南通·统考模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =4,且1cos 2b Cc a +=.(1)求B ;(2)若D 在AC 上,且BD ⊥AC ,求BD 的最大值.【变式4-4】(2023·新疆·统考一模)在ABC 中,,,a b c 分别为内角,,A B C 的对边,22sin c ab C =.(1)若sin cos sin sin 2C B B A +=,求tan C 的值;(2)求ab的最大值.(建议用时:60分钟)1.(2023·甘肃武威·统考一模)在ABC 中,32,,AB AC BC ==>cos A 的范围是()A .51,6⎛⎫- ⎪⎝⎭B .111,12⎛⎫- ⎪⎝⎭C .5,16⎛⎫ ⎪⎝⎭D .11,112⎛⎫ ⎪⎝⎭2.(2023秋·浙江宁波·高三期末)在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin2A Cb B C a ++=,且ABC 的面积为,则ABC 周长的最小值为()A .B .C .D .6+3.(2023·江西赣州·统考一模)已知锐角ABC 的内角A B C 、、的对应边依次记为a b c、、,且满足2cos c b b A -=,则()()2sin 2cos C B A B ++-的取值范围为__________.4.(2023·陕西西安·统考一模)已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足2cos 2b A a c +=,且b =,则ABC 周长的取值范围为______________.5.(2023·全国·校联考一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=.(1)证明:2B C =;(2)求a b c+的取值范围.6.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin tan cos C B A B -=.(1)求A ;(2)若2a =,求2c b -的取值范围.7.(2023·河南·校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+ ⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.8.(2023·全国·高三专题练习)在①)cos sin a b C c B -=,②22cos a c b C -=,③()()()a b a b a c c -+=-这三个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A B C ,,的对边分别是a b c ,,,且满足_______,b =(1)若4a c +=,求ABC 的面积;(2)求ABC 周长l 的取值范围.9.(2023春·山西·高三校联考阶段练习)求△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,已知3A π=,且△ABC 的周长为6.(1)证明:()124bc b c +=+;(2)求△ABC 面积的最大值.10.(2023·四川凉山·统考一模)在锐角ABC 中,角A ,B ,C 所对的边分别为,,,sin cos a b c b c A a C -=.(1)求A ;(2)若2b =,求ABC 面积的取值范围.参考答案【题型1与角或三角值有关的问题】【例1】(2023春·江西赣州·高三统考阶段练习)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知1a =,且cos cos 1b A B -=22sin B A +的取值范围是()A.()1+B.()1C .(]1,3D .(]2,3【答案】B【解析】∵cos cos 1b A B -=,即:cos cos 1b A B =+,1a =,∴cos (cos 1)b A B a =+,∴由正弦定理得:sin cos (cos 1)sin B A B A =+,即:sin cos sin cos sin B A A B A =+,∴sin()sin B A A -=,∴B A A -=或πB A A -+=,解得:2B A =或B π=(舍),又∵△ABC 为锐角三角形,则ππ3C A B A =--=-,∴ππ0022ππ00222ππ00π322A A B A C ⎧⎧<<<<⎪⎪⎪⎪⎪⎪<<⇒<<⎨⎨⎪⎪⎪⎪<<<-<⎪⎪⎩⎩,解得:ππ64A <<,2π2sin 21cos 22sin(2)16B A A A A +=+-=-+,又∵ππ64A <<,∴πππ2663A <-<,∴1πsin(2262A <-<,∴π22sin(2)116A <-+<,22sin B A +的取值范围1).故选:B.【变式1-1】(2023·四川泸州·统考二模)在ABC 中,2,2BC AB AC ==,D 为BC 的中点,则tan ADC ∠的最大值为______.【答案】43【解析】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系,可知22x x +>且22x x -<,解得223x <<,在ABD △中,由余弦定理,得()2212cos 2AD x ADB AD +-∠=,在ACD 中,由余弦定理,得221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()cos cos πcos ADB ADC ADC ∠=-∠=-∠,所以()222212122AD x AD x AD AD+-+-=-,解得22512AD x =-,则2242251132cos 54512122x x x ADC x x -+-∠=⨯-⨯-223x <<,令2512x t -=,则1,99t ⎛⎫∈ ⎪⎝⎭,()2215x t =+,()4242125x t t =++,则232131313cos 2221010105t t ADC t t t t t ++∠==⨯++≥⨯⋅+=,当且仅当1t t =,即1t =时,等号成立,此时25112x -=,解得25x =因为3cos 05ADC ∠≥>,所以π0,2ADC ⎛⎫∠∈ ⎪⎝⎭.因为cos y x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,tan y x =在π0,2⎛⎫ ⎪⎝⎭单调递增,所以当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时24sin 1cos 5ADC ADC ∠-∠=,则4tan 3ADC ∠=,所以tan ADC ∠的最大值为43.【变式1-2】(2023·福建福州·统考二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值:(2)求C 的最大值.【答案】(1)tan 3tan B A=-;(2)π6【解析】(1)由余弦定理可得2222cos b c a ac B =+-,代入2222b a c -=,得到()22222cos 2c a ac B a c +--=,化简得22cos 0c ac B +=,即2cos 0c a B +=.由正弦定理可得sin 2sin cos 0C A B +=,即()sin 2sin cos 0A B A B ++=,展开得sin cos cos sin 2sin cos 0A B A B A B ++=,即3sin cos cos sin A B A B =-,所以tan 3tan BA=-.(2)由2222b a c -=得2222b ac -=,故222cos 2a b c C ab +-=222222b a a b ab-+-=2233444a b a b ab b a +==+≥=当且仅当223b a =,即b =时等号成立.因为()0,πC ∈,所以π6C ≤,所以C 的最大值为π6.【变式1-3】(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.【答案】(1)证明见解析;(2)98【解析】(1)由余弦定理222cos 2b c a A bc+-=得2222cos bc A b c a =+-,4412cos sin 2bS b bc A ac B a a ∴==⨯,cos sin A B ∴=,cos cos 2πA B ⎛⎫∴=- ⎪⎝⎭,B 为钝角,则,2πA B -均为锐角,2B A π∴-=,即2B A π=+;(2)2ππsin sin sin sin cos cos 22cos cos 122A C B B B B B B B ⎛⎫⎛⎫+=-++-=--=--+ ⎪ ⎪⎝⎭⎝⎭,令cos B t =,B 为钝角,则()1,0t ∈-,2219sin sin 21248A C t t t ⎛⎫∴+=--+=-++ ⎪⎝⎭,当14t =-,即1cos 4B =-时,sin sin A C +取最大值,且为98.【变式1-4】(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角ABC中,角,,A B C 所对的边分别是,,a b c ,满足()2c b b a =+.(1)求证:2C B =;(2)求113sin tan tan C B C-+的取值范围.【答案】(1)证明见解析;(2),46⎛⎫⎪ ⎪⎝⎭【解析】(1)由22c b ab =+及余弦定理2222cos c a b ab C =+-,得()2cos 1a b C =+,由正弦定理得:()sin sin 2cos 1A B C =+,又πA B C ++=,()sin sin sin cos cos sin 2sin cos sin A B C B C B C B C B ∴=+=+⋅=+,cos sin sin cos sin B C B C B ∴-=,()sin sin C B B ∴-=,,,A B C 都是锐角,C B B ∴-=,即2C B =.(2)令113sin tan tan y C B C =-+cos cos 3sin sin sin B C C B C =-+sin cos cos sin 3sin sin sin C B C BC B C -⋅=+⋅()sin 3sin sin sin C B C B C-=+⋅,由(1)2C B =得13sin sin y C C=+,在锐角三角形ABC 中,π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩,即()π02π022π02B C C B C π⎧<-+<⎪⎪⎪<=<⎨⎪⎪<<⎪⎩,解得ππ32<<C,sin C ⎫∴∈⎪⎪⎝⎭,令sin ,12t C ⎛⎫=∈ ⎪ ⎪⎝⎭,()13,2y f t t t t ⎛⎫∴==+∈ ⎪ ⎪⎝⎭,又函数()13y f t t t ==+在2⎛⎫ ⎪ ⎪⎝⎭上单调递增,()4y f t ⎫∴=∈⎪⎪⎝⎭,故113sin tan tan C B C -+的取值范围是46⎛⎫ ⎪ ⎪⎝⎭.【题型2求周长的最值与范围问题】【例2】(2023春·四川成都·高三四川省成都市玉林中学校考阶段练习)在ABC 中,sin cos c B C =.(1)求C ∠;(2)若6a b +=,求ABC 周长的最小值.【答案】(1)π3C =;(2)9【解析】(1)因为sin cos c B C =,所以由正弦定理得sin sin cos C B B C =,又因为()0,πB ∈,sin 0B ≠,所以sin C C =,即有tan C =又因为()0,πC ∈,所以π3C =.(2)因为π3C =,6a b +=,所以由余弦定理可得222222cos ()236336392a b c a b ab C a b ab ab ab +⎛⎫=+-=+--=-≥-⨯= ⎪⎝⎭,当3a b ==时,等号成立,所以3c ≥,故ABC 周长的最小值9.【变式2-1】(2023·云南昆明·高三昆明一中校考阶段练习)已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且)222sin 2a c b A bc+-=.(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =,求△ABC 的周长的取值范围.【答案】(1)π3;(2)(+【解析】(1)根据余弦定理可知,222cos 2a c b B ac+-=,所以2cos sin 2ac B A bc =,即cos sin cos sin sin sin B A BA A b B=⇔,则tan B =()0,πB ∈,所以π3B =;(2)设π2π,23A ⎛⎫∠∈ ⎪⎝⎭,根据正弦定理可知2πsin sin sin sin 3a cb A C B ====,所以2sin a A =,2π2sin 2sin 3c C A ⎛⎫==- ⎪⎝⎭,所以周长2π2sin 2sin 3a b c A A ⎛⎫++=+-+ ⎪⎝⎭12sin 2sin 2A A A ⎫=++⎪⎪⎝⎭3sin A A =++π6A ⎛⎫=+ ⎪⎝⎭,因为π2π,23A ⎛⎫∈ ⎪⎝⎭,,πππ25636A ⎛⎫+∈ ⎪⎝⎭,所以1sin 622πA ⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以π36A ⎛⎫<+++ ⎪⎝⎭,所以ABC的周长为(+.【变式2-2】(2023·全国·高三专题练习)已知函数21()cos ())cos()2f x x x ωωω=,其中0ω>,且函数()f x 的两个相邻零点间的距离为π2,(1)求ω的值及函数()f x 的对称轴方程;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=求ABC 周长的取值范围.【答案】(1)1ω=,对称轴方程为:()ππ26k x k =+∈Z ;;(2)2.【解析】(1)211cos(2))1()cos ())cos()2222x x f x x x x ωωωωω+=-=+-,()πsin 26f x x ω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的两个相邻零点间的距离为π2,所以函数()f x 的最小正周期为2ππ2⨯=,因为0ω>,所以2ππ12ωω=⇒=,即()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令()()ππππ2πZ Z 6226k x k k x k +=+∈⇒=+∈,所以对称轴为()ππ26k x k =+∈Z ;(2)由πsin 6(12)1A f A ⎛⎫+=- ⇒⎪⎝⎭=-,因为(0,π)A ∈,所以ππ13ππ3π2π2(,)2666623A A A +∈⇒+=⇒=,因为a22sin ,2sin sin sin sin a b c b B c CA B C ===⇒==,π2sin 2sin 2sin 2sin 3B C B B ⎛⎫+=+- ⎪⎝⎭,1π2sin sin 2sin 223B B B B B B ⎛⎫⎛⎫+-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为π(0,)3B ∈,所以ππ2π(,)333B +∈,因此ππsin ,1]2sin (2323B B ⎛⎫⎛⎫+∈⇒+++ ⎪ ⎪⎝⎭⎝⎭,所以ABC周长的取值范围为2.【变式2-3】(2023·湖南·模拟预测)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为S ,且22sin sin 2sin sin C ASa b sinA B C+=+()().(1)求C 的值;(2)若a ABC 周长的取值范围.【答案】(1)3π;(2)()∞+.【解析】(1)在ABC 中,由三角形面积公式得:1sin 2S bc A =,由正弦定理得:()2212sin sin 2cabc A a b A b c⎛⎫⨯+=+ ⎪⎝⎭,整理得:222a b c ab +-=,由余弦定理得:2221cos 22a b c C ab +-==,又0C π<<,故3C π=.(2)因为a 3C π=,由正弦定理得32sin c A=,23cos 3sin 2sin A A b A A π⎛⎫- ⎪⎝⎭===即ABC的周长()31cos 33cos 2sin 2sin 2sin A A l a b c A A A +=++=+=26cos 32224sincos 2tan222AA AA =++,因为203A π⎛⎫∈ ⎪⎝⎭,,则023Aπ⎛⎫∈ ⎪⎝⎭,,故0tan 2A<所以322tan2A +>ABC的周长的取值范围是∞).【变式2-4】(2023春·河北邢台·高三邢台市第二中学校考阶段练习)在四边形ABCD 中,,,,A B C D 四点共圆,5AB =,3BC =,3cos 5ABC ∠=-.(1)若sin 5ACD ∠=,求AD 的长;(2)求四边形ABCD 周长的最大值.【答案】(1(2)8+【解析】(1)因为,,,A B C D 四点共圆,所以πABC ADC ∠+∠=,因为3cos 5ABC ∠=-,所以3cos cos 5ADC ABC ∠=-∠=,因为()0,πADC ∠∈,故sin 54ADC ∠==,在ABC 中,由余弦定理得:22232cos 25930525AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯-= ⎪⎝⎭,故AC =在ADC △中,由正弦定理得:sin sin AD ACACD ADC=∠∠,5=,解得:AD(2)由(1)知:AC=3cos5ADC∠=,在ADC△中,由余弦定理得:22222523cos225AD CD AC AD CDADCAD CD AD CD+-+-∠===⋅⋅,整理得:226525AD CD AD CD+=⋅+,故()216525AD CD AD CD+-=⋅,其中22AD CDAD CD+⎛⎫⋅≤ ⎪⎝⎭,故()()221645255AD CD AD CD AD CD+-=⋅≤+,解得:AD CD+≤AD CD=故四边形ABCD周长的最大值为8AB BC AD CD+++≤+【题型3求面积的最值与范围问题】【例3】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()()()2πcos2cosf x x x x x=-⋅-∈R.(1)求函数()f x的值域;(2)在△ABC中,角A,B,C的对边分别为a,b,c,若()2f A=-,a=求△ABC的面积S的最大值.【答案】(1)[]3,1-;(2【解析】(1)()1cos2πcos2sin2cos212sin2126xf x x x x x x+⎛⎫=⋅-⋅--=--⎪⎝⎭,∴()f x的值域为[]3,1-.(2)()π2sin2126f A A⎛⎫=--=-⎝⎭,即π1sin262A⎛⎫-=-⎪⎝⎭,由()0,πA∈,得ππ11π2<666A-<-∴π7π2=66A-,即2π3A=,又222222π32cos33a b c bc b c bc bc==+-=++≥,即1bc≤,∴11sin 12224ABC S bc A =≤⨯ ,∴()max 4ABC S =,当且仅当1b c ==时取得.【变式3-1】(2023·浙江嘉兴·统考模拟预测)已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2tan 11cos 2tan 1B C B C +=+-.(1)求角A 的大小;(2)设AD 是BC 边上的高,且2AD =,求ABC 面积的最小值.【答案】(1)π4;(2)4【解析】(1)法一:左边2sin 22sin cos sin 1cos 22cos cos B B B BB B B===+,右边sin 1tan 1sin cos cos sin tan 1sin cos 1cos CC C CC C C C CC+++===---,由题意得sin sin cos sin sin sin cos cos sin cos cos cos sin cos B C CB C B C B C B C B C C+=⇒-=+-()()()sin cos 0tan 1B C B C B C ⇒+++=⇒+=-,即tan 1A =,又因为0πA <<,所以π4A =.法二:左边2sin 22sin cos tan 1cos 22cos B B BB B B===+,右边πtan tantan 1ππ4tan tan πtan 1441tan tan4C C C C C C ++⎛⎫⎛⎫==--+=-- ⎪ ⎪-⎝⎭⎝⎭-,由题意得ππππ44B C k B C k =--+⇒+=-+,又因为0πB C <+<,所以3ππ44B C A +=⇒=.(2)由11π2sin 2244ABC S a bc a bc =⨯=⇒=△,由余弦定理得222222π2cos 4a b c bc a b c =+-⇒=+,2222222211288b c b c b c b c bc ⇒=+⇒+=+≥,(82bc ⇒≥,当且仅当b c =时取“等号”,而1πsin24ABC S bc ==△,故()(min 824ABC S =-=△【变式3-2】(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【答案】(1)π3C =;(2).【解析】(1)在ABC 中,由已知及正弦定理得:sin cos sin cos 2sin cos A B B A C C +=,即有()sin 2sin cos A B C C +=,即sin 2sin cos C C C =,而0πC <<,sin 0C >,则1cos 2C =,所以π3C =.(2)在ABC 中,由余弦定理2222cos c a b ab C =+-得:221a b ab =+-,因此12ab ab ≥-,即01ab <≤,当且仅当a b =时取等号,又11sin (0,22ABC S ab C ===∈△,所以ABC 面积的取值范围是4.【变式3-3】(2023·全国·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()sin sin 4sin C B a C =-.(1)求A ;(2)若O 是ABC 的内心,2a =,且224b c +>,求OBC △面积的最大值.【答案】(1)π3或2π3;(2【解析】(1)()sin sin 4sin C B a C =-,4sin s sin sin in C B a B C =,)sin sin sin sin 4sin sin sin B C C B A B C +=,sin 2sin sin sin B C A B C =,因为sin sin 0B C ≠,所以sin2A =,因为()0,πA ∈,所以π3A =或2π3A =(2)因为2a =,且224b c +>,所以由余弦定理得222224cos 022b c a b c A bc bc+-+-==>,所以A 为锐角,由(1)知π3A =.因为O 是ABC 的内心,所以()()112ππππ223BOC ABC ACB A ∠=-∠+∠=--=,在OBC △中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅∠,所以2222242cos3OB OC OB OC OB OC OB OC π=+-⋅=++⋅23OB OC OB OC OB OC ≥⋅+⋅=⋅,当且仅当33OB OC ==时等号成立,所以43OB OC ⋅≤,所以1142π3sin sin 2233OBC S OB OC BOC =⋅∠≤⨯=△所以OBC △33【变式3-4】(2023·江苏南通·校联考模拟预测)如图,在平面四边形ABCD 中,1AB =,3AD =,2CD =,2BC =(1)若BC CD ⊥,求sin ADC ∠;(2)记ABD △与BCD △的面积分别记为1S 和2S ,求2212S S +的最大值.【答案】(163;(2)218【解析】(1)∵BC CD ⊥,∴426BD =+=22cos 326362ADB ∠=⋅⋅,1in 3s ADB ∠=,3sin 3BDC ∠=,6cos 36BDC ∠==∴sin sin()sin cos cos sin ADC BDC ADB BDC ADB BDC ADB∠∠∠=+=∠∠+∠∠13===;(2)设BAD ∠=α,BCD β∠=,∴23142BD αβ=+-=+-,∴2βα-=,∴1βα=,①22222212131sin 1sin sin 2sin 24S S αβαβ⎫⎛⎫+=⨯+⋅⨯=+⎪ ⎪⎭⎝⎭()222233sin 21cos sin 2144αβα⎡⎤⎢⎥=+-=+-⎢⎥⎣⎦2223535321cos cos cos 222228ααααα⎛⎫⎛=--+=-++=-++ ⎪ ⎪ ⎝⎭⎝⎭,当且仅当cos 6α=-,cos 8β=时取最大值218;综上,sin 3ADC ∠=,2212S S +的最大值是218.【题型4与边有关的最值与范围问题】【例4】(2023·江西南昌·统考一模)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,若1,60a B == ,则b 的取值范围为______.【答案】2⎛ ⎝【解析】在ABC 中,由正弦定理得sin sin sin a b cA B C ==,所以1sin sin 60b A = ,即2sin b A=,因为锐角ABC ,所以090,090A C <<<< ,即090,012090A A <<<-<,解得3090A <<,所以1sin 12A <<,所以112sin A<<,<2b ⎛∈ ⎝.【变式4-1】(2023春·湖南·高三校联考阶段练习)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,()()cos sin cos a B C B a A -=-.(1)求角A ;(2)若ABC22b a b+的取值范围.【答案】(1)3π;(2)⎡⎣【解析】(1)因为()()cos sin cos a B C B a A -=-,可得()cos cos sin cos a B C a A B A -+=,则()()cos cos sin cos a B C a B C B A --+=,所以()cos cos sin sin cos cos sin sin 2cos a B C a B C a B C B C B A +--=,即sin sin sin cos a B C B A =,由正弦定理得sin sin sin sin sin cos A B C C B A =,显然sin 0C >,sin 0B >,所以sin A A ,所以tan A =()0,πA ∈,所以π3A =.(2)因为sin sin a b A B==πsin sin 3a bB ==所以3a =,b B =,所以2223sin 2sin 4sin b a a b B B b b B B +⎫=+=++⎭,因为ABC 为锐角三角形且2π3B C +=,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,所以ππ62B <<,即1sin ,12B ⎛⎫∈ ⎪⎝⎭,令()34f x x x =+,1,12x ⎛⎫∈ ⎪⎝⎭,由对勾函数性质知函数()34f x x x =+在122⎛ ⎝⎭上单调递减,在,12⎫⎪⎪⎝⎭上单调递增,且122f ⎛⎫= ⎪⎝⎭,f =⎝⎭()714f =,所以())2f x ∈,即)3sin 24sin B B +∈,所以3sin 6,4sin B B ⎫⎡+∈⎪⎣⎭,即22b a b+的取值范围为⎡⎣.【变式4-2】(2023·广东江门·统考一模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列.(1)求2a bc的值;(2)若b c >,求222b c a+的取值范围.【答案】(1)2;(2)(【解析】(1)由条件得:211sin tan tan A B C =+cos cos sin sin B C B C =+sin cos cos sin sin sin C B C B B C +=()sin sin sin C B B C+=sin sin sin A B C =,所以2sin 2sin sin A B C =,由正弦定理得:22a bc =,所以22a bc=.(2)b c >及22a bc =,则B C >,角C 一定为锐角,又ABC 为锐角三角形,所以cos 0cos 0A B >⎧⎨>⎩由余弦定理得:2222222222222220020222020022b c a b c bcb c bc bc bc bc c b a c b bc c b ac ac ⎧⎧+-+->>⎪⎪⎧+->⎪⎪⇒⇒⎨⎨⎨+->+-+-⎩⎪⎪>>⎪⎪⎩⎩,所以2220bc c b +->,即212b b c c ⎛⎫⎛⎫<+ ⎪ ⎝⎭⎝⎭,解得:11b c <<又1bc >,所以(1,1b c∈+.又22222122b c b c b c a bc c b ++⎛⎫==+ ⎪⎝⎭,令(1,1b x c =∈+,则()222112b c f x x a x +⎛⎫==+ ⎪⎝⎭,()()()2211111022x x f x xx +-⎛⎫'=-=> ⎪⎝⎭,所以()f x在(1,1上递增,又()11f =,(1f =所以222b c a+的取值范围是(.【变式4-3】(2023·江苏南通·统考模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =4,且1cos 2b Cc a +=.(1)求B ;(2)若D 在AC 上,且BD ⊥AC ,求BD 的最大值.【答案】(1)π3;(2)【解析】(1)方法一:()11cos ,sin cos sin sin sin 22b Cc a B C C A B C +=∴+==+ ,所以1sin cos sin sin cos cos sin 2B C C B C B C +=+,所以()11sin sin cos ,0,π,sin 0,cos ,22C C B C C B =∈∴>∴= ()π0,π,3B B ∈∴=.方法二:在ABC 中,由正弦定理得:()1sin cos sin sin 2B C C A B C +==+,所以1sin cos sin sin cos cos sin 2B C C B C B C +=+,所以1sin cos sin 2C B C =.因为()0,πC ∈,所以sin 0C ≠,所以1cos 2B =,因为()π0,π,3B B ∈=.(2)方法一:222222cos 2b a c ac B a c ac ac ac ac =+-=+-≥-=,16ac ∴≤当且仅当4a c ==时取“”=,1sin 112sin ,22228ac Bac B BD b BD ac =⋅=≤max BD ∴=方法二:在ABC 中,由余弦定理得:222222cos 162(b a c ac B a c ac ac ac =+-⇒=+-≥-当且仅当a c =取“=”)所以16ac ≤,所以ABC 的面积1sin24ABC S ac B ac ==≤ 122ABC S b BD BD BD =⨯=≤⇒≤ 【变式4-4】(2023·新疆·统考一模)在ABC 中,,,a b c 分别为内角,,A B C 的对边,22sin c ab C =.(1)若sin cos sin sin 2C B B A +=,求tan C 的值;(2)求ab的最大值.【答案】(1)1;(21【解析】(1)由sin cos sin2C B B A +=cos sin C B A B =-,cos )sin C B B C B =+-,)cos sin cos cos sin sin C B B C B C B =+-cos sin B C B =,因为sin 0B ≠,1C =,即cos2C =,由()0,πC ∈得π4C =,故tan 1C =.(2)由22sin ab C c =结合余弦定理得2222cos 2sin a ab C ab b C c =+-=,则()22π2sin cos sin 4a b ab C C C ⎛⎫+=+=+ ⎪⎝⎭,于是221sin 4a a a C b b b π⎛⎫+=⨯+≤ ⎪⎝⎭,即2210a ab b -+≤.11ab≤≤,故当π4C =时,ab1.(建议用时:60分钟)1.(2023·甘肃武威·统考一模)在ABC 中,32,,AB AC BC ==>,则cos A 的范围是()A .51,6⎛⎫- ⎪⎝⎭B .111,12⎛⎫- ⎪⎝⎭C .5,16⎛⎫ ⎪⎝⎭D .11,112⎛⎫ ⎪⎝⎭【答案】B【解析】222213cos212AB AC BC BC A AB AC +--==⋅,因为BC >11cos 12A <.又()0,πA ∈,所以cos A 的范围是111,12⎛⎫- ⎪⎝⎭.故选:B 2.(2023秋·浙江宁波·高三期末)在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin2A Cb B C a ++=,且ABC 的面积为,则ABC 周长的最小值为()A .B .C .D .6+【答案】C【解析】因为πsin sin2Bb A a -=,根据正弦定理及诱导公式得sin sin sin cos2B B A A ⋅=⋅,()0,πA ∈ ,sin 0A ∴≠,sin cos2B B ∴=,即2sin cos cos 222BB B=,()0,πB ∈ ,则π0,22B ⎛⎫∈ ⎪⎝⎭,则cos 02B ≠解得1sin22B =,所以ππ263B B =⇒=,所以1sin 24S ac B ===,所以8,ac a c =+≥,当且仅当a c ==时等号成立,根据余弦定理得b =,即b =,设ABC 的周长为C ,所以()ABC C a c a c =++=+ ,设,a c t t +=≥,则()f t t =根据复合函数单调性及增函数加增函数为增函数的结论得:()f t 在)⎡+∞⎣上为单调增函数,故()(minf t f ==,故()min ABC C = ,当且仅当a b c ===时取等.故选:C.3.(2023·江西赣州·统考一模)已知锐角ABC 的内角A B C 、、的对应边依次记为a b c、、,且满足2cos c b b A -=,则()()2sin 2cos C B A B ++-的取值范围为__________.【答案】32,2⎛⎫ ⎪ ⎪⎝⎭【解析】因为2cos c b b A -=,所以sin sin 2sin cos C B B A -=,即()sin sin 2sin cos A B B B A +-=,展开整理得()sin sin A B B -=,因为锐角ABC 中,ππππ,0,,,,2222A B A B A B ⎛⎫⎛⎫∈+>-∈- ⎪ ⎪⎝⎭⎝⎭,所以A B B -=,即2A B =,由π02π022π0π32B A B C B ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,得π6π4B <<,()()22πsin cos sin 2cos sin2cos21214C B A B A B B B B ⎛⎫++-=+=++=++ ⎪⎝⎭,因为π6π4B <<,所以7ππ3π21244B <+<,π<sin 224B ⎛⎫+ ⎪⎝⎭,所以()()2sin 2cos C B A B ++-的范围为32⎛⎫ ⎪ ⎪⎝⎭.4.(2023·陕西西安·统考一模)已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足2cos 2b A a c +=,且b =,则ABC 周长的取值范围为______________.【答案】【解析】在ABC 中,由2cos 2b A a c +=及正弦定理得:2sin cos sin 2sin B A A C +=,而π()C A B =-+,于是2sin cos sin 2sin()2sin cos 2cos sin B A A A B A B A B +=+=+,有sin 2sin cos A A B =,而0πA <<,sin 0A >,因此1cos 2B =,由余弦定理得2222cos b a c ac B =+-,即有222222112()3()3()()24a c a c ac a c ac a c a c +=+-=+-≥+-=+,当且仅当a c =时取等号,从而a c +≤,而a c b +>=,则a b c <++≤所以ABC周长的取值范围为.5.(2023·全国·校联考一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=.(1)证明:2B C =;(2)求a bc+的取值范围.【答案】(1)证明见解析;(2)(1,5).【解析】(1)∵22c ac b +=,∴22c b ac -=-,∴由余弦定理得:2222cos 222a c b a ac a cB ac ac c+---===,即:2cos c B a c ⋅=-,由正弦定理得:2sin cos sin sin C B A C ⋅=-,∴2sin cos sin()sin sin cos sin cos sin C B B C C B C C B C ⋅=+-=+-,整理得:sin cos sin cos sin 0B C C B C --=,即:sin()sin B C C -=,又∵(0,π)B C ∈、,∴B C C -=,即:2B C =.(2)∵2B C =,∴π3A C =-,又∵sin22sin cos C C C =⋅,2sin 3sin(2)sin cos 2cos sin 2sin cos 22sin cos C C C C C C C C C C C=+=⋅+⋅=⋅+⋅,sin 0C ≠,∴由正弦定理得:sin sin sin(π3)sin2sin3sin2sin sin sin a b A B C C C Cc C C C++-++===22sin cos22sin cos 2sin cos cos22cos 2cos sin C C C C C CC C CC⋅+⋅+⋅==++2222cos 12cos 2cos 4cos 2cos 1C C C C C =-++=+-,又∵0π0π3ππ0π02π 030π0π A C B C C C C <<<-<⎧⎧⎪⎪<<⇒<<⇒<<⎨⎨⎪⎪<<<<⎩⎩,∴1cos 12C <<,令cos t C =,则2421a bt t c+=+-,112t <<,∵2421y t t =+-对称轴为14t =-,∴2421y t t =+-在1(,1)2上单调递增,当12t =时,11421142y =⨯+⨯-=;当1t =时,4215y =+-=,∴15a bc+<<,即:a b c +的范围为(1,5).6.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin tan cos C B A B -=.(1)求A ;(2)若2a =,求2c b -的取值范围.【答案】(1)π3A =;(2)()2,4-【解析】(1)由题意知,sin 2sin sin cos cos AC B B A-=⨯,所以2cos sin cos sin sin cos A C A B A B -=,则()2cos sin sin cos cos sin sin sin A C A B A B A B C =+=+=,又()0,πC ∈,所以sin 0C ≠,所以1cos 2A =,又()0,πA ∈,所以π3A =.(2)由(1)得sin 2sin sin cos cos AC B B A-=⨯,由正弦定理得cos 2cos a B c b A -=,又2a =,π3A =,所以24cos c b B -=.因为2π0,3B ⎛⎫∈ ⎪⎝⎭,所以1cos ,12B ⎛⎫∈- ⎪⎝⎭,所以()4cos 2,4B ∈-,故()22,4c b -∈-,即2c b -的取值范围为()2,4-.7.(2023·河南·校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.【答案】(1)π3;(2)⎝【解析】(1是2a 与πsin 6C ⎛⎫+ ⎪⎝⎭的等比中项,所以2π2sin 6a C b c ⎛⎫+==+ ⎪⎝⎭,由正弦定理及两角和的正弦公式,得12sin cos sin sin 2A C C B C ⎫⋅+=+⎪⎪⎝⎭.因为πA B C ++=,所以()sin sin cos sin sin sin cos cos sin sin A C A C A C C A C A C C +=++=++,()sin cos 1sin A C A C =+.因为()0,πC ∈,所以sin 0C ≠,cos 1A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭.又()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ66A -=,即π3A =.(2)由正弦定理,得2πsin sin sin 3ab B C ==,所以2π3sin sin C a B b C⎛⎫- ⎪⎝⎭==132tan C⎛=+ ⎝.因为ABC 是锐角三角形,所以2ππ0,32π0,2C C ⎧<-<⎪⎪⎨⎪<<⎪⎩所以ππ62C <<,所以tan 3C >,所以sin a B的取值范围是⎝.8.(2023·全国·高三专题练习)在①)cos sin a b C c B -=,②22cos a c b C -=,③()()()a b a b a c c -+=-这三个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A B C ,,的对边分别是a b c ,,,且满足_______,b =(1)若4a c +=,求ABC 的面积;(2)求ABC 周长l 的取值范围.【答案】(1(2)(【解析】(1)若选条件①)cos sin a b C c B -=及正弦定理,)sin sin cos sin sin A B C C B-=()sin sin cos sin sin B C B C C B +-=⎤⎦,化简得sin sin sin B C C B =,因为0πC <<,所以sin 0C ≠,所以tan B =,因为0πB <<,所以π3B =.若选条件②,由22cos a c b C -=及正弦定理,得2sin sin 2sin cos A C B C -=,即()2sin sin 2sin cos B C C B C +-=,化简得2cos sin sin B C C =,因为0πC <<,所以sin 0C ≠,所以1cos 2B =,因为0πB <<,所以π3B =.若选条件③,由)()()a b a b a c c +-=-化简得,222a c b ac +-=,由余弦定理得222cos 2a c b B ac+-=,即1cos 2B =,因为0πB <<,所以π3B =,所以三个条件,都能得到π3B =.由余弦定理得()22222cos 22cos b a c ac B a c ac ac B =+-=+--,即21124222ac ac =--⨯,解得43ac =,所以ABC的面积114πsin sin 22333S ac B ==⨯⨯=.(2)因为π3b B ==,由正弦定理得4sin sin sin a c b A C B ===,因为2ππ3A C B +=-=,所以()2π1π4sin sin 4sin sin cos 3226a c A C A A A A A ⎫⎡⎤⎛⎫⎛⎫+=+=+-=+=+⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎭,因为2π03A <<,所以ππ5ππ1sin 166662A A ⎛⎫⎛⎤<+<+∈ ⎪ ⎥⎝⎭⎝⎦,,,所以(a c +∈,即(a b c ++∈,所以ABC 周长l 的取值范围为(.9.(2023春·山西·高三校联考阶段练习)求△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,已知3A π=,且△ABC 的周长为6.(1)证明:()124bc b c +=+;(2)求△ABC 面积的最大值.【答案】(1)证明见解析;(2【解析】(1)在△ABC 中,由余弦定理可得:2222cos a b c bc A =+-,即2222()3a b c bc b c bc =+-=+-,又因为6a b c ++=,所以22[6()]()3b c b c bc -+=+-,整理可得:124()b c bc -+=-,所以()124bc b c +=+得证.(2)由(1)可知:()124bc b c +=+,所以124bc +≥⨯,当且仅当b c =时取等号,6≥2≤,因为6b c +<2≤,则4bc ≤,所以1sin 424ABC S bc A =≤= ,故△ABC.10.(2023·四川凉山·统考一模)在锐角ABC 中,角A ,B ,C 所对的边分别为,,,sin cos a b c b c A a C -=.(1)求A ;(2)若2b =,求ABC 面积的取值范围.【答案】(1)π4A =;(2)()1,2【解析】(1)因为sin cos b c A a C -=,由正弦定理得sin sin sin sin cos B C A A C -=,。

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π

减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3

3
3
2
1+ 2

|解题技法|
sin+

解三角形求取值范围的题目

解三角形求取值范围的题目

解三角形求取值范围的题目带答案
以下是一些关于三角形求取值范围的题目以及它们的答案。

题目1:已知三角形ABC,角A的度数为60°,角B的度数为45°。

求角C的度数的取值范围。

答案1:角C的度数的取值范围为(0°, 75°),因为角A + 角B + 角C = 180°,所以角C = 180°- 角A - 角B = 75°。

题目2:已知三角形DEF,角D的度数为120°,角E的度数为40°。

求角F的度数的取值范围。

答案2:角F的度数的取值范围为(0°, 100°),因为角D + 角E + 角F = 180°,所以角F = 180°- 角D - 角E = 180°- 120°- 40°= 20°。

题目3:已知三角形GHI,角G的度数为75°,角H的度数为85°。

求角I的度数的取值范围。

答案3:角I的度数的取值范围为(0°, 120°),因为角G + 角H + 角I = 180°,所以角I = 180°- 角G - 角H = 180°- 75°- 85°= 20°。

这些题目和答案可以帮助您理解三角形角度之间的关系和计算角度的取值范围。

高中数学专题-三角形取值范围问题-题型总结(解析版)2

高中数学专题-三角形取值范围问题-题型总结(解析版)2

三角形取值范围问题--归纳总结关于解三角形问题和取值范围有很多题型,总结起来大致可以分为两类。

第一种处理方法使用基本不等式求最值(往往结合余弦定理),第二种处理方法转化为三角函数求值域(题目强调锐角三角形时用此法)。

需要注意的是基本不等式注意取等条件,三角函数法需要注意角的精确范围(尤其是锐角三角形时角的范围)。

题型1.三角函数和差类型方法:转换成三角函数求值域问题,注意角的范围。

【例1-1】(2022·新高考Ⅰ卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A1+sin A=sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【解析】(1)由cosA1+sinA=sin2B1+cos2B,得cosA1+sinA=2sinBcosB2cos2B=sinBcosB,即cosAcosB=sinB+sinBsinA,即cos(A+B)=-cosC=sinB,∵C=2π3,所以sinB=12得,B=A=π6.(2)由cos(A+B)=-cosC=sinB,得C=π2+B,A+2B=π2,由正弦定理得a2+b2 c2=sin2A+sin2Bsin2C=(2cos2B-1)2+1-cos2Bcos2B=4cos4B-5cos2B+2cos2B=4cos2B+2cos2B-5≥42-5,当且仅当cosB=(12)14时的符号成立,故最小值为42-5.【例1-2】(2022·广州一模)△ABC的内角A,B,C的对边分别为a,b,c,已知c=3,且满足ab sin Ca sin A+b sin B−c sin C= 3.(1)求角C的大小;(2)求b+2a的最大值.【解析】(1)由题意得abca2+b2-c2=3,余弦定理得:a2+b2-c2=2ab∙cosC,所以cosC=a2+b2-c22ab=12,又C为△ABC内角,所以C=π3;(2)由题得asinA =bsinB=csinC=2,所以a=2sinA,b=2sinB,所以b=2sinB=2sin(A+π3),所以b+2a=2sin(A+π3)+4sinA=sinA+3cosA+4sinA=5sinA+3cosA=27sin(A+φ),且tanφ=35,又因为A∈(0,2π3),所以sin(A+φ)max=1,所以b+2a≤27,即b+2a的最大值为27.【训练1】(2020·浙江卷)在锐角△ABC中,角A,B,C所对的边分别为a,b,c.(1)求角B的大小;(2)求cos A+cos B+cos C的取值范围.【解析】(1)∵2bsinA=3a,2sinBsinA=3sinA,∵sinA≠0,∴sinB=32,∵△ABC为锐角三角形,∴B=π3,(2)∵△ABC为锐角三角形,B=π3,∴C=2π3-A,∴cosA+cosB+cosC= cosA+cos(2π3-A)+cosπ3=12cosA+32sinA+12=sin(A+π6)+12,△ABC为锐角三角形,0<A<π2,0<C<π2,解得π6<A<π2,∴π3<A+π6<2π3,∴32<sin(A+π6)≤1,∴32+12<sin(A+π6)+12≤32,∴cosA+cosB+cosC 的取值范围为(3+12,32].题型2.三角形面积最值方法一:余弦定理+基本不等式(锐角三角形不建议用).方法二:转化为三角函数求值域(任意三角形都可用).策略一:对边对角型【例2-1】(2021·衡水调研)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a cos C+3a sin C−b−c=0.(1)求A的大小;(2)若a=3,求△ABC面积的取值范围.【解析】(1)由acosC+3a sinC-b-c=0,由正弦定理得:sinAcosC+3sinAsinC=sinB+sinC,即sinAcosC+3sinAsinC=sin(A+C)+sinC,可得:3sinAsinC=cosAsinC+sinC,由于C为三角形内角,sinC≠0,所以化简得3sinA-cosA=1,所以sin(A-π6)=12因为A∈(0,π2),所以A-π6∈(-π6,π3),所以A-π6=π6,即A=π3.(2)由2R=asomA=332=2,则bc=2RsinB∙2RsinC=4sinBsin(B+π3)=2(2B-π6)+1,sin因为△ABC是锐角三角形,所以B∈(π6,π2),所以(2B-π6sin)∈(12,1],可得bc∈(2,3],所以S△ABC=12bcsinA=34bc∈(32 ,334],所以△ABC的面积的取值范围是(32,334].【训练2】在△ABC中,A,B,C的对边分别为a,b,c,且sin Aa=3cos C c.(1)求角C的大小;(2)如果c=2,求△ABC的面积的最大值.【解析】(1)因为sinAa=3cosCc=sinCc,所以sinC=3cosC,即tanC=3,由C为三角形内角得,C=π3;(2)由余弦定理得4=a2+b2-ab≥2ab-ab=ab,当且仅当a=b时取等号,所以ab≤4,△ABC的面积S=12absinC=34ab≤3,即面积的最大值为 3.策略二:对边异角型【例2-2】(2021·瑶海月考)若a,b,c为锐角△ABC的三个内角A,B,C的对边,且sin2B+sin2C−sin2(B+C)=sin B sin C.(1)求角A;(2)若b=2,求△ABC的面积的取值范围.【解析】(1)因为sin2B+sin2C-sin2(B+C)=sinBsinC,所以sin2B+sin2C-sin2A=sinBsinC.由正弦定理得b2+c2-a2=bc,由余弦定理得cosA=b2+c2-a22bc=12,因为A为三角形内角,所以A=π3;(2)由题得bsinB=csinC,所以2sinB=csin(2π3-B),c=2sin(2π3-B)sinB=3cosB+sinBsinB=1+3tanB,因为锐角△ABC中,0<B<π20<2π3-B<π2,所以π6<B<π2,故tanB>33,0<1tanB<3,S△ABC=12bcsinA=34×2×(1+3 tanB)=32+32tanB∈(32,23).【训练3】(2019·全国Ⅲ卷)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A+C2=b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)asin A+C2=bsinA,即为asinπ-B2=acosB2=bsinA,可得sinAcos B2=sinBsinA=2sin B2cos B2sinA,∵sinA>0,∴cos B2=2sin B2cos B2 ,若cos B2=0,可得B=(2k+1)π,k∈Z不成立,∴sin B2=12,由0<B<π,可得B=π3;(2)若△ABC为锐角三角形,且c=1,由余弦定理可得b=a2+1-2a∙1∙cosπ3 =a2-a+1,由三角形ABC为锐角三角形,可得a2+a2-a+1>1且1+a2-a +1>a2,且1+a2>a2-a+1,解得12<a<2,可得△ABC面积S=12a∙sinπ3 =34a∈(38,32)策略三:夹边夹角型方法一:向量平方凑关系,结合基本不等式求最值.方法二:延长中线找对边,结合对边对角模型求值.【例2-3】在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A+12a=c.(1)求角B的大小;(2)若AC边上的中线BM的长为3,求△ABC面积的最大值.【解析】(1)因为bcosA+12a=c,由正弦定理可得sinBcosA+12sinA=sinC,又sinC=sin(A+B)=sinAcosB+sinBcosA,所以12sinA=sinAcosB,又A为三角形内角,sinA>0,所以cosB=12,因为B∈(0,π),所以B=π3.(2)如图,延长线段BM至D,满足BM=MD,连接AD,在△ABC中,BD=2AM =23,AD=a,AB=c,∠BAD=π-B=2π3,由余弦定理,有232=a2+c2+ac≥2ac+ac=3ac,解得ac≤4,当且仅当a=c=2时取等号,所以S△ABC=12acsinB≤12×4×32=3,当且仅当a=c=2时等号成立,即面积的最大值为 3.AB C DE M【训练4】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知m=cos A 2,3sin A 2 ,n =−2sin A 2,2sin A2 ,且m ·n =0.(1)求角A 的大小;(2)点M 是BC 的中点,且AM =1,求△ABC 面积的最大值.【解析】(1)m ∙n =0,∴-2sin A 2cos A 2+23sin 2A 2=0,即-sinA +23×1-cosA2=-sinA -3cosA +3=0,即sinA +3cosA =3,即2sin (A +π3)=3,得sin (A +π3)=32,即A +π3=2π3,得A =π3.(2)∵点M 是BC 的中点,且AM=1,∴AM =12(AB +AC ),平方得AM 2=14(AB 2+AC 2+2AB ∙ AC ),即4=c 2+b 2+2bc ×12=c 2+b 2+bc ≥2bc +bc =3bc ,即bc ≤43,当且仅当b =c 时取等号,则△ABC 面积S =12bcsin π3=12×32bc ≤34×43=33,即三角形面积的最大值为33.题型3.三角形周长取值范围方法一:余弦定理+基本不等式(锐角三角形不建议用).方法二:转化为三角函数求值域(任意三角形都可用)策略一:对边对角型【例3-1】(2020·全国Ⅱ卷)在△ABC中,sin2A−sin2B−sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.=-12,【解析】(1)因为BC2-AC2-AB2=AC∙AB,所以cosA=AC2+AB2-BC22AC∙AB因为A∈(0,π),所以A=2π3.(2)由余弦定理BC2=AC2+AB2-2AC∙ABcosA=AC2+AB2+AC∙AB=9,)2(当且仅当AC=AB时取等即(AC+AB)2-AC∙AB=9,AC∙AB≤(AC+AB2)2=34(AC+AB)2,解号),9=(AC+AB)2-AC∙AB≥(AC+AB)2-(AC+AB2得AC+AB≤23(当且仅当AC=AB时取等号),所以△ABC周长L=AC+ AB+BC≤3+23,周长的最大值为3+2 3.【训练5】(2021·江西模拟)△ABC的内角A,B,C的对边分别为a,b,c.已知a cos B=(2c−b)cos A.(1)求A;(2)若△ABC为锐角三角形,且a=1,求△ABC周长的取值范围.【解析】(1)法一:由题意得a cosB+b cosA=2c cosA;由正弦定理得sinAcosB +sinBcosA=2sinCcosA,即sin(A+B)=2sinCcosA;又sin(A+B)=sinC,所以sinC=2sinC cosA.又sinC≠0,所以cosA=12;又0<A<π,所以A=π3.解法二:结合余弦定理a×a2+c2-b22ac =(2c-b)×b2+c2-a22bc,化简得b2+c2-a2=bc,所以cosA=b2+c2-a22bc=12;又0<A<π,所以A=π3.(2)由正弦定理得asinA =bsinB=csinC,且a=1,A=π3,所以b=233sinB,c=233sinC;所以a+b+c=1+233(sinB+sinC)=1+233[sinB+sin(2π3-B)]=1+2sin(B+π6).因为△ABC为锐角三角形,所以得0<B<π20<2π3-B<π2 ,解得π6<B<π2.所以1+2sin(B+π6)∈(1+3,3];即△ABC周长的取值范围是(1+3,3].策略二:对边异角型【例3-2】(2021·衡水模拟)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知b=3,sin A+a sin B=2 3.(1)求角A的大小;(2)求△ABC周长的取值范围【解析】(1)因为asinA =bsinB=csinC,所以asinB=bsinA,所以sinA+asinB=sinA+bsinA=4sinA=23,所以sinA=32,△ABC为锐角三角形,所以A=π3.(2)由题可得:asinA =bsinB=csinC,a=332sinB,c=3sinCsinB,a+c+3=332+3sinCsinB+3=332+3sin(2π3-B)sinB+3,所以周长=332+3(32cosB+12sinB)sinB+3=332∙1+cosBsinB+9 2=332∙1+2cos2B2-12sin B2cos B2+92=332∙1tan B2+92.又因为△ABC为锐角三角形,所以B 2∈(π12,π4)所以tan B2∈(2-3,1),所以1tan B2∈(1,2+3),所以(9+332,9+33).【训练6】(2021·江苏模拟)在△ABC中,a,b,c分别是内角A,B,C的对边,2b sin A sin(A+C)=3a sin B.(1)求角B;(2)若△ABC为锐角三角形,且c=2,求△ABC面积的取值范围.【解析】(1)∵2bsinAsin(A+C)=3asin2B,∴由正弦定理得:2sinBsinAsin(A +C)=23sinAsinBcosB,∵A+C=π-B,且sinA≠0,sinB≠0,∴sinB= 3cosB,∴tanB=3,∵B∈(0,π),∴B=π3.(2)由题意B=π3,c=2,可得S△ABC =12acsinB=3a2,由正弦定理得:a=csinAsinC=2sin(120°-C)sinC =3tanC+1,又△ABC为锐角三角形,可得0<A<90°,0<C<90°,故30°<C<90°,所以1<a<4,从而32<S△ABC<23,即△ABC面积的取值范围是(32,23).策略三:夹边夹角型方法一:向量平方凑关系,结合基本不等式求最值.方法二:延长中线找对边,结合对边对角模型求值.【例3-3】在△ABC中,a、b、c分别是角A、B、C的对边,若c cos B+b cos C= 2a cos A,M为BC的中点,且AM=1,则b+c的最大值是.【解析】在△ABC中,a、b、c分别是角A、B、C的对边,若c cosB+b cosC= 2acosA,利用正弦定理:sinCcosB+sinBcosC=2sinAcosA,所以:sin(B+C) =sinA=2sinAcosA,由于:sinA≠0,所以cosA=12,0<A<π,故A=π3,因为M为BC的中点,且AM=1,所以可设BC=2x,则(2x)2=b2+c2-2bccosA,故2x2=b2+c2-bc2,利用余弦定理得c2=12+x2-2xcos∠BMA①,同理:b2=12+x2-2x∠CMAcos②由①②得:b2+c2=2+2x2,所以:b2+c2=c2+b2-bc2+2,故:(b+c)2=4+bc,整理得:(b+c)2≤4+(b+c2)2,解得0<b+c≤433,故答案为433.【训练7】(2022·石家庄模拟)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若c cos B +b cos C =2a cos A ,AM =23AB +13AC,且AM =1,则b +2c 的最大值是.【解析】由ccosB +bcosC =2acosA ,得sinCcosB +sinBcosC =sin (B +C )=sinA =2sinAcosA ,可得cosA =12,A =π3,因为AM 2=(23AB +13AC )2=49c 2+19b 2+49bccosA =3,所以b 2+4c 2+2bc =27⇒(b +2c )2-2bc =27⇒(b +2c )2=27+2bc ≤27+(b +2c 2)2,当且仅当b =2c 取等号,得34(b +2c )2≤27⇒b +2c ≤6.b +2c 的最大值为6. 故答案为:6.【训练8】(2022·江苏模拟)△ABC 中,角A 、B 、C 的对边分别为a ,b ,c 且满足2a =3b =4c ,若sin2A ≤λ(sin B +sin C )恒成立,则λ的最小值为()A .−1114B .127C .−1124D .−712【解析】设2a =3b =4c =12t (t >0),则a =6t ,b =4t ,c =3t ,sin 2A ≤λ(sinB +sinC )恒成立,即λ≥sin 2A sinB +sinC 恒成立,sin 2A sinB +sinC =2sinAcosA sinB +sinC =2a b +c ∙b 2+c 2-a 22bc =6t7t ∙16t 2+9t 2-36t 212t 2=-1114,以λ≥-1114,所以λ的最小值为-1114.故选:A.【训练9】(2022·甲卷)已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当ACAB取得最小值时,BD=.【解析】设BD=x,CD=2x,在三角形ACD中,b2=4x2+4-2∙2x∙2∙cos60°,可得:b2=4x2-4x+4,在三角形ABD中,c2=x2+4-2∙x∙2∙cos120°,可得:c2=x2+2x+4,要使得AC AB 最小,即b2c2最小,b2c2=4x2-4x+4x2+2x+4=4(x2+2x+4)-4x-12x2+2x+4=4-12(x+1)(x+1)2+3=4-12(x+1)(x+1)2+3=4-12x+1+3x+1≥4-1223,当且仅当x+1=3x+1,即x=3-1时,取等号,故答案为:3-1.【训练10】(2022·深圳模拟)在△ABC中,已知角A,B,C所对的边分别为a,b,c,若9b2+6bc cos A=11c2,则角B的最大值为()A.π6B.π4C.π3D.3π4【解析】由余弦定理cosA=b2+c2-a22bc,代入9b2+6bc cosA=11c2,得9b2+3(b2+ c2-a2)=11c2,整理得b2=112(3a2+8c2),cosB=a2+c2-b22bc =a2+c2-112(3a2+8c2)2ac=34a2+13c22ac≥234×13ac2ac=12,当且仅当9a2=4c2时取“=”,又因为B∈(0,π),所以B≤π3,故选:C.【训练11】(2015·全国Ⅰ卷)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC =2,则AB的取值范围是.【解析】方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=12x,AE=22x,DE=6+24x,CD=m,∵BC=2,∴(6+24x+m)sin15°=1,∴6+24x+m=6+2,∴0<x<4,而AB=6+24x+m-22x=6+2-22x,∴AB的取值范围是(6-2,6 +2).故答案为:(6-2,6+2).方法二:如下图,做出底边BC=2的等腰三角形EBC ,B =C =75°,倾斜角为150°的直线在平面内移动,分别交EB 、EC 与A 、D ,则四边形ABCD 即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C 时,AB 趋近最小,为6-2;②直线接近点E 时,AB 趋近最大值,为6+2;故答案为:(6-2,6+2).m12x 6+24x 22x。

解三角形中的最值(范围)问题

解三角形中的最值(范围)问题

解三角形中的最值(范围)问题1. 锐角三角形ABC 满足2B=A+C ,设最大边与最小边之比为m ,求m 的取值范围. 分析:不妨令则因为所以所以2. 锐角三角形ABC 的面积为S ,角C 既不是最大角,也不是最小角.若,求的取值范围.分析:又所以所以又在锐角三角形ABC 中,角C 既不是最大角,也不是最小角所以所以,即k 的取值范围.60B ︒=090A B C ︒<≤≤<sin sin()1sin sin 2tan 2c C A B ma A A A +====+3060A ︒︒<≤tan 3A <≤12m ≤<22()4c a b S k --=k 222222cos (1cos )442c a b ab ab ab C ab C S k k k --+--===1sin 2S ab C =1cos sin CC k -=1cos tan sin 2C C k C -==42C ππ<<1tan 12C <<3. 三角形ABC 满足B 是锐角,且,则的取值范围是_______. 分析:由正弦定理得 所以又所以又B 是锐角所以4. 锐角三角形ABC 满足,求的取值范围.分析:由正弦定理得所以所以又所以又所以所以28sin sin sin A C B =a cb +28ac b=a c b +===2222cos 8b a c ac B ac =+-=22cos 484a c B ac ++=()22a c b+∈)(sin sin )(sin sin )c b c C B a A B =+-=-22a b +()()()b c c b a a b +-=-222a b c ab +-=1cos 2C =0C π<<3C π=4sin sin sin a b c A B C ===4sin ,4sin a A b B ==22222241cos(2)21cos 2316(sin sin )16[sin sin ()]16[]168cos(2)3223A A a b A B A A A πππ---+=+=+-=+=-+又所以 所以所以5. 三角形ABC 满足BC 边上的高为,则的最大值是_____. 分析:又所以所以所以 又所以 的最大值是46. 三角形ABC 满足点D 在边BC 上,且,若,则的取值范围是______.分析: 62A ππ<<242333A πππ+∈(,)12)[1,)32A π+∈--cos(22(20,24]a b +∈6a c b b c+21122S BC h a =⋅==22c b b c b c bc ++=21sin 212S bc A a ==222sin 2cos a A b c bc A ==+-222cos 4sin()6b c A A A bcπ+=+=+0A π<<c b b c +2DC BD =::3::1AB AD AC k =k。

公开课解三角形中的最值及取值范围问题

公开课解三角形中的最值及取值范围问题

3
3
B (0, 2 )
3
B
(
,
5
)
6 66
sin(B ) (1 ,1]
62
b c (6,12]
例2:在ABC中,角A,B,C所对的边分别为a,b,c, 已知:3b 2a sin B (1)求角A的大小. (2)若a 6, 求b c的取值范围.
(2) a2 b2 c2 2bc cos A
已知:3b 2a sin B ,角A为锐角. (1)求角A的大小. (2)若a 6, 求b c的取值范围.
例2:在ABC中,角A,B,C所对的边分别为a,b,c,
已知:3b 2a sin B ,角A为锐角. (1)求角A的大小. (2)若a 6, 求b c的取值范围.
解:(1) 3b 2a sin B
4 (b c)2
3 (b c)2
(b c)2
4
4
例3:等腰ABC中,AB AC, AC BC 2 6
则ABC面积的最大值为__4___ .
例3:等腰ABC中,AB AC, AC BC 2 6 则ABC面积的最大值为_____ .
A
解:
26
h
B
C
D
x Ex
x
y
A
(0, b)
(-a,0)
(1)B
4
例1.(2016年北京卷) ABC中,角A,B,C所对的边分别是a,b,c, 已知a2 c2 b2 2ac, (1)求B的大小. (2)求 2 cos A cos C的最大值.
(2) 2 cos A cosC 2 cos A cos(3 A)
4
2 cos A cos3 cos A sin 3 sin A
学习目标

解三角形中的取值范围问题

解三角形中的取值范围问题

解三角形中的取值范围问题题型1:求三角函数范围问题例题1:在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足csinA =acosC , 则sinA +sinB 的最大值是巩固练习1. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cosA bsinA a =,且πB 2>,则sinA+sinC 的最大值是 ______ .2.在ABC △中,内角,,A B C 所对的边分别为,,a b c ,且4442222a b c c a b++=+,若C 为锐角,则sin B A 的最大值为题型2:求边长和差的范围问题例题1:在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,其中最大的角等于另外两个角的和,当最长边1c =时,ABC ∆周长的最大值为_______.巩固练习1. 已知ABC ∆的内角,,A B C 的对边长分别为,,a b c ,且2cos a A ccosB bcosC =+.(1)求角A 的大小;(2)若2a =,求ABC ∆周长的取值范围.2.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且222sin sin sin sin A C A C B +=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.3. 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos 2cos 22sin sin 33C A C C ππ⎛⎫⎛⎫-=+⋅- ⎪ ⎪⎝⎭⎝⎭. (1)求A ;(2)若a =b a ≥,求12b c -的取值范围.题型3:求边长之比的范围问题例题1:若ABC ∆)222a c b +-,C ∠为钝角,则B ∠=___;c a的取值范围是____.巩固练习1.在ABC ∆中,角A 、B 、C 对边分别为a 、b 、c ,若22a b bc =+,且(60,90)A ∈︒︒,则a b 取值范围是______.2. 在ABC △中,角A ,B ,C 所对边的边长分别是a ,b ,c ,满足sin sin sin sin a c A B b A C +-=-, 则(1)角C =______________;(2)a b c+的取值范围为______________.题型4: 面积最值 例1.在中,分别为角的对边,且满足. (1)求角的值;(2)若bc 最大值.ABC ∆a b c 、、A B C 、、222b c a bc +-=A a =例2、在ABC ∆中, ,,a b c 分别为角,,A B C 所对的边,已知3,3c C π=∠=.(Ⅰ)若sin 2sin B A =,求,a b 的值;(Ⅱ)求22a b +的最大值.巩固练习1.在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为2.在C ∆AB 中,角,,A B C 的对边分别为,,a b c ,若sin 2sin cos 0B A C +=,则当cos B 取最小值时,c a =( ) C.2 3、在ABC ∆,内角,,A B C 所对的边长分别为,,a b c ,已知tan tan 2(tan tan )cos cos A B A B B A +=+ (1)证明:2a b c += ;(2)求cos C 的最小值.4、在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知2cos 2c A a b +=.(Ⅰ)求角C 的值;(Ⅱ)若2a b +=,当边c 取最小值时,求ABC ∆的面积.5、在ΔABC 中,a,b,c 分别为内角A,B,C 的对边,若a +c =4,2sinB =sinA +sinC ,则ΔABC 的面积的最大值为( )A .√3B .2C .2√3D .4题型5: 已知角和非对应边,求解范围问题当已知条件为三角形的一角及一非对应边时,求解三角形面积或周长时,把其中一边用正弦定理结合三角形内角和定理将其用角度表示出来,最终把问题转化为含有同一角度的三角函数问题,使用换元思想,化成函数值域问题。

解三角形中的最值与范围问题(解析版)

解三角形中的最值与范围问题(解析版)

专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。

2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。

要注意三角形隐含角的范围、三角形两边之和大于第三边。

二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.【分析】设220CDBD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】[方法一]:余弦定理 设220CDBD m ==>, 则在ABD △中,2222cos 42AB BD AD BD AD ADB m m =+⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+−⋅∠=+−, 所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++−++−===−+++++++44≥=−当且仅当311m m +=+即1m =−时,等号成立,所以当ACAB取最小值时,1m =−.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD −+−+∴===−≥−++++++++==当且仅当即时等号成立。

【高中数学】解三角形范围与最值问题

【高中数学】解三角形范围与最值问题

8.15作业解三角形范围与最值问题1. 在△ABC中,∠A、∠B、C∠的对边分别为a、b、c,其中边c最长,并且sin2A+sin2B=1.(1)求证:△ABC是直角三角形;(2)当c=1时,求△ABC面积的最大值.2. 在△ABC中,内角A,B,C的对边分别为a,b,c,且2c−a=2b cos A,b=3.(1)求B的大小;(2)若a=√3,求△ABC的面积;(3)求aca c+的最大值.3. 某市计划新修一座城市运动公园,设计平面如图所示:其为五边形ABCDE其中三角形ABE区域为球类活动场所;四边形BCDE为文艺活动场所.其中AB,BC,CD,DE,EA为运动小道(不考虑宽度),∠BCD=∠CDE=120°,∠BAE=60°,DE=2BC=2CD=6千米.(1)求小道BE的长度;(2)设∠ABE=x,试用x表示△ABE的面积,并求x为何值时,球类活动场所△ABE的面积最大值,并求出最大值.4. 在锐角△ABC 中,内角,,A B C 的对边分别为a,b,c ,且满足:2a sin A =(2b −c )sin B +(2c −b )sin C . (1)求角A 的大小;(2)若a =3,求△ABC 的周长l 的最大值5. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2b cos A =2c +a .(1)求角B 的大小;(2)若b =a +c 的范围.6. 在△ABC 中,内角A ,B ,C 所对的边分别a ,b ,c ,且22cos cos 22C A a c ⎫⎛+ ⎪⎝⎭(a +c −b)=32ac . (1)求角B 的大小;(2)若b =c =x(x >0),当△ABC 仅有一解时,写出x 的范围,并求a −c 的取值范围.7. 在ΔABC 中,a,b,c 分别是角,,A B C 的对边(a +b +c)(a +b −c)=3ab .(1)求角C 的值;(2)若c =2,且ΔABC 为锐角三角形,求2a −b 的范围.8. 铰链又称合页,是用来连接两个固体并允许两者之间做相对转动的机械装置.铰链可由可移动的组件构成,或者由可折叠的材料构成.合页主要安装于门窗上,而铰链更多安装于橱柜上.如图所示OA ,OC 就是一个合页的抽象图,∠AOC 可以在[0,π]变化,其中28cm OC OA ==,正常把合页安装在家具上时,∠AOC 的变化范围是[π2,π].根据合页的安装和使用经验可知,要使得安装的家具门开关并不受影响,在以AC 为边长的正三角形ABC 区域内不能有障碍物.(1)若π2AOC ∠=时,求OB 的长; (2)当∠AOC 是多大时,求△OBC 面积的最大值.。

解三角形取值范围常见题型

解三角形取值范围常见题型

解三角形取值范围常见题型引言解三角形取值范围是学习三角函数的重要一环,它涉及到解三角形的边长、角度以及各种三角函数的定义域和值域。

本文将介绍解三角形取值范围常见题型,通过详细的讲解和示例,帮助读者掌握解三角形取值范围的解题方法和技巧。

一、已知两边求角度1.已知两边求角度范围当已知三角形的两条边长度时,可以通过余弦定理或正弦定理来求出角度的范围。

例题1已知三角形的两边长分别为$a=5$和$b=7$,角$C$的取值范围是多少?解题思路:根据余弦定理,我们有$$c^2=a^2+b^2-2a b\co sC$$代入已知数值,得到$$c^2=5^2+7^2-2\c d ot5\cd ot7\cd ot\c os C$$化简后可得$$\c os C=\f ra c{c^2-74}{70}$$观察到余弦函数的定义域是$[-1,1]$,所以要使上式成立,必须满足$$\f ra c{c^2-74}{70}\in[-1,1]$$解以上不等式,可得$$-8.76\le qc^2\le q152.86$$由于$c$是三角形的边长,所以$c>0$,则有$$0<c\le q\sq rt{152.86}\a pp ro x12.36$$因此,角$C$的取值范围为$\c os^{-1}\l ef t(\f ra c{c^2-74}{70}\ri gh t)\ap p ro x\co s^{-1}\l ef t(\f ra c{5.14}{7}\r ig ht)\app r ox37.27°\l eq C\l eq180°$。

2.已知两边求角度解的数量当已知三角形的两条边长度后,求解角度的数量有一定的限制。

-如果两边之和小于第三边的长度,那么无解。

-如果两边之和等于第三边的长度,那么只有一个解,此时两边和第三边构成一条直线。

-如果两边之和大于第三边的长度,那么会有两个解。

例题2已知三角形的两边长分别为$a=4$和$b=5$,$\si nC=\fr ac{5}{6}$。

《解三角形》专题复习之——取值范围问题课件

《解三角形》专题复习之——取值范围问题课件

2
反思与总结:
1、函数法:利用正弦定理将所求代数式化为 同一个角的三角函数,并注意求角的范围。
2、不等式法:利用余弦定理与重要不等式、 基本不等式时,应注意题目中隐含的范围。
学习交流PPT
3
练 习
在锐 AB 角 中 CA , 2B,c则 的取值 __ 范 _. _ 围 __ 是 b
学习交流PPT
学习交流PPT
10
期待您的关注,下载文档可以自由编辑!
学习交流PPT
11
《解三角形》专题复习之
——取值范围问题
郑州市实验高中 高三数学组 周洪涛
学习交流PPT
1
学习目标
1.能利用正弦、余弦定理来解三角形; 2.掌握解决解三角形问题中的取值范围问题的常规 解法:函数法、不等式法、解析法、几何法(重难 点) 3.在解题过程中体会数形结合、转化与化归的数学 思想
学习交流PPT
学习交流PPT
7
课堂小结
1、解三角形中范围问题的解题方法: (1)函数法 (2)不等式法 (3)解析法 (4)几何法
2、数学思想方法:
学习交流PPT
8
作业
1、必做:整理导学案错题及课堂例题,掌握四种解 题方法 2、选做:找到近五年高考全国卷解三角形相应题目, 进行整理归类
学习交流PPT
9
谢谢!
4
例 ( 220全 15 .国 1) 6 在平面 A四 B中 C边 D , A 形 B C75 ,BC 2, 则 A的 B 取值 _范 __ . 围 __是
例3( . 200江 8 苏 .13) 满足条 AB件 2,AC 2BC的AB的 C 面积的最大 值为 ____.__
学习交流PPT
5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形求取值范围问题类型1:正弦定理+外接圆半径+三角函数1.在ABC ∆中,若3sin 4B =,10b =,则边长c 的取值范围是( ) A. 15(,)2+∞ B. (10,)+∞ C. 40(0,]3 D. (0,10)2.在△ABC 中,C=,AB=3,则△ABC 的周长为( ) A .B .C .D .3.在△ABC 中,,则△ABC 的周长为( )A .B .C .D .4.在ABC ∆中,c b a ,,分别为内角C B A ,,所对的边,若3=a ,3π=A ,则c b +的最大值为( )A .4B . 33 C. 32 D .25.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3a =,tan 21tan A cB b+=,则b c +的最大值为___6____.6.在锐角△ABC 中, a ,b ,c 分别为角A ,B ,C 所对的边,且 3a =2c sin A . (1)确定角C 的大小;(2)若c =3,求△ABC 周长的取值范围. 解:(1)已知a ,b ,c 分别为角A ,B ,C 所对的边,由 3a =2c sin A ,得 3sin A =2sin C sin A ,又sin A ≠0,则sin C =32, ∴C =π3或C =2π3,∵△ABC 为锐角三角形,∴C =2π3舍去,∴C =π3. (2)∵c =3,sin C =32,∴由正弦定理得:a sin A =b sin B =c sin C =332=2,即a =2sin A ,b =2sin B ,又A +B =π-C =2π3,即B =2π3-A ,∴a +b +c =2(sin A +sin B )+ 3=2⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫2π3-A + 3=2⎝ ⎛⎭⎪⎫sin A +sin 2π3cos A -cos 2π3sin A + 3=3sin A +3cos A + 3=23⎝ ⎛⎭⎪⎫sin A cos π6+cos A sin π6+3=23·si n ⎝ ⎛⎭⎪⎫A +π6+3, ∵△ABC 是锐角三角形,∴π6<A <π2,∴32<sin ⎝⎛⎭⎪⎫A +π6≤1,则△ABC 周长的取值范围是(3+3,3 3 ].7. 在锐角△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,且c=2,∠C=60°,求a +b 的取值范围. 解:由正弦定理知,则a=,b=,而C=60°,所以a+b==4sin (A+30°) 因为锐角△ABC ,C=60°,则30°<A <90°,所以a+b ∈(2,4]∴a+b 的取值范围为(2,4].8.已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若a 2=b 2+c 2+bc ,且a =23.(Ⅰ)若△ABC 的面积S =3,求b +c 的值; (Ⅱ)求b +c 的取值范围. 【解析】 (1)∵a 2=b 2+c 2+bc ,∴2221cos 22b c a A bc +-==-,即cosA =-12,又∵A ∈(0,π),∴A =2π3. 又由S △ABC =12bcsinA =3,所以bc =4,由余弦定理得:12=a 2=b 2+c 2-2bc·cos 2π3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4. (2)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3,∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π3),∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π3)≤1,即b +c 的取值范围是(23,4].9.已知角CB A ,,为ABC ∆的三个内角,其对边分别为cb a ,,,若)2sin ,2cos(A A -=m ,)2sin ,2(cos A A =n ,32=a ,且21=⋅n m .(I )若ABC ∆的面积3=S ,求c b +的值; (II )求c b +的取值范围.【解析】(I ))2sin ,2cos (A A m -=,)2sin ,2(cos A A n =,且21=⋅n m .212sin 2cos 22=+-∴A A ,即21cos =-A ,又),0(π∈A ,32π=∴A 又由3sin 21=⋅=∆A bc S ABC ,4=∴bc 由余弦定理得:bc c b bc c b a ++=⋅-+=2222232cos 2π2)(16c b +=∴,故4=+c b(II )由正弦定理得:432sin 32sin sin sin ====πA a C c B b ,又3ππ=-=+A C B ,)3sin(4)3sin(4sin 4sin 4sin 4ππ+=-+=+=+∴B B B C B c b30π<<B ,则3233πππ<+<B .则1)3sin(23≤+<πB ,即c b +的取值范围是].4,32( 10.在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2A =sin 2B +cos 2C +sin A sin B.(1)求角C 的大小;(2)若c =3,求△ABC 周长的取值范围. 解:(1)由题意知1-sin 2A =s in 2B +1-sin 2C +sin A ·sin B , 即sin 2A +sin 2B -sin 2C =-sin A sin B ,由正弦定理得a 2+b 2-c 2=-ab ,由余弦定理得cos C =a 2+b 2-c 22ab =-ab 2ab =-12.又因为0<C <π,所以C =2π3.(2)由正弦定理得a sin A =b sin B =csin C=2,所以a =2sin A ,b =2sin B ,则△ABC 的周长为L =a +b +c =2(sin A +sin B )+3=2⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=2s in ⎝⎛⎭⎪⎫A +π3+ 3.因为0<A <π3,所以π3<A +π3<2π3,所以32<sin ⎝ ⎛⎭⎪⎫A +π3≤1,所以23<2sin ⎝⎛⎭⎪⎫A +π3+3≤2+3,所以△ABC 周长的取值范围是(23,2+3]. 类型2:正弦定理+三角函数+角的范围1.在锐角△ABC 中,A=2B ,则的取值范围是( ) A .B .C .D .2.在△ABC 中,若C =2B ,求cb 的取值范围.解 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1,所以1<2cos B <2,又c b =sin C sin B =sin 2B sin B =2cos B ,所以1<cb <2.3.在△ABC 中,B =3A ,求ba 的取值范围.解 由正弦定理得b a =sin B sin A =sin 3A sin A =sin (A +2A )sin A =sin A cos 2A +cos A sin 2Asin A =cos 2A +2cos 2A =4cos 2A -1.∵A +B +C =180°,B =3A .∴A +B =4A <180°, ∴0°<A <45°.∴22<cos A <1,∴1<4cos 2 A -1<3,∴1<b a <3. 4.在△ABC 中,若acosA=bsinA ,且B >,则sinA +sinC 的最大值是( ) A .B .C .1D .解:∵acosA=bsinA ,∴,又由正弦定理得,∴sinB=cosA=sin (),∵B,∴π﹣B=.∴B=A +.∴C=π﹣A ﹣B=.∴sinA +sinC=sinA +cos2A=﹣2sin 2A +sinA +1=﹣2(sinA ﹣)2+. ∵0,,∴0,∴0<sinA.∴当sinA=时,sinA +sinC 取得最大值.5.在锐角△ABC 中,角A ,B ,C 分别对应边a ,b ,c ,且a =2b sin A ,求cos A +sin C 的取值范围.解 ∵a =2b sin A ,∴由正弦定理得sin A =2sin B sin A ,又∵A ∈(0,π2),sin A ≠0,∴sin B =12.∵B 为锐角,∴B =π6.令y =cos A +sin C =cos A +sin []π-(B +A )=cos A +sin ⎝⎛⎭⎫π6+A =cos A +sin π6cos A +cos π6sin A =32cos A +32sin A =3sin ⎝⎛⎭⎫A +π3. 由锐角△ABC 知,π2-B <A <π2,∴π3<A <π2.∵2π3<A +π3<5π6,∴12<sin ⎝⎛⎭⎫A +π3<32, ∴32<3sin ⎝⎛⎭⎫A +π3<32,即32<y <32. ∴cos A +sin C 的取值范围是⎝⎛⎭⎫32,32.6.在△ABC 中,a 2+c 2=b 2+2ac .(1)求∠B 的大小;(2)求2cos A +cos C 的最大值.解:(1)由余弦定理及题设条件得cos B =a 2+c 2-b 22ac =2ac 2ac =22.又0<∠B <π,所以<B =π4.(2)由(1)知∠A +∠C =3π4,则 2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A =2cos A -22cos A +22sin A =22cos A +22sin A =cos ⎝⎛⎭⎪⎫A -π4.因为0<∠A <3π4,所以当∠A =π4时,2cos A +cos C 取得最大值1. 7.在△ABC 中,已知(sin A +sin B +sin C )·(sin B +sin C -sin A )=3sin B sin C . (1)求角A 的值;(2)求3sin B -cos C 的最大值.解(1)∵(sin A +sin B +sin C )(sin B +sin C -sin A )=3sin B sin C , ∴由正弦定理得(a +b +c )(b +c -a )=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12.∵A ∈(0,π),∴A =π3. (2)由A =π3得B +C =2π3,∴3sin B -cos C =3sin B -cos ⎝⎛⎭⎫2π3-B =3sin B -⎝⎛⎭⎫-12cos B +32sin B =sin ⎝⎛⎭⎫B +π6. ∵0<B <2π3,∴π6<B +π6<5π6,∴当B +π6=π2,即B =π3时,3sin B -cos C 的最大值为1.类型三:利用基本不等式求范围1. 在锐角三角形ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且3a -2c sin A =0.(Ⅰ)求角C 的大小;(Ⅱ)若 c =2,求a +b 的最大值.2.设函数21()sin 2cos ()24f x x x π=-+. (1)若(0,)x π∈,求()f x 的单调递增区间;(2)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()0,12B f b ==,求ABC ∆面积的最大值.【解析】:(1)由题意可知,1cos(2)112()sin 2sin 2222x f x x x π++=-=-, 由222,22k x k k Z ππππ-≤≤+∈,所以()f x 的单调递增区间是0,4π⎛⎤ ⎥⎝⎦和3,4ππ⎡⎫⎪⎢⎣⎭. (2)由1()sin 022Bf B =-=,可得1sin 2B =,由题意知B 为锐角,所以3cos B =, 由余弦定理2222cos b a c ac B =+-,可得:22132ac a c ac =+≥,即23ac ≤+,且当a c=时等号成立,因此123sin 2ABC S ac B ∆+=≤ABC ∆面积的最大值为234+.3.(2015·山东高考)设f (x )=sin x cos x -cos 2x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝⎛⎭⎫A 2=0,a =1,求△ABC 面积的最大值.解:(1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12.由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z.所以f (x )的单调递增区间是⎣⎡⎦⎤-π4+k π,π4+k π(k ∈Z), 单调递减区间是⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z). (2)由f ⎝⎛⎭⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,当且仅当b =c 时等号成立.因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。

相关文档
最新文档