测井资料解释及应用解析
测井基础知识及其应用
流呈一定厚度的水平层状径向流入地层,从而减小井 的分流作用和围岩的影响,提高分层能力。 目前多用双侧向测井、微球型聚焦测井、八侧向
3、双侧向测井--电极系及其电场分布
电极系:结构见图。
深侧向由于增加了一对柱状屏
B1
由于测量结果受井内泥浆、围岩、侵入带等的影响, 不是地层真实的电阻率,而称为视电阻率,所以又 称视电阻率测井。
a、普通电阻率测井基础
电极系:是按一定顺序排列的一组电极。由供电电极A、B 和测量电极M、N组成。
电极类型 :成对电极,如AaMbN中的MN
不成对电极(单电极),如AaMbN中的A电极
应用:常与双感应组合,在淡水泥浆侵入 很深和低阻环带时,用来确定Rt和Rxo.
Rmf>Rw时, 油层双感应—八 侧向曲线呈低侵 特征: RILD>RILM
当Rmf>Rw时, 水层的双感 应—八侧向曲 线呈高侵特征: RILD<RILM
感应测井
提出:前面介绍的电阻率测井要求井内介质是 导电的,而在油基泥浆和空气钻井的井中均无 法测量。为此提出了以电磁感应原理为基础的 感应测井,以实现对地层电阻率的测量。
双极供电 正装(底 部)梯度 电极系
双极供电 倒装(顶 部)梯度 电极系
称
目前常用: 4米底部梯度电阻率曲线 2.5米底部梯度电阻率曲线
主要用途:
a、定性或半定量划分油气水层;确 定套管鞋深度;
b、求岩层的真电阻率; C、划分岩性剖面和确定岩层界面;
砂泥岩剖面,一般高阻层为砂 岩油层,低阻层为泥岩 d、地层对比。
电极系结构
b测量原理:电极系及 探测范围 微梯度:4 ~5cm 微电位:8~10cm 微梯度的数值主要受泥 饼的影响; 微电位的数值主要受冲 洗带的影响。
测井资料综合解释经典
测井资料综合解释经典测井是油气勘探开发过程中极为重要的一项技术手段,通过对地下岩层进行电磁、声波、核子等各种物理方法的测量,获取有关地层、含油气性质等基本参数的数据。
测井数据对于判断油气藏的性质、水文地质条件、岩性变化等都具有重要的参考价值。
本文将综合解释几种经典的测井资料,包括测井曲线、测井解释方法等。
一、测井曲线1. 自然伽马测井曲线(GR)自然伽马测井曲线测量的是地层的自然伽马辐射强度,是一种常用的测井曲线之一。
自然伽马辐射是由岩石中的放射性元素,如钍、钾和铀等的衰变所产生的。
GR曲线的峰值反映了岩石的放射性物质含量,通过与岩层进行对比分析,可以判断岩层的类型和含油气性质。
2. 电阻率测井曲线(ILD、Rt)电阻率是指物质对电流的阻碍程度,电阻率测井曲线测量了地层的电阻率值。
岩石的电阻率与其孔隙度、含水饱和度以及岩石的含油气性质密切相关。
ILD曲线是测量液体饱和度等含油气性质的重要参数,而Rt曲线通常用于描述岩石的电阻性质。
3. 声波测井曲线(DT、ΔT)声波测井曲线主要是通过测量岩石对声波的传播速度来获取有关地层岩性和孔隙度等参数。
DT曲线即声波传播时间曲线,反映了声波在地层中传播所需的时间,ΔT曲线是声波时差曲线,它可用于计算地层中流体的饱和度。
二、测井解释方法1. 直接解释法直接解释法是根据测井曲线的特征进行判断、推断,结合地层信息和岩性特征,直接得出结论。
例如,根据GR曲线的峰值及其分布情况,可以判断油气层的存在与否,以及油气层的厚度和含油饱和度等。
2. 相关系数法相关系数法是通过建立地层参数之间的统计关系来进行解释。
通过计算测井曲线之间的相关系数,可以得出地层岩性、岩相、孔隙度、饱和度等参数的推断。
例如,通过计算GR曲线与含油饱和度的相关系数,可以判断油气层的含油饱和度等。
3. 分层解释法分层解释法是根据地层的特点和垂向变化进行测井解释。
通过分析测井曲线的规律性变化和层段特点,将地层划分为若干层段,再对每个层段进行解释。
测井解释基础知识-概述说明以及解释
测井解释基础知识-概述说明以及解释1.引言1.1 概述测井是石油工程中一项重要的技术手段,它通过使用特殊的工具和设备在钻井过程中获取井内的各种数据,以评估地下地层的性质和含油气性能。
这些数据对于油气田的勘探、开发和生产起着至关重要的作用。
测井技术在油气勘探和开发中扮演着关键的角色。
通过测井可以准确地了解油气藏中地层的性质,包括储集层的厚度、孔隙度、渗透率等。
同时,测井数据可以获得地层的物理性质,如密度、声波速度、电阻率等,从而可以计算出地层的含油气饱和度和产能。
测井数据的获取方法包括电测井、声测井、密度测井、核磁共振测井等多种技术手段。
这些测井工具可以通过装备在钻井井筒中的测井仪器进行数据采集。
测井数据的获取主要依靠钻井过程中向井内发送的信号与地层反射或吸收的物理现象产生的信号之间的相互作用。
测井解释是对测井数据进行分析和解释的过程,以得出地层性质和含油气信息,并为油气田的开发提供决策依据。
通过对测井数据的解释,可以确定油气藏的储量、底部流压、裂缝分布等重要参数,为决策者提供合理的勘探和开发方案。
总之,测井是一项通过获取井内数据进行地层评价的重要技术。
它对于优化勘探开发策略,提高油气田的产能和经济效益具有重要意义。
测井解释作为测井技术的核心环节,为油气田的勘探与开发提供科学依据,为石油工程的发展做出了重要贡献。
1.2文章结构1.2 文章结构本文按以下结构进行组织和讨论:(1)引言:首先介绍本文的背景和目的,概述测井解释的基本概念和重要性。
(2)正文:本部分将详细介绍测井的定义和作用,以及获取测井数据的方法。
其中,关于测井的定义和作用部分,将探讨测井在勘探和开发油气田中的重要作用,以及其对油气储层评价和井筒工程的意义。
关于测井数据的获取方法部分,将介绍目前常用的测井工具及其原理,如电测井、声波测井、核子测井等。
(3)结论:在本节中,将强调测井解释的重要性,并讨论其在油气勘探开发、地质研究及工程应用领域的具体应用。
测井原理及方法
离子扩散;-扩散电动势 • 岩石颗粒表面对离子有吸附作用;-吸附电动势 • 泥浆滤液向地层中渗透作用。-过滤电动势
自然电位测井
自然电位的测量
自然电位SP的理论计算
自然电流: 测量的自然电位异常幅度值Usp:自然电流流过井内泥浆 柱电阻上的电位降:
1、 常规测井资料原理及应用
1. )电阻率测井电阻率测井 2. )自然电位测井 3. )声波测井 4. )伽马和密度测井 5. )补偿中子测井
电阻率测井
电法测井是地球物理测井中三大测井方法之一,它根据岩层电学性 质的差别,测量地层的电阻率、电导率或介电常数等电学参数,用来研 究地质剖面,判断岩性,划分油气水层,和其它方法一起研究储集层的 含油性、渗透性和孔隙性等性质。
a.主要类型
(2)微侧向(MLL): 微电极测井中泥饼分流作用太大,测RXO不准确,采用聚焦原理,形 成微侧向测井。
(3)微球形聚焦(MSFL): 微侧向MLL探测浅,受泥饼影响大。MSFL方法探测浅,又基本不受泥饼影 响,是目前最好的RXO测量方法。
(4)八侧向(LL8): 以上均为贴井壁测量,LL8是不贴井壁测量Rxo的方法。它是在七侧 向电极系下方附近设屏流回路电极B1,在上方较远处设回路电极B2。
• 厚层可以用“半幅点” 确定地层界面。
地层电阻率的影响
• 含油气饱和度比较高的储集层,其电阻率比它完全含水时rsd明显升 高,SP略有下降。一般油气层的SP幅度略小于相邻的水层。Rt/Rm 增大,曲线幅度减小。
• 围岩电阻率Rs增大,则rsh增大,使自然电位异常幅度减小。
泥浆侵入带、井径的影响
b.电极系分类: 通常供电和测量共4个电极,一个在地面,井下三个组成电极系。 梯度:单电极到相邻成对电极的距离大于成对电极间的距离。 电位:单电极到相邻成对电极的距离小于成对电极间的距离。 梯度电极系进一步分为:底部(正装)梯度、顶部(倒装)梯度。
测井资料解释及应用
草16
QK-1
以上是三垛-戴南储集层(上构造层) 典型油层测井特征图,这类储层特点是: 单层厚度大、物性好,孔隙度一般在10- 30%,渗透率一般都成百上千mD,油水 纵向分异明显(油层-油水同层-水层)。 测井AC一般在270-310μs/m,Rt一般都高于
10Ωm。
阜宁组三段:我们以台兴油田和西边 城油田的测井资料为实例来阐述该组段 油气层测井解释。
吉1井阜一段
苏都290井阜一段
边城油田的主要含油层位也在阜宁组三段, 该油田阜三段上、下砂组都有油层出现,上、下 砂组水的矿化度有反转现象,即下砂组水矿化度 低于上砂组。因此,我们在判别下砂组油层时, 设置的电性标准要高于上砂组。
在岩性、物性都较好前提下,上砂组油层电 阻率要大于3Ωm,下砂组油层电阻率要大于 6Ωm。
Rt
张家垛油田(Es、Ed)
POR
张家垛油田(Es、Ed)
AC
张家垛油田(Es、Ed)
SH
张家垛油田(Es、Ed)
RT
张家垛油田(Ef3)
POR 张家垛油田(Ef3)
AC 张家垛油田(Ef3)
SH张家垛油田(Ef3)
二、测井资料解释
1、测井资料解释做什么?
测井仪器的测量原理是在声学、电学、核物理等 学科的基础上建立的,而测井解释是一门独立的学科 领域,它把仪器的响应同地质学结合起来,确定地层 的岩石物理参数及流体性质。测井解释可为用户提供 以下服务:
边7上砂 组:测试 为油层
边8上砂 组:测试 为油层
边5B下 砂组:测 试为油层
边4下砂 组:测试 为油层
边4下砂 组:测试 为水层
边8下砂 组:测试 为低产层
边城油田刚发现时,在没有试水资料的 情况下,我们通过分析测井资料推测上、 下砂组水性的反转现象,因为测井解释很 需要水资料。后来油田开发逐渐有水分析 资料,印证了推测的结论。大家可以来仔 细注意上、下砂组中泥岩的电阻率变化。
测井资料及其应用
地面仪器
测井仪器车
下井仪器
2、测井资料解释与评价
测井信息是地层评价的主 要手段。主要应用于: 储层评价 油气资源评价 油田勘探及开収 油藏开収及管理 地层评价 地质、钻井和采油工 程 最核心的应用是储层 评价,油气水层评价。 测井评价 技术发展历史
储层定性解释
1960年~1979年
1980年~1995年
25
测井资料的应用
测井具有成本低、垂直分辨率高、连续 性好等特点,被广泛应用于地层评价,地 质、钻井和采油工程,以及矿产资源(如 金属、煤、钾盐、水文工程)勘探开发等 方面。
1、自然电位测井
自然电位测井的应用
①划分渗透性地层。 ②判断岩性,进行地层 对比。 ③计算泥质含量。 ④确定地层水电阻率。 ⑤判断水淹层。 ⑥沉积相研究。
储层定量评价 单井精细解释 多井资料综合解释 油藏描述 地质研究 工程应用
1995年~至今
3、测井方法和理论
• 电磁测井—岩石电学性质 • 声波测井—岩石声学性质 • 核测井—放射性、核衰变、原子物理
常规测井与现代测井
常规测井技术
单一探头
现代测井新技术
阵列或扫描探头
分辨率低
测量平均物理量 非定向测量
含水饱和度 解 (%) 0 残余 可动 释 100 层 束缚水饱和度 号 100 (%) 0 50 (%) 井径 (cm) -25
85
0 25
100
(%)
0
砂泥岩地层测井数字处理成果图
固井质量评价图格式 Q/SL 1273-2001
236
胜利石油管理局测井公司
井 声波变密度测井 固井质量评价图
深度比例 1:200
原状地层
测井资料解释(煤田测井解释)
对比泥质砂岩体积模型和煤的体积模型: 泥质砂岩的岩石骨架相当于碳分, 泥质相当于灰分, 而孔隙水则相当于水分。
煤的声波测井、密度测井及中子测井解释公式与泥质砂岩的测井解释公式具有相 同的形式:
t 1 Vatc Vata t f b 1 Vac Vaa f N 1 Vac Vaa f
上式中Va’=V0/V为灰分的相对体积含量;Δtc、Δta、Δtf分别为碳、灰、水的声波时差; δc、δa、δf分别为碳、灰、水的体积密度;Φc、Φa、Φf分别为碳、灰、水的含氢指 数;为水分的相对体积含量。
煤层的井径曲线受钻井工艺和钻井液性能影响,煤层会发生垮塌,使井径扩大。 煤层的声反射系数比其它地层都小,声波井周成像是记录声波在井壁处反射波的 能量,由于煤层反射系数小,声波透过地层的能量多,而反射的能量少,因此图像 颜色深。
煤储层孔渗特征
1. 煤储层孔隙结构 属裂缝—孔隙型结构,煤基质被天然裂缝(割理)网分隔成许多方块,每个方块 由煤粒和微孔隙组成。基质是储气空间,甲烷被吸附在微孔的表面,渗透率很低, 一般为(10-2~10-6)×10-3μm2。在浓度差的作用下,甲烷透过基质扩散到裂缝中, 裂缝在煤的总孔隙体积中占次要地位,储气功能很低,可有少量游离气储存其中, 但裂缝的渗透率高,是甲烷渗流的主要通道。 煤中的天然裂缝(割理)是煤化作用和构造应力影响的结果。成大致相互垂直的两 组,主要的、延伸较大的一组叫面割理,次要的、与面割理大致垂直的一组叫端割 理。割理是煤中流体运移的主要通道,并且有方向性,因而它是控制煤层气方向渗 透的主要因素,割理间距是煤储层模拟中的一个重要参数。
生产测井原理与资料解释
生产测井原理与资料解释生产测井原理是一种通过测量井内流体的性质和流动特征来评估油井的产能和储层性质的方法。
它是油气开发过程中重要的工具,可以为油气勘探和开发提供重要的数据支持。
基于不同的原理和方法,生产测井可以得到不同的信息,包括油井产能、油层储量、油气组分、储层渗透率等。
生产测井资料解释是指通过对生产测井资料进行分析和解释,得出有关油井和储层性质的结论。
生产测井资料一般以测井曲线的形式呈现,包括电阻率曲线、自然伽马曲线、声波曲线等。
通过对这些曲线进行解析,可以获得有关储层性质和井内流体的定量和定性信息。
电阻率测井是生产测井中最常用的方法之一、它通过测量井内岩石的电阻率来评估储层的孔隙度和渗透率。
在电阻率测井曲线中,较高的电阻率通常表示较低的孔隙度和较低的渗透率,而较低的电阻率则表示反之。
通过对电阻率曲线进行解释,可以判断油井是否有产能,以及井间的储层性质差异。
自然伽马测井是用来测量井内地层放射性物质含量的方法,它可以用于判断油井中的油气含量、岩石类型、垂向流动性等。
自然伽马曲线可以显示地层中放射性元素的分布情况,通过分析曲线的形态和取值,可以判断储层的油气饱和度和岩石类型。
声波测井是一种测量地层中声波传播速度和频谱特征的方法,它可以用来评估储层的孔隙度、渗透率和井内流体性质。
声波测井曲线中的传播速度通常与地层的密度和波速有关,通过测量速度的变化,可以获得有关储层和井内流体的信息。
除了上述方法外,还有许多其他的生产测井原理和方法,如渗压测井、渗透率测井、流量测井等。
每种方法都有其特定的原理和应用范围,可以根据不同的需求选择合适的方法。
总之,生产测井原理是通过测量井内流体的性质和流动特征来评估油井的产能和储层性质的方法。
通过对生产测井资料的解释,可以获得有关油井和储层性质的重要信息,为油气勘探和开发提供数据支持。
在实际应用中,可以根据不同的需求和情况选择合适的生产测井原理和方法,以获得准确可靠的结果。
测井资料与应用
研究方法:利用 测井资料进行地 下水模拟、预测、 评价等
测井资料应用前景展望
第六章
石油勘探领域应用前景
提高勘探效率:通过测井资料分析提高勘探成功率和效率 降低勘探成本:通过测井资料分析降低勘探成本提高经济效益 提高储量预测精度:通过测井资料分析提高储量预测精度为决策提供科学依据 提高环保意识:通过测井资料分析提高环保意识减少对环境的影响
测井资料应用实例
第五章
石油勘探实例
利用测井资料进行地层划分 利用测井资料进行储层评价 利用测井资料进行油藏预测 利用测井资料进行井位优化
煤田勘探实例
测井资料:包括地层、岩性、构造、流体等 应用实例:通过测井资料分析确定煤田储量、分布、品质等 勘探方法:采用钻井、测井、地球物理等方法进行勘探 勘探结果:为煤炭开采提供依据提高煤炭资源利用率
地层划分:根据测井资料划分地层 确定地层年代和岩性
油藏描述:根据测井资料描述油藏 的形状、规模和分布
添加标题
添加标题
添加标题
添加标题
储层评价:利用测井资料评价储层 的性质、厚度和分布
开发方案:根据测井资料制定油气 田的开发方案和措施
地下水研究
测井资料:提供 地下水层的位置、 厚度、水质等信 息
应用:地下水监 测、水资源管理、 地下水污染防治 等
测井资料与应用
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 测井资料概述 03 测井资料的应用 04 测井资料解析方法 05 测井资料应用实例
06 测井资料应用前景展望
单击添加章节标题
第一章
测井资料概述
第二章
测井定义
测井是一种通过测量井下地层物理、化学性质来获取地下信息的技术。 测井资料包括岩性、地层压力、温度、流体性质等。 测井技术广泛应用于石油、天然气、地热、地下水等领域。 测井资料是地质、地球物理、地球化学等学科的重要研究对象。
测井技术及资料解释
测井技术及资料解释测井技术及资料解释应用2022年一、石油测井技术方法二、石油测井地质应用三、测井资料的处理解释(一)石油测井技术概述石油测井技术是采用声、电、磁、放射性等物理测量方法, 应用电子技术及计算机等高新技术,在井中对地层的各项物理参数进行连续测量, 通过对测得的数据进行处理和解释,得到地层的岩性、孔隙度、渗透率、含油饱和度及泥质含量等参数。
石油测井技术与录井、取心等其他技术手段相比,它之所以成为地层和油气资源评价的关键技术手段,主要是由于其具有观测密度大、高分辨率与纵向连续性,以及由众多信息类型组成的综合信息群等技术优势。
三维地震服务于油气勘探和开发的全过程裸眼井测井评价裸眼井测井资料油井动态测井资料电缆测试资料射孔地震合成剖面测井沉积相分析地层评价(逐井) 岩性描述储层分析含油气评价储量计算勘探初期油藏模式分析油田解释模型完井评价孔隙度饱和度渗透率压力剖面勘探中后期油藏描述开发初期油藏模拟水泥胶结套管状况监测酸化压裂效果防砂效果产液剖面注入剖面温度压力剖面剩余油分布开发中期油藏工程开发后期采油工程油藏监测油田生产动态(二)石油测井技术方法迄今为止,测井技术已经历了四次的更新换代,这一发展进程,实质上是一个在更高层次上,形成精细分析与描述油藏地质特性配套能力的过程,是一个不断提高测井发现和评价油气藏能力的过程。
第一代:模拟测井(60年代以前、80年代末) 第二代:数字测井(60年代开始、90年开始)第三代:数控测井(70年代后期、97年开始)第四代:成像测井(90年代初期、2022年)测井方法电学声学核物理学力学磁学光学量子力学实验学电阻率测井声波测井核测井电缆地层测试井方位测井流体成份测量核磁共振测井岩电实验室测井技术应用电子学、计算机科学、传感器技术、精密加工和材料学的成果。
测井技术采用声、电、磁、放射性等物理测量方法, 应用电子技术及计算机等高新技术制造成测井仪器,在井中对地层的各项物理参数进行连续测量,现有的测井方法多达几十种.1 地层电阻率测井方法:双侧向测井双感应测井阵列感应测井微电极测井微球型聚焦测井 2.5米电位电极系测井 4.0米梯度电极系测井2、声学测井技术补偿声波长源距声波声波测井资料应用:确定岩性计算储层孔隙度及渗透率识别地层含流体性质计算岩石力学参数阵列声波数字声波多极阵列声波(Vp、Vs、Vst)垂直地震(VSP)刻度地面地震资料3、放射性测井技术自然伽马(GR) 补偿中子孔隙度(CNL) 岩性密度(DEN,Pe) 补偿密度(DEN) 自然伽马能谱(U、Th、K、SGR、CGR) 中子伽马(NGR)A、自然电位测井资料应用1.划分渗透性储层2.判断油水层(异常幅度大小)和水淹层(泥岩基线偏移) 3.地层对比和沉积相研究 4.估算泥质含量C SP SP min SP max S P min 2 GCUR *C 1 VS H 2GCUR 1自然电位5.确定地层水电阻率SSP K * lg Rmfe Cw K * lg Rwe CmfB、自然伽马测井资料应用1.划分岩性和地层对比高放射性储层:火成岩、海相黑色泥岩等;中等放射性岩石:大多数泥岩、泥灰岩等;低放射性岩石:一般砂岩、碳酸盐岩等自然伽马2.划分储层砂泥岩剖面:低伽马为砂岩储层,在半幅点处分层碳酸盐岩剖面:低伽马表示纯岩石,需结合地层孔隙度分层B、自然伽马测井3.计算地层泥质含量GR GRmin C GRmax GRmin 2GCUR *C 1 VS H 2GCUR 1自然伽马4.计算粒度中值粒度大小与沉积环境、沉积速度及颗粒吸附放射性物质的能力有关,岩性越细,放射性越强。
测井解释(重要)
按岩性可分为: 碳酸盐岩:主要岩石类型石灰岩、白云岩
储集层的分类及特点
特殊岩性:包括岩浆岩、变质岩、泥岩等 孔隙型
按储集空间结构:
裂缝型
洞穴型
孔隙度:总孔隙度、有效孔隙度、原生孔隙度、次生孔隙度
储集层的基本参数
饱和度:储集层的含油性指示,孔隙中油气所占孔隙的相对体积称含油饱和度。
岩层厚度:指岩层上下界面之距离,以岩性或孔隙度、渗透率的变化为其 特征。
80年代中期开始,由于计算机工业的发展,测井资料采集技术得到极大的提高, 先后问世的CSU、CLS3700、MAX-500等测井系统使测井系列得到极大丰富,测井资 料解释摆脱手工定性解释阶段,开始进入应用计算机的半定量解释阶段。解释评价软 件有:POR、SAND、CRA等,各油田还根据自己的的特点研制开发了自动判别油气 水层程序等多种应用软件,可以定量计算孔、渗、饱、泥质含量、可动油饱和度、束 缚水饱和度等参数,还可以通过地倾角测井,解释地层倾向、倾角、断层等构造问题, 研究沉积相变化等 第三阶段:定量解释和多井评价阶段 从90年代末发展起来的成像测井技术,为测井资料解释展现了广阔平台,现代的
第二部分 测井综合解释评价
测井资料解释技术发展史
第一阶段:60-80年代裸眼井测井系列是横向测井和 声-感测井定性解释阶段
当时用手工方法根据横向测井地层电阻率特征,结合自然电位、井径曲线划分 储层,在根据微梯度与微电位曲线之间的差异,自然电位幅度大小所反映的储 层渗透性的好坏,对储层进行评价,结合录井的岩屑、井壁取芯、钻井取芯的 显示定性判别储层油、气、水性质。 通过区域一些井的试油、试采结果,统计电性与含油性的关系,如:制作 地层真电阻率与纯水层电阻率交会图版;地层真电阻率与自然电位相对值的图 版等,对应用电阻率进行储层油、气、水性质判别起到较大作用。
第七部分 生产测井资料解释
脉冲中子氧活化测井仪器采用一个 较短的活化期(2s、10s视水流速 度而定)和一个相对较长的数据采 集期(一般为60s),以点测非集 流方式进行活化测量。当水流经中 子发生器时,被快中子活化,活化 后的水在流经3个不同源距的探测器 时,记录下活化伽玛射线(能量为 6.13MeV)的时间谱(如下图所示), 得到“峰位时间”,即水从中子源 流动到探测器所用的时间T;结合源 距S(远、中、近探测器源距分别为 180cm、90 cm、45 cm),就可计 算水流速度V;再根据被测点的横截 面积A,可计算出测点水流量Q。即, Q =(S/T)×A=V×A
涡轮流量测井方法分别为:多次通过法、两次通过法和单通过 法。其中多次通过法的测量和解释精度最高。
涡轮流量注入剖面的定量解释
• 视速度回归(每个层) • 确定表观速度 • (表观速度:管子的全部过流断面被混合物中的某一 相占据的流动速度) • 分层注入量计算
W120井涡轮吸水剖面处理界面
W120井涡轮吸水剖面解释成果图
自然电位
油管穿孔
水
嘴
封隔器
水
嘴
判 断 注 水 工 具 是 否 正 常 ( 电 磁 流 量 判 断 1 配 水 器 1 被 堵 )
微电极
电磁流量
磁定位
配水器P1被堵
泵压:20.9MPa 油压:15.0MPa
封隔器F1
P
套压:0
配水器P2
(三)脉冲中子氧活化注入剖面解释
• 脉冲中子氧活化测井可以求得管外水流量。主要用于 注水、聚合物和三元复合剂的注入剖面测量,同时还 可实现对配注井内的管柱工具(水嘴和封隔器)是否 堵死、泄漏、油套变径以及管外窜流的检测等。脉冲 中子氧活化注水剖面解释资料精度高,为合理评价调 驱效果,调整注水开发方案提供可靠依据。
测井资料综合解释
2 声波时差
2 岩性密度
声波成像
3 自然电位
3 补偿中子
核磁共振
4 自然伽马
4 声波时差
5 井径 6 井斜
5 自然电位 6 自然伽马能谱
7 井径
8 地层倾角
9 双感应—八侧向(上古)
表2 油探井测井系列
1:500测井项目
1:200测井项目
(全井 )
(目的层段)
1 双感应
1 双感应—八侧向
2 声波时差
• 我国第一次测井是由著名地球 物理学家翁文波,于1939年12 月20日在四川巴县石油沟油矿 1号井实现的。
1、地层评价
地层评价:用测井资料划分井剖面的岩性 和储集层,评价储集层的岩性、储油物 性、生产价值和生产情况。其任务:
1、储层评价(岩性、储油物性、生产价值 和生产情况 )。
2、划分地层的年代和岩性组合 3、评价一口井的完井质量 4、描述和评价一个油气藏。
测井资料综合解释基础
• 测井(地球物理测井)是应用地球 物理学的一个分支。
• 在勘探和开发石油、天然气、煤、 金属矿等地下矿藏的过程中,利用 各种仪器测量井下地层的各种物理 参数和井眼的技术状况,解决地质 和工程问题。
世界上第一次测井是由法国人
斯仑贝谢兄弟与道尔一起,在 1927年9月5日实现的。
• 岩石全部孔隙体积占岩石总 体积的百分数
• (2)有效孔隙度
• 岩石有效(不包含泥质孔隙) 孔隙体积占岩石总体积的百 分数
• (4).绝对渗透率
• 岩石孔隙中只有一种流体时测量的渗 透率,因为常用空气测量,也称空气 渗透率。测井通常只计算绝对渗透率。
• (5)有效渗透率
• 当岩石孔隙中有两种以上流体存在时, 对其中一种流体测量的渗透率称为有 效渗透率或相对渗透率。
地球物理测井13(测井资料综合解释)
所以其有利条件是:高矿化度泥浆 条件下的高阻地层。
13.4.2储集层含油性的定量解释
Ⅳ根据同层系已知水层由测井资料确定Rw
R0 a F m Rw
Rw R / a
m
对于水层:
Rt R0,
R0 ,
Rt m / a Rw
对于非水层 : t R
Rt m / a Rw
13.4.2储集层含油性的定量解释
Ⅳ根据同层系已知水层由测井资料确定Rw
13.3.1储集层岩性的定量分析 ——交会图法识别岩性
②用MID图识别岩性的步骤 ( Ⅰ用图版法确定出目的层的 (t ma ) a 、 ma ) a B. 用 N b 交会图确定 ( ma ) a
13.3.1储集层岩性的定量分析 ——交会图法识别岩性
N b 交会图的制作与 N t 交会图的制
13.3.1储集层岩性的定量分析 ——交会图法识别岩性
从M、N的表达式及上图可以看出 地层中的流体性质一定时,M、N 值仅与岩性有关,即不同的岩性 M、N值不同。
13.3.1储集层岩性的定量分析 ——交会图法识别岩性
从M、N的表达式及上图可以看出地层中的 流体性质一定时,M、N值仅与岩性有关, 即不同的岩性M、N值不同。
13.4.1储集层含油性的定性分析
定性解释是一种粗略的估算, 它要求经验丰富,提供的结果都是 仅供参考,其基本方法是通过已知 的油层来确定油层与测井资料的对 应关系,然后再通过对测井资料的 分析来评价地层的含油性。
13.4.1储集层含油性的定性分析
①油气层的最小电阻率 ②油层的电阻率与水层电阻率的差别的大小 ③径向电阻率的变化规律 ④邻井中与目的层相当的层位的含油性及电 阻率如何? 通过以上几个方面的分析,基本就可 得出不同含油气级别地层(油、油水同层、 含油层、水层)的测井响应规律。
测井资料综合解释
测井资料综合解释测井是油田勘探开发中非常重要的技术手段之一。
通过测井可以获取井筒内地层的物理性质和地质信息,帮助油田工程师和地质学家做出准确的解释和预测。
本文将全面介绍测井资料的综合解释方法和技巧。
一、测井资料的分类与应用范围测井资料按测井方法可分为电测井、声测井、核子测井等多种类型。
不同类型的测井方法能提供不同的地层信息。
电测井主要用于测量地层的电性质,如电阻率、自然电位等;声测井则用于测量地层的声学性质,如声波传播速度、衰减系数等;核子测井则用于测量地层的核辐射特性,如自然伽马辐射强度、中子散射截面等。
测井资料的应用范围十分广泛。
在勘探阶段,测井资料可以帮助确定油藏的存在与分布情况;在开发阶段,测井资料可以评价油层的产能、储量和岩石物理性质;在油井改造和采油过程中,测井资料可以指导井筒的完井和油藏的增产措施。
二、测井资料的解释方法1. 初步解释:初步解释是对测井曲线进行质量控制和基本分析的过程。
通过检查测井曲线的合理性、对比相邻测井曲线的关系,可以初步了解地层的特征和可能存在的问题。
初步解释的目的是将测井曲线的主要特征进行定性和定量描述,为后续的综合解释提供基础。
2. 地层分类解释:地层分类解释是根据测井数据中的地层识别信息,将井段划分为不同的地层单元。
通过对测井曲线的综合分析,结合岩心分析结果和模拟数据,确定地层的划分标准和解释模型。
地层分类解释的目的是将复杂的测井数据转化为可操作的地层单元,为后续的油藏评价和井筒设计提供基础。
3. 物性解释:物性解释是根据测井曲线的响应特征,定量计算地层的物理性质。
通过建立地层物性与测井响应之间的关系模型,可以推测地层的孔隙度、饱和度、渗透率等物理性质。
物性解释的目的是为油田工程师提供关键的地层参数,为油藏开发和生产决策提供依据。
4. 地质解释:地质解释是将测井资料与地质模型进行对比和综合,揭示地层的地质特征和构造特征。
通过将测井曲线与地质模型进行匹配,可以推断地质界面的位置、断层的存在以及油藏分布的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低阻油层GR一般在80API左右,SP具有明显负异常, 声波时差在270-350μs/m之间,电阻率一般低于6Ωm,有 的层甚至在3Ωm左右,这类油层在解释时容易被漏失。
QK-122
阜三段台Ⅲ1-台Ⅲ5油组呈正旋回沉积,如QK112井2739-2796米, 低阻油层主要存在于正旋回沉积相带的中、上部,岩性细以及频繁的 砂泥岩薄互层是该区形成低阻油层的主要因素。
Ef1地层在草舍油田、腰滩油田有揭示。 草舍油田的Ef1地层砂岩发育,由于埋藏较深, 岩石压实性好,物性相对比三垛和戴南组以及阜 三段变差,声波时差一般在230-250μs/m,测 井特征图如下所示。
腰滩油田的Ef1地层砂岩发育,钻井揭示的层位 较短,阜二段底部砂泥岩薄互层结束后进入阜一 段厚砂体,测井特征图如下所示。
QK-122
RT (Ω m) 2.94 3.01 4.3 4.9 11.95 4.88 5.01 13.2 4.63 3.73 4.74 2.07 2.46 3.5 2.23 4.29 3.28 2.36
SH (%)
6.14 4.37 12.64 4.51 2.6 3.74 13.27 4.66 8.85 14.57 6.7 6.79 7.19 4.34 13.58 9.49 9.73 6.93
砂
层
泥岩
盐城组地层的测井特征与下伏的三垛组地 层有显著差异,分界线清晰。 1、从自然电位和电阻率台阶看,水系发 生了巨变。 2、从测井曲线形状变化可看出,盐城组 大套砂层转入三垛组的砂泥岩频繁交互,电阻 率和声波时差由高值到低值,自然电位由正异 常到负异常。 测井特征图如下所示。
三垛组(Es)
三垛组地层也分为两段,即垛二段(Es2)和垛 一段(Es1),岩性为砂泥岩互层。 测井曲线在Es2/Es1之间无明显特征,界线难以 划分,但在Es1底块砂岩之上有一区域标志层: 暗黑色泥岩,测井特征表现为高电导率(低 阻)、高伽马和高时差。底块砂岩结束进入戴 南组。测井特征图如下所示。
戴南组(Ed)
的响缚图 基束水( 本缚饱) 因水和反 素饱度映 和增随 度加着 和,粒 形表度 成明中 低粒值 电度的 阻中减 率值小 油是束 层影
Swi r(%)
100
a
80 60 40 20 0 0 0.05 0.1 0.15 MD(mm) 0.2
图2-8(a) 台兴油田粒度中值与束缚水关系图
表2-1 砂岩粒度中值、束缚水饱和度和电阻率分析数据表
戴南组也分为两个段,即戴二段( Ed2 ) 和戴一段( Ed 1)。 Ed与Es属同一沉积序列,岩性与电性特征 基本相似, Ed2/ Ed 1在测井曲线上也难以 划分,但在戴一段有数个高导泥岩,且底 块砂岩结束进入阜四段泥岩。测井特征图 如下所示。
阜宁组(Ef)
阜宁组分为四个段,即阜四段(Ef4)、阜三段 ( Ef3 )、阜二段( Ef2 )、阜一段( Ef1 )。 Ef4地层岩性以泥岩为主; Ef3- Ef1地层岩性为砂泥岩互层。
泰州组( Et) 草舍油田的Et岩性、物性及电性特征与 Ef1相近,但底块砂岩的厚度较大,声波 曲线反映的物性条件比Ef1 要好,测井特 征图如下所示。
(二)油层测井曲线特征 • 垛一段油层大多是底水油藏,即上油下水分布。 油层电阻率值一般都是水层电阻率3倍以上, 油水层电阻率差异很明显,用标准水层对比法 较易于识别。 这类层在试油时,由于底水推进,地层能量 足,一般都易高产,缺点是在采油过程中见水 也快,易被水淹。
Ef3岩性组合为上砂组、中部泥岩段、 下砂组,在测井曲线上显示出很明显的 特点,不论是在溱潼凹陷还是在金湖凹 陷、海安凹陷都具备这一特点,很容易 区分和识别。 测井特征图如下所示。
Ef2地层在草舍油田不发育,或缺失。 在金湖凹陷较发育,是主要含油储集层, 其特征是顶部有一较纯的泥岩段(俗称 泥脖子),上部有一段泥灰岩(俗称七 尖峰),中、下部为砂泥岩互层。测井 特征见下图。
10Ωm。
阜宁组三段:我们以台兴油田和西边 城油田的测井资料为实例来阐述该组段 油气层测井解释。 台兴油田阜三段储层既有常规典型油 层--“低伽马、高电阻、高时差”,如 QK103井的第17层,同时也存在低阻油 层,如QK122井的第11-15层。
QK-103
常规油层GR一般在60API左右,SP负异常明显, 声波时差一般大于270μs/m,电阻率大于6Ωm,这类 油层特征明显,一般--------2644.0 2656.3 2663.5 2672.7 2676.6 2713.8 2741.0 2758.1 2766.3 2331.4 2342.0 2419.3 2427.5 2437.9 2440.4 2446.9 2471.2 2487.3
QK-103
测井资料解释及应用
2012年11月
一、江苏地区测井特征
(一)地层与测井曲线特征
盐城组(Ny) 盐城组地层分为两个段:即盐二段 ( Ny2 )和盐一段( Ny1 ),由于埋深浅, 该组段地层成岩条件差,岩性疏松,砂 层(岩)大套堆积沉积成体。 测井特征 :电阻率和声波时差高 ,井径 扩径严重,自然电位呈正异常。测井特征 见下图。
• 戴一段油藏类型与垛一段类似,测井对 油水层识别时,只要掌握和运用最基本 的解释方法,也不难解释,疑难层相对 较少。
草16
QK-1
以上是三垛-戴南储集层(上构造层) 典型油层测井特征图,这类储层特点是: 单层厚度大、物性好,孔隙度一般在10- 30%,渗透率一般都成百上千mD,油水 纵向分异明显(油层-油水同层-水层)。 测井AC一般在270-310μs/m,Rt一般都高于
井名 层号 4 6 7 8 9 10 16 17 18 2 3 11 12 14 15 16 20 23 2641.3 2655.1 2658.9 2669.9 2673.3 2712.3 2738.5 2751.7 2762.6 2330.0 2337.8 2418.3 2424.8 2436.0 2438.9 2445.2 2468.7 2486.0