2019年浙江省杭州市萧山中学中考数学二模试卷(含2019中考试题)

合集下载

2019年浙江省杭州市萧山区宁围街道初级中学中考数学二模试卷(解析版)

2019年浙江省杭州市萧山区宁围街道初级中学中考数学二模试卷(解析版)

2019年浙江省杭州市萧山区宁围街道初级中学中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤02.下列各式从左到右的变形正确的是()A.﹣2x+4y=﹣2(x﹣4y)B.a2﹣6=(a+2)(a﹣3)C.(a+b)2=a2+b2D.x2﹣y2=(x﹣y)(x+y)3.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN 上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD4.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.B .C .D .5.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,56.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2B.﹣1C.D.47.下面平面图形中能围成三棱柱的是()A.B.C.D.8.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.9.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,下列结论:①<0;②a﹣b+c=﹣9a;③若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9).其中正确的是()A.①②③B.①③④C.①②④D.①②③④10.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.。

2019年浙江省杭州市中考数学模拟试题(解析版)

2019年浙江省杭州市中考数学模拟试题(解析版)

2019年浙江省杭州市中考数学二模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算:(﹣3)4=()A.﹣12B.12C.﹣81D.812.因式分解:a2﹣4=()A.(a﹣2)(a+2)B.(2﹣a)(2÷a)C.(a﹣2)2D.(a﹣2)(﹣a+2)3.如图,在△ABC中,∠ACB=45°,AD⊥BC于点D,点E为AD上一点,连接CE,CE=AB,若∠ACE=20°,则∠B的度数为()A.60°B.65°C.70°D.75°4.若实数k满足3<k<4,则k可能的值是()A.2B.2C.D.|1﹣π|5.下列等式成立的是()A.B.(﹣x﹣1)(1﹣x)=1﹣x2C.D.(﹣x﹣1)2=x2+2x+16.在△ABC中,D是BC边上的点(不与B,C重合),连接AD,下列表述错误的是()A.若AD是BC边的中线,则BC=2CDB.若AD是BC边的高线,则AD<ACC.岩AD是∠BAC的平分线,则△ABD与△ACD的面积相等D.若AD是∠BAC的平分线又是BC边的中线,则AD为BC边的高线7.下列按条件列出的不等式中,不正确的是()A.x超过0,则x>0B.x是不大于0的数,则x≤0C.x是不小于﹣1的数,则x≥﹣1D.x+y是负数,则x+y≤08.如图⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°9.如图,已知在△ABC中,点D为BC边上一点(不与点B,点C重合),连结AD,点E、点F分别为AB、AC上的点,且EF∥BC,交AD于点G,连结BG,并延长BG交AC于点H.已知=2,①若AD为BC边上的中线,的值为;②若BH⊥AC,当BC>2CD时,<2sin∠DAC.则()A.①正确;②不正确B.①正确;②正确C.①不正确;②正确D.①不正确;②正确10.二次函数y=(x﹣4)2+3的最小值是()A.2B.3C.4D.5二、填空題:本大题有6个小題,毎小题4分,共24分.11.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为.12.如图,过圆外一点P作⊙O的切线PC,切点为B,连结OP交圆于点A.若AP=0A=1,则该切线长为.13.两组数据:3,a,8,5与a,6,b的平均数都是6,若将这两组数据合并为一組,则这组新数据的中位数为.14.化简根式:=.15.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是.16.已知x﹣y=3,且x>2,y<1,则x+y的取值范围是.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它、等5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题(1)本次调查共抽取了学生多少人?(2)求本次调查中喜欢踢足球人数,并补全条形统计图;(3)若全校共有中学生1200人,请你估计我校喜欢跳绳学生有多少人.18.(8分)在平面直角坐标系中,过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则称这个点为强点.例如,图中过点P分別作x轴,y轴的垂线与坐标轴围成矩形OAPB 的周长与面积相等,则点P是强点.(1)点M(l,2),N(4,4),Q(6,﹣3)中,是强点的有;(2)若强点P(a,3)在直线y=﹣x+b(b为常数)上,求a和b的值.19.(8分)如图,D、E分别是△ABC的边AB、AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.20.(10分)如图,在Rt△ABC中∠C=90°,BC=7cm.动点P在线段AC上从点C出发,沿CA 方向运动;动点Q在线段BC上同时从点B出发,沿BC方向运动.如果点P,Q的运动速度均为lcm/s,那么运动几秒时,它们相距5cm.21.(10分)如图,在△ABC中,AD是∠BAC的平分线,M是BC的中点,过M作MP∥AD交AC于P,求证:AB+AP=PC.22.(12分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.23.(12分)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).2019年浙江省杭州市中考数学二模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据有理数的乘方意义,(﹣3)4=(﹣3)×(﹣3)×(﹣3)×(﹣3)进行计算.【解答】解:(﹣3)4=(﹣3)×(﹣3)×(﹣3)×(﹣3)=81.故选:D.【点评】本题考查了有理数的乘方运算.关键是理解有理数乘方运算的意义.2.【分析】直接利用平方差公式分解因式即可.【解答】解:a2﹣4=(a+2)(a﹣2).故选:A.【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.3.【分析】根据已知条件得到△ADC是等腰直角三角形,求得AD=CD,∠CAE=∠ACD=45°,根据全等三角形的性质得到∠B=∠DEC,根据三角形的外角的性质即可得到结论.【解答】解:∵AD⊥BC,∠ACB=45°,∴△ADC是等腰直角三角形,∴AD=CD,∠CAE=∠ACD=45°,在Rt△ABD与Rt△CED中,∴Rt△ABD≌Rt△CED(HL),∴∠B=∠DEC,∵∠DEC=∠CAE+∠ACE=45°+20°=65°,∴∠B=65°,故选:B.【点评】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,三角形的外角的性质,熟练掌握等腰直角三角形的性质是解题的关键.4.【分析】利用平方法比较数的大小,因为9<k2<16,将2、2、分别平方即可求解;【解答】解:∵3<k<4,∴9<k2<16∵(2)2=8,(2)2=12,()2=,∴2满足给定的范围,故选:B.【点评】本题考查无理数的估算;熟练掌握利用平方法比较无理数是解题的关键.5.【分析】利用分式的性质以及整式混合运算的计算方法逐一计算结果,进一步判断得出答案即可.【解答】解:A、不能约分,此选项错误;B、(﹣x﹣1)(1﹣x)=﹣1+x2,此选项错误;C、=﹣,此选项错误;D、(﹣x﹣1)2=x2+2x+1,此选项正确.故选:D.【点评】此题考查分式的混合运算,整式的混合运算,掌握分式的性质和整式混合运算的方法是解决问题的关键.6.【分析】根据三角形中的角平分线,高线,中线的定义,三角形的面积公式即可得到结论.【解答】解:A、∵AD是BC边的中线,∴BD=CD,∴BC=2CD,故A正确;B、∵AD是BC边的高线,∴∠ADC=90°,在Rt△ADC中,AD<AC,故B正确;C、∵AD是△BAC的中线,则△ABD与△ACD的面积相等,故C错误;D、∵AD是∠BAC的平分线又是BC边的中线,∴△ABC是等腰三角形,∴AD为BC边的高线,故D正确,故选:C.【点评】本题考查了三角形中的角平分线,高线,中线的定义,三角形的面积,熟练掌握各定义是解题的关键.7.【分析】根据不等式的定义好性质解答.【解答】解:A、依题意得x>0,故本选项不符合题意.B、依题意得x≤0,故本选项不符合题意.C、依题意得x≥﹣1,故本选项不符合题意.D、依题意得x+y<0,故本选项符合题意.故选:D.【点评】考查了由实际问题抽象出一元一次不等式.用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.8.【分析】连接OB,由垂径定理及圆心角定理可得∠AOB=∠AOC=50°,再利用圆周角定理即可得出答案.【解答】解:如图连接OB,∵OA⊥BC,∠AOC=50°,∴∠AOB=∠AOC=50°,则∠ADB=∠AOB=25°,故选:B.【点评】本题主要考查圆周角定理,解题的关键是掌握垂径定理与圆周角定理.9.【分析】①过点B作BM∥AC,与AD的延长线相交于点M,可得△ADC≌△MDB,由EF∥BC 得AG:GD,进而得MG:AG,再由相似三角形得结果,便可判断①是否正确;②过点D作DN⊥AC于点N,再解直角三角形和应用相似三角形的比例线段便可判断②的正误.【解答】解:①过点B作BM∥AC,与AD的延长线相交于点M,∴∠C=∠MBD,在△ACD和△MBD中,,∴△ACD≌△MBD(ASA),∴AD=MD,∵EF∥BC,,∴,∴,∵BM∥AC,∴△MBG∽△AHG,∴,∴,故①正确;(2)过点D作DN⊥AC于点N,则DN=AD sin∠DAC,∵BH⊥AC,DN⊥AC,∴BH∥DN,∴,即,∵BC>2CD,∴,∴.故②错误;故选:A .【点评】本题是三角形的一个综合题,主要考查了解直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,关键是作辅助线,构造全等三角形与相似三角形、直角三角形进行解答.10.【分析】根据顶点式的形式,结合二次函数最值求法,确定答案.【解答】解:二次函数y =(x ﹣4)2+3的最小值是:3.故选:B .【点评】本题考查的是二次函数的性质,y =a (x ﹣h )2+k ,当a >0时,x =h 时,y 有最小值k ,当a <0时,x =h 时,y 有最大值k .二、填空題:本大题有6个小題,毎小题4分,共24分.11.【分析】直接根据概率公式计算可得.【解答】解:∵共有6名学生干部,其中女生有2人,∴任意抽一名学生干部去参加一项活动,其中是女生的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.12.【分析】根据切线的性质定理可知OB ⊥PB ,由题意可知AP =OA =1,则OB =1,于是根据勾股定理即可求出PB 的长.【解答】解:∵OA 、OB 都是半径,∴OB =OA =AP =1又∵PC 与⊙O 相切于B 点∴OB ⊥PB于是在Rt △PBO 中,OB =1,OP =2∴PB == 故答案为. 【点评】本题考查的是切线的性质定理,即圆的切线垂直于经过切点的半径.由相切到垂直是解题中常常用到的一种思路.13.【分析】首先根据平均数的定义列出关于a 、b 的二元一次方程组,再解方程组求得a 、b 的值,然后求中位数即可.【解答】解:∵两组数据:3,a ,8,5与a ,6,b 的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.【点评】本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.14.【分析】原式被开方数利用完全平方公式化简,再利用二次根式性质及绝对值的代数意义化简即可得到结果.【解答】解:∵cos51°<cos45°=,∴2cos51°﹣<0,则原式==|2cos51°﹣|=﹣2cos51°.故答案为:﹣2cos51°【点评】此题考查了二次根式的性质与化简,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.15.【分析】由已知可得DE为△ABC的中位线,从而可得到DE∥AB,根据两直线平行内错角相等可得到∠BFD=∠ABF,再根据角平分线的性质推出∠FBD=∠BFD,根据等角对等边可得到DF=DB,已知BC的长,从而不难求得DF的长.【解答】解:∵D、E分别是BC、AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF为角平分线,∴∠ABF=∠FBD,∴∠FBD=∠BFD,∴DF=DB,∵DB=DC,∴DF=BC=3.故答案为:3.【点评】此题主要考查三角形中位线定理及角平分线定义的综合运用.16.【分析】利用不等式的性质解答即可.【解答】解:∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;故答案为:1<x+y<5.【点评】本题考查了一元一次不等式组的应用,关键是先根据已知条件用一个量如y取表示另一个量如x,然后根据题中已知量x的取值范围,构建另一量y的不等式,从而确定该量y的取值范围,同法再确定另一未知量x的取值范围.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.【分析】(1)根据打篮球的人数和百分比即可解决问题;(2)求出本次调查中喜欢踢足球人数即可解决问题;(3)总人数乘以样本中喜欢跳绳学生人数所占比例可得;【解答】解:(1)总人数=5÷10%=50(人);(2)本次调查中喜欢踢足球人数=50﹣5﹣20﹣8﹣5=12(人),条形图如图所示:(3)估计我校喜欢跳绳学生有1200×=192(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)利用矩形的周长公式、面积公式结合强点的定义,即可找出点N,Q是强点;(2)分a>0及a<0两种情况考虑:①当a>0时,利用强点的定义可得出关于a的一元一次方程,解之可得出a的值,再利用一次函数图象上点的坐标特征可求出b值;②当a<0时,利用强点的定义可得出关于a的一元一次方程,解之可得出a的值,再利用一次函数图象上点的坐标特征可求出b值.综上,即可得出结论.【解答】解:(1)∵(4+4)×2=4×4,(6+3)×2=6×3,∴点N,Q是强点.故答案为:N,Q.(2)分两种情况考虑:①当a>0时,(a+3)×2=3a,∴a=6.∵点P(6,3)在直线y=﹣x+b上,∴3=﹣6+b,∴b=9;②当a<0时,(﹣a+3)×2=﹣3a,∴a=﹣6.∵点P(﹣6,3)在直线y=﹣x+b上,∴3=6+b,∴b=﹣3.综上所述:a=6,b=9或a=﹣6,b=﹣3.【点评】本题考查了一次函数图象上点的坐标特征、矩形的周长及面积以及解一元一次方程,解题的关键是:(1)利用强点的定义找出点N,Q是强点;(2)分a>0及a<0两种情况,求出a,b的值.19.【分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相等,由相似得比例,把已知边代入求出BC的长即可.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=,∵AB=7,AD=5,DE=10,∴BC===14.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.20.【分析】设运动x秒时,它们相距5cm,则CQ=(7﹣x)cm,CP=xcm,根据勾股定理及PQ =5cm,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设运动x秒时,它们相距5cm,则CQ=(7﹣x)cm,CP=xcm,根据题意得:x2+(7﹣x)2=52,解得:x1=3,x2=4.答:运动3秒或4秒时,它们相距5cm.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【分析】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,由平行线的性质和角平分线的性质可得∠E=∠APE,即AP=AE,由“ASA”可证△BMF≌△CMP,可得BF=CP,BF=BE,则可得结论.【解答】证明:如图,延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD∵AD∥PM∴∠BAD=∠E,∠CAD=∠APE=∠CPM∴∠E=∠APE∴AP=AE,∵M是BC的中点,∴BM=MC∵BF∥AC∴∠ACB=∠CBF,且BM=MC,∠BMF=∠CMP∴△BMF≌△CMP(ASA)∴PC=BF,∠F=∠CPM,∴∠F=∠E∴BE=BF∴PC=BE=BA+AE=BA+AP【点评】本题考查了全等三角形的判定和性质,平行线的性质,添加恰当的辅助线构造全等三角形是本题的关键.22.【分析】(1)直接将点代入函数解析式,待定系数即可求解函数解析式;(2)点(2,0)代入一次函数解析式,得到n=﹣2m,利用m与n的关系能求出二次函数对称轴x=1,由一次函数经过一、三象限可得m>0,确定二次函数开口向上,此时当y1>y2,只需让a到对称轴的距离比a+1到对称轴的距离大即可求a的范围.(3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h=﹣,将得到的三个关系联立即可得到,再由题中已知﹣1<h <1,利用h 的范围求出m 的范围.【解答】解:(1)将点(2,0),(3,1),代入一次函数y =mx +n 中,,解得,∴一次函数的解析式是y =x ﹣2,再将点(2,0),(3,1),代入二次函数y =mx 2+nx +1,,解得,∴二次函数的解析式是y ═x 2++1.(2)∵一次函数y =mx +n 经过点(2,0),∴n =﹣2m ,∵二次函数y =mx 2+nx +1的对称轴是x =﹣,∴对称轴为x =1,又∵一次函数y =mx +n 图象经过第一、三象限,∴m >0,∵y 1>y 2,∴1﹣a >1+a ﹣1,∴a <.(3)∵y =mx 2+nx +1的顶点坐标为A (h ,k ),∴k =mh 2+nh +1,且h =﹣, 又∵二次函数y =x 2+x +1也经过A 点,∴k =h 2+h +1,∴mh 2+nh +1=h 2+h +1,∴,又∵﹣1<h <1,∴m<﹣2或m>0.【点评】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.23.【分析】(1)由四边形ABCD是菱形,可证得AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC,又由∠A=60°,易得△ABD是等边三角形,然后由SAS即可证得△BDQ≌△ADP;(2)首先过点Q作QE⊥AB,交AB的延长线于E,然后由三角函数的性质,即可求得PE与QE 的长,又由勾股定理,即可求得PQ的长,则可求得cos∠BPQ的值.【解答】(1)证明:∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC,∵∠A=60°,∴△ABD是等边三角形,∠ABC=120°,∴AD=BD,∠CBD=∠A=60°,∵AP=BQ,∴△BDQ≌△ADP(SAS);(2)解:过点Q作QE⊥AB,交AB的延长线于E,∵BQ=AP=2,∵AD∥BC,∴∠QBE=60°,∴QE=QB•sin60°=2×=,BE=QB•cos60°=2×=1,∵AB=AD=3,∴PB=AB﹣AP=3﹣2=1,∴PE=PB+BE=2,∴在Rt△PQE中,PQ==,∴cos∠BPQ===.【点评】此题考查了菱形的性质与勾股定理、三角函数的性质.此题难度适中,解题的关键是数形结合思想的应用.。

2019届浙江省杭州市萧山区中考九年级数学模拟试卷(含详解)

2019届浙江省杭州市萧山区中考九年级数学模拟试卷(含详解)

2019届浙江省杭州市萧山区中考九年级模拟试卷数学(考试时间:120分钟,满分100分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一.选择题(共10小题,满分27分)1.相反数不大于它本身的数是( )A. 正数B. 负数C. 非正数D. 非负数【答案】D【解析】解:设这个数为a,根据题意,有-a≤a,所以a≥0.故选D.点睛:理解相反数的定义.实数a的相反数为-a;同时要理解不大于、不小于、非负数、非正数的含义.2.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选:B.点评:本题考查了由几何体判断三视图,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.视频3.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a【答案】A【解析】【分析】根据同底数幂的乘法,合并同类项的法则,因式分解的公式法进行判断即可.【详解】A选项:a2•a5=a7,故此选项错误;B选项:a2-2ab+b2=(a-b)2,故此选项正确;C选项:-(a-b)=-a+b,故此选项正确;D选项:-3a+2a=-a,故此选项正确;故选:A.【点睛】考查了同底数幂的乘法,合并同类项,因式分解,熟记这些法则是解题的关键.4.如图直线AB、CD、EF被直线a、b所截,若∠1=100°,∠2=100°,∠3=125°,∠4=55°,下列结论错误的是()A. EF∥CD∥ABB.C.D.【答案】C【解析】【分析】根据平行线的判定得出AB∥CD∥EF,根据平行线分线段成比例解答.【详解】∵∠1=100°,∠2=100°,∠3=125°,∠4=55°,∴AB∥CD∥EF,∴,故选:C.【点睛】考查了平行线分线段成比例的应用,根据平行线的判定得出AB∥CD∥EF是解此题的关键.5.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A. x(x+1)=1035B. x(x﹣1)=1035×2C. x(x﹣1)=1035D. 2x(x+1)=1035【答案】C【解析】∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:C.6.下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在3 6≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是A. 该学校教职工总人数是50人B. 年龄在40≤x<42小组的教职工人数占该学校总人数的20%C. 教职工年龄的中位数一定落在40≤x<42这一组D. 教职工年龄的众数一定在38≤x<40这一组【答案】D【解析】试题分析:各组的频数的和就是总人数,然后根据百分比、众数、中位数的定义作出判断:A、该学校教职工总人数是4+6+11+10+9+6+4=50(人),故正确;B、在40≤x<42小组的教职工人数占该学校总人数的比例是:,故正确;C、教职工年龄的中位数是25和26人的平均数,它们都落在40≤x<42这一组,故正确;D、教职工年龄的众数不一定在38≤x<40一组不能确定,如若38岁的5人,39岁的6人,40岁的9人,41岁的1人,众数就是40,在40≤x<42这一组,故错误。

浙江省杭州市2019-2020学年中考第二次模拟数学试题含解析

浙江省杭州市2019-2020学年中考第二次模拟数学试题含解析

浙江省杭州市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(3,2) B.(4,1) C.(4,3) D.(4,23)3.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是( )A.B.C.D.4.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x﹣1 C.34y x=D.1yx=5.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.66.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是( )A.254B.15 C.454D.97.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°8.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a <1;④abc>1.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③9.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或510.如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300米到达B点,则小刚上升了()A.300sinα米B.300cosα米C.300tanα米D.300 tanα米11.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()12.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--o二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F .若∠ACF=65°,则∠E= .14.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x ,则依题意所列的方程是_____________.15.点(a -1,y 1)、(a +1,y 2)在反比例函数y =kx(k >0)的图象上,若y 1<y 2,则a 的范围是________. 16.如图,直线a ∥b ,∠l=60°,∠2=40°,则∠3=_____.17.已知x=2是一元二次方程x 2﹣2mx+4=0的一个解, 则m 的值为 .18.如图,将ABC △的边AB 绕着点A 顺时针旋转()090a α︒︒<<得到AB ',边AC 绕着点A 逆时针旋转()090ββ︒︒<<得到AC ',联结B C ''.当90αβ︒+=时,我们称AB C ''△是ABC △的“双旋三角形”.如果等边ABC △的边长为a ,那么它的“双旋三角形”的面积是__________(用含a 的代数式表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米? 20.(6分)(1)计算:2(2)(3)12sin 60π︒-+-+-;(2)化简:2121()a a a a a--÷-.21.(6分)Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 边于点D ,E 是边BC 的中点,连接DE ,OD .(1)如图①,求∠ODE 的大小;(2)如图②,连接OC 交DE 于点F ,若OF=CF ,求∠A 的大小.22.(8分)如图,∠AOB=90°,反比例函数y=﹣2x(x <0)的图象过点A (﹣1,a ),反比例函数y=kx (k >0,x >0)的图象过点B ,且AB ∥x 轴. (1)求a 和k 的值;(2)过点B 作MN ∥OA ,交x 轴于点M ,交y 轴于点N ,交双曲线y=kx于另一点C ,求△OBC 的面积.23.(8分)如图所示:△ABC 是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB 的垂直平分线l ,垂足为H .(保留作图痕迹,不写作法); (2)垂直平分线l 交AC 于点D ,求证:AB=2DH .24.(10分)解方程组3{3814x y x y -=-= 25.(10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y (米)与小张出发后的时间x (分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y 与x 之间的函数表达式;求小张与小李相遇时x 的值.26.(12分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. [收集数据]从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下: 甲:30 60 60 70 60 80 30 90 100 6060 100 80 60 70 60 60 90 60 60乙:80 90 40 60 80 80 90 40 80 5080 70 70 70 70 60 80 50 80 80[整理、描述数据]按如下分数段整理、描述这两组样本数据: 学校人数成绩x3050x ≤≤ 5080x ≤< 80100x ≤<甲 2 14 4 乙4142(说明:优秀成绩为80100x <≤,良好成绩为5080,x <≤合格成绩为3050x ≤≤.)学校平均分中位数众数甲676060乙7075a其中a .[得出结论](1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是_校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取--名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ;(至少从两个不同的角度说明推断的合理性)27.(12分)正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N.问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为;题探究:(2)①当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为;②当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;问题拓展:(3)在(1)(2)的条件下,若AP=3,∠DEM=15°,则DM=.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【分析】设参加酒会的人数为x 人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案. 【详解】设参加酒会的人数为x 人,依题可得:12x (x-1)=55, 化简得:x 2-x-110=0,解得:x 1=11,x 2=-10(舍去), 故答案为C. 【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程. 2.D 【解析】 【分析】由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到 ,于是得到结论. 【详解】解:∵AD′=AD=4, AO=12AB=1,∴,∵C′D′=4,C′D′∥AB ,∴C′(4,), 故选:D . 【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键. 3.C 【解析】A 、B 、D 不是该几何体的视图,C 是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x 的增大而减小,故此选项错误B、k>0,y随x增大而增大,故此选项错误C、B、k>0,y随x增大而增大,故此选项错误D、y=1x(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确5.D【解析】【分析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S1.【详解】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S1=4+4-1×1=2.故选D.6.C【解析】【分析】由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.【详解】由折叠得到EB=EF,∠B=∠DFE,在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF CE AB BC=,则AB=•EF BCCE=549⨯=454,故选C.【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.7.C【解析】试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.8.C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.9.D【解析】【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.10.A【解析】【分析】利用锐角三角函数关系即可求出小刚上升了的高度.【详解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB•sinα=300sinα米.故选A.【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO 的关系是解题关键.11.B【解析】【分析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选B.【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.12.A【解析】【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50°.【解析】【分析】【详解】解:连接DF,连接AF交CE于G,∵EF为⊙O的切线,∴∠OFE=90°,∵AB为直径,H为CD的中点∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案为:50°.14.100(1+x)2=121【解析】【分析】根据题意给出的等量关系即可求出答案.【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.15.﹣1<a<1【解析】【分析】【详解】解:∵k>0,∴在图象的每一支上,y随x的增大而减小,①当点(a-1,y1)、(a+1,y2)在图象的同一支上,∵y1<y2,∴a-1>a+1,解得:无解;②当点(a-1,y1)、(a+1,y2)在图象的两支上,∵y1<y2,∴a-1<0,a+1>0,解得:-1<a <1.故答案为:-1<a <1.【点睛】本题考查反比例函数的性质.16.80°【解析】【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【详解】解:∵a ∥b ,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为:80°.【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键. 17.1.【解析】试题分析:直接把x=1代入已知方程就得到关于m 的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x 1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.18.214a . 【解析】【分析】首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a .过C'作C'D⊥AB'于D,根据30°角所对的直角边等于斜边的一半得出C'D12=AC'12=a,然后根据S△AB'C'12=AB'•C'D即可求解.【详解】∵等边△ABC的边长为a,∴AB=AC=a,∠BAC=60°.∵将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.∵边AC绕着点A逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如图,过C'作C'D⊥AB'于D,则∠D=90°,∠DAC'=30°,∴C'D12=AC'12=a,∴S△AB'C'12=AB'•C'D12=a•12a14=a1.故答案为:14a1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1平方米【解析】【分析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.【详解】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=1.答:实际平均每天施工1平方米.【点睛】考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.20.(1)(2)11a a +-. 【解析】【分析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)())022π12sin60︒-+-+-=4+1+|1﹣=4+1+|11(2)2a 12a 1a a a --⎛⎫÷- ⎪⎝⎭ =()()2a 1a 1a 2a 1a a+--+÷ =()()()2a 1a 1a ·a a 1+-- =a 1a 1+-. 【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.21.(1)∠ODE=90°;(2)∠A=45°. 【解析】分析:(Ⅰ)连接OE ,BD ,利用全等三角形的判定和性质解答即可;(Ⅱ)利用中位线的判定和定理解答即可.详解:(Ⅰ)连接OE ,BD .∵AB 是⊙O 的直径,∴∠ADB=90°,∴∠CDB=90°.∵E 点是BC 的中点,∴DE=12BC=BE . ∵OD=OB ,OE=OE ,∴△ODE ≌△OBE ,∴∠ODE=∠OBE .∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF ,CE=EB ,∴FE 是△COB 的中位线,∴FE ∥OB ,∴∠AOD=∠ODE ,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD ,∴∠A=∠ADO=18090452︒-︒=︒.点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.22.(1)a=2,k=8(2)OBC S V =1.【解析】分析:(1)把A (-1,a )代入反比例函数2x得到A (-1,2),过A 作AE ⊥x 轴于E ,BF ⊥x 轴于F ,根据相似三角形的性质得到B (4,2),于是得到k=4×2=8; (2)求的直线AO 的解析式为y=-2x ,设直线MN 的解析式为y=-2x+b ,得到直线MN 的解析式为y=-2x+10,解方程组得到C (1,8),于是得到结论.详解:(1)∵反比例函数y=﹣2x (x <0)的图象过点A (﹣1,a ), ∴a=﹣21-=2, ∴A (﹣1,2),过A 作AE ⊥x 轴于E ,BF ⊥⊥x 轴于F ,∴AE=2,OE=1,∵AB ∥x 轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF ,∴△AEO ∽△OFB ,∴AE OE OF BF=,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解2108y xyx=-+⎧⎪⎨=⎪⎩得,1482x xy y=-=⎧⎧⎨⎨==⎩⎩或,∴C(1,8),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=12⨯5×10﹣12×10×1﹣12×5×2=1.点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.23.(1)见解析;(2)证明见解析.【解析】【分析】(1)利用线段垂直平分线的作法,分别以A,B为端点,大于12AB为半径作弧,得出直线l即可;(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.【详解】解:(1)如图所示:直线l即为所求;(2)证明:∵点H是AB的中点,且DH⊥AB,∴DH∥BC,∴点D是AC的中点,∵12DH BC BC AB==,,∴AB=2DH.【点睛】考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.24.21 xy=⎧⎨=-⎩【解析】解:由①得③把③代入②得把代人③得∴原方程组的解为25.(1)300米/分;(2)y=﹣300x+3000;(3)7811分.【解析】【分析】(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B(10,0),设出一次函数解析式,用待定系数法求解即可. (3)求出CD的解析式,列出方程,求解即可.【详解】解:(1)由题意得:240012003004-=(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B(10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩解得:3003000,k b =-⎧⎨=⎩∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间: 24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.26.80;(1)甲;(2)110;(3)乙学校竞赛成绩较好,理由见解析 【解析】【分析】首先根据乙校的成绩结合众数的定义即可得出a 的值;(1)根据两个学校成绩的中位数进一步判断即可;(2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;(3)根据题意,从平均数以及中位数两方面加以比较分析即可.【详解】由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,∴a=80,故答案为:80;(1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,∵小明这次竞赛得了70分,在他们学校排名属中游略偏上,∴小明为甲校学生,故答案为:甲;(2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:212010=, 故答案为:110; (3)乙校竞赛成绩较好,理由如下:因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所述,乙校竞赛成绩较好.【点睛】本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.27. (1) DM=AD+AP ;(2) ①DM=AD ﹣AP ; ②DM=AP ﹣AD ;(3) 3﹣3或3﹣1.【解析】【分析】(1)根据正方形的性质和全等三角形的判定和性质得出△ADP ≌△PFN ,进而解答即可;(2)①根据正方形的性质和全等三角形的判定和性质得出△ADP ≌△PFN ,进而解答即可; ②根据正方形的性质和全等三角形的判定和性质得出△ADP ≌△PFN ,进而解答即可;(3)分两种情况利用勾股定理和三角函数解答即可.【详解】(1)DM=AD+AP ,理由如下:∵正方形ABCD ,∴DC=AB ,∠DAP =90°,∵将DP 绕点P 旋转90°得到EP ,连接DE ,过点E 作CD 的垂线,交射线DC 于M ,交射线AB 于N , ∴DP=PE ,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN ,在△ADP 与△NPE 中,0{90ADP NPEDAP PNE DP PE∠=∠∠=∠==,∴△ADP ≌△NPE (AAS ),∴AD=PN ,AP=EN ,∴AN=DM=AP+PN=AD+AP ;(2)①DM=AD ﹣AP ,理由如下:∵正方形ABCD ,∴DC=AB ,∠DAP=90°,∵将DP 绕点P 旋转90°得到EP ,连接DE ,过点E 作CD 的垂线,交射线DC 于M ,交射线AB 于N , ∴DP=PE ,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN ,在△ADP 与△NPE 中,0{90ADP NPEDAP PNE DP PE∠=∠∠=∠==,∴△ADP ≌△NPE (AAS ),∴AD=PN ,AP=EN ,∴AN=DM=PN ﹣AP=AD ﹣AP ;②DM=AP ﹣AD ,理由如下:∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,∴∠DAP=∠PEN ,又∵∠A=∠PNE=90°,DP=PE ,∴△DAP ≌△PEN ,∴A D=PN ,∴DM=AN=AP ﹣PN=AP ﹣AD ;(3)有两种情况,如图2,DM=333,31;①如图2:∵∠DEM=15°,∴∠PDA=∠PDE ﹣∠ADE=45°﹣15°=30°,在Rt △PAD 中3AD=03tan 303AP ==3,∴DM=AD ﹣AP=33;②如图3:∵∠DEM=15°,∴∠PDA=∠PDE ﹣∠ADE=45°﹣15°=30°,在Rt △PAD 中3333=1, ∴DM=AP ﹣31.故答案为;DM=AD+AP;DM=AD﹣AP;3﹣1.【点睛】此题是四边形综合题,主要考查了正方形的性质全等三角形的判定和性质,分类讨论的数学思想解决问题,判断出△ADP≌△PFN是解本题的关键.。

2019年浙江省杭州市中考数学二模试卷附解析

2019年浙江省杭州市中考数学二模试卷附解析

2019年浙江省杭州市中考数学二模试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )A .路灯的左侧B .路灯的右侧C .路灯的下方D .以上都可以2.在“石头、剪子、布”的游戏中(剪子赢布,布赢石头,石头赢剪子),当你出“剪子”时,对手胜你的概率是( )A .12B .13C .23D .143.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周,所得圆柱的侧面积是( )A.36лB.18лC.12лD.9л4.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A .%10B .%15C .%20D .%25 5.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -= 6.了解全市八年级学生身高在某一范围内的学生所占比例的大小,需知道相应样本的( )A .平均数B .方差C .众数D .频数分布 7. 解方程22(51)3(51)x x -=-的最适当的方法应是( ) A . 直接开平方法 B .配方法C .分式法D .因式分解法 8.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A .B .C .D . 9.若3520x x -≤+,则( )A .x 有最大的整数解一6B .x 有最小的整数解一5C .x 有最大的整数解 6D .x 有最大的整数解 510.三个物体的主视图都有圆,那么这三个物体可能是()A.立方体、球、圆柱B.球、圆柱、圆锥C.直四棱柱、圆柱、三棱锥D.圆锥、正二十面体、直六棱柱11.己在△ABC中,∠A=55°,∠C=42°,则∠B的数为()A. 42°B.55°C.83°D.97°二、填空题12.在梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,连结BD,过A作BD垂线交BC 于E,连结ED,如果EC=5 cm,CD=12 cm,那么梯形ABCD的面积是 cm2.13.“如果a>b,那么a-1>b-1”这个命题是________命题.14.在相同条件下,对30辆同一型号的汽车进行耗油1 L所行驶路程的试验,根据测得的数据画出频数分布直方图如图所示.本次试验中,耗油1 L所行驶路程在13.8~14.3 km范围内的汽车共有辆.30辆汽车耗油1 L所行驶路程的频数分布直方图15.如果不等式2(1)3--≤的正整数解是 1、2、3,那么a的取值范围是.x a16.乐天借到一本有72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x页,所列不等式为.17.现用火柴棒摆一个直角三角形,两直角边分别用了7根、24根长度相同的火柴棒,则斜边需要用根相同的火柴棒.18.如图,正方形A的面积是.19.若|21||5|0x y x y-+++-=,则x= , y= .20.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到如图②所示的4张扑克牌,他很快确定哪一张牌被旋转过,到底哪一张? 答: .21.三个连续奇数的和为69,则这三个数分别为 .22.如图,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是____________________________(将你认为正确的结论序号填上).三、解答题23.如图, 画出图中各几何体的主视图.24.如图,已知OA 、OB 为⊙O 的半径,C 、D 分别是OA 、OB 的中点.求证:(1)∠A=∠B ;(2)AE=BE .25.已知抛物线22(1)4y m x mx m =-++-图象过原点,开口向上.(1)求m 的值,并写出解析式;(2)求顶点坐标及对称轴;(3)当x为何值时,y 是最值?是多少?26.某厂加工学生书包,每人每天可裁剪书包 60个或缝制书包20个,现有技工 12人,问应安排几人裁剪、几人缝制,才能使裁剪出来的书包正好缝制完.27.在如图的方格纸中,画出图中的△ABC向右平移5格后的△A′B′C′,然后再画出将△A′B′C′向上平移2格后的△A″B″C″.28.一个布袋中放有一个红球和两个白球,现在从布袋里任意摸出一个球,请判断下列事件是必然事件、不可能事件还是随机事件:事件判断摸出的这个球是红球摸出的这个球不是红球揍出的这个球是黑球摸出的这个球不是黑球摸出的这个球是红球或白球29.小明家的客厅长5m ,宽3 m,高2.5m.现要在离地面0.5m 的A处装一个电源插座,开关装在离天花板l m 的B处.用电线把A、B两处连起来,且A、B点都在墙的中间(如图).为安全起见,电线应固定在客厅的天花板、地板或墙上,而不能从客厅中穿过.电工最少需要多长的电线? 30.解下列方程:(1)0.511 0.20.3x x+-=(2)0.40.950.030.020.520.03x x x+-+-=【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.C5.A6.D7.D8.B9.B10.B11.C二、填空题12.18613.真14.1215.13a≤<16.8x+2×5≥7217.2518.62519.3,220.第一张方块421.21,23,2522.①②③三、解答题23.24.(1)∵OA、OB为⊙O的半径,∴OA=OB,∵C、D分别为OA、OB的中点,∴OC=12OA ,OD=12OB,∴OC=OD.又∵∠AOB=∠AOB,∴△OAD≌△OBC(SAS),∴∠A=∠B,∠ODA= ∠OCB.(2)∴∠ACE=∠BDE,∵∠A=∠A ,AC=DB,∴△ACE≌△BDE(ASA),∴AE=BE.25.(1)∵抛物线经过原点,∴240m -=,∵开口向上,∴2m =± ∴抛物线的解析式为22y x x =+(2)顶点坐标( 一 1,一1),对称轴为直线x=-1.(3)当 x=-1 时,y 有量小值为-1. 26.设裁剪、缝制的人数分别为x 、y 时,才能使裁剪出来的书包正好缝制完,则126020x y x y +=⎧⎨=⎩, 解这个方程组,得39x y =⎧⎨=⎩ ,经检验,符合题意. 答:裁剪、缝制的人数分别为 3、9时,才能使裁剪出来的书包正好缝制完. 27.略.28.随机事件,随机事件,不可能事件,必然事件,必然事件29.7cm30. (1)1310x = (2)9x =。

浙江省杭州市2019-2020学年数学中考二模试卷(含答案)

浙江省杭州市2019-2020学年数学中考二模试卷(含答案)

浙江省杭州市2019-2020学年数学中考二模试卷(含答案)一、单选题1.-2的相反数是()A.2B.-2C.D.【答案】A【考点】相反数及有理数的相反数2.如图是由多个相同小立方体搭成的几何体的三视图,则这个几何体是()A. B. C. D.【答案】B【考点】简单组合体的三视图3.下列变形正确的是()A.a6=a2•a3B.1﹣2a+4b=1﹣2(a+2b)C.x2﹣2x﹣3=(x﹣1)2﹣1D.1﹣a+ a2=(a﹣1)2【答案】 D【考点】同底数幂的乘法,因式分解﹣运用公式法,添括号法则及应用,配方法的应用4.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A. 3B. 6C.D. 10【答案】 D【考点】相似三角形的判定与性质5.用一根细铁丝可以折成边长为10cm的等边三角形,也可以折成面积为50cm2的长方形.设所折成的长方形的一边长为xcm,可列方程为()A.x(10﹣x)=50B.x(30﹣x)=50C.x(15﹣x)=50D.x(30﹣2x)=50【答案】C【考点】一元二次方程的实际应用-几何问题6.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A. 8,6B. 8,5C. 52,53D. 52,52【答案】D7.在平面直角坐标系中,有一条线段AB,已知点A(﹣3,0)和B(0,4),平移线段AB得到线段A1B1.若点A的对应点A1的坐标为(0,﹣1),则线段AB平移经过的区域(四边形ABB1A1)的面积为()A.12B.15C.24D.30【答案】B【考点】平行四边形的性质,平移的性质8.如图,四边形ABCD中,∠ABC=Rt∠.已知∠A=α,外角∠DCE=β,BC=a,CD=b,则下列结论错误的是()A. ∠ADC=90°﹣α+βB. 点D到BE的距离为b•sinβC. AD=D. 点D到AB的距离为a+bcosβ【答案】C【考点】点到直线的距离,三角形的外角性质,锐角三角函数的定义9.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,点E是线段AD上一点,以点E为圆心,r为半径作⊙E.若⊙E与边AB,AC相切,而与边BC相交,则半径r的取值范围是()A. r>B. <r≤4C. <r≤4D. <r≤【答案】 D【考点】直线与圆的位置关系,切线的性质,相似三角形的判定与性质10.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF= 时,点E的运动路程为或或,则下列判断正确的是()A. ①②都对B. ①②都错C. ①对②错D. ①错②对【答案】A【考点】分段函数,矩形的性质,相似三角形的判定与性质,通过函数图像获取信息并解决问题,动点问题的函数图像二、填空题11.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个,先从袋中取出m(m≥1)个红球,不放回,再从袋子中随机摸出1个球.将“摸出黑球”记为事件A.(1)若A为必然事件,则m 的值为________;(2)若A发生的概率为,则m的值为________.【答案】3;1【考点】随机事件,概率的意义12.如图,直线a,b分别与直线c,d相交,且∠1+∠3=135°,∠2﹣∠3=45°,若∠3=α,则∠4的度数为________.【答案】180°﹣α【考点】平行线的判定与性质13.如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E=________°.【答案】140【考点】圆心角、弧、弦的关系,圆内接四边形的性质14.已知点M是函数y= x与y= 的图象的交点,且OM=4,则点M的坐标为________.【答案】(2,2 )或(﹣2,﹣2 )【考点】勾股定理,一次函数的性质15.在平面直角坐标系xOy中,已知点A(0,﹣2),点B(3m,2m+1),点C(6,2),点D.(1)线段AC的中点E的坐标为________;(2)▱ABCD的对角线BD长的最小值为________.【答案】(1)(3,0)(2)【考点】垂线段最短,平行四边形的性质,相似三角形的判定与性质,一次函数图像与坐标轴交点问题三、解答题16.计算:(﹣2018)2+2017×(﹣2019).【答案】解:(﹣2018)2+2017×(﹣2019)=20182﹣(2018﹣1)×(2018+1)=20182﹣20182+1=1.【考点】含乘方的有理数混合运算17.某学校为了解本校九年级学生期末考试数学成续情况,决定进行抽样分析,已知该校九年级共有10个班,每班40名学生,请根据要求回答下列问题:(1)若要从全年级学生中抽取一个40人的样本,你认为以下抽样方法中比较合理的有________.(只要填写序号)①随机抽取一个班级的学生;②在全年级学生中随机抽取40名男学生:③在全年级10个班中各随机抽取4名学生.(2)将抽取的40名学生的数学成绩进行分组,并绘制频数表和成分布统计图(不完整)如表格、图:①C、D类圆心角度数分别为________;②估计全年级A、B类学生人数大约共有________.(3)学校为了解其他学校数学成绩情况,将同层次的G学校和J学校的抽样数据进行对比,得下表:你认为哪所学校教学效果较好?说明你的理由.【答案】(1)③(2)72°、36°;280人(3)解:G学校教学效果较好,理由:因为A、B两类频率之和G学校大于J学校,即相对高分人数G学校多于J学校,所以G学校教学效果较好.【考点】频数与频率,频数(率)分布表,扇形统计图18.如图,△ABC中,D是AC上一点,E是BD上一点,∠A=∠CBD=∠DCE.(1)求证:△ABC∽△CDE;(2)若BD=3DE,试求的值.【答案】(1)证明:∵∠DCE=∠DBC,∠CDE=∠CDB,∴△CDE∽△BDC,同理:△BDC∽△ABC,∴△ABC∽△CDE(2)解:∵△CDE∽△BDC,∴CD:BD=DE:DC,∴CD2=DE×BD,∵BD=3DE,∴CD= DE,由(1)得:【考点】相似三角形的判定与性质19.已知关于a的不等式组.(1)求此不等式组的解;(2)试比较a﹣3与的大小.【答案】(1)解:,解不等式①,得a>2,解不等式②,得a<4,所以原不等式组的解集为2<a<4(2)解:∵2<a<4,∴a﹣4<0,∴a﹣3﹣= <0,∴a﹣3<【考点】一元一次不等式的应用,解一元一次不等式组20.边长为a的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)若点F在边BC上(如图);①求证:CE=EF;②若BC=2BF,求DE的长.(2)若点F在CB延长线上,BC=2BF,请直接写出DE的长.【答案】(1)解:①∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF;②过点E作MN⊥BC,垂直为N,交AD于M,∵CE=EF,∴N是CF的中点,∵BC=2BF,∴,又∵四边形CDMN是矩形,△DME为等腰直角三角形,∴CN=DM=ME,∴ED= DM= CN= a(2)解:如图所示:过点E作MN⊥BC,垂直为N,交AD于M,∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.∴FN=CN.又∵BC=2BF,∴FC= a,∴CN= a,∴EN=BN= a,∴DE= a.【考点】全等三角形的判定与性质,等腰三角形的性质,正方形的性质,等腰直角三角形21.在平面直角坐标系中,已知二次函数y=k(x-a)(x-b),其中a≠b.(1)若此二次函数图象经过点(0,k),试求a,b满足的关系式.(2)若此二次函数和函数y=x2﹣2x的图象关于直线x=2对称,求该函数的表达式.(3)若a+b=4,且当0≤x≤3时,有1≤y≤4,求a的值.【答案】(1)解:将(0,k)代入y=k(x﹣ax﹣b),得kab=k,∵k≠0,∴ab=1(2)解:由(1)知,k=1,易得函数y=x2﹣2x与x轴交点的坐标为(0,0)、(2,0),因为此二次函数和函数y=x2﹣2x的图象关于直线x=2对称,所以此二次函数与x轴的交点坐标为(2,0),(4,0),∴该函数解析式为:y=(x﹣2)(x﹣4)=x2﹣6x+8(3)解:∵a+b=4,∴函数表达式变形为y=k(x﹣a)(x+a﹣4).①当k>0时,则根据题意可得:当x=2,y=1;当x=0时,y=4,∴,消去k,整理,得3a2﹣12a+16=0,∵△=﹣48<0,∴此方程无解;②当k<0时,则根据题意可得:当x=2,y=4,当x=0时,y=1,∴,消去k,整理,得,3a2﹣12a﹣4=0,解得a= .【考点】二次函数图象的几何变换,二次函数图像与坐标轴的交点问题22.如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABE沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF.(1)若∠A=70°,请直接写出∠ABF的度数.(2)若点F是CD的中点,①求sinA的值;②求证:S△ABE= S ABCD.(3)设=k, =m,试用含k的代数式表示m.【答案】(1)解:如图1中,∵四边形ABCD是菱形,∴AB∥CD,∠C=∠A=70°,∵BA=BF=BC,∴∠BFC=∠C=70°,∴∠ABF=∠BFC=70°(2)解:①如图2中,延长EF交BC的延长线于M,作BG⊥CD于G.∵BC=BA=BF,∴CG=GF= CD= BC,∴cosA=cos∠BCG= ,∴sinA=sin∠BCG= ;②∵四边形ABCD是菱形,F是CD中点,∴DF=CF,∠D=∠FCM,∠EFD=∠MFC,∴△DEF≌△CMF,∴EF=FM,∴S=S△EMB,S△BEF= S△MBE,四边形BCDE∴S△ABE= S ABCD(3)解:如图3中,设菱形的边长为a.∵∠A=∠BFE=∠BCD,∴∠MFC=∠DFE=∠FBC,∵∠M=∠M,∴△MFC∽△MBF,∴FM2=MC•MB,∵AD∥MB,∴△DEF∽△CMF,∴=m,∵=k,∴DE=ka,AE=EF=(1﹣k)a,CM= ,FM= ,∴[ ]2= •(a+ ),∴m=【考点】三角形的面积,等边三角形的判定与性质,菱形的性质,相似三角形的判定与性质,锐角三角函数的定义,同角三角函数的关系11 / 11。

2019年浙江省杭州市萧山区中考数学二模试卷(解析版)

2019年浙江省杭州市萧山区中考数学二模试卷(解析版)

2019年浙江省杭州市萧山区中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0 B.a<0 C.a≥0 D.a≤02.下列各式从左到右的变形正确的是()A.﹣2x+4y=﹣2(x﹣4y)B.a2﹣6=(a+2)(a﹣3)C.(a+b)2=a2+b2D.x2﹣y2=(x﹣y)(x+y)3.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD4.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A .B .C .D .5.某车间20名工人每天加工零件数如表所示:45678每天加工零件数人数36542这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,56.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.47.下面平面图形中能围成三棱柱的是()A.B.C.D.8.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.9.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,下列结论:①<0;②a ﹣b+c=﹣9a;③若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9).其中正确的是()A.①②③B.①③④C.①②④D.①②③④10.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②二.填空题(共6小题,满分24分,每小题4分)11.有10个正实数,这些数中每两个乘积恰好为1,这时甲同学断言,任何9个数的和不小于;乙同学断言:任何9个数的和小于,则两位同学正确.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.14.若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.15.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为.16.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=.三.解答题(共7小题,满分66分)17.(6分)定义的运算符号“@”的运算法则为X@Y=,试求(2@6)@8的值.18.(8分)为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?19.(8分)我们学习了因式分解之后可以解某些高次方程,例如,一元二次方程x2+x﹣2=0可以通过因式分解化为:(x﹣1)(x+2)=0,则方程的两个解为x=1和x=﹣2.反之,如果x=1是某方程ax2+bx+c=0的一个解,则多项式ax2+bx+c必有一个因式是(x﹣1),在理解上文的基础上,试找出多项式x3+x2﹣3x+1的一个因式,并将这个多项式因式分解.20.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.21.(10分)有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质;(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为;22.(12分)在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC=,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.23.(12分)抛物线y1=ax2+c与x轴交于A、B两点,与y轴交于点C,点P在抛物线上,过P(1,﹣3),B(4,0)两点作直线y2=kx+b.(1)求a、c的值;(2)根据图象直接写出y1>y2时,x的取值范围;(3)在抛物线上是否存在点M,使得S△ABP=5S△ABM,若存在,求出点M的坐标,若不存在,请说明理由.2019年浙江省杭州市萧山区中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.【分析】分别利用因式分解,完全平方公式和平方差公式进行分析即可.【解答】解:A、﹣2x+4y=﹣2(x+2y),故原题计算错误;B、a2﹣6≠(a+2)(a﹣3),故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、x2﹣y2=(x﹣y)(x+y),故原题计算正确;故选:D.【点评】此题主要考查了分解因式和完全平方公式和平方差公式,关键是掌握完全平方公式:(a ±b)2=a2±2ab+b2.3.【分析】利用图形的对称性特点解题.【解答】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选:B.【点评】解决本题的关键是利用图形的对称性把所求的线段进行转移.4.【分析】有工作总量180或120,求的是工作效率,那么一定是根据工作时间来列等量关系的.关键描述语是:“小明打120个字所用的时间和小张打180个字所用的时间相等”.等量关系为:小明打120个字所用的时间=小张打180个字所用的时间.【解答】解:小明打字速度为x个/分钟,那么小明打120个字所需要的时间为:;易得小张打字速度为(x+6)个/分钟,小张打180个字所需要的时间为:;∴可列方程为:,故选:C.【点评】解决本题的关键是根据不同的工作量用的时间相等得到相应的等量关系.5.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,在Rt△OCE中,OC=2,∠COE=30°,∴CE=OC=1,(直角三角形中,30度角所对的直角边是斜边的一半)∴CD=2CE=2,故选:A.【点评】本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧;在圆中的计算问题中,因为常有直角三角形存在,常利用勾股定理求线段的长.7.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、能围成三棱柱,故选项正确;B、折叠后有两个面重合,不能围成三棱柱,故选项错误;C、不能围成三棱柱,故选项错误;D、折叠后有两个侧面重合,不能围成三棱柱,故选项错误.故选:A.【点评】考查了展开图折叠成几何体,解题时勿忘记三棱柱的特征及正方体展开图的各种情形.8.【分析】过点B作BD⊥AC,交AC延长线于点D,利用正切函数的定义求解可得.【解答】解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选:C.【点评】本题主要考查三角函数的定义,解题的关键是掌握正切函数的定义:锐角A的对边a与邻边b的比叫做∠A的正切.9.【分析】根据开口方向得出a<0,抛物线与y轴的交点得出c>0,对称轴x=﹣=﹣1,得出b=2a,当x=2时,y=0,得出4a+2b+c=0,根据抛物线的增减性得出y>y2;根据上加下减左1加右减的原则得出平移后的解析式.【解答】解:∵开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∴<0,故①正确;∵对称轴x=﹣=﹣1,∴b=2a,当x=2时,y=0,∴4a+2b+c=0,∴4a+4a+c=0,∴c=﹣8a,∴a﹣b+c=﹣9a,故②正确;∵对称轴为x=﹣1,当x=﹣1时,抛物线有最大值,﹣3距离﹣1有2个单位长度,距离﹣1有个单位长度,∴y1>y2,故③正确;∵抛物线过(﹣4,0)(2,0),对称轴为x=﹣1,∴设抛物线的解析式为y=a(x+1)2+k,将抛物线沿x轴向右平移一个单位后得出平移后的解析式y=ax2+k,∵c=﹣8a,∴k=﹣9a,∴将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9),故④正确;正确结论有①②③④;故选:D.【点评】本题考查了二次函数的图象与几何变换以及二次函数的图象与系数的关系,掌握二次函数的性质是解题的关键.10.【分析】依据全等三角形的性质即可得到∠ADG=∠AFG;依据DG=GF=DE=EF,即可得到四边形DEFG为菱形;依据相似三角形的对应边成比例,即可得到DG2=AE•EG;依据Rt △CEF中,CE2+CF2=EF2,即可得到方程x2+22=(4﹣x)2,求得x的值即可得出结论.【解答】解:①由折叠可得,AD=AF,DG=FG,在△ADG和△AFG中,,∴△ADG≌△AFG(SSS),∴∠ADG=∠AFG,故①正确;②∵GF∥DC,∴∠EGF=∠DEG,由翻折的性质可知:GD=GF,DE=EF,∠DGE=∠EGF,∴∠DGE=∠DEG,∴GD=DE,∴DG=GF=DE=EF,∴四边形DEFG为菱形,故②正确;③如图所示,连接DF交AE于O,∵四边形DEFG为菱形,∴GE⊥DF,OG=OE=GE,∵∠DOE=∠ADE=90°,∠OED=∠DEA,∴△DOE∽△ADE,∴=,即DE2=EO•AE,∵EO=GE,DE=DG,∴DG2=AE•EG,故③正确;④由折叠可得,AF=AD=5,∴Rt△ABF中,BF==3,∴CF=5﹣3=2,设CE=x,则DE=EF=4﹣x,∵Rt△CEF中,CE2+CF2=EF2,∴x2+22=(4﹣x)2,解得x=,∴CE=,故④错误;故选:B.【点评】本题属于折叠问题,主要考查了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到对应边成比例,依据勾股定理列出关于x的方程是解题答问题的关键.二.填空题(共6小题,满分24分,每小题4分)11.【分析】由每两个乘积恰好为1,判断任意两数互为倒数,任意9数的和列出代数式,根据a2+b2≥2ab从而确定和的范围.【解答】解:∵这些数中每两个乘积恰好为1,且都是正数,∴任意两个数互为倒数,故可设这两数分别为x,(x>0,>0),且x•=1;根据题意,任意9个数的和为:①=5x+≥2=4;②=4x+≥2=4;∵4>,∴任意9个数的和不小于.故答案为:甲.【点评】本题主要考查倒数的性质及a2+b2≥2ab的应用,根据题意列出代数式并确定范围是关键.12.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.13.【分析】根据若从中任摸一个球,恰好是黑球的概率为,列出关于n的方程,解方程即可.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.注意方程思想的应用.14.【分析】根据该方程是关于x得一元二次方程,得到关于k得一个不等式,根据该方程有两个不相等的实数根,结合根的判别式公式,得到一个关于k得不等式,分别解两个不等式,解之取公共部分即可得到答案.【解答】解:∵原方程是关于x得一元二次方程,∴k﹣1≠0解得:k≠1,又∵原方程有两个不相等的实数根,∴△=4+4(k﹣1)>0,解得:k>0,即k得取值范围是:k>0且k≠1,故答案为:k>0且k≠1.【点评】本题考查了根的判别式和一元二次方程的定义,正确掌握根的判别式公式和一元二次方程的定义是解题的关键.15.【分析】作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.【解答】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S=BC•DH=10,△BDC=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四边形DHMG为矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或﹣5(舍),故答案为:5..【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.16.【分析】根据线段垂直平分线的概念得到∠AED=90°,进一步求出∠ABD=∠A=50°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∵∠ADE=40°,∴∠ABD=∠A=50°,又∵AB=AC,∴∠ABC=65°,∴∠DBC=15°.故答案为:15°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.三.解答题(共7小题,满分66分)17.【分析】根据新定义先运算2@6,得到2@6=4,然后再运算4@8.【解答】解:(2@6)@8=@8=4@8==6.【点评】本题考查了实数的运算:先进行实数的乘方或开方运算,再进行乘除运算,然后进行实数的加减运算.也考查了阅读理解能力.18.【分析】(1)根据C等级的人数和所占的百分比求出这次随机抽取的学生数;(2)用抽取的总人数乘以B等级所占的百分比,从而补全统计图;(3)用该校九年级的总人数乘以优秀的人数所占的百分比,即可得出答案.【解答】解:(1)这次随机抽取的学生共有:20÷50%=40(人);(2)B等级的人数是:40×27.5%=11人,如图:(3)根据题意得:×1200=480(人),答:这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.19.【分析】由已知得出多项式x3+x2﹣3x+1的一个因式是x﹣1,设x3+x2﹣3x+1=(x﹣1)(x2+ax ﹣1),展开后根据对应系数相等得出1=a﹣1,﹣3=﹣a﹣1,求出a即可.【解答】解:∵x=1是方程x3+x2﹣3x+1=0的一个解,∴多项式x3+x2﹣3x+1的一个因式是x﹣1,设x3+x2﹣3x+1=(x﹣1)(x2+ax﹣1),∴x3+x2﹣3x+1=x3+ax2﹣x2﹣ax﹣x+1=x3+(a﹣1)x2+(﹣a﹣1)x+1,∴1=a﹣1,﹣3=﹣a﹣1,解得:a=2,∴x3+x2﹣3x+1=(x﹣1)(x2+2x﹣1),即多项式x3+x2﹣3x+1的另一个因式是x2+2x﹣1,这个多项式因式分解为x3+x2﹣3x+1=(x﹣1)(x2+2x﹣1).【点评】本题考查了解一元二次方程﹣因式分解法和因式分解的应用,主要考查学生的理解能力和阅读能力,题目比较好,但有一定的难度.20.【分析】(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,从而证出∠AEB=60°;(2)证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM即可.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点评】此题考查了全等三角形的判定与性质和等腰三角形的判定与性质以及等腰三角形的性质;证明三角形全等是解决问题的关键.21.【分析】(1)依据函数表达式中分母不等于0,即可得到自变量x的取值范围;(2)把x=﹣1代入函数解析式,即可得到m的值;(3)依据各点的坐标描点连线,即可得到函数图象;(4)依据函数图象,即可得到函数的增减性;(5)依据函数图象,即可得到当x1<3时,y1<1;当0<x2<x3时,1<y3<y2.【解答】解:(1)∵x﹣3≠0,∴x≠3;(2)当x=﹣1时,y===;(3)如图所示:(4)由图象可得,当x>3时,y随x的增大而减小(答案不唯一);(5)由图象可得,当x1<3时,y1<1;当0<x2<x3时,1<y3<y2.∴y1、y2、y3之间的大小关系为y1<y3<y2.故答案为:x≠3;;当x>3时,y随x的增大而减小;y1<y3<y2.【点评】本题主要考查了反比例函数的图象与性质,用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.22.【分析】(1)先求出PC=6、PB=10、RP=2,再证△PBC∽△PRQ得,据此可得;(2)证△RMQ∽△PCB得,根据PC=6、BC=8知,据此可得答案;(3)由PD∥AB知,据此可得、PN=,由、RM=y知,根据PD∥MQ得,即,整理可得函数解析式,当点R与点A重合时,PQ取得最大值,根据△ABQ∽△NAB知=,求得x=,从而得出x的取值范围.【解答】解:(1)由题意,得AB=BC=CD=AD=8,∠C=∠A=90°,在Rt△BCP中,∠C=90°,∴,∵,∴PC=6,∴RP=2,∴,∵RQ⊥BQ,∴∠RQP=90°,∴∠C=∠RQP,∵∠BPC=∠RPQ,∴△PBC∽△PRQ,∴,∴,∴;(2)的比值随点Q的运动没有变化,如图1,∵MQ∥AB,∴∠1=∠ABP,∠QMR=∠A,∵∠C=∠A=90°,∴∠QMR=∠C=90°,∵RQ⊥BQ,∴∠1+∠RQM=90°、∠ABC=∠ABP+∠PBC=90°,∴∠RQM=∠PBC,∴△RMQ∽△PCB,∴,∵PC=6,BC=8,∴,∴的比值随点Q的运动没有变化,比值为;(3)如图2,延长BP交AD的延长线于点N,∵PD∥AB,∴,∵NA=ND+AD=8+ND,∴,∴,∴,∵PD∥AB,MQ∥AB,∴PD∥MQ,∴,∵,RM=y,∴又PD=2,,∴,∴,如图3,当点R与点A重合时,PQ取得最大值,∵∠ABQ=∠NBA、∠AQB=∠NAB=90°,∴△ABQ∽△NAB,∴=,即=,解得x=,则它的定义域是.【点评】本题主要考查相似三角形的综合题,解题的关键是熟练掌握正方形的性质、勾股定理及相似三角形的判定与性质.23.【分析】(1)把P点和B点的坐标代入抛物线解析式,即可求出答案;(2)根据函数的图象得出即可;(3)根据面积公式求出M点到x轴的距离,得出M点的纵坐标,再求出M点的横坐标即可.【解答】解:(1)将P(1,﹣3)、B(4,0)代入y=ax2+c得:,解得:;(2)由图象得x>4或x<1;(3)在抛物线上存在点M,使得S△ABP=5S△ABM,理由是:抛物线的解析式是y=x2﹣,设M点的纵坐标为e,∵P(1,﹣3),∴由S△ABP=5S△ABM得:×AB×|﹣3|=5×AB×|e|,解得;|e|=,当e=时,x2﹣=,解得:x=±,当e=﹣时,x2﹣=﹣,解得:x=±,即M点的坐标是(,)(﹣,)(,﹣)(﹣,﹣).【点评】本题考查了用待定系数法求出二次函数的解析式、二次函数和一次函数的图象和性质,函数图象上点的坐标特征等知识点,能正确运用性质进行计算是解此题的关键.。

萧山区中考数学模拟试题及参考答案

萧山区中考数学模拟试题及参考答案

2019年萧山区中考数学模拟试题及参考答案2019年萧山区中考数学模拟试题
考生须知:
1.本试卷分试题卷和答题卷两局部,总分值120分,考试时间100分钟。

2.答题时,应该在答题卷指定位置内写明学校、姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷。

试题卷
一、仔细选一选(此题有10个小题,每题3分,共30分)
下面每题给出的四个选项中,只有一个是正确的。

注意可以用多种不同的方法来选取正确答案。

1.【原创】按100分制60分及格来算,总分值是150分的及格分是( )
A、60分
B、72分
C、90分
D、105分
2.【原创】地球的外表积约为5.1亿Km2 ,其中陆地面积约为地球外表积的0.29 ,那么地球上陆地面积约为( )
A、B、C、D、
3.【原创】函数中自变量的取值范围是( )
A、B、C、D、
4.【原创】以下哪一个数与方程的根最接近( )
A、2
B、3
C、4
D、5
5.【原创】。

当时, =7 ,那么,当=3时, = ( )
A、B、C、D、
2019年萧山区中考数学模拟试题及参考答案完整版下载。

【附5套中考模拟试卷】浙江省杭州市2019-2020学年中考数学二模试卷含解析

【附5套中考模拟试卷】浙江省杭州市2019-2020学年中考数学二模试卷含解析
21.(6分)如图,AB是半径为2的⊙O的直径,直线l与AB所在直线垂直,垂足为C,OC=3,P是圆上异于A、B的动点,直线AP、BP分别交l于M、N两点.
(1)当∠A=30°时,MN的长是;
(2)求证:MC•CN是定值;
(3)MN是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;
A. B. C. D.
6.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为 ,则a等于()
A. B. C. D.
7.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )
A.a=﹣2B.a= C.a=1D.a=
8.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y= 的图象经过点D,则k值为( )
23.(8分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y= (k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.
(1)如图,若m=﹣ ,n= ,点B的纵坐标为 ,
A.﹣14B.14C.7D.﹣7
9.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()
A.(x﹣2)2=3B.(x+2)2=3C.(x﹣2)2=﹣3D.(x+2)2=﹣3
10.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()
A. B.
C. D.
11.山西有着悠久的历史,远在100多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo图案中,是轴对称图形的共有( )

浙江省杭州市2019-2020学年中考二诊数学试题含解析

浙江省杭州市2019-2020学年中考二诊数学试题含解析

浙江省杭州市2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.a6÷a2=a3D.(﹣2a3)2=4a62.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩3.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元4.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是()A.1<m<32B.1≤m<32C.1<m≤32D.1≤m≤325.如果关于x的分式方程1311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.96.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个7.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%8.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x 值的增大而减小,则k的值为()A.﹣13B.﹣3 C.13D.39.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A.(1)19802x x-=B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=198010.如图,在△ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则∠A的大小是().A.36°B.54°C.72°D.30°11.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=2:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.则正确的结论有()A.2个B.3个C.4个D.5个12.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是( )A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若2,则OE的长为_____.14.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.15.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.16.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.17.如图,已知,第一象限内的点A在反比例函数y=2x的图象上,第四象限内的点B在反比例函数y=kx的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.18.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)计算:(﹣2)﹣2+12cos60°32)0;(2)化简:(a ﹣1a )÷221a a a-+ . 20.(6分)如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AF 交CD 于点E ,交BC 的延长线于点F .(1)求证:BF=CD ;(2)连接BE ,若BE ⊥AF ,∠BFA=60°,BE=23,求平行四边形ABCD 的周长.21.(6分) [阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.[理解]如图1,Rt △ABC 是“中边三角形”,∠C=90°,AC 和BD 是“对应边”,求tanA 的值;[探究]如图2,已知菱形ABCD 的边长为a ,∠ABC=2β,点P ,Q 从点A 同时出发,以相同速度分别沿折线AB ﹣BC 和AD ﹣DC 向终点C 运动,记点P 经过的路程为s .当β=45°时,若△APQ 是“中边三角形”,试求a s的值. 22.(8分)如图所示,平面直角坐标系中,O 为坐标原点,二次函数2(0)y x bx c b =-+>的图象与x轴交于(1,0)A -、B 两点,与y 轴交于点C ;(1)求c 与b 的函数关系式;(2)点D 为抛物线顶点,作抛物线对称轴DE 交x 轴于点E ,连接BC 交DE 于F ,若AE =DF ,求此二次函数解析式;(3)在(2)的条件下,点P 为第四象限抛物线上一点,过P 作DE 的垂线交抛物线于点M ,交DE 于H ,点Q 为第三象限抛物线上一点,作QN ED ⊥于N ,连接MN ,且180QMN QMP ∠+∠=︒,当:15:16QN DH =时,连接PC ,求tan PCF ∠的值.23.(8分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?24.(10分)解不等式组22(4)113x xxx-≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解.25.(10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O 的切线,BF交AC的延长线于F.(1)求证:∠CBF=12∠CAB.(2)若AB=5,sin∠CBF=5,求BC和BF的长.26.(12分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.27.(12分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.753,精确到0.1m)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6÷a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D.【点睛】本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.2.D【解析】【分析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【详解】由解集在数轴上的表示可知,该不等式组为23 xx≤⎧⎨-⎩f,故选D.【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.3.B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80%解这个方程得:x=125则这种服装每件的成本是125元.故选B.考点:一元一次方程的应用.4.B【解析】【分析】根据一次函数的性质,根据不等式组即可解决问题;【详解】∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,∴230 10 mm<-⎧⎨-+≥⎩,解得1≤m<32.故选:B.【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.5.D【解析】解:2()43412a x xxx①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即72x=-,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即52x=-,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即32x=-,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即12x=-,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.6.C【解析】【分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.7.B【解析】【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.B【解析】【分析】设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.【详解】设该点的坐标为(a,b),则|b|=1|a|,∵点(a,b)在正比例函数y=kx的图象上,∴k=±1.又∵y值随着x值的增大而减小,∴k=﹣1.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.9.D【解析】【分析】根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=1980,故选D.【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.10.A【解析】【分析】由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC 可知,△ABC为等腰三角形,则∠ABC=∠C=2x.在△ABC中,用内角和定理列方程求解.【详解】解:∵BD=BC=AD,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x.又∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故选A.【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.11.C【解析】【分析】由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否. 【详解】解:由题意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此选项①正确;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;∵△AEF是等腰直角三角形,有:1,故此选项②正确;∵△AEF与△AHF不相似,∴AF2=FH·FE不正确.故此选项③错误,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此选项⑤正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.12.C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】连接OA,所以∠OAC=90°,因为AB=AC,所以∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度数,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【详解】连接OA,由题意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C=OAOC=12,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE=OEOA=12,∴OA=2OE,∴OE=12OA22.【点睛】本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA的值,从而利用直角三角形的三角函数的运用求出答案.14.13.【解析】【详解】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.15.90°或30°.【解析】【分析】分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.【详解】设顶角为x度,则当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,解得x=90°,当底角为x°+45°时,2(x°+45°)+x°=180°,解得x=30°,∴顶角度数为90°或30°.故答案为:90°或30°.【点睛】本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.16.2【解析】【分析】在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.【详解】在AB上取BN=BE,连接EN,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴2222112.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.【解析】如图,作AC ⊥x 轴,BD ⊥x 轴,∵OA ⊥OB ,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD ,∴△ACO ∽△ODB , ∴OA OC AC OB BD OD ==, ∵∠OAB=60°, ∴33OA OB =, 设A (x ,2x), ∴BD=3OC=3x ,OD=3AC=23x , ∴B (3x ,-23x), 把点B 代入y=k x 得,-23x =3x ,解得k=-6, 故答案为-6.18.π【解析】试题分析:∵,∴S 阴影=1ABB S 扇形=250360AB π⋅=54π.故答案为54π. 考点:旋转的性质;扇形面积的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)12-;(2)11a a +-; 【解析】(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题.【详解】解:(1)原式1111,422=+⨯- 111,44=+- 1.2=- (2)原式221,21a a a a a -=⋅-+ ()()()211,1a a a a a +-=⋅-1.1a a +=- 【点睛】本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.20.(1)证明见解析;(2)12【解析】【分析】(1)由平行四边形的性质和角平分线得出∠BAF=∠BFA ,即可得出AB=BF ;(2)由题意可证△ABF 为等边三角形,点E 是AF 的中点. 可求EF 、BF 的值,即可得解.【详解】解:(1)证明:∵ 四边形ABCD 为平行四边形,∴ AB=CD ,∠FAD=∠AFB又∵ AF 平分∠BAD ,∴ ∠FAD=∠FAB∴ ∠AFB=∠FAB∴ AB=BF∴ BF=CD(2)解:由题意可证△ABF 为等边三角形,点E 是AF 的中点在Rt △BEF 中,∠BFA=60°,BE=可求EF=2,BF=4∴ 平行四边形ABCD 的周长为1221.tanA=3;综上所述,当β=45°时,若△APQ是“中边三角形”,as的值为34或1512.【解析】【分析】(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,==,∴=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【详解】解:[理解]∵AC和BD是“对应边”,∴AC=BD,设AC=2x,则CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分线,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE , ∴=,分两种情况:当底边PQ 与它的中线AE 相等,即AE=PQ 时, ==, ∴=;当腰AP 与它的中线QM 相等时,即AP=QM 时,QM=AQ ,如图3,作QN ⊥AP 于N ,∴MN=AN=PM=QM ,∴QN=MN ,∴ntan ∠APQ===, ∴ta ∠APE===, ∴=, 综上所述,当β=45°时,若△APQ 是“中边三角形”,的值为或.【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.22.(1)1c b =--;(2)223y x x =--;(3)12【解析】【分析】(1)把A (-1,0)代入y=x 2-bx+c ,即可得到结论;(2)由(1)得,y=x 2-bx-1-b ,求得EO=b 2,AE=b 2+1=BE ,于是得到OB=EO+BE=b 2+b 2+1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D (b 2,-b-2),将D (b 2,-b-2)代入y=x 2-bx-1-b 解方程即可得到结论;(3)连接QM ,DM ,根据平行线的判定得到QN ∥MH ,根据平行线的性质得到∠NMH=∠QNM ,根据已知条件得到∠QMN=∠MQN ,设QN=MN=t ,求得Q (1-t ,t 2-4),得到DN=t 2-4-(-4)=t 2,同理,设MH=s ,求得NH=t 2-s 2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH 推出∠NMD=90°;根据三角函数的定义列方程得到t 1=53,t 2=-35(舍去),求得MN=53,根据三角函数的定义即可得到结论.【详解】(1)把A (﹣1,0)代入2y x bx c =-+,∴1b c 0++=,∴c 1b =--;(2)由(1)得,2y x bx 1b =---,∵点D 为抛物线顶点, ∴b bEO AE 1BE 22==+=,, ∴b bOB EO BE 1b 122=+=++=+,当x 0=时,y b 1=--,∴CO b 1BO =+=,∴OBC 45∠=︒,∴EFB 904545EBF ∠∠=︒-︒=︒=,∴EF BE AE DF ===,∴DE AB b 2==+, ∴bD ,b 22⎛⎫-- ⎪⎝⎭, 将bD ,b 22⎛⎫-- ⎪⎝⎭代入2y x bx 1b =---得,22b b b 2b 122⎛⎫--=--- ⎪⎝⎭,解得:1b 2=,2b 2=-(舍去),∴二次函数解析式为:2y x 2x 3=--;(3)连接QM ,DM ,∵QN ED ⊥,MP ED ⊥,∴QNH MHD 90∠∠==︒,∴QN //MH ,∴NMH QNM ∠∠=,∵QMN QMP 180∠∠+=︒,∴QMN QMN NMH 180∠∠∠++=︒,∵QMN MQN NMH 180∠∠∠++=︒,∴QMN MQN ∠∠=,设QN MN t ==,则()2Q 1t,t 4--,∴()22DN t 44t =---=,同理, 设MN s =,则2HD s =,∴22NH t s =-,在Rt ΔMNH 中,222NH MN MH =-,∴()22222t s t s -=-,∴22t s 1-=,∴NH 1=, ∴NH 1tan NMH MH t∠==, ∵2MH t 1tan MDH DH t t ∠===, ∴NMH MDH ∠∠=,∵NMH MNH 90∠∠+=︒,∴MDH MNH 90∠∠+=︒,∴NMD 90∠=︒;∵QN :DH 15:16=,∴16DH t 15=,16DN t 115=+, ∵sin NMH sin MDN ∠∠=, ∴NH MN MN DN =,即1t 16t t 115=+, 解得:15t 3=,23t 5=-(舍去), ∴5MN 3=, ∵222NH MN MH =-, ∴4MH PH 3==, ∴47PK PH KH 133=+=+=, 当7x 3=时,20y 9=-, ∴720P ,39⎛⎫- ⎪⎝⎭, ∴207CK 399=-=, ∴719tan KPC 733∠==, ∵PKC BOC 90∠∠==︒,∴KGC OBC 45∠∠==︒, ∴7KG CK 9==,CG =7714PG 399=-=, 过P 作PT BC ⊥于T ,∴PT GT PG CG ====, ∴CT 2PT =, ∴PT PT 1tan PCF CT 2PT 2∠===. 【点睛】本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.23.(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元.【解析】【分析】(1)设二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y 元,根据利润=售价﹣进价,即可得出关于y 的一元一次方程,解之即可得出结论.【详解】(1)设二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元, 根据题意得:3000027000100x x=+, 解得:x=900,经检验,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y 元,根据题意得:900×(1﹣10%)﹣y=35%y ,解得:y=600,答:每辆山地自行车的进价是600元.【点睛】本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 24.﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:()224113x x x x ⎧-≤+⎪⎨-<+⎪⎩①②, 解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0,25.(1)证明略;(2)BC=52,BF=320. 【解析】试题分析:(1)连结AE.有AB 是⊙O 的直径可得∠AEB=90°再有BF 是⊙O 的切线可得BF ⊥AB ,利用同角的余角相等即可证明;(2)在Rt △ABE 中有三角函数可以求出BE ,又有等腰三角形的三线合一可得BC=2BE,过点C 作CG ⊥AB 于点G .可求出AE,再在Rt △ABE 中,求出sin ∠2,cos ∠2.然后再在Rt △CGB 中求出CG ,最后证出△AGC ∽△ABF 有相似的性质求出BF 即可.试题解析:(1)证明:连结AE.∵AB 是⊙O 的直径, ∴∠AEB=90°,∴∠1+∠2=90°.∵BF 是⊙O 的切线,∴BF ⊥AB , ∴∠CBF +∠2=90°.∴∠CBF =∠1.∵AB=AC ,∠AEB=90°, ∴∠1=21∠CAB. ∴∠CBF=21∠CAB.(2)解:过点C 作CG ⊥AB 于点G .∵sin ∠CBF=55,∠1=∠CBF , ∴sin ∠1=55. ∵∠AEB=90°,AB=5. ∴BE=AB·sin ∠1=5.∵AB=AC ,∠AEB=90°, ∴BC=2BE=52.在Rt △ABE 中,由勾股定理得5222=-=BE AB AE .∴sin ∠2=552,cos ∠2=55. 在Rt △CBG 中,可求得GC=4,GB=2. ∴AG=3.∵GC ∥BF , ∴△AGC ∽△ABF. ∴ABAG BF GC =, ∴320=⋅=AG AB GC BF . 考点:切线的性质,相似的性质,勾股定理.26.(1)答案见解析;(2)13. 【解析】【分析】(1)k 可能的取值为-1、-2、-3,b 可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b 经过一、二、四象限时k 、b 的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b 经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种,则P=412= 13. 27.通信塔CD 的高度约为15.9cm .【解析】【分析】过点A 作AE ⊥CD 于E ,设CE=xm ,解直角三角形求出AE ,解直角三角形求出BM 、DM ,即可得出关于x 的方程,求出方程的解即可.【详解】过点A 作AE ⊥CD 于E ,则四边形ABDE 是矩形,设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°,所以AE=330CE tan =︒, 在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm ,DM=)36603x CD tan +=︒cm ,在Rt△ABM中,BM=63737ABtan tan=︒︒cm,∵AE=BD,)66373xtan+=+︒,解得:,∴(cm),答:通信塔CD的高度约为15.9cm.【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.。

2019年浙江省杭州市中考数学二模试题附解析

2019年浙江省杭州市中考数学二模试题附解析

2019年浙江省杭州市中考数学二模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知正比例函数y =k 1x (k 1≠0)与反比例函数y =k 2x (k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( ) A .(2,1)B .(-2,-1)C .(-2,1)D .(2,-1)2.如果2(1)(3)x x x mx n -+=++,那么m ,n 的值分别是( ) A .1m =,3n =B .4m =,5n =C .2m =,3n =-D .2m =-,3n = 3.已知235x x ++的值为 3,则代数式2391x x +-的值为( ) A .-9 B .-7C .0D .34.若21x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( ) A . 351x y x y +=⎧⎨+=⎩B . 325x y y x =-⎧⎨+=⎩C . 251x y x y -=⎧⎨+=⎩D . 231x yx y =⎧⎨=+⎩5.在5×5的方格纸中,将图(1)中的图形 N 平移后的位置如图(2)所示,那么正确的平移方法是( )A .先向下移动1 格,再向左移动1格B .先向下移动1 格,再向左移动2格C .先向下移动2格,再向左移动 1格D .先向下移动2格,再向左移动 2格6.解不等式123x x +-≤的过程: ①6613x x -+≤;②316x x --≤--; 47x -≤-;④74x ≥其中造成解答错误的一步是( ) A .①B .②C .③D .④7.在①(65)65ab a a b +÷=+;②(8x2y 22(84)(4)2x y xy xy x y -÷-=--;③ 22(1510)(5)32x yz xy xy x y -÷=-;④222(33)33x y xy x x xy y -+÷=-中,不正确的有( ) A .1 个B .2 个C .3 个D . 4 个8.下列计算中,正确的有( )①(4)(9)496-⋅-=-⋅-=;②(4)(9)496-⋅-=⋅=; ③225454541-=+⋅-=;④222254541-=-= A .1个B .2个C .3个D .4个9.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( ) A . 明天本市70%的时间下雨,30%的时间不下雨 B . 明天本市70%的地区下雨,30%的地区不下雨 C . 明天本市一定下雨 D . 明天本市下雨的可能性是70%10.在同一坐标系中,函数2y ax bx =+的图象与by x=的图象大致为( )A .B .C .D .11.如图,扇形的半径 OA=20cm,∠AOB =135°,用它做成一个圆 锥的侧面,则此圆锥的底面的半径为( ) A .3.75 cmB .7.5 cmC .15 cmD .30 cm12. 过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm ,则OM 的长为( ) A 3cm B 2cm C . 1cm D . 3cm 13.一个扇形的弧长是20πcm,面积是240πcm 2,那么扇形的圆心角是( )A .120°B .150°C .210°D .240°14.如图,请你在正方形地板上涂上阴影部分,使得小猫在地板上自由地走来走去,它最终停留在地板上的概率是41.( ) 15.如图所示,已知一渔船上的渔民在A 处看见灯塔 M 在北偏东 60°方向,若这艘渔船以 28 海里/小时的速度向正东航行,半小时到达B 处,在B 处看见灯塔M 在北偏东15°方 向,此时灯塔M 与渔船的距离是( ) A .72B .142C .7 海里D . 14 海里16.如果6(6)x x x x ⋅-=-,那么x 满足( )A .0x ≥B .6x ≥C .06x ≤≤D . x 为一切实数二、填空题17.已知点A 、点 B 在x 轴上,分别以A 、B 为圆心的两圆相交于M(a ,-12)、N(3,2a+ 3b),则b a 的值是 .18.如图,D 、E 为AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=500,则∠BDF= .19.两直线3y x =-、5y x =-+与y 轴围成的三角形的面积是 . 20.如图所示,己知AB ∥CD ,∠B=30°,∠C=25°,则∠BEC= .21.方程112=-x 的解为x = .22.如图,大圆半径为2cm ,小圆的半径为1cm ,则图中阴影部分的面积是__________cm 2. 23.如图,△A ′B ′C ′是△ABC 经旋转变换后的像, (1)旋转中心是 ,旋转角度是 ; (2)图中相等的线段:OA= ,OB= ,OC= ,AB= ,BC= ,CA= . (3)图中相等的角:∠CAB= ,∠BCA= ,∠AOA ′= = .24.只要三角形三边的长度固定,这个三角形的 和 就完全确定,三角形的这个性质叫做三角形的 .25.若代数式2326x x -+的值为 8,则代数2312x x -+的值为 .26.m 、n 满足|2|40m n ++-=,分解因式2(x +22()()x y mxy n +-+= .27.化简:(7y - 3z)- (8y - 5z)= .三、解答题28.身高 1.6m 的小明在课外数学活动小组的户外活动中,准备利用太阳光线和影子测 旗杆 AB 的高度. 如图所示,在小亮的帮助下,小明圆满地完成了任务.(1)他们必须测出哪几条线段的长?(2)若旗杆的影长为 4m ,小明的影长为1.2m ,请你帮小明计算出旗杆的长.29.如图,Rt △ABC 中,∠C= 90°, AC= 3 , tanA =43,⊙C 的半径为 2.4. 求证:⊙C 与AB 相切.30.已知抛物线6y x mx =++与x 轴相交于A 、B 两点,P 是此抛物线的顶点. 求当△PAB 的面积是18时,此抛物线的解析式.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.B4.C5.C6.A7.C8.A9.D10.D11.B12.A13.B14.任意4块染成红色都可以.15.A16.B二、填空题17.918.80019.1620.55°21.322.π223.(3)∠C′A′B′,∠B′C′A′,∠BOB′,∠COC′(1)0,60°;(2)OA′,OB′,OC′,A′B′,B′C′,C′A′;24.形状,大小,稳定性25.226.+++-27.x y x y(2)(2)-+2y z三、解答题 28.(1)必须测出旅杆的影长 AC 和小明的影长DF. (2) ∵EF ∥BC,DE ∥AB , ∴△ABC ∽△DEF ,∴AB DE AC DF =,∵4 1.6161.23AB ⨯==m∴旗杆高为163m. 29.作 CD ⊥AB 于D ,由 AC=3,4tan 3A =,可求得 BC=4,22345AB =+= 342.45CD r ⨯===,∴⊙C 与 AB 相切. 30.∵224AB m =-P 点纵坐标2244m -,∴2224124||48PAB m S m ∆-=-⋅=, ∴225m =,5m =±,∴256y x x ⋅=++,或256y x x =-+。

2019年浙江省杭州市萧山中学中考数学二模试卷(解析版)

2019年浙江省杭州市萧山中学中考数学二模试卷(解析版)

2019年浙江省杭州市萧山中学中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若|﹣x|=5,则x等于()A.﹣5B.5C.D.±52.下列代数式变形正确的是()A.﹣a+b=﹣(a+b)B.﹣4a2+b2=(2a﹣b)(2a+b)C.(﹣x﹣y)2=(x+y)2D.x2﹣4x﹣3=(x﹣2)2﹣33.图1是边长为4的正方形硬纸片ABCD,点E、F分别是AB、BC的中点,若沿图1的虚线剪开并拼成图2的“小屋”,则图中阴影部分的面积()A.2B.4C.8D.104.一列列车自全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x千米/时,则根据题意所列方程正确的是()A.﹣=1B.﹣=1C.﹣=1D.﹣=15.近年来,我国持续大面积雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某中学举行了“建设宜居白银,关注环境保护”的知识竞赛,某班学生的成绩统计如下表.则该班学生成绩的众数和中位数分别是()A.70分80分B.80分80分C.90分80分D.80分90分6.如图,AB是⊙O的直径,弦CD⊥AB于H,且CD=2,BD=,则AB的长为()A.2B.3C.4D.57.如图所示的是一个小正方体的展开图,把展开图折叠成小正方体,有“粤”字一面的相对面上的字是()A.澳B.大C.湾D.区8.在Rt△ABC中,∠B=90°,AB=3,BC=4,则cos C的值为()A.B.C.D.9.已知抛物线y=a(x﹣1)(x﹣3)﹣2(a≠0)与x轴交点的横坐标为m,n,且m<n,又点(x0,y0)是抛物线上一点,则下列结论正确的是()A.该抛物线可由抛物线y=ax2向右平移2个单位,向下平移2个单位得到B.若1<m<n<3,则a>0C.若1<x0<3,则y0<0D.不论a取何值,m+n=410.如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是()。

(完整)2019年浙江省杭州市中考数学试题卷(含答案)(2),推荐文档

(完整)2019年浙江省杭州市中考数学试题卷(含答案)(2),推荐文档

2019年杭州市中考数学试题卷一、选择题:本大题有10个小题,每小题3分,共30分 1.计算下列各式,值最小的是( )A .2×0+1-9B .2+0×1-9C .2+0-1×9D .2+0+1-92.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =-3,n =2 C .m =2,n =3 D .m =-2,n =-33.如图,P 为圆O 外一点,PA ,PB 分别切圆O 于A ,B 两点,若PA =3,则PB =( )A .2B .3C .4D .54.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( )A .2x +3(72-x )=30B .3x +2(72-x )=30C .2x +3(30-x )=72D .3x +2(30-x )=725.点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数 B .中位数 C .方差 D .标准差6.如图,在△ABC 中,点D ,E 分别在AB 和AC 上,DE //BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( )....AD ANBD MNDN NEDN NEA B C D AN AEMN CEBM MCMC BM====7.在△ABC 中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30° B .必有一个内角等于45° C .必有一个内角等于60° D .必有一个内角等于90°8.已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图像可能是( )第3题第6题图B9.如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB =a ,AD =b ,∠BCO =x ,则点A 到OC 的距离等于( ) A .asinx +bsinx B .acosx +bcosx C .asinx +bcosx D .acosx +bsinx10.在平面直角坐标系中,已知a ≠b ,设函数y =(x +a )(x +b )的图像与x 轴有M 个交点,函数y =(ax +1)(bx +1)的图像与x 轴有N 个交点,则( ) A .M =N -1或M =N +1 B .M =n -1或M =N +2 C .M =N 或M =N +1 D .M =N 或M =N -1二、填空题:本大题有6个小题,每小题4分,共24分; 11.因式分解:1-x 2= .12.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m +n 个数据的平均数等于 .13.如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 cm 2(结果精确到个位). 14.在直角三角形ABC 中,若2AB =AC ,则cosC = .15.某函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1,写出一个满足条件的函数表达式 .16.如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A ’点,D 点的对称点为D ’点,若∠FPG =90°,△A ’EP 的面积为4,△D ’PH 的面积为1,则矩形ABCD 的面积等于 .第9题图第16题图三、解答题:本小题7个小题,共66分. 17.(本小题满分6分) 化简:2421.42x x x ---- 圆圆的解答如下:()()22242142242.42x x x x x x x x --=-+--=-+-- 圆圆的解答正确吗?如果不正确,写出正确的答案.18.(本题满分8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系. ②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.序号实际称量读数折线统计图第18题图记录数据折线统计图47实际称量读数和记录数据统计表4-1-32-25449475248乙组甲组54321数据序号如图,在△ABC 中,AC <AB <BC .(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:∠APC =2∠B . (2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若∠AQC =3∠B ,求∠B 的度数.20.(本题满分10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.第19题图BB如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为S 2,且S 1=S 2. (1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .22.(本题满分12分)设二次函数y =(x -x 1)(x -x 2)(x 1,x 2是实数). (1)甲求得当x =0时,y =0;当x =1时,y =0;乙求得当x =12时,y =1-2.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图像的对称轴,并求该函数的最小值(用含x 1,x 2的代数式表示). (3)已知二次函数的图像经过(0,m )和(1,n )两点(m ,n 是实数),当0<x 1<x 2<1时,求证:0<mn <116.第21题图FBA如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA. (1)若∠BAC=60°,①求证:OD=12 OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED (m,n是正数),若∠ABC<∠ACB,求证:m-n+2=0.第23题图。

浙江省杭州市萧山区城厢片2019中考模拟数学试题含答案

浙江省杭州市萧山区城厢片2019中考模拟数学试题含答案

2019年杭州市萧山区城厢片中考模拟试卷数学(满分:120分考试时间:120分钟)一、选择题(共10小题,每小题3分,满分30分)1.3-8=(D)A.2 B.-2 2C.-83D.-2[命题考向:此题考查立方根,根据-8的立方根是-2解答.]2.据科学家估计,地球的年龄大约是4 600 000 000年,将4 600 000 000用科学记数法表示为(D) A.4.6×108B.46×108C.4.69D.4.6×109[命题考向:此题考查科学记数法表示较大的数的方法,形式为a×10n,准确确定a与n的值是关键.] 3.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.已知ABAC=13,则(C)(第3题图)A.ABBC=13 B.ADFC=13C.DEEF=12 D.BEFC=12[命题考向:本题考查平行线分线段成比例定理,属于中考常考题型.]4.如图是杭州市某天上午和下午各四个整点时的气温绘制成的折线统计图,为了了解该天上午和下午的气温哪个更稳定,则应选择的统计量是(C)(第4题图)A .众数B .平均数C .方差D .中位数[命题考向:本题主要考查折线统计图和统计量的选择,解题的关键是理解方差的意义:方差(或标准差)越大,数据的离散程度越大,稳定性越差;反之,则离散程度越小,稳定性越好.] 5.下列各式变形中,正确的是( A ) A .(x )2=xB .(-x -1)(1-x )=1-x 2 C.x -x +y =-xx +yD .x 2+x +1=⎝ ⎛⎭⎪⎫x +122-34[命题考向:本题考查的是二次根式的化简、平方差公式、分式的基本性质和配方法.]6.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y 人,则下列方程组正确的是( C ) A.⎩⎨⎧x -1=y ,x =2yB.⎩⎨⎧x =y ,x =2(y -2) C.⎩⎨⎧x -1=y ,x =2(y -1) D.⎩⎨⎧x +1=y ,x =2(y -1) [命题考向:此题主要考查了二元一次方程组的应用,根据题意利用已知得出正确等量关系是解题关键.] 7.若(5-m )m -3>0,则( D ) A .m <5 B .3≤m <5 C .3≤m ≤5D .3<m <5[命题考向:本题考查不等式的性质,二次根式的非负性.解题的关键是熟练运用不等式的性质,本题属于基础题型.解析:原不等式等价于⎩⎨⎧m -3>0,5-m >0,∴3<m <5,故选D.]8.已知A ,B 两地相距120 km ,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:km)与时间t (单位:h)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:km),则y 关于t 的函数图象是( B )(第8题图)A BC D[命题考向:本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.解析:由题意和图象可得,乙到达B 地时甲距A 地120 km ,开始时两人的距离为0;甲的速度是120÷(3-1)=60 km/h ,乙的速度是80÷3=803 km/h ,即乙出发1 h 后两人距离为803 km ;设乙出发后被甲追上的时间为x h ,则60(x -1)=803x ,解得x =1.8,即乙出发后被甲追上的时间为1.8 h .所以符合题意的函数图象只有选项B.故选B.]9.如图,AB 是⊙O 的直径,点D 是半径OA 的中点,过点D 作CD ⊥AB ,交⊙O 于点C ,点E 为弧BC 的中点,连结ED 并延长ED 交⊙O 于点F ,连结AF ,BF ,则( C )A .sin ∠AFE =12 B .cos ∠BFE =12 C .tan ∠EDB =32D .tan ∠BAF = 3(第9题图)(第9题答图)[命题考向:本题考查的是圆周角定理、全等三角形的判定和性质、锐角三角函数的定义,掌握圆周角定理、直角三角形的性质是解题的关键.解析:如答图,连结OC ,OE ,作EG ⊥AB 于点G ,∵OD =12OA =12OC ,∴∠OCD =30°,∴∠COD =60°,∴∠BOC =180°-60°=120°,∵点E 是弧BC 的中点,∴∠COE =∠BOE =60°,∴∠AOE =∠AOC +∠COE =120°,∴∠AFE =12∠AOE =60°,∴sin ∠AFE =32,A 错误;∵∠BOE =60°,∴∠BFE =30°,∴cos ∠BFE =32,B 错误;设OD =a ,则OC =2a ,由勾股定理得CD =OC 2-OD 2=3a ,在△COD 和△EOG中,⎩⎨⎧∠COD =∠EOG ,∠CDO =∠EGO ,OC =OE ,∴△COD ≌△EOG (AAS ),∴EG =CD =3a ,OG =OD =a ,∴tan ∠EDB =EG DG =32,C 正确;∵tan ∠EDB=32,∴∠EDB =∠ADF ≠60°,则∠BAF ≠60°,∴tan ∠BAF ≠3,D 错误.故选C.] 10.如图,已知在△ABC 中,点D 为BC 边上一点(不与点B ,点C 重合),连结AD ,点E 、点F 分别为AB ,AC 上的点,且EF ∥BC ,交AD 于点G ,连结BG ,并延长BG 交AC 于点H .已知AEBE =2,①若AD 为BC 边上的中线,则BG BH 的值为23;②若BH ⊥AC ,当BC >2CD 时,BHAD <2sin ∠DAC .则( A )(第10题图)A .①正确;②不正确B .①正确;②正确C .①不正确;②正确D .①不正确;②不正确[命题考向:本题是三角形的一个综合题,主要考查了直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,关键是作辅助线,构造全等三角形与相似三角形、直角三角形进行解答.解析:①如答图①,过点B 作BM ∥AC ,与AD 的延长线相交于点M ,∴∠C =∠MBD ,在△ACD 和△MBD 中,⎩⎨⎧∠C =∠MBD ,CD =BD ,∠ADC =∠MDB ,∴△ACD ≌△MBD (ASA ),∴AD =MD ,∵EF ∥BC ,AE BE =2,∴AG DG =AE BE =2,∴MGAG =42=2,∵BM ∥AC ,∴△MBG ∽△AHG ,∴BG HG =MG AG =2,∴BG BH =23,故①正确;②如答图②,过点D 作DN ⊥AC 于点N ,则DN =AD ·sin ∠DAC ,∵BH ⊥AC ,DN ⊥AC ,∴BH ∥DN ,∴BH DN =BCDC ,即BH AD sin ∠DAC =BC DC ,∵BC >2CD ,∴BH AD sin ∠DAC>2,∴BHAD >2sin ∠DAC .故②错误.故选A.](第10题答图①)(第10题答图②)二、填空题(共6小题,每小题4分,满分24分) 11.计算:a ·a 2=__a 3__.[命题考向:本题主要考查同底数幂的乘法,熟练掌握运算法则是解题的关键.] 12.分解因式:m 4n -4m 2n =__m 2n (m +2)(m -2)__.[命题考向:本题考查了提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.] 13.如图,点P 在⊙O 外,P A ,PB 分别切⊙O 于点A 、点B ,若∠P =50°,则∠A =__65°__.(第13题图)[命题考向:本题考查了切线的性质.解题的关键是掌握切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.解析:∵P A ,PB 分别切⊙O 于点A ,点B ,∴P A =PB ,∴∠A =∠B .∵∠P =50°,∴∠A =∠B =12×(180°-50°)=65°.]14.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,不放回,再抽出一张卡片,以第一次抽取的数字为十位数,第二次抽取的数字为个位数,则组成的两位数是6的倍数的概率是__16__.[命题考向:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点:概率=所求情况数与总情况数之比.解析:列表如下:1 2 3 4 5 6 1 12 13 14 15 16 2 21 23 24 25 26 3 31 32 34 35 36 4 41 42 43 45 46 5 51 52 53 54 56 66162636465由表格可得,共有30种等可能结果,其中组成的两位数是6的倍数的有5种结果,∴组成的两位数是6的倍数的概率是530=16,故答案为16.]15.已知在▱ABCD 中,∠B 和∠C 的平分线分别交直线AD 于点E 、点F ,AB =5,若EF >4,则AD 的取值范围是__0<AD <6或AD >14__.[命题考向:本题考查了平行四边形的性质,角平分线的性质,利用分类讨论思想解决问题是本题的关键.解析:若点E 在点F 右边,如答图①,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD =5,∴∠AEB =∠EBC ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠AEB =∠ABE ,∴AB =AE =5,同理可得DF =CD =5,∴AD =AE +DF -EF =10-EF ,∵EF >4,∴0<AD <6;若点E 在点F 左边,如答图②,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD =5,∴∠AEB =∠EBC ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠AEB =∠ABE ,∴AB =AE =5,同理可得DF =CD =5,∴AD =AE +EF +FD =10+EF ,∵EF >4,∴AD >14.故答案为0<AD <6或AD >14.](第15题答图①)(第15题答图②)16.在△ABC中,点A到直线BC的距离为d,AB>AC>d,以A为圆心,AC为半径画圆弧,圆弧交直线BC于点D,过点D作DE∥AC交直线AB于点E,若BC=4,DE=1,∠EDA=∠ACD,则AD=.[命题考向:本题考查等边三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是运用分类讨论的思想,利用参数结合几何图形中的等量关系构建方程解决问题.解析:分两种情形:Ⅰ.如答图①中,当点D在线段BC上时.∵DE∥AC,∴∠ADE=∠CAD,∵∠ADE=∠C,∴∠CAD=∠C,∴DA=DC,∵AD=AC,∴AD=DC=AC,设AD=x,∵DE∥AC,∴DEAC=BDBC,∴1x=4-x4,解得x=2.Ⅱ.如答图②中,当点D在线段BC的延长线上时,同法可证:AD=DC=AC,设AD=x,∵DE∥AC,∴DEAC=BDBC,∴1x=4+x4,解得x=-2+22或-2-22(舍去),综上所述,满足条件的AD的值为2或-2+22,故答案为2或-2+2 2.](第16题答图①) (第16题答图②)三、解答题(共7小题,满分66分)17.(6分)跳跳一家外出自驾游,出发时油箱里还剩有汽油30 L,已知跳跳家的汽车每百千米平均油耗为12 L,设油箱里剩下的油量为y(单位:L),汽车行驶的路程为x(单位:km).(1)求y关于x的函数表达式;(2)若跳跳家的汽车油箱中的油量低于5 L时,仪表盘会亮起黄灯警报.要使油箱中的存油量不低于5 L,跳跳爸爸至多行驶多少千米就要进加油站加油?[命题考向:本题考查了一次函数的应用,解一元一次不等式,读懂题目信息,理解剩余油量的表示是解题的关键.]解:(1)y关于x的函数表达式为y=-0.12x+30;(2)当y≥5时,-0.12x+30≥5,解得x≤625 3.答:跳跳爸爸至多行驶6253km就要进加油站加油.18.(8分)为了满足学生的个性化需求,新课程改革势在必行,某校积极开展拓展性课程建设,大体分为学科、文体、德育、其他等四个框架进行拓展课程设计.为了了解学生喜欢的拓展课程类型,学校随机抽取了部分学生进行调查,调查后将数据绘制成扇形统计图和条形统计图(未绘制完整).(第18题图)(1)求调查的学生总人数,把条形图补充完整并填写扇形图中缺失的数据;(2)小明同学说:“因为调查的同学中喜欢文体类拓展课程的同学占16%,而喜欢德育类拓展课程的同学仅占12%,所以全校2 000名学生中,喜欢文体类拓展课程的同学人数一定比喜欢德育类拓展课程的同学人数多.”你觉得小明说得对吗?为什么?[命题考向:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.]解:(1)被调查的总人数为4÷16%=25(人),学科的人数为25×32%=8(人),其他的百分比为1-(32%+16%+12%)=40%,补全图形如答图:(第18题答图)(2)不对,样本容量不够大,无法用样本预测整体.19.(8分)如图,已知在△ABC中,AB=AC,点D为BC上一点(不与点B、点C重合),连结AD,以AD为边在右侧作△ADE,DE交AC于点F,其中AD=AE,∠ADE=∠B.(1)求证:△ABD∽△AEF;(2)若BDEF=43,记△ABD的面积为S1,△AEF的面积为S2,求S1S2的值.(第19题图)[命题考向:本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的性质是解题的关键.]解:(1)证明:∵AB=AC,∴∠B=∠C,∵AD=AE,∴∠ADE=∠E,又∵∠ADE=∠B,∴∠B=∠E,∵∠BDE=∠ADB+∠ADE=∠C+∠DFC=∠E+∠AFE,∴∠ADB=∠AFE,∴△ABD∽△AEF;(2)由(1)得△ABD∽△AEF,而BDEF=43,∴S1S2=⎝⎛⎭⎪⎫BDEF2=169.20.(10分)在同一平面直角坐标系中,设一次函数y1=mx+n(m,n为常数,且m≠0,m≠-n)与反比例函数y2=m+n x.(1)若y1与y2的图象有交点(1,5),且n=4m,当y1≥5时,求y2的取值范围;(2)若y1与y2的图象有且只有一个交点,求mn的值.[命题考向:此题主要考查了反比例函数与一次函数的交点问题,正确利用数形结合思想分析问题是解题关键.]解:(1)把(1,5)代入y1=mx+n,得m+n=5.又∵n=4m,∴m=1,n=4.∴y1=x+4,y2=5 x.∴当y1≥5时,x≥1.此时,0<y2≤5;(2)令m+nx=mx+n,得mx2+nx-(m+n)=0.由题意得Δ=n2+4m(m+n)=(2m+n)2=0,即2m+n=0.∴mn=-12.21.(10分)如图,在矩形ABCD中,2AB>BC,点E和点F为边AD上两点,将矩形沿着BE和CF折叠,点A和点D恰好重合于矩形内部的点G处.(1)当AB=BC时,求∠GEF的度数;(2)若AB=2,BC=2,求EF的长.(第21题图)[命题考向:本题考查了翻折变换,矩形的性质,勾股定理,等腰直角三角形的性质,证明△EGF为等腰直角三角形是解第(2)问的关键.]解:(1)当AB=BC时,矩形ABCD为正方形,由折叠得AB=BG,CD=CG,∠EGB=∠A=90°=∠FGC,∵AB=BC=CD,∴BG=BC=GC,∴∠GBC=60°,∴∠ABG=30°,∴∠AEG=360°-∠A-∠BGE-∠ABG=150°,∴∠GEF=30°;(2)在矩形ABCD中,AB=CD=2,由折叠得AB=BG,CD=CG,AE=EG,DF=FG,∴BG=GC=2,∵BG2+CG2=4,BC2=4,∴BG2+CG2=BC2,∴∠BGC=90°,且BG=CG,∴∠GBC=45°,∴∠ABG=45°,∴∠AEG=360°-∠A-∠BGE-∠ABG=135°,∴∠FEG=45°,同理可得∠EFG=45°,∴△EGF为等腰直角三角形,设EG=x,则AE=FD=x,EF=2x,由AE +EF +FD =AD ,得2x +2x =2, ∴x =2-2,∴EF =2x =22-2.22.(12分)在平面直角坐标系中,函数y 1=ax +b (a ,b 为常数,且ab ≠0)的图象如图所示,y 2=bx +a ,设y =y 1·y 2. (1)当b =-2a 时,①若点(1,4)在函数y 的图象上,求函数y 的表达式;②若点(x 1,p )和(x 2,q )在函数y 的图象上,且⎪⎪⎪⎪⎪⎪x 1-54<⎪⎪⎪⎪⎪⎪x 2-54,比较p ,q 的大小;(2)若函数y 的图象与x 轴交于(m ,0)和(n ,0)两点,求证:m =1n.(第22题图)[命题考向:本题考查的是一次函数及二次函数的应用,利用函数与方程及不等式的关系是解题关键.] 解:(1)由题意得y =(ax +b )(bx +a ), 当b =-2a 时,y =(ax -2a )(-2ax +a ). ①把(1,4)代入表达式,得a 2=4, 由题意可知a <0,则a =-2,故函数y 的表达式为y =(-2x +4)(4x -2)=-8x 2+20x -8; ②令(ax -2a )(-2ax +a )=0,得x 1=2,x 2=12,∴二次函数y =(ax -2a )(-2ax +a )与x 轴的两个交点坐标为(2,0),⎝ ⎛⎭⎪⎫12,0,∴二次函数y 的对称轴为直线x =54,又∵⎪⎪⎪⎪⎪⎪x 1-54<⎪⎪⎪⎪⎪⎪x 2-54,∴点(x 1,p )离对称轴较近,且抛物线y 开口向下, ∴p >q ;(2)证明:令(ax +b )(bx +a )=0,得x1=-ba,x2=-ab,∴mn=⎝⎛⎭⎪⎫-ba×⎝⎛⎭⎪⎫-ab=1,即m=1n得证.23.(12分)已知在△ABC中,AB=AC,AD⊥BC,垂足为点D,以AD为对角线作正方形AEDF,DE 交AB于点M,DF交AC于点N,连结EF,EF分别交AB,AD,AC于点G,O,H.(1)求证:EG=HF;(2)当∠BAC=60°时,求AHNC的值;(3)设HFHE=k,△AEH和四边形EDNH的面积分别为S1和S2,求S2S1的最大值.(第23题图)[命题考向:本题考查了相似三角形的判定和性质,等腰三角形的性质,正方形的性质,正确的识别图形是解题的关键.]解:(1)证明:在正方形AEDF中,OE=OF,EF⊥AD,∵AD⊥BC,∴EF∥BC,∴∠AGH=∠B,∠AHG=∠C,∵AB=AC,∴∠B=∠C,∴∠AGH=∠AHG,∴AG=AH,∴OG=OH,∴OE-OG=OF-OH,∴EG=HF;(2)当∠BAC=60°时,△ABC为正三角形.∵AD⊥BC,∴∠OAH=30°,∴AOOH=3,设OH=a,则OA=OE=OF=3a,∴EH=(3+1)a,HF=(3-1)a,∵AE∥FN,∴△AEH∽△NFH,∴AH NH =EHFH =3+13-1, ∵EF ∥BC ,∴△AOH ∽△ADC , ∴OH DC =AO AD =12,∴CD =2a ,∵△HNF ∽△CND ,∴NH NC =HFCD =3-12, ∴AH NC =AH NH ·NHNC =3+12; (3)设EH =2m ,则FH =2km , ∴EF =EH +FH =2m +2km , ∴OA =12EF =(k +1)m , ∴S 1=12EH ·OA =(k +1)m 2, 由(2)得△AEH ∽△NFH , ∴S △HNF =k 2S 1=k 2(k +1)m 2, 而S △EDF =OA 2=(k +1)2m 2,∴S 2=S △EDF -S △HNF =(k +1)2m 2-k 2(k +1)m 2 =(-k 2+k +1)(k +1)m 2,∴S 2S 1=-k 2+k +1=-⎝ ⎛⎭⎪⎫k -122+54,∴当k =12时,S 2S 1最大,其最大值为54.102019年杭州市萧山区临浦片中考模拟试卷数学(满分:120分考试时间:120分钟)一、选择题(每小题3分,满分30分)1.下列计算正确的是(D)A.-16=-4B.16=±4C.(-4)2=-4D.3(-4)3=-4[命题考向:本题考查平方根、立方根的计算.]2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440 000万人,将440 000用科学记数法表示为(B)A.4.4×106B.4.4×105C.44×104D.0.44×105[命题考向:本题考查科学记数法.]3.哥哥身高1.68 m,在地面上的影子长是2.1 m,同一时间测得弟弟的影子长1.8 m,则弟弟身高是(A) A.1.44 m B.1.52 mC.1.96 m D.2.25 m[命题考向:本题考查相似三角形的应用.能够根据同一时刻,物高与影长成比例,列出正确的比例式,再进行求解.解析:设弟弟的身高是x m,则x1.8=1.682.1,解得x=1.44.故选A.]4.如图是某厂2018年各季度产值统计图(单位:万元),则下列说法正确的是(D)(第4题图)A.四个季度中,每个季度生产总值有增有减B.四个季度中,前三个季度生产总值增长较快C.四个季度中,各季度的生产总值变化一样D.第四季度生产总值增长最快[命题考向:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长率.] 5.下列运算中,错误的是( C ) A.x -y x +y =-y -xy +xB.-a -ba +b=-1 C.a 2=a D.(1-2)2=2-1[命题考向:此题主要考查了二次根式的性质以及分式的性质,正确化简各式是解题关键.]6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( C ) A.⎩⎨⎧8y +3=x ,7y -4=x B.⎩⎨⎧8x +3=y ,7x -4=y C.⎩⎨⎧8x -3=y ,7x +4=y D.⎩⎨⎧8y -3=x ,7y +4=x [命题考向:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系.] 7.下列不等式变形中,错误的是( D ) A .若a ≥b ,则a +c ≥b +c B .若a +c ≥b +c ,则a ≥b C .若a ≥b ,则ac 2≥bc 2 D .若ac 2≥bc 2,则a ≥b[命题考向:本题考查了不等式的性质,熟记性质是解决此题的关键.解析:A.a ≥b ,不等式两边同时加上c ,不等号的方向不变,即a +c ≥b +c ,变形正确;B.a +c ≥b +c ,不等式两边同时减去c ,不等号的方向不变,即a ≥b ,变形正确;C.a ≥b ,c 2≥0,不等式两边同时乘以一个非负数c 2,ac 2≥bc 2成立,变形正确;D.ac 2≥bc 2,若c 2=0,则不等式两边同时除以c 2无意义,变形错误.故选D.] 8.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论; ①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ; ③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154. 其中正确的结论有( C )(第8题图)A .①②③④B .①②④C .①②D .②③④[命题考向:本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t 是小带车所用的时间.解析:由图象可知A ,B 两城市之间的距离为300 km ,小带行驶的时间为5 h ,而小路是在小带出发1 h 后出发的,且用时3 h ,即比小带早到1 h ,∴①②都正确;设小带车离开A 城的距离y 与t 的关系式为y 小带=kt ,把(5,300)代入可求得k =60,∴y 小带=60t ,设小路车离开A 城的距离y 与t 的关系式为y 小路=mt +n ,把(1,0)和(4,300)代入可得⎩⎨⎧m +n =0,4m +n =300,解得⎩⎨⎧m =100,n =-100,∴y 小路=100t -100,令y 小带=y 小路,可得60t =100t -100,解得t =2.5,即小带和小路两直线的交点横坐标为t =2.5,此时小路出发时间为1.5 h ,即小路车出发1.5 h 后追上甲车,∴③不正确;令|y 小带-y 小路|=50,可得|60t -100t +100|=50,即|100-40t |=50,当100-40t =50时,可解得t =54,当100-40t =-50时,可解得t =154,又当t =56时,y 小带=50,此时小路还没出发,当t =256时,小路到达B 城,y 小带=250.综上可知当t 的值为54或154或56或256时,两车相距50 km ,∴④不正确.故选C.]9.如图,直径AB ,CD 相互垂直,P 为弧BC 上任意一点,连结PC ,P A ,PD ,PB ,下列结论: ①∠APC =∠DPE ; ②∠AED =∠DF A ; ③CP +DP BP +AP =APDP.其中正确的是( A ) A .①③ B .只有① C .只有②D .①②③(第9题图) (第9题答图)[命题考向:此题考查了圆周角定理、垂径定理、旋转的性质以及勾股定理.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.解析:∵直径AB,CD相互垂直,∴∠AOC=∠AOD,∴∠APC =∠DPE,故①正确;∵∠AED=∠DPE+∠D,∠DF A=∠APF+∠A,∵P为BC上任意一点,∴∠A 不一定等于∠D,∴∠AED不一定等于∠DF A,故②错误;如答图,连结AC,AD,BD,将△ACP绕A 点顺时针旋转90°,使AC与AD重合(由AB⊥CD知AC=AD),点P旋转到Q点,∴AQ=AP,CP=QD,∵∠P AQ=90°,AQ=AP,∵∠ADQ+∠ADP=∠ACP+∠ADP=180°,∴P,D,Q三点共线,∴∠Q=∠APD=45°,∴PQ2=P A2+AQ2,∴PQ=2AP,即CP+DP=2AP,同理:BP+AP=2DP,∴CP+DPBP+AP=APDP.故③正确.故选A.]10.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在这些小正方形的格点上,AB,CD相交于点E,则sin∠AEC的值为(A)A.255 B.3510 C.12 D.104(第10题图) (第10题答图)[命题考向:本题考查了勾股定理、相似三角形的判定和性质、锐角三角函数等知识点,能够正确作出辅助线是解此题的关键.解析:如答图,过A作AF⊥CD于F,在Rt△ADB中,BD=3,AD=3,由勾股定理得AB=32+32=32,在Rt△CAD中,AC=1,AD=3,由勾股定理得CD=12+32=10,由三角形的面积公式得12×CD×AF=12×AC×AD,10×AF=1×3,解得AF=31010,∵AC∥BD,∴△CEA ∽△DEB ,∴AC BD =AE BE ,∴13=AE 32-AE ,∴AE =324,∴sin ∠AEC =AF AE =31010324=255.故选A.]二、填空题(每小题4分,满分24分) 11.若a m =5,a n =6,则a m +n =__30__.[命题考向:本题考查了同底数幂的乘法计算,属于简单题,熟悉法则是解题关键.解析:a m +n =a m ·a n =5×6=30.]12.分解因式:3x 2-6x 2y +3xy 2=__3x (x -2xy +y 2)__. [命题考向:本题考查因式分解.]13.如图,直线l 与x 轴、y 轴分别交于点A ,B ,且OB =4,∠ABO =30°,一个半径为1的⊙C ,圆心C 从点(0,1)开始沿y 轴向下运动,当⊙C 与直线l相切时,⊙C 运动的距离是__3或7__.(第13题图)(第13题答图)[命题考向:本题考查切线的性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,注意一题多解.解析:设第一次相切的切点为E ,第二次相切的切点为F ,如答图,连结EC ′,FC ″,在Rt △BEC ′中,∠ABC =30°,EC ′=1,∴BC ′=2EC ′=2,∵BC =5,∴CC ′=3,同法可得CC ″=7,故答案为3或7.]14.袋中装有一个红球和两个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是__19__.[命题考向:此题考查的是用列表法或画树状图法求概率的知识.画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.解析:画树状图如答图,由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是19.](第14题答图)15.平行四边形两条对角线的长分别为8 cm ,6 cm ,则它的一边长a 的取值范围是__1<a <7__. [命题考向:本题考查平行四边形的性质以及三角形的三边关系.根据平行四边形的对角线互相平分将已知数据和未知数据都转化到一个三角形中是解决此题的关键.解析:如答图,∵四边形ABCD 是平行四边形,AC =6,BD =8,∴OC =3,OB =4,在△BOC 中,设BC =a ,则OB -OC <a <OB +OC ,即4-3<a <3+4,即1<a <7.∴它的一条边长a 的取值范围是1<a <7.](第15题答图)16.数学课上,老师提出如下问题:△ABC 是⊙O 的内接三角形,OD ⊥BC 于点D .请借助直尺,画出△ABC 中∠BAC 的平分线. 晓龙同学的画图步骤如下: ①延长OD 交⊙O 于点M ; ②连结AM 交BC 于点N .所以线段AN 为所求△ABC 中∠BAC 的平分线.请回答:晓龙同学画图的依据是__垂径定理和在同圆或等圆中,同弧或等弧所对的圆周角相等__.(第16题图)(第16题答图)[命题考向:此题主要考查了基本作图,关键是掌握垂径定理和圆周角定理的知识.解析:如答图所示:∵OM ⊥BC ,∴BM ︵=MC ︵,∴∠BAM =∠CAM ,故线段AN 即为所求△ABC 中∠BAC 的平分线,画图的依据是垂径定理和在同圆或等圆中,同弧或等弧所对的圆周角相等.] 三、解答题(共7小题,满分66分)17.(6分)浙江实施“五水共治“以来,越来越重视节约用水,某地对居民用水按阶梯水价方式进行收费,人均月生活用水收费标准如图所示,图中x 表示人均月生活用水的吨数(吨),y 表示收取的人均月生活用水费(元),请根据图象信息,回答下列问题. (1)请写出y 与x 的函数关系式;(2)若某个家庭有5人,响应节水号召,计划控制1月份的生活用水费不超过76元,则该家庭这个月最多可以用多少吨水?(第17题图)[命题考向:本题考查了一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.]解:(1)当0≤x ≤5时,设y =kx ,5k =8,得k =1.6,即当0≤x ≤5时,y =1.6x ,当x >5时,设y =ax +b ,则⎩⎨⎧5a +b =8,10a +b =20,解得⎩⎨⎧a =2.4,b =-4,即当x >5时,y =2.4x -4,综上可得y =⎩⎨⎧1.6x (0≤x ≤5),2.4x -4(x >5); (2)令2.4x -4≤765,解得x ≤8,5×8=40吨. 答:该家庭这个月最多可以用40吨水.18.(8分)我市某中学为了了解孩子们对《中国诗词大会》《挑战不可能》《最强大脑》《超级演说家》《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(第18题图)(1)本次调查中共抽取了__200__名学生;(2)补全条形统计图;(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是__36__度.[命题考向:本题考查了条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.]解:(1)本次调查的学生总人数为30÷15%=200(名);(2)喜爱《挑战不可能》的人数为200-(20+60+40+30)=50(人),补全条形图如答图;(第18题答图)(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是360°×20200=36°.19.(8分)如图,已知等腰三角形ADC,AD=AC,B是线段DC上一点,连结AB,且有AB=DB.(1)求证:△ADB∽△CDA;(2)若DB=2,BC=3,求AD的值.(第19题图)[命题考向:本题考查的是相似三角形的判定与性质的运用,解题的关键是熟练掌握相似三角形的判定和性质.]解:(1)证明:∵AD=AC,∴∠D=∠C,又∵AB=DB,∴∠D=∠DAB,∴∠DAB=∠D=∠C.又∵∠D=∠D,∴△ADB∽△CDA;(2)∵△ADB∽△CDA,∴ADCD=BDAD,∵DB=2,BC=3,∴CD=5,∴AD2=BD·CD=2×5=10,∴AD=10.20.(10分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=3x(x>0)的图象交于A(1,m),B(n,1)两点.(1)求直线AB的表达式及△OAB面积;(2)根据图象写出当y1<y2时,x的取值范围;(3)若点P在x轴上,求P A+PB的最小值.(第20题图) (第20题答图)[命题考向:本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出自变量的取值范围是解答此题的关键.]解:(1)把A (1,m ),B (n ,1)两点坐标分别代入反比例函数y 2=3x ,可得m =3,n =3, ∴A (1,3),B (3,1),把A (1,3),B (3,1)代入一次函数y 1=kx +b ,可得 ⎩⎨⎧3=k +b ,1=3k +b ,解得⎩⎨⎧k =-1,b =4, ∴直线AB 的表达式为y =-x +4. ∴M (0,4),N (4,0).∴S △OAB =S △MON -S △AOM -S △BON =12×4×4-12×4×1-12×4×1=4;(2)从图象看出0<x <1或x >3时,一次函数图象在反比例函数图象的下方, ∴当y 1<y 2时,x 的取值范围是0<x <1或x >3;(3)如答图,作点A 关于x 轴的对称点C ,连结BC 交x 轴于点P ,则P A +PB 的最小值等于BC 的长,过C 作x 轴的平行线,过B 作y 轴的平行线,交于点D ,则Rt △BCD 中,BD =4,CD =2,BC =CD 2+BD 2=22+42=2 5.∴P A +PB 的最小值为2 5.21.(10分)如图,已知一张长方形纸片,AB =CD =a ,AD =BC =b (a <b <2a ).将这张纸片沿着过点A 的折痕翻折,使点B 落在AD 边上的点F ,折痕交BC 于点E ,将折叠后的纸片再次沿着另一条过点A 的折痕翻折,点E 恰好与点D 重合,此时折痕交DC 于点G . (1)在图中确定点F 、点E 和点G 的位置; (2)连结AE ,则∠EAB =__45__°;(3)用含有a ,b 的代数式表示线段DG 的长.(第21题图) ( 第21题答图)[命题考向:本题考查了翻折变换(折叠问题),矩形的性质,正确地作出图形是解题的关键.] 解:(1)点F 、点E 和点G 的位置如答图所示; (2)由折叠的性质得∠DAE =∠EAB ,∵四边形ABCD是矩形,∴∠BAD=∠DAE+∠EAB=90°,∴∠EAB=45°;(3)由折叠的性质得DG=EG,∵∠ABE=90°,∠EAB=45°,∴∠AEB=45°,∴BE=AB=a,∴CE=b-a,设CG=x,则DG=EG=a-x,在Rt△CEG中,CG2+CE2=EG2,即x2+(b-a)2=(a-x)2,解得x=2ab-b22a,∴DG=a-x=a-2ab-b22a=a-b+b22a.22.(12分)用描点法在同一直角坐标系中画出y1=|x|和y2=x+1的图象,并根据图象回答:(1)当x在什么范围时,y1<y2?(2)当x在什么范围时,y1>y2?[命题考向:本题考查了一次函数与一元一次不等式的性质,能正确画出两函数的图象是解此题的关键.] 解:函数图象如答图所示:(第22题答图)两函数的交点坐标是(-0.5,0.5),(1)当x>-0.5时,y1<y2;(2)当x<-0.5时,y1>y2.23.(12分)(1)如图1,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,若AB =AC=2,求DE的长;(2)如图2,在(1)的条件下,连结AG,AF分别交DE于M,N两点,求MN的长;(3)如图3,在△ABC中,AB=AC=BN=2,∠BAC=108°,若AM=AN,请直接写出MN的长.(第23题图)[命题考向:本题考查相似三角形的判定和性质,正方形的性质,等腰三角形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.]解:(1)∵AB=AC=2,∠A=90°,∴∠B=∠C=45°,BC=22,∵四边形DEFG是正方形,∴DE=DG=GF=EF,∠DGF=∠EFG=90°,∴∠BGD=∠CFE=90°,∴∠B=∠BDG=45°,∠C=∠CEF=45°,∴BG=DG,CF=EF,∴BG=FG=FC=DE,∴DE=13BC=223;(2)∵DE∥BC,∴MNGF=ANAF=AEAC=DEBC,∴MN223=13,∴MN=229;(3)∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,∵BA=NB,∴∠ANB=∠BAN=72°,∵AM=AN,∴∠AMN=∠ANM=72°,∴∠B=∠BAM=∠MAN=36°,∴BM=AM=AN,设MN=x,则AN=AM=BM=2-x.∵△NAM∽△NBA,∴AN2=NM·NB,∴(2-x)2=2x,∴x=3-5或3+5(舍去),∴MN=3- 5.。

2019年浙江省杭州市中考数学模拟试卷(解析版)

2019年浙江省杭州市中考数学模拟试卷(解析版)

2019年浙江省杭州市中考数学二模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)的值是()A.2B.﹣2C.±2D.42.(3分)数据240 000 000用科学记数法表示为()A.24×107B.0.24×109C.2.4×108D.2.483.(3分)下列计算正确的是()A.m6•m2=m12B.m6÷m2=m3C.()5=D.(m3)2=m6 4.(3分)如图,已知AB,CD相交于点O,AC∥BD,=,CO=6,则DO=()A.21B.15C.9D.55.(3分)下列变形正确的是()A.=B.C.D.6.(3分)某工厂第一车间有15个工人,每人日均加工螺杄数统计如图,该车间工人日均加工螺杆数的中位数是()A.4B.12C.13D.147.(3分)下列函数y随x的增大而增大的是()A.y=2(x﹣1)2+4(x>1)B.y=﹣2x+4C.y=﹣3x D.y=﹣8.(3分)如图,△ABC是⊙O的内接三角形,AD是OO的直径,∠ABC=40°,则∠CAD 的度数为()A.30°B.40°C.50°D.60°9.(3分)二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值8 10.(3分)如图,在△ABC中,AB=AC,点D在边AB上,DE∥BC,与边AC交于点E,将△ADE沿着DE所在的直线对折,得到△FDE,连结BF.记△ADE,△BDF的面积分别为S1,S2,若BD>2AD,则下列说法错误的是()A.2S2>3S1B.2S2>5S1C.3S2>7S1D.3S2>8S1二、項空题:本大题有6个小题,每小题4分,共24分.11.(4分)计算:(10mn3)÷(5mn2)=.12.(4分)如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠E的度数是.13.(4分)小明要在周末参加毕业两周年同学会,现在柜子里有两件上衣和三条裤子供他选择,上衣一件是红色,另一件是黄色,裤子两条是褐色,另一条是蓝色.如果小明选择每一件上衣和每一条裤子的机会均等,则小明选择红色上衣和褐色裤子的概率是.14.(4分)如图,△ABC是直角三角形,AB是斜边,AC=3,AB=5,AB的垂直平分线分别交BC,AB于D,E,则BD的长为.15.(4分)某市为鼓励市民节约使用燃气,对燃气进行分段收费,每月使用11立方米以内(包括11立方米)每立方米收费2元,超过部分按每立方米2.4元收取.如果某户使用9立方米燃气,需要燃气费为元;如果某户的燃气使用量是x立方米(x超过11),那么燃气费用y与x的函数关系式是.16.(4分)已知△ABC是等边三角形,AB=6,点D,E,F分别在边AB,BC,AC上,BD:BE=2:3,DE同时平分∠BEF和∠BDF,则BD的长为.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤17.(6分)A,B两地相距200千米,一辆汽车匀速从A地驶往B地,速度为v(单位:千米/小时),驶完全程的时间为t(单位:小时).(1)v关于t的函数表达式,并写出自变量t取值范围.(2)若速度每小时不超过60千米,那么从A地行驶到B地至少要行驶多少小时?18.(8分)如图统计图表示某摩托车厂去年第一、二季度各月产值的数据.请根据统计图回答下列问题:(1)相邻两个月中,哪两个月的月产值增长最快?为什么?(2)(1)中产值增长最快的这两个月之间月产值的增长率是多少?(精确到0.1%)19.(8分)已知在四边形ABCD中,AB=CD,∠BAE=∠FCD,∠AEF=∠EFC,求证:四边形AECF是平行四边形.20.(10分)已知二次函数y=ax2+4x+c,当x=﹣2时,y=﹣5;当x=1时,y=4(1)求这个二次函数表达式.(2)此函数图象与x轴交于点A,B(A在B的左边),与y轴交于点C,求点A,B,C 点的坐标及△ABC的面积.(3)该函数值y能否取到﹣6?为什么?21.(10分)已知:如图,AB是⊙O的直径,直线DC,DA分别切⊙O于点C,点A,连结BC,OD.(1)求证:BC∥OD.(2)若∠ODC=36°,AB=6,求出的长.22.(12分)某数学兴趣小组对函数y=的图象和性质进行探究,他们用描点法画此函数图象时,先列表如下(1)请补全此表;(2)根据表中数据,在如图坐标系中画出该函数的图象;(3)请写出此函数图象不同方面的三个性质;(4)若点(m,y1),(2,y2)都在此函数图象上,且y1≤y2,求m的取值范围.23.(12分)在菱形ABCD中,E是对角线AC上的一个动点,连结BE并延长交直线AD 于点F.(1)若AB=10,sin∠BAC=;①求对角线AC的长;②若BE=4,求AE的长;(2)若点F在边AD上,且=k,△BEC和四边形ECDF的面积分别是S1和S2,求的最大值.2019年浙江省杭州市中考数学二模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)的值是()A.2B.﹣2C.±2D.4【分析】根据如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.【解答】解:∵表示4的算术平方根,∴=2.故选:A.【点评】此题主要考查了算术平方根的定义,其中算术平方根的概念易与平方根的概念混淆而导致错误.2.(3分)数据240 000 000用科学记数法表示为()A.24×107B.0.24×109C.2.4×108D.2.48【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据240 000 000用科学记数法表示为2.4×108,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列计算正确的是()A.m6•m2=m12B.m6÷m2=m3C.()5=D.(m3)2=m6【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=m8,故A错误;(B)原式=m4,故B错误;(C)原式=,故C错误;故选:D.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.(3分)如图,已知AB,CD相交于点O,AC∥BD,=,CO=6,则DO=()A.21B.15C.9D.5【分析】由AC∥BD,易证△AOC∽△BOD,得=,结合已知条件,则可求DO 的值【解答】解:∵AC∥BD∴∠C=∠D,∠A=∠B∴△AOC∽△BOD∴=,∵=,CO=6,∴DO=15故选:B.【点评】此题主要考查相似三角形的性质,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.5.(3分)下列变形正确的是()A.=B.C.D.【分析】根据分式的基本性质即可求出答案.【解答】解:(A)≠,故A错误;(B)=,故B错误;(C)﹣1=,故C错误;故选:D.【点评】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.6.(3分)某工厂第一车间有15个工人,每人日均加工螺杄数统计如图,该车间工人日均加工螺杆数的中位数是()A.4B.12C.13D.14【分析】中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【解答】解:某工厂第一车间有15个工人,按照顺序排列第8个工人日均加工螺杆数是14,所以中位数为14.故选:D.【点评】本题考查了中位数的知识,掌握中位数的概念是解题关键.7.(3分)下列函数y随x的增大而增大的是()A.y=2(x﹣1)2+4(x>1)B.y=﹣2x+4C.y=﹣3x D.y=﹣【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【解答】解:A、y=2(x﹣1)2+4(x>1)中开口向上,对称轴为x=1,故当x>1时,y随着x的增大而增大,符合题意;B、y=﹣2x+4中k=﹣2<0,y随着x的增大而减小,不符合题意;C、y=﹣3x中k=﹣3<0,y随着x的增大而减小,不符合题意;D、y=﹣中k=﹣2<0,是双曲线,只在象限内y随x的增大而增大,不等于整个函数y随x的增大而增大,不符合题意,故选:A.【点评】此题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题关键.8.(3分)如图,△ABC是⊙O的内接三角形,AD是OO的直径,∠ABC=40°,则∠CAD 的度数为()A.30°B.40°C.50°D.60°【分析】首先连接CD,由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ADC的度数,又由AD是⊙O的直径,根据直径所对的圆周角是直角,即可求得答案.【解答】解:连接CD,∵∠ABC=40°,∴∠ADC=∠ABC=40°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD=90°﹣∠ADC=50°.故选:C.【点评】此题考查了三角形的外接圆与外心,圆周角定理与直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.9.(3分)二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值8【分析】根据待定系数法求得抛物线的解析式好我在想AB的解析式,设C(x,x﹣7),则D(x,x2﹣7x),根据图象的位置即可得出CD=﹣(x﹣4)2+9,根据二次函数的性质即可求得.【解答】解:∵二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),∴,解得,∴二次函数为y=x2﹣7x,∵A(7,0),B(0,﹣7),∴直线AB为:y=x﹣7,设C(x,x﹣7),则D(x,x2﹣7x),∴CD=x﹣7﹣(x2﹣7x)=﹣x2+8x﹣7=﹣(x﹣4)2+9,∴1<x<7范围内,有最大值9,故选:B.【点评】本题考查了二次函数的性质,待定系数法求一次函数的解析式,求二次函数的解析式,表示出CD的关系式是解题的关键.10.(3分)如图,在△ABC中,AB=AC,点D在边AB上,DE∥BC,与边AC交于点E,将△ADE沿着DE所在的直线对折,得到△FDE,连结BF.记△ADE,△BDF的面积分别为S1,S2,若BD>2AD,则下列说法错误的是()A.2S2>3S1B.2S2>5S1C.3S2>7S1D.3S2>8S1【分析】首先证明四边形ADFE是菱形,推出EF∥AB,可得=,由BD>2AD,推出S2>2S1,由此即可判断.【解答】解:∵AB=AC,∴∠ABC=∠C,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠C,∴∠ADE=∠AEC,∴AD=AE,∵△DEF是由△ADE翻折得到,∴AD=DF=EF=AE,∴四边形ADFE是菱形,∴EF∥AB,∴=,∵BD>2AD,∴S2>2S1,∴选项B,C,D正确,选项A错误,故选:A.【点评】本题考查翻折变换,平行线的性质,三角形的面积,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、項空题:本大题有6个小题,每小题4分,共24分.11.(4分)计算:(10mn3)÷(5mn2)=2n.【分析】直接利用整式的乘除运算法则计算得出答案.【解答】解:(10mn3)÷(5mn2)=2n.故答案为:2n.【点评】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.12.(4分)如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠E的度数是22.5°.【分析】根据正方形的性质就有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC 就可以求出∠CAE=∠E=22.5°.【解答】解:∵四边形ABCD是正方形,∴∠ACD=∠ACB=45°.∵∠ACB=∠CAE+∠AEC,∴∠CAE+∠AEC=45°.∵CE=AC,∴∠CAE=∠E=22.5°.故答案为:22.5°【点评】本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.13.(4分)小明要在周末参加毕业两周年同学会,现在柜子里有两件上衣和三条裤子供他选择,上衣一件是红色,另一件是黄色,裤子两条是褐色,另一条是蓝色.如果小明选择每一件上衣和每一条裤子的机会均等,则小明选择红色上衣和褐色裤子的概率是.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:共有6种情况,小明选择红色上衣和褐色裤子的有2种,所以小明选择红色上衣和褐色裤子的概率是:,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)如图,△ABC是直角三角形,AB是斜边,AC=3,AB=5,AB的垂直平分线分别交BC,AB于D,E,则BD的长为.【分析】连接AD,由垂直平分线的性质得到AD=BD,在△ACD中,建立勾股关系方程,可解.【解答】解:如图,连接AD由垂直平分线的性质可知AD=BD∵△ABC为直角三角形,AC=3,AB=5∴BC=4设AD为m,则CD=4﹣m在Rt△ACD中AD2=CD2+AC2m2=(4﹣m)2+32解得m=故答案为:【点评】本题考查了垂直平分线的性质和勾股定理的计算,考查比较全面,是很好的基础型问题.15.(4分)某市为鼓励市民节约使用燃气,对燃气进行分段收费,每月使用11立方米以内(包括11立方米)每立方米收费2元,超过部分按每立方米2.4元收取.如果某户使用9立方米燃气,需要燃气费为18元;如果某户的燃气使用量是x立方米(x超过11),那么燃气费用y与x的函数关系式是y=2.4x﹣4.4.【分析】根据“总价=单价×数量”即可得出使用9立方米燃气,需要燃气费;由题意列出y关于x的函数解析式.【解答】解:使用9立方米燃气,需要燃气费为:2×9=18(元);y=2×11+2.4(x﹣11),即所求的函数解析式为y=2.4x﹣4.4(x>11).故答案为:18;y=2.4x﹣4.4【点评】本题主要考查了根据实际问题列一次函数解析式,根据x>11得出燃气费应有两部分组成是解题关键.16.(4分)已知△ABC是等边三角形,AB=6,点D,E,F分别在边AB,BC,AC上,BD:BE=2:3,DE同时平分∠BEF和∠BDF,则BD的长为.【分析】根据角平分线的定义得到∠BDE=∠FDE,∠BED=∠FED,根据全等三角形的性质得到∠DBE=∠DFE,BD=DF,BE=EF,由等边三角形的性质得到∠A=∠ABC =∠C=60°,求得∠DFE=60°,根据相似三角形的性质即可得到结论.【解答】解:如图,∵DE同时平分∠BEF和∠BDF,∴∠BDE=∠FDE,∠BED=∠FED,在△BDE与△FDE中,,∴△BDE≌△FDE(ASA),∴∠DBE=∠DFE,BD=DF,BE=EF,∵△ABC是等边三角形,∴∠A=∠ABC=∠C=60°,∴∠DFE=60°,∴∠ADF=∠AFD=∠AFD+∠CFE=120°,∴∠ADF=∠CFE,∴△ADF∽△CFE,∴==,∵BD:BE=2:3,∴设BD=DF=2x,BE=EF=3x,∴AD=6﹣2x,CE=6﹣3x,∴==,∴CF=9﹣3x,AF=4﹣2x,∵AF+CF=6,∴9﹣3x+4﹣2x=6,∴x=,∴BD=2x=.故答案为:.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,等边三角形的性质,正确的画出图形是解题的关键.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤17.(6分)A,B两地相距200千米,一辆汽车匀速从A地驶往B地,速度为v(单位:千米/小时),驶完全程的时间为t(单位:小时).(1)v关于t的函数表达式,并写出自变量t取值范围.(2)若速度每小时不超过60千米,那么从A地行驶到B地至少要行驶多少小时?【分析】(1)根据速度=路程÷时间即可得出v关于t的函数表达式,进而写出自变量t 取值范围;(2)根据速度每小时不超过60千米列出不等式,即可求解.【解答】解:(1)由题意,可得v=(t>0);(2)∵v≤60,∴≤60,解得t≥.即从A地行驶到B地至少要行驶小时.【点评】本题考查了反比例函数的应用,根据题意列出函数关系式是解题的关键.18.(8分)如图统计图表示某摩托车厂去年第一、二季度各月产值的数据.请根据统计图回答下列问题:(1)相邻两个月中,哪两个月的月产值增长最快?为什么?(2)(1)中产值增长最快的这两个月之间月产值的增长率是多少?(精确到0.1%)【分析】(1)从折线图中可以看到,3月比2月多15左右,5月比4月多15左右;(2)设月增长率为x,从图中可知50(1+x)2=70;【解答】解:(1)3月和5月增长快;从折线图中可以看到,3月比2月多15左右,5月比4月多15左右;(2)设月增长率为x,根据题意得:50(1+x)2=70,∴x≈20%,∴3月到5月之间的月增长率是20%;【点评】本题考查折线统计图;能够从折线统计图中读取信息,列出关系式解题是关键.19.(8分)已知在四边形ABCD中,AB=CD,∠BAE=∠FCD,∠AEF=∠EFC,求证:四边形AECF是平行四边形.【分析】根据邻补角的定义得到∠AEB=∠CFD,根据全等三角形的性质得到AE=CF,于是得到结论.【解答】证明:∵∠AEF=∠EFC,∴AE∥CF,∴∠AEB=∠CFD,在△ABE与△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练正确全等三角形的判定和性质定理是解题的关键.20.(10分)已知二次函数y=ax2+4x+c,当x=﹣2时,y=﹣5;当x=1时,y=4(1)求这个二次函数表达式.(2)此函数图象与x轴交于点A,B(A在B的左边),与y轴交于点C,求点A,B,C 点的坐标及△ABC的面积.(3)该函数值y能否取到﹣6?为什么?【分析】(1)把x=﹣2时,y=﹣5;x=1时,y=4代入y=ax2+4x+c,求得a、c的值即可求得;(2)令y=0,解方程求得A、B点的坐标,令x=0,求得y=﹣1,得到C点的坐标,然后根据三角形面积公式即可求得△ABC的面积;(3)把(1)中求得的解析式化成顶点式,求得函数y的最小值为﹣5,故函数值y不能取到﹣6.【解答】解:(1)把x=﹣2时,y=﹣5;x=1时,y=4代入y=ax2+4x+c得,解得,∴这个二次函数表达式为y=x2+4x﹣1;(2)令y=0,则x2+4x﹣1=0,解得x=﹣2±,∴A(﹣2﹣,0),B(﹣2+,0),令x=0,则y=﹣1,∴C(0,﹣1),∴△ABC的面积:AB•OC=(﹣2++2+)×1=;(3)∵y=x2+4x﹣1=(x+2)2﹣5,∴函数y的最小值为﹣5,∴函数值y不能取到﹣6.【点评】本题考查了抛物线和x轴的交点,待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,以及二次函数的性质,二次函数图象上点的坐标适合解析式是解题的关键.21.(10分)已知:如图,AB是⊙O的直径,直线DC,DA分别切⊙O于点C,点A,连结BC,OD.(1)求证:BC∥OD.(2)若∠ODC=36°,AB=6,求出的长.【分析】(1)连接OC,根据切线长定理得到CD=AD,根据全等三角形的性质得到∠AOD =∠COD,根据圆周角定理得到∠B=∠AOD,于是得到结论;(2)根据切线长定理得到∠ADC=2∠CDO=72°,根据四边形的内角和得到∠AOC=180°﹣∠ADC=108°,求得∠BOC=72°,根据弧长公式即可得到结论.【解答】解:(1)连接OC,∵直线DC,DA分别切⊙O于点C,∴CD=AD,在△ADO与△CDO中,,∴△ADO≌△CDO(SSS),∴∠AOD=∠COD,∴∠AOD=AOC,∵∠B=AOC,∴∠B=∠AOD,∴BC∥OD;(2)∵∠ODC=36°,直线DC,DA分别切⊙O于点C,点A,∴∠ADC=2∠CDO=72°,∴∠AOC=180°﹣∠ADC=108°,∴∠BOC=72°,∵AB=6,∴OB=3,∴的长==.【点评】本题考查了切线的性质,圆周角定理,弧长的计算,全等三角形的判定和性质,平行线的判定,正确的识别图形是解题的关键.22.(12分)某数学兴趣小组对函数y=的图象和性质进行探究,他们用描点法画此函数图象时,先列表如下(1)请补全此表;(2)根据表中数据,在如图坐标系中画出该函数的图象;(3)请写出此函数图象不同方面的三个性质;(4)若点(m,y1),(2,y2)都在此函数图象上,且y1≤y2,求m的取值范围.【分析】(1)把x=﹣1、﹣2、﹣3、﹣4分别代入y=中计算即可得到对应的函数值;(2)利用描点法画出函数图象;(3)结合图象写出三个性质即可;(4)根据图象即可求得.【解答】解:(1)如下表:(2)如图所示:(3)①函数值y>0,②当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大;③图象的对称轴是y轴;(4)由图象可知,若点(m,y1),(2,y2)都在此函数图象上,且y1≤y2,m的取值范围是x<﹣2或x>2.【点评】本题考查反比例函数的图象与性质、反比例函数图象上点的坐标特征,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.(12分)在菱形ABCD中,E是对角线AC上的一个动点,连结BE并延长交直线AD 于点F.(1)若AB=10,sin∠BAC=;①求对角线AC的长;②若BE=4,求AE的长;(2)若点F在边AD上,且=k,△BEC和四边形ECDF的面积分别是S1和S2,求的最大值.【分析】(1)①连接BD,根据菱形的性质得到AO=OC,AC⊥BD,根据正弦的定义、勾股定理计算,得到答案;②分点F在边AD上、点F在边AD的延长线上两种情况,根据勾股定理计算;(2)连接DE,证明△BCE≌△DCE,设△BCE的面积为S,根据相似三角形的性质求出S△AEF、S△EFD,根据二次函数的性质计算即可.【解答】解:(1)①如图1,连接BD,∵四边形ABCD是菱形,∴AO=OC,AC⊥BD,在Rr△AOB中,sin∠BAC=,即=,解得,OB=8,由勾股定理得,AO==6,则AC=2OA=12;②当点F在边AD上时,OE==4,则AE=OA﹣OE=2,当点F′在边AD的延长线上时,AE′=OA+OE′=8;(2)如图2,连接DE,∵四边形ABCD是菱形,∴CB=CD,∠ACB=∠ACD,在△BCE和△DCE中,,∴△BCE≌△DCE(SAS)设△BCE的面积为S,则△DCE的面积为S,∵AF∥BC,∴△AEF∽△CEB,∴=k2,即S△AEF=k2S,∵=k,∴=,∴=,解得,S△EFD=kS﹣k2S,==﹣k2+k+1=﹣(k﹣)2+,当k=时,的最大值为.【点评】本题考查的是菱形的性质、相似三角形的判定和性质、全等三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.。

浙江省杭州市2019-2020学年第二次中考模拟考试数学试卷含解析

浙江省杭州市2019-2020学年第二次中考模拟考试数学试卷含解析

浙江省杭州市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )A .0.15B .0.2C .0.25D .0.32.如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 直径BE 上,连结AE ,若∠E=36°,则∠ADC 的度数是( )A .44°B .53°C .72°D .54°3.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( ) A .8.1×106B .8.1×105C .81×105D .81×1044.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个5.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .546.已知⊙O 的半径为5,弦AB=6,P 是AB 上任意一点,点C 是劣弧»AB 的中点,若△POC 为直角三角形,则PB 的长度( ) A .1 B .5C .1或5D .2或47.若分式12x -有意义...,则x 的取值范围是( ) A .2x =;B .2x ≠;C .2x >;D .2x <.8.下列运算正确的是( ) A .()a b c a b c -+=-+ B .()2211x x =++ C .()33a a -=D .235236a a a =⋅9.下列图形中,是轴对称图形的是( )A .B .C .D .10.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )A .B .C .D .11.计算(-ab 2)3÷(-ab)2的结果是( ) A .ab 4 B .-ab 4 C .ab 3 D .-ab 312.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x =8 B .若这5次成绩的众数是8,则x =8 C .若这5次成绩的方差为8,则x =8 D .若这5次成绩的平均成绩是8,则x =8二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.25位同学10秒钟跳绳的成绩汇总如下表: 人数1234510次数 15 8 25 10 17 20那么跳绳次数的中位数是_____________. 14.计算:102(2018)--=___.15.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.16.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数ky x=的图象经过点B ,则k 的值是_____.17.若2216a b -=,13a b -=,则+a b 的值为 ________ .18.如图,在四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC 、BD ,若S 四边形ABCD =18,则BD 的最小值为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A 、D 是人工湖边的两座雕塑,AB 、BC 是湖滨花园的小路,小东同学进行如下测量,B 点在A 点北偏东60°方向,C 点在B 点北偏东45°方向,C 点在D 点正东方向,且测得AB =20米,BC =40米,求AD 的长.(3≈1.732,2≈1.414,结果精确到0.01米)20.(6分)如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.21.(6分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(元)19 20 21 30(件)62 60 58 40(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?22.(8分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.写出图中小于平角的角.求出∠BOD的度数.小明发现OE平分∠BOC,请你通过计算说明道理.23.(8分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB 的面积;观察图象,直接写出y1>y1时x的取值范围.24.(10分)解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.25.(10分)如图1,直线l :y=34x+m 与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线y=12 x 2+bx+c经过点B ,与直线l 的另一个交点为C (4,n ). (1)求n 的值和抛物线的解析式;(2)点D 在抛物线上,DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2),设点D 的横坐标为t (0<t <4),矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值; (3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.26.(12分)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?27.(12分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°画出旋转之后的△AB′C′;求线段AC旋转过程中扫过的扇形的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】读图可知:参加课外活动的人数共有(15+30+20+35)=100人,其中参加科技活动的有20人,所以参加科技活动的频率是20100=0.2,故选B.2.D【解析】【分析】根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解. 【详解】根据直径所对的圆周角为直角可得∠BAE=90°,根据∠E=36°可得∠B=54°,根据平行四边形的性质可得∠ADC=∠B=54°.故选D【点睛】本题考查了平行四边形的性质、圆的基本性质.3.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】810 000=8.1×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.5.B【解析】【分析】由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.【详解】∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4, ∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 6.C 【解析】 【分析】由点C 是劣弧AB 的中点,得到OC 垂直平分AB ,求得DA=DB=3,根据勾股定理得到OD==1,若△POC 为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论. 【详解】∵点C 是劣弧AB 的中点, ∴OC 垂直平分AB , ∴DA=DB=3, ∴4=,若△POC 为直角三角形,只能是∠OPC=90°, 则△POD ∽△CPD , ∴PD CDOD PD=, ∴PD 2=4×1=4,∴PD=2,∴PB=3﹣2=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,∴PB的长度为1或5.故选C.【点睛】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.7.B【解析】【分析】分式的分母不为零,即x-2≠1.【详解】∵分式12x-有意义...,∴x-2≠1,∴2x≠.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.8.D【解析】【分析】由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.【详解】解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;C、(-a)3=3a ≠3a,故原题计算错误;D、2a2•3a3=6a5,故原题计算正确;故选:D.【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则.9.B【解析】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.10.D【解析】【分析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短,就用到两点间线段最短定理.【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.11.B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,12.D【解析】【分析】根据中位数的定义判断A ;根据众数的定义判断B ;根据方差的定义判断C ;根据平均数的定义判断D .【详解】A 、若这5次成绩的中位数为8,则x 为任意实数,故本选项错误;B 、若这5次成绩的众数是8,则x 为不是7与9的任意实数,故本选项错误;C 、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D 、若这5次成绩的平均成绩是8,则15(8+9+7+8+x )=8,解得x=8,故本选项正确; 故选D .【点睛】本题考查中位数、众数、平均数和方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差()()()()22221232...n x x x x x x x xS n -+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.20【解析】分析:根据中位数的定义进行计算即可得到这组数据的中位数.详解:由中位数的定义可知,这次跳绳次数的中位数是将这25位同学的跳绳次数按从小到大排列后的第12个和13个数据的平均数,∵由表格中的数据分析可知,这组数据按从小到大排列后的第12个和第13个数据都是20,∴这组跳绳次数的中位数是20.故答案为:20.点睛:本题考查的是怎样确定一组数据的中位数,解题的关键是弄清“中位数”的定义:“把一组数据按从小到大的顺序排列后,若数据组中共有奇数个数据,则最中间一个数据是该组数据的中位数;若数据组中数据的个数为偶数个,则最中间两个数据的平均数是这组数据的中位数”.14.12-直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【详解】 原式11122=-=-. 故答案为12-. 【点睛】本题考查了实数运算,正确化简各数是解题的关键.15.40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°, 故答案为:40.163【解析】【分析】已知△ABO 是等边三角形,通过作高BC ,利用等边三角形的性质可以求出OB 和OC 的长度;由于Rt △OBC 中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC 的长度,进而确定点B 的坐标;将点B 的坐标代入反比例函数的解析式k y x =中,即可求出k 的值. 【详解】过点B 作BC 垂直OA 于C ,∵点A 的坐标是(2,0),∴AO=2,∵△ABO 是等边三角形,∴OC=1,3∴点B 的坐标是(3,把(3代入k y x=,得3k =. .【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;17.-12.【解析】分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.详解:∵a2﹣b2=(a+b)(a﹣b)=16,a﹣b=13,∴a+b=12.故答案为12.点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.18.6【解析】【分析】过A作AM⊥CD于M,过A作AN⊥BC于N,先根据“AAS”证明△DAM≌△BAN,再证明四边形AMCN 为正方形,可求得AC=6,从而当BD⊥AC时BD最小,且最小值为6.【详解】如下图,过A作AM⊥CD于M,过A作AN⊥BC于N,则∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四边形AMCN为正方形,∴S四边形ABCD=S四边形AMCN=12AC2,∴AC=6,∴BD⊥AC时BD最小,且最小值为6. 故答案为:6.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.AD=38.28米.【解析】【分析】过点B作BE⊥DA,BF⊥DC,垂足分别为E、F,已知AD=AE+ED,则分别求得AE、DE的长即可求得AD的长.【详解】过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,由题意知,AD⊥CD∴四边形BFDE为矩形∴BF=ED在Rt△ABE中,AE=AB•cos∠EAB在Rt△BCF中,BF=BC•cos∠FBC∴AD=AE+BF=20•cos60°+40•cos45°=20×12+40×22=10+202=10+20×1.414=38.28(米).即AD=38.28米.【点睛】20.(1)说明见解析;(2)当∠B=30°时,四边形ACEF是菱形.理由见解析.【解析】试题分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴四边形ACEF是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.21.(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】【分析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则62196020k bk b=+⎧⎨=+⎩,解得k2b100=-⎧⎨=⎩,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式.22.(1)答案见解析(2)155°(3)答案见解析【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【详解】(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.23.(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得∴一次函数的解析式为y 1=﹣x+1;,(1)在一次函数y 1=﹣x+1中,当x=0时,y=1,即N (0,1);当y=0时,x=1,即M (1,0) ∴=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y 1>y 1时,x 的取值范围为:x <﹣1或0<x <4考点:1、一次函数,1、反比例函数,3、三角形的面积24.则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【详解】21x 512x x x +>⎧⎪⎨+-≥⎪⎩①,② 解不等式①得:x >﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.25.(1)n=2;y=12x 2﹣54x ﹣1;(2)p=272855t t -+;当t=2时,p 有最大值285;(3)6个,712或43;(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,根据图3、图4两种情形即可解决.【详解】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值.(3)“落点”的个数有6个,如图1,图2中各有2个,图3,图4各有一个所示.如图3中,设A1的横坐标为m,则O1的横坐标为m+,∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,解得m=,如图4中,设A1的横坐标为m,则B1的横坐标为m+,B1的纵坐标比例A1的纵坐标大1,∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,解得m=,本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A 1O 1∥y 轴时,B 1O 1∥x 轴,旋转角是180°判断出A 1O 1∥x 轴时,B 1A 1∥AB ,解题时注意要分情况讨论. 26.(1)6;(2)126y x =-;259524y x =-;(3)10或15413; 【解析】【分析】(1)根据图象变化确定a 秒时,P 点位置,利用面积求a ;(2)P 、Q 两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒; (3)以(2)为基础可知,两个点相距3cm 分为相遇前相距或相遇后相距,因此由(2)可列方程.【详解】(1)由图象可知,当点P 在BC 上运动时,△APD 的面积保持不变,则a 秒时,点P 在AB 上. 110302AP ⨯=, ∴AP=6,则a=6;(2)由(1)6秒后点P 变速,则点P 已行的路程为y 1=6+2(x ﹣6)=2x ﹣6,∵Q 点路程总长为34cm ,第6秒时已经走12cm ,故点Q 还剩的路程为y 2=34﹣12﹣5595(6)424x x -=-; (3)当P 、Q 两点相遇前相距3cm 时,59524x -﹣(2x ﹣6)=3,解得x=10, 当P 、Q 两点相遇后相距3cm 时,(2x ﹣6)﹣(59524x -)=3,解得x=15413, ∴当x=10或15413时,P 、Q 两点相距3cm 【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x 的连续性才能直接列出函数关系式.27..(1)见解析(2)π【解析】【分析】(1)根据网格结构找出点B 、C 旋转后的对应点B′、C′的位置,然后顺次连接即可.(2)先求出AC 的长,再根据扇形的面积公式列式进行计算即可得解.解:(1)△AB′C′如图所示:(2)由图可知,AC=2,∴线段AC旋转过程中扫过的扇形的面积2902360ππ⋅⋅==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年浙江省杭州市萧山中学中考数学二模试卷含2019中考试题一.选择题(共10小题,满分30分,每小题3分)1.若|﹣x|=5,则x等于()A.﹣5B.5C.D.±52.下列代数式变形正确的是()A.﹣a+b=﹣(a+b)B.﹣4a2+b2=(2a﹣b)(2a+b)C.(﹣x﹣y)2=(x+y)2D.x2﹣4x﹣3=(x﹣2)2﹣33.图1是边长为4的正方形硬纸片ABCD,点E、F分别是AB、BC的中点,若沿图1的虚线剪开并拼成图2的“小屋”,则图中阴影部分的面积()A.2B.4C.8D.104.一列列车自全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x千米/时,则根据题意所列方程正确的是()A.﹣=1B.﹣=1C.﹣=1D.﹣=15.近年来,我国持续大面积雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某中学举行了“建设宜居白银,关注环境保护”的知识竞赛,某班学生的成绩统计如下表.则该班学生成绩的众数和中位数分别是()A.70分80分B.80分80分C.90分80分D.80分90分6.如图,AB是⊙O的直径,弦CD⊥AB于H,且CD=2,BD=,则AB的长为()A.2B.3C.4D.57.如图所示的是一个小正方体的展开图,把展开图折叠成小正方体,有“粤”字一面的相对面上的字是()A.澳B.大C.湾D.区8.在Rt△ABC中,∠B=90°,AB=3,BC=4,则cos C的值为()A.B.C.D.9.已知抛物线y=a(x﹣1)(x﹣3)﹣2(a≠0)与x轴交点的横坐标为m,n,且m<n,又点(x0,y0)是抛物线上一点,则下列结论正确的是()A.该抛物线可由抛物线y=ax2向右平移2个单位,向下平移2个单位得到B.若1<m<n<3,则a>0C.若1<x0<3,则y0<0D.不论a取何值,m+n=410.如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是()A.B.C.1D.二.填空题(共6小题,满分24分,每小题4分)11.﹣12018+(﹣1)0=.12.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.13.抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是.14.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.15.如图,△ABC中,∠C=90°,CA=CB,D为AC上的一点,AD=3CD,AE⊥AB交BD的延长线于E,记△EAD,△DBC的面积分别为S1,S2,则S1:S2=.16.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC,则∠BEC=.三.解答题(共7小题,满分66分)17.(6分)定义新运算:a★b=a(1﹣b),a,b是实数,如﹣2★3=﹣2×(1﹣3)=4(1)求(﹣2)★(﹣1)的值;(2)已知a≠b,试说明:a★b≠b★a.18.(8分)为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?19.(8分)已知M=5x2+3,N=4x2+4x.(1)求当M=N时x的值;(2)当1<x<时,试比较M,N的大小.20.(10分)P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC 边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.21.(10分)小邱同学根据学习函数的经验,研究函数y=的图象与性质.通过分析,该函数y与自变量x的几组对应值如下表,并画出了部分函数图象如图所示.(1)函数y=的自变量x的取值范围是;(2)在图中补全当1≤x<2的函数图象;(3)观察图象,写出该函数的一条性质:;(4)若关于x的方程=x+b有两个不相等的实数根,结合图象,可知实数b的取值范围是.22.(12分)在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N,动点P在线段BA上以每秒cm的速度由点B向点A运动.同时,动点Q在线段AC上由点N 向点C运动,且始终保持MQ⊥MP.一个点到终点时两个点同时停止运动,设运动的时间为t 秒(t>0).(1)求证:△PBM∽△QNM.(2)若∠ABC=60°,AB=4cm,①求动点Q的运动速度;②设△APQ的面积为S(cm2),求S与t的等量关系式(不必写出t的取值范围).23.(12分)阅读材料,解答问题.例:用图象法解一元二次不等式:x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3≤0的解集是;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.2019年浙江省杭州市萧山中学中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】直接利用绝对值的性质得出答案即可.【解答】解:∵|﹣x|=5,∴﹣x=±5,∴x=±5.故选:D.【点评】此题主要考查了绝对值,利用绝对值等于一个正数的数有两个进而得出是解题关键.2.【分析】直接利用添括号法则以及公式法分解因式、配方法的应用分别分析得出答案.【解答】解:A、﹣a+b=﹣(a﹣b),故此选项错误;B、﹣4a2+b2=(b﹣2a)(2a+b),故此选项错误;C、(﹣x﹣y)2=(x+y)2,正确;D、x2﹣4x﹣3=(x﹣2)2﹣7,故此选项错误;故选:C.【点评】此题主要考查了添括号法则以及公式法分解因式、配方法的应用,正确掌握运算法则是解题关键.3.【分析】根据图形的变换可得:阴影部分面积为正方形面积的,把相关数值代入计算即可求得答案.【解答】解:∵阴影部分由一个等腰直角三角形和一个直角梯形组成,∴阴影部分面积为正方形面积的,∵正方形ABCD的边长为4,∴正方形ABCD的面积为:42=16,∴图中阴影部分的面积为:×16=4.故选:B.【点评】此题考查了剪纸问题.注意得到阴影部分面积与原正方形面积的关系是解决本题的突破点.4.【分析】设列车提速前的速度是x千米/时,根据该列车从甲站到乙站所用的时间比原来减少了1小时,列出方程解答即可.【解答】解:设列车提速前的速度是x千米/时,根据题意可得:,故选:A.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5.【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,80分出现次数最多,所以众数为80分;由于一共调查了4+8+12+11+5=40人,所以中位数为第20、21个数据的平均数,即中位数为=80(分),故选:B.【点评】考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.【分析】连接OD,如图,先利用垂径定理得到CH=,再利用勾股定理计算出BH=1,设⊙O的半径为r,则OH=r﹣1,OD=r,利用勾股定理得到(r﹣1)2+()2=r2,解方程求出r 即可得到直径AB的长.【解答】解:连接OD,如图,∵CD⊥AB,∴DH=CH=CD=,在Rt△BDH中,BH==1,设⊙O的半径为r,则OH=r﹣1,OD=r,在Rt△OHD中,(r﹣1)2+()2=r2,解得r=,∴AB=2r=3.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.7.【分析】根据正方体的展开图中,相对的面不存在公共点进行判断即可.【解答】解:根据正方体展开图可知:港、澳、湾、区四个字所在的面与奥所在的面都有公共点,故他们不可能是对面,∴有“粤”字一面的相对面上的字是“大”.故选:B.【点评】本题主要考查的是正方体相对两个面上的文字,明确正方体的展开图中相对的面不存在公共点是解题的关键.8.【分析】先根据勾股定理求出斜边AC的长,再根据余弦函数的定义求解可得.【解答】解:∵Rt△ABC中,∠B=90°,AB=3,BC=4,∴AC===5,∴cos C==,故选:A.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握余弦函数的定义与勾股定理.9.【分析】根据二次函数图象与系数的关系,可得答案.【解答】解:化简,得y=ax2﹣4ax+3a﹣2,当y=0时,ax2﹣4ax+3a﹣2=0,m+n=4,故D符合题意;故选:D.【点评】本题考查了二次函数图象与系数的关系,利用一元二次方程的两个之和等于一次项系数与二次项系数的比的相反数是解题关键.10.【分析】设MD=a,MF=x,利用△ADM∽△DFM,得到∴,利用△DMF∽△DCE,∴.得到a与x的关系式,化简可得x的值,得到D选项答案.【解答】解:∵AE平分∠BAF交BC于点E,且DE⊥AF,∠B=90°,∴AB=AM,BE=EM=3,又∵AE=2,∴,设MD=a,MF=x,在△ADM和△DFM中,,∴△ADM∽△DFM,,∴DM2=AM•MF,∴,在△DMF和△DCE中,,∴△DMF∽△DCE,∴.∴,∴,解之得:,故选:D.【点评】本题考查了角平分线的性质以及三角形相似的判定方法,解题的关键在于利用三角形相似构造方程求得对应边的长度.二.填空题(共6小题,满分24分,每小题4分)11.【分析】直接利用幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.【分析】根据平行线的性质得到∠EDC=∠E=45°,根据三角形的外角性质得到∠AFD=∠C+∠EDC,代入即可求出答案.【解答】解:∵∠EAD=∠E=45°,∵AE∥BC,∴∠EDC=∠E=45°,∵∠C=30°,∴∠AFD=∠C+∠EDC=75°,故答案为:75°.【点评】本题主要考查对平行线的性质,三角形的外角性质等知识点的理解和掌握,能利用性质进行推理是解此题的关键,题型较好,难度适中.13.【分析】由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.【解答】解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,所以朝上一面的点数不小于3的概率是=,故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.14.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.15.【分析】如图,作DF∥BC交AB于F,作DH⊥AB于H.想办法证明DE:DB=3:5,推出S=•S1,根据=,即可解决问题.△ADB【解答】解:如图,作DF∥BC交AB于F,作DH⊥AB于H.∵CA=CB,∠C=90°,∴∠CAB=∠CBA=45°,∵DF∥BC,∴∠DFA=∠CBA=45°,∴∠DAF=∠DFA,∴DA=DF,∴DH⊥AF,∴AH=HF,∵DF∥BC,∴==3,∴=,∵DH⊥AB,AE⊥AB,∴DH∥AE,∴==,=•S1,∴S△ADB∵=,∴=,∴S1:S2=9:5,故答案为9:5.【点评】本题考查等腰直角三角形的性质和判定,平行线的性质,等高模型等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.16.【分析】ED是AC的垂直平分线,可得AE=EC;∠A=∠ACE;已知∠A=36°,可求∠ACE,再根据三角形外角的性质即可求解.【解答】解:∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°,∴∠BEC=∠A+∠ECD=36°+36°=72°;故答案为:72°.【点评】本题考查了线段垂直平分线,等腰三角形性质,三角形外角的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.三.解答题(共7小题,满分66分)17.【分析】(1)根据★的含义,以及实数的运算方法,求出(﹣2)★(﹣1)的值是多少即可.(2)首先分别求出a★b、b★a的值各是多少;然后根据a≠b,说明a★b≠b★a即可.【解答】解:(1)(﹣2)★(﹣1)=(﹣2)×[1﹣(﹣1)]=(﹣2)×2=﹣4(2)a★b=a(1﹣b)=a﹣ab,b★a=b(1﹣a)=b﹣ab,∵a≠b,∴a﹣ab≠b﹣ab∴a★b≠b★a.【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【分析】(1)用7次的人数除以7次所占的百分比即可求得总人数,然后求得6次的人数即可确定众数;(2)补齐6次小组的小长方形即可.(2)用总人数乘以达标率即可.【解答】解:(1)观察统计图知达到7次的有7人,占28%,∴7÷28%=25人,达到6次的有25﹣2﹣5﹣7﹣3=8人,故众数为6次;…(2)(3)(人).答:该校125名九年级男生约有90人体能达标.…【点评】本题考查了条形统计图的知识,解题的关键是从统计图中整理出进一步解题的有关信息.19.【分析】(1)利用题意列方程5x2+3=4x2+4x,然后利用因式分解法解方程即可;(2)利用求差法得到M﹣N=(x﹣1)(x﹣3),然后根据x的取值范围确定积的符合,从而得到M与N的关系关系.【解答】解:(1)根据题意得5x2+3=4x2+4x,整理得x2﹣4x+3=0,(x﹣1)(x﹣3)=0,x﹣1=0或x﹣3=0,所以x1=1,x2=3;(2)M﹣N=5x2+3﹣(x2+4x)=x2﹣4x+3=(x﹣1)(x﹣3),∵1<x<,∴x﹣1>0,x﹣3<0,∴M﹣N=(x﹣1)(x﹣3)<0,【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.注意因式分解的应用.20.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.21.【分析】(1)根据函数表达式中,根号内的被开方数为非负数以及分母不为零,即可得到自变量x的取值范围;(2)根据列表中的对应值进行描点、连线,即可得到当1≤x<2时的函数图象;(3)根据函数图象的增减性,即可得到该函数的一条性质;(4)根据函数y=和y=x+b的图象可知:当b>﹣2时,有一个交点;当b≤﹣2时,有两个交点,据此即可得到实数b的取值范围.【解答】解:(1)由x﹣1≥0且x﹣1≠1,可得x≥1且x≠2;(2)当1≤x<2的函数图象如图所示:(3)由图可得,当1≤x<2(或x>2)时,函数图象从左往右下降,即y随x的增大而减小;(4)关于x的方程=x+b有两个不相等的实数根,结合图象,可知实数b的取值范围是b≤﹣2.故答案为:x≥1且x≠2;当1≤x<2(或x>2)时,y随x的增大而减小;b≤﹣2.【点评】本题主要考查了反比例函数的图象与性质,用描点法画反比例函数的图象的步骤为:列表﹣﹣﹣描点﹣﹣﹣连线.连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.22.【分析】(1)由条件可以得出∠BMP=∠NMQ,∠B=∠MNC,就可以得出△PBM∽△QNM;(2)①根据直角三角形的性质和中垂线的性质BM、MN的值,再由△PBM∽△QNM就可以求出Q的运动速度;②先由条件表示出AN、AP和AQ,再由三角形的面积公式就可以求出其解析式.【解答】解:(1)∵MQ⊥MP,MN⊥BC,∴∠PMN+∠PMB=90°,∠QMN+∠PMN=90°,∴∠PMB=∠QMN.∵∠B+∠C=90°,∠C+∠MNQ=90°,∴∠B=∠MNQ,∴△PBM∽△QNM.(2)∵∠BAC=90°,∠ABC=60°,∴BC=2AB=8cm.AC=12cm,∵MN垂直平分BC,∴BM=CM=4cm.∵∠C=30°,∴MN=CM=4cm.①设Q点的运动速度为v(cm/s).∵△PBM∽△QNM.∴=,∴=,∴v=1,答:Q点的运动速度为1cm/s.②∵AN=AC﹣NC=12﹣8=4cm,∴AP=4﹣t,AQ=4+t,∴S=AP•AQ=(4﹣t)(4+t)=﹣t2+8.【点评】本题主要考查了相似三角形的综合问题,考查了相似三角形的判定与性质的运用,三角形的面积公式的运用的运用,解答本题时求出△PBM∽△QNM是关键.23.【分析】(1)直接利用x2﹣2x﹣3≤0即y≤0得出对应的x的值;(2)画出y=x2﹣1的函数图象,进而得出答案.【解答】解:(1)一元二次不等式x2﹣2x﹣3≤0的解集是:﹣1≤x≤3;故答案为:﹣1≤x≤3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1,∴由此得抛物线y=x2﹣1的大致图象如图所示,观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.【点评】此题主要考查了二次函数与一元二次方程,正确数形结合是解题关键.2019年杭州市中考数学试卷一、选择题(本大题有10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求)1.计算下列各式,值最小的是 ( )A .20+19?B .2019+?C .2019+-?D .2019++-【考点】实数【解析】8A =- 7B =- 7C =- 6D =-【答案】故选A2.在平面直角坐标系中,点(),2A m 与点()3,b n 关于y 轴对称,则 ( )A . 3m =,2n =B .3m =-,2n =C .2m =,3n =D .2m =-,3n =【考点】直角坐标系【解析】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同【答案】故选B3.如图,P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 两点,若3PA =,则PB = ( )A .2B .3C .4D .5P【考点】圆与切线长【解析】因为P A 和PB 与⊙O 相切,所以P A =PB =3【答案】故选B4.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .()237230x x +-=B .()327230x x +-=C .()233072x x +-=D .()323072x x +-=【考点】一元一次方程【解析】设男生x 人,则女生有(30-x )人,由题意得:()323072x x +-=【答案】故选D5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是 ( )A .平均数B .中位数C .方差D .标准差【考点】数据【解析】这组数据中的中位数是41,与涂污数字无关【答案】故选B6.如图,在ABC △中,D 、E 分别在AB 边和AC 边上,//DE BC ,M 为BC 边上一点(不与B 、C重合),连结AM 交DE 于点N ,则 ( )A .AD AN AN AE =B .BD MN MN CE =C .DN NE BM MC =D .DN NE MC BM= E N DCB A【考点】相似三角形【解析】∵//DE BC ,∴△ADN ∽△ABM ,△ANE ∽△AMC ∴,DN AN AN NE DN NE BM AM AM MC BM MC==? 【答案】故选C7.在ABC △中,若一个内角等于另外两个角的差,则 ( )A .必有一个角等于30°B . 必有一个角等于45°C . 必有一个角等于60°D . 必有一个角等于90°【考点】三角形内角和【解析】设三角形的一个内角为x ,另一个角为y ,则三个角为(180°-x -y ),则有三种情况: ①(180)9090x y x y y x y =-︒--⇒=+=o o 或 ②(180)9090y x x y x x y =---⇒=+=o o o 或 ③(180)9090x y x y x y --=-⇒==o o o 或综上所述,必有一个角等于90°【答案】故选D8.已知一次函数1y ax b =+和2y bx a =+()a b ≠,函数1y 和2y 的图象可能是 ( )A .B .C .D .【考点】一次函数的图象【解析】①当0,0a b >>,1y 、2y 的图象都经过一、二、三象限 ②当0,0a b <<,1y 、2y 的图象都经过二、三、四象限③当0,0a b ><,1y 的图象都经过一、三、四象限,2y 的图象都经过一、二、四象限 ④当0,0a b <>,1y 的图象都经过一、二、四象限,2y 的图象都经过一、三、四象限满足题意的只有A 【答案】故选A9.如图,一块矩形木板ABCD 斜靠在墙边,(OC OB ^,点A 、B 、C 、D 、O 在同一平面内),已知AB a =,AD b =,BCO x ?.则点A 到OC 的距离等于 ( ) A . sin sin a x b x + B .cos cos a x b x + C .sin cosa xb x + D .cos sin a x b x +【考点】三角函数、矩形的性质【解析】过点A 作AE ⊥OB 于点E ,因为四边形ABCD 是矩形,且AB =a ,AD =b 所以BC =AD =b ,∠ABC =90° 所以∠ABE =∠BCO =x因为sin OB x BC =,cos BEx AB= 所以sin OB b x =,cos BE a x =所以点A 到OC 的距离cos sin d BE OB a x b x =+=+【答案】故选DE10.在平面直角坐标系中,已知a b ¹,设函数()()y x a x b =++的图像与x 轴有M 个交点,函数()()11y ax bx =++的图像与x 轴有N 个交点,则 ( ) A . 1M N =-或1M N =+ B . 1M N =-或2M N =+ C . M N =或1M N =+ D . M N =或1M N =- 【考点】二次函数与x 轴交点问题【解析】对于函数()()y x a x b =++,当0y =时,函数与x 轴两交点为(-a ,0)、(-b ,0), ∵a b ≠,所以有2个交点,故2M = 对于函数()()11y ax bx =++①0a b ≠≠,交点为11(,0),(,0)a b --,此时2N M N =⇒= ②0,0a b =≠,交点为1(,0)b -,此时11N M N =⇒=+③0,0b a =≠,交点为1(,0)a-,此时11N M N =⇒=+综上所述,M N =或1M N =+【答案】故选C二、填空题(本大题有6小题,每小题4分,共24分) 11.因式分解:21x -= . 【考点】因式分解【解析】二项用平方差公式,22211(1)(1)x x x x -=-=+- 【答案】(1)(1)x x +-12.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这()m n +个数据的平均数等于 .【考点】数据统计【解析】平均数等于总和除以个数,所以平均数mx nym n+=+【答案】mx nym n++13.如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为12cm ,底面圆半径为3cm ,则这个冰激凌外壳的侧面积等于 2cm (计算结果精确到个位).【考点】圆锥的侧面积【解析】3123636 3.14113.04113S rl πππ==⨯⨯==⨯=≈侧 【答案】11314.在直角三角形ABC 中,若2AB AC =,则cos C = . 【考点】解直角三角形【解析】如图所示,分两种情况讨论,AC 可以是直角边,也可以是斜边 ①当AC 是斜边,设AB =x ,则AC =2x ,由勾股定理可得: BC,则cos 22BC C AC x === ①当AC 是直角边,设AB =x ,则AC =2x ,由勾股定理可得: BC,则cos AC C BC ====综上所述,cos C =【答案】2或515.某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 . 【考点】函数的解析式【解析】答案不唯一,可以是一次函数,也可以是二次函数 【答案】1y x =-+或21y x =-+或1y x =-等16.如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,A 点的对称点为A ¢点,D 点的对称点为D ¢点,若90FPG ??,A EP ¢△的面积为4,D PH ¢△的32x面积为1,则矩形ABCD 的面积等于 .D 1A 1G PFECDB A【考点】矩形性质、折叠 【解析】∵A'E ∥PF ∴∠A'EP=∠D'PH又∵∠A=∠A'=90°,∠D=∠D'=90° ∴∠A'=∠D'∴△A'EP ~△D'PH又∵AB=CD ,AB=A'P ,CD=D'P ∴A'P= D'P 设A'P=D'P=x∵S △A'EP :S △D'PH =4:1 ∴A'E=2D'P=2x ∴S △A'EP =2112422A E A P x x x ''⨯⨯=⨯⨯== ∵0x >∴2x = ∴A'P=D'P=2 ∴A'E=2D'P=4∴EP ===∴1=2PH EP =∴112DH D H A P ''===∴415AD AE EP PH DH =+++=+=+∴2AB A P '==∴25)10ABCD S AB AD =⨯=⨯=矩形【答案】10三、解答题(本大题有7个小题,共66分) 17.(本题满分6分) 化简:242142x x x ----圆圆的解答如下:H()()2224214224422x x x x x x x x--=-+----=-+ 圆圆的解答正确吗?如果不正确,写出正确的解答. 【解析】圆圆的解答不正确.正确解答如下:原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+-24(24)(4)(2)(2)x x x x x -+--=+-(2)(2)(2)x x x x --=+-2xx =-+.18.(本题满分8分)称重五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称重读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克)实际称重读数和记录数据统计表4-1-32-2544947524854321乙组甲组数据序号⑴补充完整乙组数据的折线统计图;⑵①甲、乙两组数据的平均数分别为x 甲、x 乙,写出x 甲与x 乙之间的等量关系;②甲、乙两组数据的平均数分别为2S 甲、2S 乙,比较2S 甲与2S 乙的大小,并说明理由.【解析】(1)补全折线统计图,如图所示.实际称量读数折线统计图 记录数据折线统计图(2)①50x x =+甲乙.②22S S =甲乙,理由如下:因为2222221[(2)(2)(3)(1)(4)]5S x x x x x =--+-+--+--+-乙乙乙乙乙乙222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙222221[(48)(52)(47)(49)(54)]5x x x x x =-+-+-+-+-甲甲甲甲甲 2S =甲, 所以22S S =甲乙.19.(本题满分8分)如图,在ABC △中,AC AB BC <<.⑴已知线段AB 的垂直平分线与BC 边交于点P ,连结AP ,求证:2APC B ??;⑵以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连结AQ ,若3AQC B ??,求B Ð的度数.PCBAQABC【解析】(1)证明:因为点P 在AB 的垂直平分线上, 所以PA=PB , 所以∠PAB=∠B ,所以∠APC=∠PAB+∠B=2∠B . (2)根据题意,得BQ=BA , 所以∠BAQ=∠BQA , 设∠B=x ,所以∠AQC=∠B+∠BAQ=3x , 所以∠BAQ=∠BQA=2x , 在△ABQ 中,x +2x +2x =180°, 解得x =36°,即∠B=36°.20.(本题满分10分)方方驾驶小汽车匀速地从A 地行使到B 地,行驶里程为480千米,设小汽车的行使时间为t (单位:小时),行使速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.⑴求v 关于t 的函数表达式;⑵方方上午8点驾驶小汽车从A 出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.【解析】(1)根据题意,得480vt =, 所以480v t=, 因为4800>,所以当120v ≤时,4t ≥, 所以480(4)v t t=≥ (2)①根据题意,得4.86t ≤≤, 因为4800>, 所以4804806 4.8v ≤≤, 所以80100v ≤≤②方方不能在11点30分前到达B 地.理由如下: 若方方要在11点30分前到达B 地,则 3.5t <, 所以4801203.5v >>,所以方方不能在11点30分前到达B 地.21.(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在CD 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =. ⑴求线段CE 的长;⑵若点H 为BC 边的中点,连结HD ,求证:HD HG =.GFEH DCBA【解析】根据题意,得AD=BC=CD=1,∠BCD=90°. (1)设CE=x (0<x <1),则DE=1-x , 因为S 1=S 2,所以x 2=1-x , 解得x(负根舍去), 即(2)因为点H 为BC 边的中点, 所以CH=12,所以HD=2,因为CG=CE=12,点H ,C ,G 在同一直线上, 所以HG=HC+CG=12HD=HG22.(本题满分12分)设二次函数()()12y x x x x =--(1x 、2x 是实数).⑴甲求得当0x =时,0y =;当1x =时,0y =,乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由;⑵写出二次函数的对称轴,并求出该函数的最小值(用含1x 、2x 的代数式表示); ⑶已知二次函数的图像经过()0,m ,()1,n 两点(m 、n 是实数),当1201x x <<<时, 求证:1016mn <<.【解析】(1)乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0),所以(1)y x x =-, 当12x =时,1111(1)2242y =⨯-=-≠-, 所以乙求得的结果不正确. (2)函数图象的对称轴为122x x x +=, 当122x x x +=时,函数有最小值M , 212121212()224x x x x x x M x x ++-⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⎝⎭(3)因为12()()y x x x x =--, 所以12m x x =,12(1)(1)n x x =--,所以2212121122(1)(1)()()mn x x x x x x x x =--=--22121111[()][()]2424x x =--+⋅--+因为1201x x <<<,并结合函数(1)y x x =-的图象,所以211110()244x <--+≤,221110()244x <--+≤所以1016mn <≤,因为12x x ≠,所以1016mn <<23.(本题满分12分)如图,已知锐角ABC △内接于⊙O , OD BC ^于点D ,连结AO . ⑴若60BAC ??. ①求证:12OD OA =;②当1OA =时,求ABC △面积的最大值; ⑵点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ??,ACB n OED ??(m 、n 是正数), 若ABC ACB ??,求证:20m n -+=【解析】(1)①证明:连接OB ,OC , 因为OB=OC ,OD ⊥BC ,所以∠BOD=12∠BOC=12×2∠BAC=60°,所以OD=12OB=12OA②作AF ⊥BC ,垂足为点F , 所以AF ≤AD ≤AO+OD=32,等号当点A ,O ,D 在同一直线上时取到由①知,所以△ABC 的面积113222BC AF =⋅≤=即△ABC (2)设∠OED=∠ODE=α,∠COD=∠BOD=β, 因为△ABC 是锐角三角形,所以∠AOC+∠AOB+2∠BOD=360°, 即()180m n αβ++=o(*) 又因为∠ABC<∠ACB , 所以∠EOD=∠AOC+∠DOC 2m αβ=+因为∠OED+∠ODE+∠EOD=180°, 所以2(1)180m αβ++=o (**) 由(*),(**),得2(1)m n m +=+, 即20m n -+=。

相关文档
最新文档