二元一次方程组 类型总结(提高题)
中考数学总复习《二元一次方程组》专项提升练习(附答案)
中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。
定义2:把两个方程合在一起,就组成了方程组。
定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。
定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这种方法叫做代入消元法,简称代入法。
(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。
认真读题,分析题中各个量之间的关系。
第2步:设未知数。
根据题意及各个量的关系设未知数。
第3步:列方程(组)。
根据题中各个量的关系列出方程(组)。
第4步:解方程(组)。
根据方程(组)的类型采用相应的解法。
第5步:答。
专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。
楚雄市第一中学七年级数学下册第八单元《二元一次方程组》知识点总结(培优提高)
一、选择题1.甲、乙两人分别从相距40km 的两地同时出发,若同向而行,则5h 后,快者追上慢者;若相向而行,则2h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( )A .14和6B .24和16C .28和12D .30和1A 解析:A【分析】设快者的速度是/xkm h ,慢者的速度是/ykm h ,根据追及问题和相遇问题的求解方法列二元一次方程组求解.【详解】解:设快者的速度是/xkm h ,慢者的速度是/ykm h ,列式()()540240x y x y ⎧-=⎪⎨+=⎪⎩,解得146x y =⎧⎨=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意列出二元一次方程组. 2.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩ B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩ C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩A 解析:A【分析】 根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩.【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.3.如图,宽为25cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是()A.2200cm B.2150cm C.2100cm D.275cm C解析:C【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.【详解】设一个小长方形的长为xcm,宽为ycm,由图形可知,25 24x yx x y+=⎧⎨=+⎩,解得:205xy=⎧⎨=⎩,所以一个小长方形的面积为205100⨯=(cm2) .故选:C.【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.4.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()(用a的代数式表示)A.﹣a B.a C.12a D.﹣12a A解析:A【分析】设图③小长方形的长为m,宽为n,则由已知可以求得m、n关于a的表达式,从而可以用a表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.5.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( ) A .31t -= . B .33t -=C .93t =D .91t = C 解析:C【分析】运用加减消元法求解即可.【详解】解:解方程组232261s t s t +=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1), 即,9t=3,故选:C .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 6.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( ) A .x+y=8B .x+y=1C .x+y=-1D .x+y=-8A解析:A【分析】将第二个方程代入第一个方程消去m 即可得.【详解】 71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x 斗,买到行酒y 斗,根据题意可列方程组为( )A .5010302x y x y +=⎧⎨+=⎩B .5010302y x x y +=⎧⎨+=⎩C .5010230x y x y +=⎧⎨+=⎩D .5010230y x x y +=⎧⎨+=⎩ A 解析:A【分析】设醇酒为x 斗,行酒为y 斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可.【详解】解:由题意,得2501030x y x y +=⎧⎨+=⎩, 故选A .【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键.8.小明骑着自行车以每分钟120m 的速度匀速行驶在环城公路上,每隔5min 就和一辆公交车迎面相遇,每隔15min 就被同向行驶的一辆公交车追上,如果公交车是匀速行驶的,并且每相邻的两辆公交车从起点车站发出的间隔时间相等,则公交车的速度是( ). A .180min mB .200min mC .240min mD .250min m C 解析:C【分析】设汽车的速度为每分钟2v 米,相邻两车的距离是s , 根据每隔5min 就和一辆公交车迎面相遇,求出汽车相对于人的速度,可得关于s 和2v 的方程;根据每隔15min 就被同向行驶的一辆公交车追上,求出汽车相对于人的速度,可得关于s 和2v 的方程;联立方程组求解;【详解】解:设公交车的速度为每分钟2v 米,相邻两车间的距离为s 米,汽车迎面开来,汽车相对人的速度2120v v =+,则()()1212120=5120+s vt v t v ==+,汽车从后面追上,汽车相对人的速度2120v v '=-,则()()2222120=15120s v t v t v '==--,()()22512015120s v s v =+⎧⎪∴⎨=-⎪⎩()()225120+15120,v v ∴=-∴ 2240min v m =,故选:.C【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系(相邻两车的距离相等),列出方程组再求解。
二元一次方程组提高题归纳.doc
学习必备欢迎下载二元一次方程组 类型总结(提高题)类型一:二元一次方程的概念及求解例( 1).已知( a - 2) x - by | a| -1= 5 是关于 x 、 y 的二元一次方程,则 a = ______, b =_____.( 2).二元一次方程 3x +2y = 15 的正整数解为 _______________.类型二:二元一次方程组的求解例( 3).若 |2 a + 3b - 7| 与( 2a + 5b -1) 2 互为相反数,则a = ______,b = ______.( 4). 2x -3y = 4x - y = 5 的解为 _______________.类型三:已知方程组的解,而求待定系数。
例( 5).已知x -2是方程组3mx 2y 1的解,则 2 2y 14xnym - n 的值为 _________.7 2( 6).若满足方程组3x 2 y 4的 x 、 y 的值相等,则 k = _______.kx ( 2k 1) y 6练习:若方程组2x y 3 的解互为相反数,则 k 的值为。
2kx (k 1) y103x 4 y 2a x by 4a =, b=若方程组ax b 与 3有相同的解,则 。
y52x y 52类型四:涉及三个未知数的方程, 求出相关量。
设“比例系数” 是解有关数量比的问题的常用方法.例( 7).已知 a = b =c,且 a + b - c = 1,则 a = _______, b = _______,c = _______.23 412x 3y2( 8).解方程组 3 y z 4 ,得 x =______, y = ______, z = ______.z 3x 6练习:若 2a + 5b + 4c = 0, 3a +b - 7c = 0,则 a +b - c =。
由方程组x 2 y 3z 0 )2x 3 y 可得, x ∶ y ∶ z 是(4 z 0A 、1∶ 2∶ 1B 、1∶(- 2)∶(- 1)C 、 1∶(- 2)∶ 1D 、 1∶ 2∶(- 1)说明:解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组。
二元一次方程组练习题(基础+提高)
)
1 ,b=-4 2 1 ,b=4 2
(B) k (D) k
1 ,b=4 2 1 ,b=-4 2
三、填空:
2
25、在方程 3x+4y=16 中,当 x=3 时,y=________,当 y=-2 时,x=_______ 若 x、y 都是正整数,那么这个方程的解为___________; 26、方程 2x+3y=10 中,当 3x-6=0 时,y=_________; 27、如果 0.4x-0.5y=1.2,那么用含有 y 的代数式表示的代数式是_____________; 28、若
m 162 ; n 204
35、4:3,7:9 39、
x 3 ; y 1
38、
x 2a a ; y 2
40、
x 1 ; 41、 y 1
5 x 42、 2; y 2
x 8 43、 y 6 ; z 1
3 2 2
ax y 1 都无解; 3x 2 y b 5
52、a、b、c 取什么数值时,x -ax +bx+c 程(x-1)(x-2)(x-3)恒等? 53、m 取什么整数值时,方程组
2 x my 4 的解: x 2 y 0
(1)是正数; (2)是正整数?并求它的所有正整数解。 54、试求方程组
4 x 3 y 3z 0 ( xyz 0) 中可以知道,x:z=_______;y:z=________; x 3 y z 0
2 2
36、已知 a-3b=2a+b-15=1,则代数式 a -4ab+b +3 的值为__________; 四、解方程组
二元一次方程组重点考点题型总结
二元一次方程组 类型总结类型一:二元一次方程的概念及求解例(1).已知(a-2)x-by|a|-1=5是关于x、y 的二元一次方程,则a=______,b=_____.(2).二元一次方程3x+2y=15的正整数解为_______________.类型二:二元一次方程组的求解例(3).若|2a+3b-7|与(2a+5b-1)2互为相反数,则a=______,b=______.(4).2x-3y=4x-y=5的解为_______________.类型三:已知方程组的解,而求待定系数。
例(5).已知是方程组的解,则m2-n2的值为_________.(6).若满足方程组的x、y的值相等,则k=_______.练习:若方程组的解互为相反数,则k 的值为 。
若方程组与有相同的解,则a= ,b= 。
类型四:涉及三个未知数的方程,求出相关量。
设“比例系数”是解有关数量比的问题的常用方法.例(7).已知==,且a+b-c=,则a=_______,b=_______,c=_______.(8).解方程组,得x=______,y=______,z=______.练习:若2a+5b+4c=0,3a+b-7c=0,则a+b-c =。
由方程组可得,x∶y∶z是( )A、1∶2∶1B、1∶(-2)∶(-1)C、1∶(-2)∶1 D、1∶2∶(-1)说明:解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组。
类型五:列方程组求待定字母系数是常用的解题方法.例(9).若,都是关于x、y的方程|a|x+by=6的解,则a+b的值为 (10).关于x,y 的二元一次方程ax+b=y 的两个解是,,则这个二元一次方程是练习:如果是方程组的解,那么,下列各式中成立的是 ( )A、a+4c=2B、4a+c=2C、a+4c+2=0D、4a+c+2=0类型六:方程组有解的情况。
二元一次方程组知识点整理、典型例题练习总结(优选.)
《二元一次方程组》一、知识点总结 1、二元一次方程:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程, 它的一般形式是(0,0)ax by c a b +=≠≠.2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解. 【二元一次方程有无数组解】3、二元一次方程组:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程组解的情况:①无解,例如:16x y x y +=⎧⎨+=⎩,1226x y x y +=⎧⎨+=⎩;②有且只有一组解,例如:122x y x y +=⎧⎨+=⎩;③有无数组解,例如:1222x y x y +=⎧⎨+=⎩】5、二元一次方程组的解法:代入消元法和加减消元法。
6、三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。
解三元一次方程组的关键也是“消元”:三元→二元→一元7、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步: (1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,; (2)设:找出能够表示题意两个相等关系;并用字母表示其中的两个未知数 (3)列:根据这两个相等关系列出必需的代数式,从而列出方程组; (4)解:解这个方程组,求出两个未知数的值; (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.二、典型例题分析例1、若方程213257m n x y --+=是关于x y 、的二元一次方程,求m 、n 的值.例2、将方程102(3)3(2)y x --=-变形,用含有x 的代数式表示y .例3、方程310x y +=在正整数范围内有哪几组解?例4、若23x y =⎧⎨=⎩是方程组2315x m nx my -=⎧⎨-=-⎩的解,求m n 、的值.例5、已知(1)(1)1nmm x n y ++-=是关于x y 、的二元一次方程,求m n 的值.例6、二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .例7:(1)用代入消元法解方程组:⎩⎨⎧-=-=+42357y x y x 563640x y x y +=⎧⎨--=⎩(2)、用加减法解二元一次方程组:⎩⎨⎧=+=-8312034y x y x ⎩⎨⎧=+=-932723y x y x(3)、解复杂的二元一次方程组.(提高题)例8、若关于X,y 的二元一次方程组x+y=5k,x-y=9k 的解也是二元一次方程2x+3y=6的解,求k 的值。
代数第一册(上)第五章《二元一次方程组》提高测试题
提高测试(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1.【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a 【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________.【提示】将方程化为y =2315x -,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数.【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x 4.2x -3y =4x -y =5的解为_______________. 【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值. 【答案】-438. 6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a c b a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值.【答案】a =61,b =41,c =31. 【点评】设“比例系数”是解有关数量比的问题的常用方法.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( ) (A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或10【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………………………………………………………………( )(A )y =2x +3 (B )y =2x -3(C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程.【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法.12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( ) (A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式. 【答案】C . 14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值.【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c 时方程组无解. 15.若方程组⎪⎩⎪⎨⎧=+=+52243y b ax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b . 【答案】B .【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法.(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x 【提示】将方程组化为一般形式,再求解. 【答案】⎪⎩⎪⎨⎧-==.232y x 18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元.【答案】⎩⎨⎧==.30500y x 19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A B A ,进而求得x ,y .【答案】⎩⎨⎧-==.11y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值. 【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x (四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xy z ≠0,求222223y x z xy x +++的值. 【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k , y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的.22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值. 【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错.【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y 再代入3 x +4 y =m +5.【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式.【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x x y y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x 【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米,根据题意,得 ⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
二元一次方程组知识点整理、典型例题练习总结
二元一次方程组(拓展与提优)1、二兀一次方程:含有两个未知数(x和y),并且含有未知数①项①次数都是1,像这样①整式方程叫做二元一次方程,它①一般形式是ax by c(a 0,b °).例1、若方程(2m-6)x|n|-1 +(n+2)y m2-8=1是关于x、y①二元一次方程,求m、n①值.2、二元一次方程①解:一般地,能够使二元一次方程①左右两边相等①两个未知数①值,叫做二元一次方程①解.【二元一次方程有无数组解】3、二元一次方程组:含有两个未知数(x和y),并且含有未知数①项①次数都是1,将这样①两个或几个一次方程合起来组成①方程组叫做二元一次方程组•4、二元一次方程组①解:二元一次方程组中①几个方程①公共解,叫做二元一次方程组①解•【二元一次方程组解x y 1 x y 1 x y1x y 1 O情况:①无解,例如:x y 6, 2x 2y 6;②有且只有一组解,例如:2x y 2;③有无数组解,例如:2x 2y 2】是关于x、y O二元一次方程组2x+(m-1)y=2nx+ y=1O解,试求(m+r)2016O值例3、方程x 3y 10在正整数范围内有哪几组解?5、二元一次方程组O解法:代入消元法和加减消元法。
例4、将方程10 2(3 y) 3(2 x)变形,用含有x O代数式表示y.例5、用适当O方法解二元一次方程组x+1+3 2例6、若方程组ax y 1有无数组解,则a、b O值分别为()6x by 2例2、已知x 2y 1B. a 2,b 1C.a=3,b=-2D. a 2,b 2 A. a=6,b=-16、三元一次方程组及其解法: 方程组中一共含有三个未知数,含未知数①项①次数都是1,并且方程组中一共有 两个或两个以上①方程,这样①方程组叫做三元一次方程组。
解三元一次方程组① 关键也是“消元”:三元T 二元T 元x y z 6 例10、3x 求解方程组y z 22x 3y z 117、二元 一次方程与一次函数关系:例11、一次函数y=kx+2①图像总过定点 _____________ ,二元一次方程kx-y=-2有无数组解,其中必有一个解为 ___________ 。
二元一次方程提高题与常考题和培优题(含答案)
二元一次方程提高题与常考题和培优题(含答案)一.选择题(共13小题)1.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.2.x=﹣3,y=1为下列哪一个二元一次方程式的解?()A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣63.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.34.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.B.C.7 D.135.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.6.如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是()A.8 B.5 C.2 D.07.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A .B .C .D .8.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元9.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或510.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A .B.C.D.11.若方程组的解是,则方程组的解是()A.B.C.D.12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为()A.B.C.D.13.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是()A.175cm2B.300cm2C.375cm2D.336cm2二.填空题(共13小题)14.方程组的解是.15.已知a、b满足方程组,则=.16.若方程组与的解相同,则a=,b=.17.已知是方程组的解,则代数式(a+b)(a﹣b)的值为.18.若(a﹣2b+1)2与互为相反数,则a=,b=.19.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2=.20.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.21.如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形(阴影部分)的面积为1cm2,则小长方形的周长等于.22.如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b=.23.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为.24.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.25.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,则图②的大正方形中未被小正方形覆盖部分的面积大小为.26.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是.三.解答题27.解方程组:.28.解方程组:.29.已知关于x,y的二元一次方程组的解互为相反数,求k的值.30.观察下列方程组,解答问题:①;②;③;…(1)在以上3个方程组的解中,你发现x与y有什么数量关系?(不必说理)(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.31.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.32.某班学生集体去看演出,观看演出需购买甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购买一种门票共花费750元,求该班购买甲、乙两种门票的张数.33.某公园的门票价格规定如下表:购票人数50人以下51~100人100人以上票价13元/人11元/人9元/人某学校七年级1班和2班两个班共104人去游园,其中1班不足50人,2班超过50人.(1)若以班为单位分别购票,一共应付1240元,求两班各有多少人?(2)若两班联合购票可少付多少元?34.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级10班40名同学参加了捐款活动,共捐款400元,捐款情况如下表:表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用你学过的知识算出捐款10元和15元的人数各是多少名?答案解析一.选择题(共13小题)1.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A2.x=﹣3,y=1为下列哪一个二元一次方程式的解?()A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣6【解答】解:将x=﹣3,y=1代入各式,A、(﹣3)+2×1=﹣1,正确;B、(﹣3)﹣2×1=﹣5≠1,故此选项错误;C、2×(﹣3)+3‧1=﹣3≠6,故此选项错误;D、2×(﹣3)﹣3‧1=﹣9≠﹣6,故此选项错误;故选:A.3.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【解答】解:,①+②得:4x+4y=20,则x+y=5,故选C4.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.B.C.7 D.13【解答】解:①×2﹣②得,7x=7,x=1,代入①中得,2+y=14,解得y=12,则a+b=1+12=13,故选D.5.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.6.如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是()A.8 B.5 C.2 D.0【解答】解:把x=a,y=b代入方程,可得:a﹣3b=﹣3,所以5﹣a+3b=5﹣(a﹣3b)=5+3=8,故选A7.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C.D.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,故选:D.8.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,故选C9.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或5【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.10.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A.B.C.D.【解答】解:设“一少”的狗有x条,“三多”的狗有y条,可得:,故选:B.11.若方程组的解是,则方程组的解是()A.B.C.D.【解答】解:∵方程组的解是,∴方程组中∴故选:C.12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为()A.B.C.D.【解答】解:根据题意得:,故选A13.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是()A.175cm2B.300cm2C.375cm2D.336cm2【解答】解:设小长方形的长为xcm,宽为ycm.根据题意得:解得:.故xy=30×10=300cm2.故选:B.二.填空题(共13小题)14.方程组的解是.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y)+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.15.已知a、b满足方程组,则=3.【解答】解:,①×3+②得:7a=28,即a=4,把a=4代入②得:b=5,则原式=3.故答案为:316.)若方程组与的解相同,则a=33,b=.【解答】解:解方程组得,代入方程组得,解得,故答案为:33,.17.已知是方程组的解,则代数式(a+b)(a﹣b)的值为﹣8.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,则原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣818.若(a﹣2b+1)2与互为相反数,则a=3,b=2.【解答】解:∵(a﹣2b+1)2与互为相反数,∴(a﹣2b+1)2+=0,(a﹣2b+1)2=0且=0,即,解得:a=3,b=2故答案为:3,2.19.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2=4.【解答】解:根据题中的新定义得:,解得:,则1﹡2=1×2+2×1=2+2=4,故答案为:420.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.【解答】解:设大和尚x人,小和尚y人,由题意可得.故答案为.21.如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形(阴影部分)的面积为1cm2,则小长方形的周长等于16cm.【解答】解:设这8个大小一样的小长方形的长为xcm,宽为ycm.由题意,得,解得.小长方形的周长为2×(3+5)=16,故答案为16cm.22.(2016春•单县期末)如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b=﹣2.【解答】解:因为4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,可得:,解得:,所以a﹣b=﹣2,故答案为:﹣223.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为.【解答】解:根据∠1的度数比∠2的度数大50°可得方程x﹣y=50,再根据平角定义可得x+y+90=180,故x+y=90,则可得方程组:,故答案为:.24.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.25.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,则图②的大正方形中未被小正方形覆盖部分的面积大小为24.【解答】解:设大正方形的边长为x,小正方形的边长为y,根据题意得:,解得:,∴图②的大正方形中未被小正方形覆盖部分的面积为52﹣4×=24.故答案为:24.26.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是292.【解答】解:设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y 个,由题意得,解得:.故答案为:292.三.解答题(共14小题)27.解方程组:.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.28.解方程组:.【解答】解:原方程组可化为,①×3+②,得11x=22,即x=2,将x=2代入①,得6﹣y=3,即y=3,则方程组的解为.29.已知关于x,y的二元一次方程组的解互为相反数,求k的值..【解答】解:,①+②得:3(x+y)=k﹣1,即x+y=,由题意得:x+y=0,即=0,解得:k=1.30.观察下列方程组,解答问题:①;②;③;…(1)在以上3个方程组的解中,你发现x与y有什么数量关系?(不必说理)(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.【解答】解:(1)在以上3个方程组的解中,发现x+y=0;(2)第④个方程组为,①+②得:6x=24,即x=4,把x=4代入①得:y=﹣4,则x+y=4﹣4=0.31.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.【解答】解:设杯子的单价为x元,则热水瓶单价为y元,则解得,答:杯子的单价为8元,则热水瓶单价为35元.32.(2016•长春模拟)某班学生集体去看演出,观看演出需购买甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购买一种门票共花费750元,求该班购买甲、乙两种门票的张数.【解答】解:设该班购买甲种门票x张,乙种门票y张,根据题意,得:,解得:,答:该班购买甲种门票20张,乙种门票15张.33.某公园的门票价格规定如下表:购票人数50人以下51~100人100人以上票价13元/人11元/人9元/人某学校七年级1班和2班两个班共104人去游园,其中1班不足50人,2班超过50人.(1)若以班为单位分别购票,一共应付1240元,求两班各有多少人?(2)若两班联合购票可少付多少元?【解答】解:(1)设1班和2班分别有x人、y人,依题意得,解得x=48,y=56,答:1班和2班分别有48人和56人;(2)两班联合购票,应付104×9═936元,可少付1240﹣936=304元.34.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级10班40名同学参加了捐款活动,共捐款400元,捐款情况如下表:表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用你学过的知识算出捐款10元和15元的人数各是多少名?【解答】解:设捐款10元的为x人,捐款15元的为y人,得,解此方程组,得,答:捐款10元的有19人,捐款15元的有6人.。
初中数学二元一次方程组提高题及常考题和培优题含解析
初中数学二元一次方程提高题与常考题和培优题(含解析)一.选择题〔共13小题〕1.关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,那么m,n的值为〔〕A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.2.x=﹣3,y=1为以下哪一个二元一次方程式的解?〔〕A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣63.x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.34.假设二元一次联立方程式的解为x=a,y=b,那么a+b之值为何?〔〕A.B.C.7 D.135.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的选项是〔〕A.B.C.D.6.如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是〔〕A.8 B.5 C.2 D.07.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C .D .8.小明在某商店购置商品A、B共两次,这两次购置商品A、B的数量和费用如表:购置商品A的数量〔个〕购置商品B的数量〔个〕购置总费用〔元〕第一次购物4393第二次购物66162假设小明需要购置3个商品A和2个商品B,那么她要花费〔〕A.64元B.65元C.66元D.67元9.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进展了6场比赛,得了12分,该队获胜的场数可能是〔〕A.1或2 B.2或3 C.3或4 D.4或510.电影"刘三姐"中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?〞刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.〞假设用数学方法解决罗秀才提出的问题,设“一少〞的狗有x条,“三多〞的狗有y条,那么解此问题所列关系式正确的选项是〔〕A .B .C.D.11.假设方程组的解是,那么方程组的解是〔〕A. B.C. D.12."九章算术"是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是"九章算术"最高的数学成就."九章算术"中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?〞译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?〞设每头牛值金x两,每只羊值金y两,可列方程组为〔〕A.B.C.D.13.如图,用12块一样的小长方形瓷砖拼成一个大的长方形,那么每个小长方形瓷砖的面积是〔〕A.175cm2B.300cm2C.375cm2D.336cm2二.填空题〔共13小题〕14.方程组的解是.15.a、b满足方程组,那么=.16.假设方程组与的解一样,那么a=,b=.17.是方程组的解,那么代数式〔a+b〕〔a﹣b〕的值为.18.假设〔a﹣2b+1〕2与互为相反数,那么a=,b=.19.定义运算“﹡〞:规定x﹡y=ax+by〔其中a、b为常数〕,假设1﹡1=3,1﹡〔﹣1〕=1,那么1﹡2=.20.我国明代数学家程大位的名著"直指算法统宗"里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.21.如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形〔阴影局部〕的面积为1cm2,那么小长方形的周长等于.22.如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b=.23.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,假设设∠1=x°,∠2=y°,那么可得到方程组为.24.如图,三个全等的小矩形沿“横﹣竖﹣横〞排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.25.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,那么图②的大正方形中未被小正方形覆盖局部的面积大小为.26.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是.三.解答题〔共14小题〕27.解方程组:.28.解方程组:.29.关于x,y的二元一次方程组的解互为相反数,求k的值.30.观察以下方程组,解答问题:①;②;③;…〔1〕在以上3个方程组的解中,你发现x与y有什么数量关系?〔不必说理〕〔2〕请你构造第④个方程组,使其满足上述方程组的构造特征,并验证〔1〕中的结论.31.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.32.某班学生集体去看演出,观看演出需购置甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购置一种门票共花费750元,求该班购置甲、乙两种门票的张数.33.某公园的门票价格规定如下表:购票人数50人以下51~100人100人以上票价13元/人11元/人9元/人某学校七年级1班和2班两个班共104人去游园,其中1班缺乏50人,2班超过50人.〔1〕假设以班为单位分别购票,一共应付1240元,求两班各有多少人?〔2〕假设两班联合购票可少付多少元?34.“最美女教师〞张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级10班40名同学参加了捐款活动,共捐款400元,捐款情况如下表:表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用你学过的知识算出捐款10元和15元的人数各是多少名?35.某天蔬菜经营户用120元批发了西兰花和胡萝卜共60kg到菜市场零售,西兰花和胡萝卜当天的批发价和零售价如表所示:品名西兰花胡萝卜批发价〔元/kg〕 2.8 1.6零售价〔元/kg〕 3.8 2.5如果他当天全部卖完这些西兰花和胡萝卜可获得利润多少元.36.4月23日“世界读书日〞期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,试一试:求出每本"英汉词典"和"读者"杂志的单价.37.学生在素质教育基地进展社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植本钱共42元,还了解到如下信息:〔1〕请问采摘的黄瓜和茄子各多少千克?〔2〕这些采摘的黄瓜和茄子可赚多少元?38.某校住校生宿舍有大小两种寝室假设干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?39.某运发动在一场篮球比赛中的技术统计如表所示:技术上场时出手投篮投中〔次〕罚球得篮板〔个〕助攻〔次〕个人总间〔次〕分得分〔分钟〕数据46662210118 60注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运发动投中2分球和3分球各几个.40.在平面直角坐标系中,假设横坐标、纵坐标均为整数点称为格点,假设一个多边形的顶点都是格点,那么称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.〔1〕利用图中条件求a,b的值;〔2〕假设某格点多边形对应的n=20,l=15,求S的值;〔3〕在图中画出面积等于5的格点直角三角形PQR.初中数学二元一次方程提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题〔共13小题〕1.〔2016•毕节市〕关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,那么m,n的值为〔〕A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,应选A【点评】此题考察了二元一次方程的定义,熟练掌握二元一次方程的定义是解此题的关键.2.〔2016•〕x=﹣3,y=1为以下哪一个二元一次方程式的解?〔〕A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣6【分析】直接利用二元一次方程的解的定义分别代入求出答案.【解答】解:将x=﹣3,y=1代入各式,A、〔﹣3〕+2×1=﹣1,正确;B、〔﹣3〕﹣2×1=﹣5≠1,故此选项错误;C、2×〔﹣3〕+3‧1=﹣3≠6,故此选项错误;D、2×〔﹣3〕﹣3‧1=﹣9≠﹣6,故此选项错误;应选:A.【点评】此题主要考察了二元一次方程的解,正确代入方程是解题关键.3.〔2016•〕x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.3【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4x+4y=20,那么x+y=5,应选C【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.〔2016•〕假设二元一次联立方程式的解为x=a,y=b,那么a+b之值为何?〔〕A.B.C.7 D.13【分析】将其中一个方程两边乘以一个数,使其与另一方程中x的系数互为相反数,再将两方程相加,消去一个未知数,到达降元的目的,求出另一个未知数,再用代入法求另一个未知数.【解答】解:①×2﹣②得,7x=7,x=1,代入①中得,2+y=14,解得y=12,那么a+b=1+12=13,应选D.【点评】此题主要考察解二元一次方程组,熟练运用加减消元是解答此题的关键.5.〔2016•〕为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的选项是〔〕A.B.C.D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.【解答】解:该班男生有x人,女生有y人.根据题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.6.〔2016•吴中区一模〕如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b 的值是〔〕A.8 B.5 C.2 D.0【分析】把x=a,y=b代入方程,再根据5﹣a+3b=5﹣〔a﹣3b〕,然后代入求值即可.【解答】解:把x=a,y=b代入方程,可得:a﹣3b=﹣3,所以5﹣a+3b=5﹣〔a﹣3b〕=5+3=8,应选A【点评】此题考察了代数式的求值,正确对代数式变形,利用添括号法那么是关键.7.〔2017•河北一模〕父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C.D.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高〔1﹣〕x=儿子在水中的身高〔1﹣〕y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是弄清题意,找出题目中的等量关系,解决此题的关键是知道父亲和儿子没在水中的身高是相等的.8.〔2016•黔东南州〕小明在某商店购置商品A、B共两次,这两次购置商品A、B的数量和费用如表:购置商品A的数量〔个〕购置商品B的数量〔个〕购置总费用〔元〕第一次购物4393第二次购物66162假设小明需要购置3个商品A和2个商品B,那么她要花费〔〕A.64元B.65元C.66元D.67元【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,应选C【点评】此题主要考察了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.9.〔2016•〕足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进展了6场比赛,得了12分,该队获胜的场数可能是〔〕A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,那么负〔6﹣x﹣y〕场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,那么负〔6﹣x﹣y〕场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,应选:C.【点评】此题主要考察二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.10.〔2016•泰安模拟〕电影"刘三姐"中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?〞刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.〞假设用数学方法解决罗秀才提出的问题,设“一少〞的狗有x条,“三多〞的狗有y条,那么解此问题所列关系式正确的选项是〔〕A.B.C.D.【分析】根据一少三多四下分,不要双数要单数,列出不等式组解答即可.【解答】解:设“一少〞的狗有x条,“三多〞的狗有y条,可得:,应选:B.【点评】此题考察二元一次方程的应用,关键是根据一少三多四下分,不要双数要单数列出不等式组.11.〔2016•高阳县一模〕假设方程组的解是,那么方程组的解是〔〕A. B.C. D.【分析】根据加减法,可得〔x+2〕、〔y﹣1〕的解,再根据解方程,可得答案.【解答】解:∵方程组的解是,∴方程组中∴应选:C.【点评】此题考察了二元一次方程组的解,解决此题的关键是先求〔x+2〕、〔y ﹣1〕的解,再求x、y的值.12.〔2016•乐山模拟〕"九章算术"是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是"九章算术"最高的数学成就."九章算术"中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?〞译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?〞设每头牛值金x两,每只羊值金y两,可列方程组为〔〕A.B.C.D.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两〞,得到等量关系,即可列出方程组.【解答】解:根据题意得:,应选A【点评】此题考察了由实际问题抽象出二元一次方程组,解决此题的关键是找到题目中所存在的等量关系.13.〔2016•富顺县校级模拟〕如图,用12块一样的小长方形瓷砖拼成一个大的长方形,那么每个小长方形瓷砖的面积是〔〕A.175cm2B.300cm2C.375cm2D.336cm2【分析】设小长方形的长为xcm,宽为ycm,根据题意可知x+y=40,大矩形的长可表示3x或3y+2x,从而得到3x=3y+2x,然后列方程组求解即可.【解答】解:设小长方形的长为xcm,宽为ycm.根据题意得:解得:.故xy=30×10=300cm2.应选:B.【点评】此题主要考察的是二元一次方程组的应用,根据矩形的对边相等列出方程组是解题的关键.二.填空题〔共13小题〕14.〔2016•永州〕方程组的解是.【分析】代入消元法求解即可.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2〔2﹣2y〕+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.【点评】此题考察的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.15.〔2016•〕a、b满足方程组,那么= 3 .【分析】方程组利用加减消元法求出解得到a与b的值,代入原式计算即可得到结果.【解答】解:,①×3+②得:7a=28,即a=4,把a=4代入②得:b=5,那么原式=3.故答案为:3【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.〔2016•富顺县校级模拟〕假设方程组与的解一样,那么a= 33 ,b=.【分析】先求出x,y的值,再组成一个含a,b的新方程组.解这个方程组即可.【解答】解:解方程组得,代入方程组得,解得,故答案为:33,.【点评】此题主要考察了二元一次方程组的解,解题的关键是正确求出x,y的值,组成一个新的方程组.17.〔2016•〕是方程组的解,那么代数式〔a+b〕〔a﹣b〕的值为﹣8 .【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,那么原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣8【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.〔2016•富顺县校级模拟〕假设〔a﹣2b+1〕2与互为相反数,那么a= 3 ,b= 2 .【分析】根据得出〔a﹣2b+1〕2+=0,得出方程组,求出方程组的解即可.【解答】解:∵〔a﹣2b+1〕2与互为相反数,∴〔a﹣2b+1〕2+=0,〔a﹣2b+1〕2=0且=0,即,解得:a=3,b=2故答案为:3,2.【点评】此题考察了相反数,二元一次方程组,偶次方,算术平方根的应用,解此题的关键是得出关于x、y的方程组.19.〔2016•浦东新区二模〕定义运算“﹡〞:规定x﹡y=ax+by〔其中a、b为常数〕,假设1﹡1=3,1﹡〔﹣1〕=1,那么1﹡2= 4 .【分析】等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a 与b的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,那么1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考察了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法那么是解此题的关键.20.〔2016•丰台区二模〕我国明代数学家程大位的名著"直指算法统宗"里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【解答】解:设大和尚x人,小和尚y人,由题意可得.故答案为.【点评】此题考察了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.21.〔2016•龙岩模拟〕如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形〔阴影局部〕的面积为1cm2,那么小长方形的周长等于16cm .【分析】仔细观察图形,发现此题中2个等量关系为:小长方形的长×3=小长方形的宽×5,〔小长方形的长+小长方形的宽×2〕2=小长方形的长×小长方形的宽×8+1.根据这两个等量关系可列出方程组,即可求出小长方形的周长.【解答】解:设这8个大小一样的小长方形的长为xcm,宽为ycm.由题意,得,解得.小长方形的周长为2×〔3+5〕=16,故答案为16cm.【点评】此题主要考察了二元二次方程组的应用,解题关键是弄清题意,找到适宜的等量关系,列出方程组.解决此题需仔细观察图形,发现大长方形的对边相等及正方形的面积=8个小长方形的面积+小正方形的面积是关键.22.〔2016春•单县期末〕如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b= ﹣2 .【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:因为4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,可得:,解得:,所以a﹣b=﹣2,故答案为:﹣2【点评】主要考察二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.23.〔2016春•镇赉县期末〕一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,假设设∠1=x°,∠2=y°,那么可得到方程组为.【分析】根据∠1的度数比∠2的度数大50°,还有平角为180°列出方程,联立两个方程即可.【解答】解:根据∠1的度数比∠2的度数大50°可得方程x﹣y=50,再根据平角定义可得x+y+90=180,故x+y=90,那么可得方程组:,故答案为:.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.24.〔2016•广陵区二模〕如图,三个全等的小矩形沿“横﹣竖﹣横〞排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8 .【分析】由图形可看出:小矩形的2个长+一个宽=5.7,小矩形的2个宽+一个长=4.5,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.【点评】此题主要考察了二元一次方程组的应用,做题的关键是:弄懂题意,找出等量关系,列出方程组.25.〔2016•河南模拟〕一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,那么图②的大正方形中未被小正方形覆盖局部的面积大小为24 .【分析】设大正方形的边长为x,小正方形的边长为y,根据图①、图②给出的数据即可得出关于x、y的二元一次方程,解之即可求出x、y的值,再用大正方形的面积减去4个小正方形的面积即可得出结论.【解答】解:设大正方形的边长为x,小正方形的边长为y,根据题意得:,解得:,∴图②的大正方形中未被小正方形覆盖局部的面积为52﹣4×=24.故答案为:24.【点评】此题考察了二元一次方程组的应用,根据数量关系列出关于x、y的二元一次方程组是解题的关键.26.〔2016•楚雄州模拟〕如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是292 .【分析】设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y个,根据“所用火柴棍数=三角形个数×2+1+正六边形个数×5+1〞联立正三角形的个数比正六边形的个数多6个得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y 个,由题意得,解得:.故答案为:292.【点评】此题考察了二元一次方程组的应用,解题的关键是列出关于x、y的二元一次方程.此题属于根底题,难度不大,解决该题型题目时,结合数量关系得出关于两种图形个数的方程〔或方程组〕是关键.三.解答题〔共14小题〕27.〔2016•〕解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,那么方程组的解为.【点评】此题考察了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.28.〔2016•威海一模〕解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:原方程组可化为,①×3+②,得11x=22,即x=2,将x=2代入①,得6﹣y=3,即y=3,那么方程组的解为.【点评】此题考察了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.29.〔2016•莆田模拟〕关于x,y的二元一次方程组的解互为相反数,求k的值.【分析】方程组两方程相加表示出x+y,根据x与y互为相反数得到x+y=0,求出k的值即可.【解答】解:,①+②得:3〔x+y〕=k﹣1,即x+y=,由题意得:x+y=0,即=0,解得:k=1.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.30.〔2016•漳州模拟〕观察以下方程组,解答问题:①;②;③;…〔1〕在以上3个方程组的解中,你发现x与y有什么数量关系?〔不必说理〕〔2〕请你构造第④个方程组,使其满足上述方程组的构造特征,并验证〔1〕中的结论.【分析】〔1〕观察方程组,得到x与y的数量关系即可;〔2〕归纳总结得到第④个方程组,求出方程组的解,验证即可.【解答】解:〔1〕在以上3个方程组的解中,发现x+y=0;〔2〕第④个方程组为,①+②得:6x=24,即x=4,把x=4代入①得:y=﹣4,那么x+y=4﹣4=0.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.31.〔2016•龙岩模拟〕根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.【分析】根据图知道,一个保温瓶和一个杯子的价钱是43元,2个保温瓶和3个杯子的价钱是94元;先用43×2求出2个保温瓶和2个杯子的价钱,再用2个保温瓶和3个杯子的价钱减去2个保温瓶和2个杯子的价钱就是一个杯子的价钱,进而求出一个保温瓶的价钱.【解答】解:设杯子的单价为x元,那么热水瓶单价为y元,那么解得,答:杯子的单价为8元,那么热水瓶单价为35元.【点评】此题考察方程组的应用,关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择适宜的方法进展计算.32.〔2016•长春模拟〕某班学生集体去看演出,观看演出需购置甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购置一种门票共花费750元,求该班购置甲、乙两种门票的张数.【分析】设该班购置甲种门票x张,乙种门票y张,根据“该班一共35人,甲种门票每张24元,乙种门票每张18元,每人购置一种门票共花费750元〞列方。
专题2.2 二元一次方程组(提高篇)专项练习-2020-2021学年七年级数学下(浙教版)
专题2.2 二元一次方程组(提高篇)专项练习一、单选题1.方程(m-2 016)x|m|-2 015+(n+4)y|n|-3=2 018是关于x、y的二元一次方程,则() A.m=±2 016;n=±4B.m=2 016,n=4C.m=-2 016,n=-4D.m=-2 016,n=42.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k的取值为().A.3B.-3C.-4D.43.一片牧场上的草长得一样快,已知60头牛24天可将草吃完,而30头牛60天可将草吃完.那么,若在120天里将草吃完,则需要几头牛()A.16B.18C.20D.224.若关于x,y的方程组10,20x aybx y a++=⎧⎨-+=⎩没有实数解,则()A.ab=-2B.ab=-2且a≠1C.ab≠-2D.ab=-2且a≠25.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是( )A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x+=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩6.三元一次方程组156x yy zz x+=⎧⎪+=⎨⎪+=⎩的解是A.15xyz=⎧⎪=⎨⎪=⎩B.124xyz=⎧⎪=⎨⎪=⎩C.14xyz=⎧⎪=⎨⎪=⎩D.41xyz=⎧⎪=⎨⎪=⎩7.关于x、y的方程组51x ayy x+=⎧⎨-=⎩有正整数解,则正整数为( ).A.2、5B.1、2C.1、5D.1、2、58.根据图中提供的信息,可知每个杯子的价格是()A.51元B.35元C.8元D.7.5元9.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种10.已知实数a、m满足a>m,若方程组325x y ax y a-=+⎧⎨+=⎩的解x、y满足x>y时,有a>-3,则m的取值范围是()A.m>-3B.m≥-3C.m≤-3D.m<-3二、填空题11.一个大正方形和四个全等的小正方形按图①、①两种方式摆放,则图①的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).12.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为___.13.对于实数a,b,定义运算“①”:a①b=a bab a b≥⎪⎩,<,例如4①3,因为4>3.所以.若x,y满足方程组48229x yx y-=⎧⎨+=⎩,则x①y=_____________.14.若关于x、y的二元一次方程组316215x myx ny+=⎧⎨+=⎩的解是73xy=⎧⎨=⎩,则关于x、y的二元一次方程组3()()162()()15x y m x yx y n x y++-=⎧⎨++-=⎩的解是__.15.若(2x﹣3y+5)2+|x+y﹣2|=0,则x=_____,y=_____.16.某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了路程____________千米.17.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n >1)盆花,每个图案花盆的总数为s.按此规律推断,以s,n为未知数的二元一次方程为______.18.当x=1,-1,2时,y=ax2+bx+c的值分别为1,3,3,则当x=-2时,y的值为____.19.如果二元一次方程组3{9x y ax y a+=-=的解是二元一次方程2x-3y+12=0的一个解,那么a的值是_________.20.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.三、解答题21.解方程(1)2931x yy x+=⎧⎨-=⎩(代入法)(2)4143314312x yx y+=⎧⎪--⎨-=⎪⎩22.解三元一次方程组2314 2?7 3211 x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩23.若二元一次方程组37231x yx y-=⎧⎨+=⎩的解也适合于二元一次方程y=kx+9,求(k+1)2的值.24.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程①中的b,得到方程组的54xy=⎧⎨=⎩,试计算a2017+(110-b)2018的值.25.阅读探索知识累计解方程组()()()()12262126a b a b ⎧-++=⎪⎨-++=⎪⎩解:设a ﹣1=x ,b+2=y ,原方程组可变为2626x y x y +=⎧⎨+=⎩解方程组得:22x y =⎧⎨=⎩即1222a b -=⎧⎨+=⎩所以30a b =⎧⎨=⎩此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:122435212535a b a b ⎧⎛⎫⎛⎫-++= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪-++= ⎪ ⎪⎪⎝⎭⎝⎭⎩ (2)能力运用已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,直接写出关于m 、n 的方程组()()()()11112253325332a m b n c a m b n c ⎧++-=⎪⎨++-=⎪⎩的解为_____________.26.阅读下列材料:《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿.其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只? 结合你学过的知识,解决下列问题: (1)若设母鸡有x 只,公鸡有y 只,① 小鸡有__________只,买小鸡一共花费__________文钱;(用含x ,y 的式子表示) ①根据题意,列出一个含有x ,y 的方程:__________________;(2)若对“百鸡问题”增加一个条件:母鸡数量是公鸡数量的4倍多2只,求此时公鸡、母鸡、小鸡各有多少只?(3)除了问题(2)中的解之外,请你再直接写出两组..符合“百鸡问题”的解.27.在平面直角坐标系中,点O是坐标原点,点A的坐标是(-a,a),点B的坐标是(c,b),满足3+28{24a b ca b c-=--=-.(1)若x=2是3x-a<0的一个解,试判断点A在第几象限,并说明理由;(2)若①AOB的面积是4,求点B的坐标;(3)若两个动点E( e ,2e + 1) 、F( f ,-2f +3) ,请你探索是否存在以两个动点E、F为端点的线段EF①AB,且EF=AB.若存在,求出E、F两点的坐标;若不存在,请说明理由.参考答案1.D 【解析】【分析】根据二元一次方程的定义可得m -2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解不等式及方程即可得.【详解】①()()20153201642018m n m xn y---++=是关于x 、y 的二元一次方程,①m -2016≠0,n+4≠0,|m|-2015=1,|n|-3=1, 解得:m=-2016,n=4, 故选D .【点拨】本题考查了二元一次方程定义的应用,明确含有未知数的项的系数不能为0,次数为1是解题的关键.2.D 【分析】先利用方程3x -y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx -9求出k 值. 解:由题意,得:37,23 1.x y x y -=⎧⎨+=⎩解得:2,1.x y =⎧⎨=-⎩将21x y =⎧⎨=-⎩代入y=kx -9中,得:-1=2k -9,解得:k=4. 故选D.【点拨】本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单. 3.C 【解析】【分析】设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c .根据60头牛24天可将草吃完,而30头牛60天可将草吃完,列方程组,用其中一个未知数表示另一个未知数即可求解. 【详解】设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c .根据题意,得602424306060b c a b c a ⨯⎧⎨⨯⎩=+,=+,解得10,1200.a b c b =⎧⎨=⎩则若在120天里将草吃完,则需要牛的头数是120120c ab+=20.故选C.【点拨】考查了二元一次方程组的应用,解题关键是能够把题目中的未知量用一个字母表示.注:牛在吃草的同时,草也在长. 4.A 【解析】 【分析】把①变形,用y 表示出x 的值,再代入①得到关于y 的方程,令y 的系数等于0即可求出ab 的值. 【详解】1020x ay bx y a =①=②++⎧⎨-+⎩, 由①得,x=-1-ay ,代入①得,b (-1-ay )-2y+a=0, 即(-ab -2)y=b -a ,因为此方程组没有实数根,所以-ab -2=0,ab=-2. 故选:A . 【点拨】考查的是解二元一次方程组,解答此类问题时要熟知解二元一次方程组的代入消元法和加减消元法. 5.B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x +2y ,宽又是75厘米,故x +2y =75,矩的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】解:根据图示可得,2753x yx y+=⎧⎨=⎩故选B.【点拨】本题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.6.A【详解】观察方程组的特点,可以让三个方程相加,得到x+y+z=6.然后将该方程与方程组中的各方程分别相减,可求得15xyz=⎧⎪=⎨⎪=⎩.故选A.7.B【分析】先解含a的二元一次方程组,再根据x,y为正整数求出a的取值.【详解】解x、y的方程组51x ayy x+=⎧⎨-=⎩得61161xaya⎧=-⎪⎪+⎨⎪=⎪+⎩①x,y,a为正整数①a+1=3或2,解得a=2或1,故选B【点拨】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法进行求解.8.C【解析】试题分析:要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选C.9.C【解析】解:设二人间x间,三人间y间,四人间(5﹣x﹣y)间.根据题意得:2x+3y+4(5﹣x﹣y)=15,整理得:2x+y=5.当y=1时,x=2,5﹣x﹣y=5﹣2﹣1=2;当y=3时,x=1,5﹣x﹣y=5﹣1﹣3=1;当y=5时,x=0,5﹣x﹣y=5﹣0﹣5=0.因为同时租用这三种客房共5间,则x>0,y>0,所以有二种租房方案:①租二人间2间、三人间1间、四人间2间;①租二人间1间,三人间3间,四人间1间.故选C.点拨:本题是二元一次方程的应用,此题难度较大,解题的关键是理解题意,根据题意列方程,然后根据x,y是整数求解,注意分类讨论思想的应用,另外本题也可以列三元一次方程组.10.C【解析】解:325x y ax y a-=+⎧⎨+=⎩①②,①+①得,3x=6a+3,得到:x=2a+1①,把①代入①得,2a+1-y=a+3,解得y=a﹣2,所以,方程组的解是212x ay a=+⎧⎨=-⎩,①x>y,①2a+1>a﹣2,解得a>﹣3.①a>-3,a>m,①m≤-3,故选C.点拨:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.11.ab【详解】设大正方形的边长为x1,小正方形的边长为x2,由图①和①列出方程组得,12122{2x x a x x b+=-= 解得,122{4a bx a b x +=-= ①的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.12.1【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x -y 或直接让两个方程相减求解.【详解】方法一:解方程组2524x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, ①x -y=1;方法二:两个方程相减,得.x -y=1,故答案为1.【点拨】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.13.60【解析】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案.详解:由题意可知:48229x y x y -=⎧⎨+=⎩, 解得:512x y =⎧⎨=⎩.①x <y ,①原式=5×12=60.故答案为60.点拨:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.14.52x y =⎧⎨=⎩【解析】分析:令x +y =a ,x -y =b ,根据已知,比较后得出a ,b 的值,从而得出结论..详解:令x +y =a ,x -y =b ,则关于x 、y 的二元一次方程组316215x y m x y x y n x y ++-=⎧⎨++-=⎩()()()()变为:316215a mb a nb +=⎧⎨+=⎩.①二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,①73a b =⎧⎨=⎩,①73x y x y +=⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 点拨:本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法,本题要注意整体思想的运用.15.15 95【解析】分析:本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值.详解:①(2x −3y +5)2+|x +y −2|=0,①235020x y x y -+=⎧⎨+-=⎩, 解得19,.55x y ==故答案为19,.55点拨:考查非负数的性质,掌握两个非负数相加,和为0,这两个非负数的值都为0是解题的关键.16.20【解析】【分析】设平路有x 千米,上坡路有y 千米,根据平路用时+上坡用时+下坡用时+平路用时=5,即可得解.注意求得x+y 的值即为总路程.【详解】设平路有x 千米,上坡路有y 千米,根据题意,得: 4x +3y +6y +4x =5,即2x +2y =5,则x +y =10(千米), 这5小时共走的路程=2×10=20(千米).故答案是:20.【点拨】考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.注意可以通过间接方式得解.17.s=3(n -1)【分析】根据图片可知:第一图:有花盆3个,每条边有花盆2个,那么s=3×2-3;第二图:有花盆6个,每条边有花盆3个,那么s=3×3-3;第三图:有花盆9个,每条边有花盆4个,那么s=3×4-3;…由此可知以s ,n 为未知数的二元一次方程为s=3n -3.【详解】根据图案组成的是三角形的形状,则其周长等于边长的3倍,但由于每个顶点重复了一次.所以s=3n -3=3(n ﹣1).故答案为3(n ﹣1)【点拨】本题要注意给出的图片中所包含的规律,然后根据规律列出方程.18.7【解析】【分析】根据函数图象上的点的坐标,利用待定系数法即可求出二次函数的解析式,将x=-2代入函数解析式中即可求出y值.【详解】由已知,得1,3,342,a b ca b ca b c=++⎧⎪=-+⎨⎪=++⎩解得1,1,1,abc=⎧⎪=-⎨⎪=⎩①y=x2-x+1.当x=-2时,y=(-2)2-(-2)+1=7.故答案是:7.【点拨】考查了待定系数法求函数解析式以及二次函数图象上点的坐标特征,解题的关键是利用待定系数法求出二次函数的解析式.本题属于基础题,难度不大,解决该题型题目时,利用待定系数法求出函数解析式是关键.19.4 7 -【解析】解:39x y ax y a+=⎧⎨-=⎩①②,①+①得:x=6a,把x=6a代入①得:y=-3a.把x=6a,y=-3a代入2x-3y+12=0得:12a+9a+12=0,解得:47x=-.故答案为:47-.20.7 14 5 4【解析】分析:(1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)①s,t都是“相异数”,s=100x+32,t=150+y,①F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.①F(t)+F(s)=18,①x+5+y+6=x+y+11=18,①x+y=7.①1≤x≤9,1≤y≤9,且x,y都是正整数,①16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.①s是“相异数”,①x≠2,x≠3.①y≠1,y≠5.①16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,①()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,①k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,①k的最大值为54.点拨: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F (241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.21.(1)14xy=⎧⎨=⎩(2)3114xy=⎧⎪⎨=⎪⎩【解析】试题分析:(1)、将①-①×2求出x的值,然后代入①求出y的值,从而得出方程组的解;(2)、首先将①进行化简,然后利用加减消元法求出x的值,代入x的值求出y的值,从而得出方程组的解.试题解析:(1)、29? 31?x y y x ①②+=⎧⎨-=⎩, ①×2可得:2y -6x=2 ①, ①-①可得:7x=7, 解得:x=1, 将x=1代入①可得:1+2y=9,解得:y=4①原方程组的解为:14x y =⎧⎨=⎩. (2)、414? 331 4312x y x y +=⎧⎪⎨---=⎪⎩①②,将①化简可得:3x -4y=-2 ①, ①+①可得:4x=12,解得:x=3,将x=3代入①可得:3+4y=14,解得:y=114,①原方程组的解为:3114x y =⎧⎪⎨=⎪⎩. 22.123x y z =⎧⎪=⎨⎪=⎩【解析】分析:根据解三元一次方程组的方法解方程即可,详解:231427?3211x y z x y z x y z ①②③++=⎧⎪++=⎨⎪++=⎩①-①×2得:30,x z -+=①-①×2得:58,x z --=-联立方程3058,x z x z -+=⎧⎨--=-⎩解得:13,x z =⎧⎨=⎩把13x z =⎧⎨=⎩代入①得,12914,y ++= 解得:2,y =原方程组的解为:123 xyz=⎧⎪=⎨⎪=⎩点拨:考查三元一次方程组的加法,牢记加减消元法是解题的关键.23.16.【解析】【分析】先利用加减消元法解得x,y的值,然后代入方程即可求得k的值,再代入所求式子求解即可.【详解】解:37? 231x yx y①②-=⎧⎨+=⎩,①×3+①,得11x=22,解得x=2.将x=2代入①,得6-y=7,解得y=-1,①方程组37231x yx y-=⎧⎨+=⎩的解为21xy=⎧⎨=-⎩,将21xy=⎧⎨=-⎩代入y=kx+9,得k=-5,则当k=-5时,(k+1)2=16.【点拨】本题主要考查解二元一次方程组,解此题的关键在于正确求得二元一次方程组的解. 24.0【解析】分析: 把甲的结果代入①求出b的值,把乙的结果代入①求出a的值,代入原式计算即可得到结果.详解:根据题意,将31x y =-⎧⎨=-⎩代入①,将54x y =⎧⎨=⎩代入①得: 12252015b a -+=-⎧⎨+=⎩ 解得:110a b =-⎧⎨=⎩, 则原式=(-1)2017+(110-×10)2018=-1+1=0. 点拨: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.25.(1)95a b =⎧⎨=-⎩ (2)23m n =-⎧⎨=⎩ 【分析】(1)利用换元法把13a - ,+25b 分别看成一个整体把原方程组进行变形求出,继而在求出a 和b(2)利用换元法把5(m+3),3(n -2)分别看成一个整体把原方程组变形,可得一个新的含有m 、n 的二元一次方程组,然后求解即可得所求【详解】解: (1)拓展提高 设3a −1=x ,5b +2=y , 方程组变形得:24{25x y x y +=+= ,解得:21x y =⎧⎨=⎩ ,即123{215a b -=+= , 解得:9{5a b ==- ;(2)能力运用设53){3(2)m x n y+=-=( , 可得53)5{3(2)3m n +=-=( , 解得:2{3m n =-= , 故答案为2{3m n =-= 【点拨】二元一次方程组解法的拓展是本题的考点,熟练掌握基础知识进行换元是解题的关键. 26.解:(1)①100x y --, 1(100)3x y --;①74100x y +=;(2)母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;①公鸡有8只,母鸡有11只,小鸡有81只;①公鸡有0只,母鸡有25只,小鸡有75只.【解析】试题分析:(1)设母鸡有x 只,公鸡有y 只,根据一百文钱买一百只鸡,表示出小鸡的数量和价钱,然后列出方程;(2)设母鸡有x 只,公鸡有y 只,根据根据一百文钱买一百只鸡,母鸡数量是公鸡数量的4倍多2只,列方程求解即可;(3)解不定方程即可.试题解析:解:(1)①100x y --, 11003x y --();①74100x y +=;(2)设母鸡有x 只,公鸡有y 只,根据题意,得: 7410042x y x y +=⎧⎨=+⎩,,解得184x y =⎧⎨=⎩,,10078x y --=(只), 答:母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;①公鸡有8只,母鸡有11只,小鸡有81只;①公鸡有0只,母鸡有25只,小鸡有75只.27.(1)点A 在第二象限 (2)()()2,26,2B -或(3)35,2,,222E F ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭【解析】试题解析:(1)根据题意,求出a 的取值范围,从而确定点A 的位置;(2)先解方程组,得{4b ac a ==-,再利用三角形的面积求出a 的值即可解决问题;(3)根据线段EF 平行于线段AB 且等于线段AB ,得出4f e -=,2123e f +=-+求解即可.(1)点A 在第二象限理由:把x =2代入3x -a<0得a>6①-a<0,a>0①点A 在第二象限(2)由方程组解得{4b ac a ==-()4,B a a ∴-①A(-a ,a ),S △OAB =4①AB =41442a ∴⋅= 2a ∴=±()()2,26,2B ∴-或(3)①EF ①AB ,且EF =AB4{2123f e e f -=∴+=-+ 解得: 32{52e f =-= 35,2,,222E F ⎛⎫⎛⎫∴--- ⎪ ⎪⎝⎭⎝⎭【点拨】本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式.21。
《二元一次方程组》基础测试+提高测试
《二元一次方程》基础测试(一)填空题(每空2分,共26分):1.已知二元一次方程1213-+y x =0,用含y 的代数式表示x ,则x =_________; 当y =-2时,x =___ ____.【提示】把y 作为已知数,求解x .【答案】x =62y -;x =32.2.在(1)⎩⎨⎧-==23y x ,(2)⎪⎩⎪⎨⎧-==354y x ,(3)⎪⎪⎩⎪⎪⎨⎧-==2741y x 这三组数值中,_____是方程组x -3y =9的解,______是方程2 x +y =4的解,______是方程组⎩⎨⎧=+=-4293y x y x 的解.【提示】将三组数值分别代入方程、方程组进行检验.【答案】(1),(2);(1),(3);(1).【点评】方程组的解一定是方程组中各个方程共同的解.3.已知⎩⎨⎧=-=54y x ,是方程41x +2 my +7=0的解,则m =_______.【提示】把⎩⎨⎧=-=54y x 代入方程,求m .【答案】-53.4.若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =__,b =_.【提示】将⎩⎨⎧-=-=12y x 代入⎩⎨⎧=-=+137by ax by ax 中,原方程组转化为关于a 、b 的二元一次方程组,再解之.【答案】a =-5,b =3.5.已知等式y =kx +b ,当x =2时,y =-2;当x =-21时,y =3,则k =____,b =____. 【提示】把x 、y 的对应值代入,得关于k 、b 的二元一次方程组. 【答案】k =-2,b =2.【点评】通过建立方程组求解待定系数,是常用的方法. 6.若|3a +4b -c |+41(c -2 b )2=0,则a ∶b ∶c =_________. 【提示】由非负数的性质,得3 a +4 b -c =0,且c -2b =0.再用含b 的代数式表示a 、c ,从而求出a 、b 、c 的值.【答案】a =-32b ,c =2b ;a ∶b ∶c =-2∶3∶6. 【点评】用一个未知数的代数式表示其余的未知数,是一种常用的有效方法. 7.当m =_______时,方程x +2y =2,2x +y =7,mx -y =0有公共解.【提示】先解方程组⎩⎨⎧=+=+7222y x y x ,将求得的x 、y 的值代入方程mx -y =0,或解方程组⎪⎩⎪⎨⎧=-=+=+.07222y mx y x y x【答案】⎩⎨⎧-==14y x ,m =-41.【点评】“公共解”是建立方程组的依据.8.一个三位数,若百位上的数为x ,十位上的数为y ,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________.【提示】将各数位上的数乘相应的位数,再求和. 【答案】100 x +10 y +2(x -y ). (二)选择题(每小题2分,共16分):9.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x , 其中属于二元一次方程组的个数为………………………………………………( ) (A )1 (B )2 (C )3 (D )4【提示】方程组(2)中含有三个未知数,方程组(3)中y 的次数都不是1,故(2)、(3)都不是二元一次方程组.【答案】B .10.已知2 x b+5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为………………………( )(A )2 (B )-2 (C )1 (D )-1【提示】由同类项定义,得⎩⎨⎧-==+b a a b 42325,解得⎩⎨⎧=-=21b a ,所以b a =(-1)2=1.【答案】C .11.已知方程组⎩⎨⎧-=-=+1242m ny x n y mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值为……( ) (A )⎩⎨⎧-==11n m (B )⎩⎨⎧==12n m (C )⎩⎨⎧==23n m (D )⎩⎨⎧==13n m【提示】将⎩⎨⎧-==11n m 代入方程组,得关于m 、n 的二元一次方程组解之.【答案】D .12.三元一次方程组⎪⎩⎪⎨⎧=+=+=+651x z z y y x 的解是…………………………………………( )(A )⎪⎩⎪⎨⎧===501z y x (B )⎪⎩⎪⎨⎧===421z y x (C )⎪⎩⎪⎨⎧===401z y x (D )⎪⎩⎪⎨⎧===014z y x【提示】把三个方程的两边分别相加,得x +y +z =6或将选项逐一代入方程组验证,由x +y =1知(B )、(D )均错误;再由y +z =5,排除(C ),故(A )正确,前一种解法称之直接法...;后一种解法称之逆推验证法......【答案】A . 【点评】由于数学选择题多为单选题——有且只有一个正确答案,因而它比一般题多一个已知条件:选择题中有且只有一个是正确的.故解选择题除了直接法以外,还有很多特殊的解法,随着学习的深入,我们将逐一向同学们介绍. 13.若方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为……………( )(A )-4 (B )4 (C )2 (D )1【提示】把x =y 代入4x +3y =14,解得x =y =2,再代入含a 的方程.【答案】C . 14.若关于x 、y 的方程组⎩⎨⎧=-=+ky x ky x 73的解满足方程2x +3y =6,那么k 的值为( )(A )-23 (B )23 (C )-32 (D )-23【提示】把k 看作已知常数,求出x 、y 的值,再把x 、y 的值代入2 x +3 y =6,求出k .【答案】B . 15.若方程y =kx +b 当x 与y 互为相反数时,b 比k 少1,且x =21,则k 、b 的值分别是…………( ) (A )2,1 (B )32,35 (C )-2,1 (D )31,-32【提示】由已知x =21,y =-21,可得⎪⎩⎪⎨⎧=-+=-.12121b k b k 【答案】D .16.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组……………………………( )(A )⎩⎨⎧=-=+y x y x 3847 (B )⎩⎨⎧=++=x y x y 3847(C )⎩⎨⎧+=-=3847x y x y (D )⎩⎨⎧+=+=3847x y x y【提示】由题意可得相等关系:(1)7组的学生数=总人数-4;(2)8组的人数=总人数+3.【答案】C .(三)解下列方程组(每小题4分,共20分):17.⎩⎨⎧-=-=-.557832y x y x 【提示】用加减消元法先消去x .【答案】⎩⎨⎧-=-=.65y x18.⎪⎪⎩⎪⎪⎨⎧=+=+.15765545.04332y x y x 【提示】先整理各方程,化为整数系数的方程组,用加减法消去x .【答案】⎪⎩⎪⎨⎧=-=.223y x 19.⎪⎩⎪⎨⎧=+=4.1%40%2552y x y x 【提示】由第一个方程得x =52y ,代入整理后的第二个方程;或由第一个方程,设x =2 k ,y =5 k ,代入另一个方程求k 值.【答案】⎪⎪⎩⎪⎪⎨⎧==.15142528y x20.⎩⎨⎧-=++=+.b a y x b a y x 2127521257(a 、b 为非零常数)【提示】将两个方程左、右两边分别相加,得x +y =2a ①,把①分别与两个方程联立求解. 【答案】⎩⎨⎧-=+=.b a y b a x【点评】迭加消元,是未知数系轮换方程组的常用解法.21.⎪⎩⎪⎨⎧=++=-+=+-.10076702302z y x z y x z y x【提示】将第一个方程分别与另外两个方程联立,用加法消去y .【答案】⎪⎩⎪⎨⎧===.753z y x【点评】分析组成方程组的每个方程中各未知项系数的构成特点,是选择恰当解题方法的关键所在,因而解题前要仔细观察,才能找出解题的捷径. (四)解答题(每小题6分,共18分):22.已知方程组⎩⎨⎧+=+=+25332n y x ny x 的解x 、y 的和为12,求n 的值.【提示】解已知方程组,用n 的代数式表示x 、y ,再代入 x +y =12. 【答案】n =14.23.已知方程组⎩⎨⎧-=+=-1332by ax y x 与⎩⎨⎧=+=+3321123by ax y x 的解相同,求a 2+2ab +b 2 的值.【提示】先解方程组⎩⎨⎧=+=-1123332y x y x 求得x 、y ,再代入方程组⎩⎨⎧=+-=+3321by ax by ax 求a 、b .【答案】⎩⎨⎧=-=52b a .【点评】当n 个方程组的解相同,可将方程组中的任意两个方程联立成新的方程组.24.已知代数式x 2+ax +b 当x =1和x =-3时的值分别为0和14,求当x =3时代数式的值. 【提示】由题意得关于a 、b 的方程组.求出a 、b 写出这个代数式,再求当x =3时它的值. 【答案】5.【点评】本例在用待定系数法求出a 、b 的值后,应写出这个代数式,因为它是求值的关键步骤. (五)列方程组解应用问题(每1小题10分,共20分):25.某校去年一年级男生比女生多80人,今年女生增加20%,男生减少25%,结果女生又比男生多30人,求去年一年级男生、女生各多少人.【提示】设去年一年级男生、女生分别有x 人、y 人,可得方程组⎪⎩⎪⎨⎧=--+=-.30)100251()100201(80x y y x【答案】x =280,y =200.26.A 、B 两地相距20千米,甲、乙两人分别从A 、B 两地同时相向而行,两小时后在途中相遇.然后甲返回A 地,乙继续前进,当甲回到A 地时,乙离A 地还有2千米,求甲、乙两人的速度. 【提示】由题意,相遇前甲走了2小时,及“当甲回到A 地时,乙离A 地还有2千米”,可得列方程组的另一个相等关系:甲、乙同向行2小时,相差2千米.设甲、乙两人的速度分别为x 千米/时,y 千米/时,则⎩⎨⎧=-=+.2)(220)(2y x y x 【答案】甲的速度为5.5千米/时,乙的速度为4.5千米/时.《二元一次方程组》提高测试(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________.【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数. 【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a cb a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值. 【答案】a =61,b =41,c =31.【点评】设“比例系数”是解有关数量比的问题的常用方法. 8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………()(A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D )-4或10 【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程. 【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法. 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1) (C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解. 【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值. 【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c 时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b .【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1 【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元. 【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A BA , 进而求得x ,y .【答案】⎩⎨⎧-==.11y x20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值.【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k , y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的. 22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错. 【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值. 【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5. 【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x=-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少? 【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米,根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
解二元一次方程组专项提升训练 (解析版)
解二元一次方程组专项提升训练一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•东源县校级期末)用代入法解方程组{y =2x −3①x −2y =6②时,将①代入②得( ) A .x ﹣4x +3=6 B .x ﹣4x +6=6 C .x ﹣2x +3=6D .x ﹣4x ﹣3=6 【分析】根据代入消元法,把②中的y 换成2x ﹣3即可.【解答】解:①代入②得,x ﹣2(2x ﹣3)=6,即x ﹣4x +6=6.故选:B .2.(2022秋•迎泽区校级月考)已知{2x +3y =53x +2y =10,那么x ﹣y 的值是( ) A .﹣5 B .5 C .﹣3 D .3【分析】根据题意将两方程相减,进而即可整体得出x ﹣y 的值.【解答】解:{2x +3y①3x +2y =10②, ②﹣①得:x ﹣y =5.故选:B .3.(2021秋•绥德县期末)用代入消元法解方程组{8x +5y =11①x =−2y②时,将②代入①正确的是( ) A .16y +5y =11 B .16y ﹣5y =11 C .﹣16y +5y =11D .﹣16y ﹣5y =11 【分析】把②代入①得到结果,即可作出判断.【解答】解:用代入消元法解方程组{8x +5y =11①x =−2y②时, 将②代入①正确的是8×(﹣2y )+5y =11,即﹣16y +5y =11.故选:C .4.(2022春•新乐市校级月考)利用加减法解方程组{5x +3y =10,①2x −2y =1,②时,利用①×a +②×b 消去y ,则a ,b 的值可能分别是( )A .2,3B .2,5C .﹣2,3D .﹣2,﹣5【分析】利用加减消元法判断即可.【解答】解:利用加减法解方程组{5x +3y =10,①2x −2y =1,②时, 利用①×2+②×3消去y ,得:10x +6x =20+3,则a 、b 的值可能是a =2,b =3,故选:A .5.(2022秋•新乡期末)已知二元一次方程组{x +2y =3x −y =5,则2x +y 的值为( ) A .﹣2 B .0 C .6 D .8【分析】把两个方程相加,则可直接求得2x +y 的值.【解答】解:{x +2y =3①x −y =5②, ①+②得:2x +y =8.故选:D .6.(2022秋•桥西区期中)关于x 、y 的二元一次方程组{6x −5y =36x +y =−15,用加减消元法消去x 后得到的结果为( ) A .6y =﹣12 B .﹣4y =﹣12 C .6y =﹣18 D .6y =18【分析】利用加减消元法进行求解即可.【解答】解:{6x −5y =3①6x +y =−15②, ②﹣①得:6y =﹣18,故选:C .7.(2021秋•藤县期末)在等式y =kx +b 中,当x =1时,y =3;当x =﹣1时,y =9.则k •b 的值为( )A .18B .﹣18C .﹣20D .20【分析】由题意先得到二元一次方程组,再解方程组求出b 、k ,最后代入得结论.【解答】解:由题意,得{k +b =3①−k +b =9②, ①+②,得2b =12,∴b =6;①﹣②,得2k =﹣6,∴k =﹣3.∴k •b =﹣3•6=﹣18.故选:B .8.(2022春•寻乌县期末)已知|x +5y +9|+(x ﹣2y ﹣5)2=0,则(x +y )2的值为( )A .1B .2C .3D .9 【分析】根据绝对值的非负性、偶次方的非负性求得x +5y +9=0,x ﹣2y ﹣5=0,进而求得x 与y ,再代入求值.【解答】解:∵|x +5y +9|≥0,(x ﹣2y ﹣5)2≥0,∴当|x +5y +9|+(x ﹣2y ﹣5)2=0,则|x +5y +9|=0,(x ﹣2y ﹣5)2=0.∴x +5y +9=0,x ﹣2y ﹣5=0.∴x =1,y =﹣2.∴(x +y )2=(1﹣2)2=1.故选:A .9.(2021秋•竞秀区期末)已知关于x ,y 的方程组{x +2y =5−2a x −y =4a −1,下列结论: ①当a =1时,方程组的解也是x +y =2a ﹣1的解;②无论a 取何值,x ,y 不可能互为相反数;③x ,y 都为自然数的解有4对;④若2x +y =8,则a =3,其中不正确的有( )A .1个B .2个C .3个D .4个【分析】①根据消元法解二元一次方程组,然后将解代入方程x +y =2a ﹣1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x 、y ,再根据互为相反数的两个数相加为0即可求解; ③根据试值法求二元一次方程x +y =3的自然数解即可得结论;④根据整体代入的方法即可求解.【解答】解:①将a =1代入原方程组,得{x +2y =3x −y =3解得{x =3y =0 将x =3,y =0,a =1代入方程x +y =2a ﹣1的左右两边,左边=3,右边=1,当a =1时,方程组的解不是是x +y =2a ﹣1的解;②解原方程组,得{x =2a +1y =2−2a∴x +y =3,无论a 取何值,x ,y 的值不可能是互为相反数;③∵x +y =2a +1+2﹣2a =3∴x 、y 为自然数的解有{x =0y =3,{x =1y =2,{x =2y =1,{x =3y =0. ④∵2x +y =8,∴2(2a +1)+2﹣2a =8,解得a =2.综上所述:②③正确,故选:B .10.(2022春•武城县期末)若方程组{2x +3y =1m −x +(m +1)y =4的解中x 与y 互为相反数,则m 的值为( ) A .1 B .2 C .3 D .4【分析】先解二元一次方程组求出x 、y 的值,再把x 、y 的值代入方程m ﹣x +(m +1)y =4,最后求出m 的值.【解答】解:∵方程组{2x +3y =1m −x +(m +1)y =4的解中x 与y 互为相反数, ∴{2x +3y =1①x +y =0②. 解这个方程组,得{x =−1y =1. 把{x =−1y =1代入方程m ﹣x +(m +1)y =4, 得m +1+(m +1)×1=4.解这个方程,得m =1.故选:A .二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022春•禹州市期末)若关于x ,y 的方程组{ax +y =2x −by =3的解是{x =2y =−1,则2a ﹣b 的值是 2 . 【分析】先把方程的解代入方程组,整理后代入2a ﹣b 得结论.【解答】解:把{x =2y =−1代入方程组{ax +y =2x −by =3,得{2a −1=22−(−1)b =3. 整理,得{2a =3①b =1②, ∴①﹣②,得2a ﹣b =3﹣1=2.故答案为:2.12.(2022春•普陀区校级月考)写出一个解是{x =3y =6的二元一次方程组 {x +y =9x −y =−3. 【分析】利用二元一次方程组解的意义解答即可.【解答】解:∵{x =3y =6, ∴x +y =9,x ﹣y =﹣3.∴解为{x =3y =6的二元一次方程组为:{x +y =9x −y =−3(答案不唯一). 故答案为:{x +y =9x −y =−3. 13.(2021秋•天府新区期末)若关于x ,y 的二元一次方程组{x +y =3k x −y =k的解也是二元一次方程x +2y =1的解,则k 的值为 14 .【分析】首先把方程组解出,用k 表示x 、y ,再把x 、y 的值代入二元一次方程求出k .【解答】解:{x +y =3k①x −y =k②, ①+②得2x =4k ,解得x =2k ,把x =2k ,代入②得y =k ,把x =2k ,y =k ,代入x +2y =1,得2k +2k =1,解得k =14,故答案为:14. 14.(2022春•武江区校级期末)已知关于x ,y 的方程组{x +2y =10ax +by =1与方程组{bx +ay =62x −y =5有相同的解,则a = ﹣2 ,b = 3 .【分析】依据题意重新组成方程组求得x ,y 的值,再将x ,y 值代入得到关于a ,b 的方程组,解方程组即可得出结论.【解答】解:∵关于x ,y 的方程组{x +2y =10ax +by =1与方程组{bx +ay =62x −y =5有相同的解, ∴{x +2y =102x −y =5, 解得:{x =4y =3. ∴{4a +3b =14b +3a =6,解得:{a =−2b =3. 故答案为:﹣2;3.15.(2022春•邗江区期末)小亮解方程组{2x +y =●2x −y =12的解为{x =5y =●,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回●这个数,●= 8 .【分析】把x =5代入方程组求出y 的值,即可确定出所求.【解答】解:设●表示的数为a ,把x =5代入方程组得:{10+y =a 10−y =12, 解得:y =﹣2,则a 这个数为10﹣2=8.故答案为:8.16.(2022春•昌平区期中)已知{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =3y =4,则方程组{3a 1(x −1)+4b 1(y +3)=c 13a 2(x −1)+4b 2(y +3)=c 2的解是 {x =2y =−2. 【分析】根据二元一次方程组的解,即可解答.【解答】解:将{x =3y =4代入{a 1x +b 1y =c 1a 2x +b 2y =c 2得:{3a 1+4b 1=c 13a 2+4b 2=c 2, 将{3a 1+4b 1=c 13a 2+4b 2=c 2代入方程组{3a 1(x −1)+4b 1(y +3)=c 13a 2(x −1)+4b 2(y +3)=c 2得: {x −1=1y +3=1解得:{x =2y =−2, 故答案为:{x =2y =−2. 三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•杜尔伯特县期中)解方程组.(1){2x +y =3x +2y =−6; (2){x +5y =43x −6y =5; (3){2x +5y =53x −5y =10; (4){3x +2y =52x +5y =7. 【分析】(1)(2)(3)(4)利用加减消元法或代入消元法解二元一次方程组即可.【解答】解:(1)①×2﹣②,得3x =12,解得x =4,把x =4代入①,得8+y =3,解得y =﹣5,∴方程组的解为{x =4y =−5; (2)①×3﹣②,得21y =7,解得y =13,把y =13代入①,得x +5×13=4,解得x =73,∴方程组的解为{x =73y =13; (3){2x +5y =5①3x −5y =10②, ①+②,得5x =15,解得x =3,把x =3代入①,得6+5y =5,解得y =−15,∴方程组的解为{x =3y =−15; (4){3x +2y =5①2x +5y =7②, ①+2﹣②×3,得﹣11y =﹣11,解得y =1,把y =1代入①,得3x +2=5,∴x =1,∴方程组的解为{x =1y =1. 18.(2022秋•浑南区校级月考)解方程组:(1){x +y =25x −3(x +y)=4; (2){x+13−y+24=0x−34−y−33=112; (3){2x+y 2=5x−3y 415%x +25%y =40×20%;(4){0.2x +0.5y =0.20.4x +0.1y =0.4; (5)3x+2y 4=2x+y+25=−x+5y 3.【分析】(1)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(2)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(3)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(4)先将原方程组进行化简整理,再利用加减消元法进行计算即可解答;(5)由题意得:{3x+2y 4=2x+y+252x+y+25=−x+5y 3,再进行化简整理,然后利用加减消元法进行计算即可解答. 【解答】解:(1)将原方程组化简整理得:{x +y =2①2x −3y =4②, ①×2得:2x +2y =4③,③﹣②得:5y =0,解得:y =0,把y =0代入①中,x +0=2,解得:x =2,∴原方程组的解为:{x =2y =0; (2)将原方程组化简整理得:{4x −3y =2①3x −4y =−2②, ①×3得:12x ﹣9y =6③,②×4得:12x ﹣16y =﹣8④,③﹣④得:7y =14,解得:y =2,把y =2代入①得:4x ﹣6=2,解得:x =2,∴原方程组的解为:{x =2y =2; (3)将原方程组化简整理得:{x −5y =0①3x +5y =160②, ①+②得:4x =160,解得:x =40,把x =40代入①中,40﹣5y =0,解得:y =8,∴原方程组的解为:{x =40y =8; (4)将原方程组化简整理得:{2x +5y =2①4x +y =4②, ①×2得:4x +10y =4③,③﹣②得:9y =0,解得:y =0,把y =0代入①中,2x +0=2,解得:x =1,∴原方程组的解为:{x =1y =0; (5)由题意得:{3x+2y 4=2x+y+252x+y+25=−x+5y 3, 化简整理得:{7x +6y =8①11x +28y =−6②, ①×14得:98x +84y =112③,②×3得:33x +84y =﹣18④,③﹣④得:65x =130,解得:x =2,把x =2代入①中,14+6y =8,解得:y =﹣1,∴原方程组的解为:{x =2y =−1. 19.(2022•阳谷县三模)已知方程组{2x +15y −3=03x −2y +20=0的解也是关于x 、y 的方程ax +y =4的一个解,求a 的值. 【分析】先解方程组求得x ,y 值,再将x ,y 值代入方程ax +y =4,解方程可求解a 值.【解答】解:解方程组{2x +15y −3=03x −2y +20=0的解为{x =−6y =1, ∵方程组{2x +15y −3=03x −2y +20=0的解也是关于x 、y 的方程ax +y =4的一个解, ∴﹣6a +1=4,解得a =−12.20.(2022春•大安市期末)在解方程组{ax +5y =104x −by =−4时,由于粗心,甲看错了方程组中的a ,得到的解为{x =−3y =−1,乙看错了方程组中的b ,得到的解为{x =5y =4. (1)求正确的a ,b 的值;(2)求原方程组的解.【分析】(1)把甲的结果代入第二个方程求出b 的值,把乙的结果代入第一个方程求出a 的值即可;(2)将a 与b 的值代入方程组,求出解即可.【解答】解:(1)由题意得:{−12+b =−45a +20=10, 解得:{a =−2b =8; (2)把{a =−2b =8代入方程组得:{−2x +5y =10x −2y =−1, 解得:{x =15y =8. 21.(2022春•东平县期中)已知方程组{2x +y =−2ax −by =−8和方程组{bx +ay =−63x −y =12的解相同,求2(a +b )2014的值. 【分析】根据方程组的解相同,可得新方程组,根据解方程组,可得方程组的解,根据方程组的解满足方程,把解代入,可得关于a 、b 的方程组,根据解方程组,可得a 、b 的值,根据乘方,可得幂.【解答】解;方程组{2x +y =−2ax −by =−8和方程组{bx +ay =−63x −y =12的解相同, 可得{2x +y =−2①3x −y =12②{ax −by =−8③bx +ay =−6(4), 解第一个方程组得{x =2y =−6, 把{x =2y =−6代入第二个方程组得{2a +6b =−82b −6a =−6, 解得{a =12b =−322(a +b )2014=2(12−32)2014 =2.22.(2021春•天心区校级月考)关于x ,y 的二元一次方程组ax +by =c (a ,b ,c 是常数),b =a +1,c =b +1.(1)当{x =3y =1时,求c 的值; (2)若a 是正整数,求证:仅当a =1时,该方程有正整数解.【分析】(1)将x ,y 值代入方程,得到关于a ,b ,c 的方程求解.(2)先表示方程的解,再确定a .【解答】解:(1){x =3y =1代入方程得:3a +b =c , ∵b =a +1,c =b +1,∴b =c ﹣1,a =c ﹣2,∴3c ﹣6+c ﹣1=c .∴c =73.(2)证明:由题意,得ax +(a +1)y =a +2,整理得,a (x +y ﹣1)=2﹣y ①,∵x 、y 均为正整数,∴x +y ﹣1是正整数,∵a 是正整数,∴2﹣y 是正整数,∴y =1,把y =1代入①得,ax =1,∴a =1,此时,a =1,b =2,c =3,方程的正整数解是{x =1y =1. ∴仅当a =1时,该方程有正整数解.23.(2022春•兴化市月考)对于有理数x ,y ,定义新运算:x &y =ax +by ,x ⊗y =ax ﹣by ,其中a ,b 是常数.已知1&1=1,3⊗2=8.(1)求a ,b 的值;(2)若关于x ,y 的方程组{x&y =4−m x ⊗y =5m的解也满足方程x +y =5,求m 的值; (3)若关于x ,y 的方程组{a 1x&b 1y =c 1a 2x ⊗b 2y =c 2的解为{x =4y =5,求关于x ,y 的方程组{3a 1(x +y)&4b 1(x −y)=5c 13a 2(x +y)⊗4b 2(x −y)=5c 2的解.【分析】(1)根据定义新运算得出关于a 、b 的二元一次方程组,再解方程组即可;(2)根据题意得出关于x 、y 的二元一次方程组,求出方程组的解,再代入方程x +y =3求解即可;(3)根据定义新运算得出相关方程组,根据方程组的解的定义,利用整体代入的方法解答即可.【解答】解:(1)由题意得{a +b =13a −2b =8,解得{a =2b =−1; (2)依题意得{2x −y =4−m 2x +5=5m,解得{x =m +1y =3m −2, ∵x +y =5,∴m +1+3m ﹣2=5,解得m =32;(3)由题意得{2a 1+b 1y =c 12a 2+b 2y =c 2的解为{x =4y =5,, 由方程组{3a 1(x +y)&4b 1(x −y)=5c 13a 2(x +y)⊗4b 2(x −y)=5c 2得{6a 1(x +y)−4b 1(x −y)=5c 16a 2(x +y)+4b 2(x −y)=5c 2,整理,得{2a 1⋅35(x +y)−b 2⋅45(x −y)=c 12a 2⋅35(x +y)+b 2⋅45(x −y)=c 2, 即{35(x +y)=445(x −y)=5, 解得{x =15524y =524.。
完整版)二元一次方程组题型总结
完整版)二元一次方程组题型总结二元一次方程组题型总结类型一:二元一次方程的概念及求解例(1)已知(a-2)x-by=5是关于x、y的二元一次方程,则a=2,b=-1.2)二元一次方程3x+2y=15的正整数解为(3,3)。
类型二:二元一次方程组的求解例(3)若|2a+3b-7|与(2a+5b-1)互为相反数,则a=1,b=2.4)2x-3y=4,x-y=5的解为(-1,-6)。
类型三:已知方程组的解,而求待定系数。
例(5)已知3mx-2y=1,4x+ny+7=2,x=-2,y=1是方程组的解,则m-n的值为-1.6)若满足方程组kx+(2k-1)y=6的x、y的值相等,则k=2.练:若方程组2x-y=3,2kx+(k+1)y=10的解互为相反数,则k的值为-3/2.类型四:涉及三个未知数的方程,求出相关量。
例(7)已知abc/123=4/12,且a+b-c=1,则a=4,b=8,c=1.8)解方程组x+3y=2,3y+z=4,z+3x=6,得x=2,y=0,z=-2.练:若2a+5b+4c=10,3a+b-7c=-2,则a+b-c=0.由方程组x-2y+3z=2,2x-3y+4z=3可得,x∶y∶z是1∶2∶1.类型五:列方程组求待定字母系数是常用的解题方法。
例(9)若x=1,y=-2,y=-3都是关于x、y的方程|a|x+by=6的解,则a+b的值为-2.10)关于x,y的二元一次方程ax+b=y的两个解是(2,-1)和(1,1),则这个二元一次方程是y=-x+3.练:如果方程组x=-1y=2ax+by=zbx-cy=1中的{x,y}是解,下列哪个式子成立?A。
a+4c=2B。
4a+c=2C。
a+4c+2=0D。
4a+c+2=0解析:由{x=-1,y=2}可知,代入方程组中得a+2b=zb-2c=1又因为{x,y}是解,所以代入方程组中得a+2b=0b-2c=0解得a=4c,代入选项可知只有选项C成立。
中考数学总复习《二元一次方程组》专项提升练习题(附答案)
中考数学总复习《二元一次方程组》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中,是二元一次方程的是( )A.3x +2y =4B.12xy =5C.12x 2﹣14y =3 D.8x ﹣2x =12.已知方程3x+2y=4,用含x 的式子表示y ,则 ( ) A.y=- 32x+2 B.2y=3x -4 C.y=32x -2 D.y=32x -43.若⎩⎨⎧x =1,y =2是关于x ,y 的二元一次方程ax -3y =1的解,则a 的值为( )A.-5B.-1C.2D.74.已知方程组()⎩⎨⎧=-=--13221m yx x m 是二元一次方程组,则m =( ) A.1或﹣1 B.2或﹣2 C.﹣2 D.2 5.二元一次方程组⎩⎨⎧3x +2y =7,6x -2y =11的解是( )A.⎩⎨⎧x =-1,y =5B.⎩⎨⎧x =1,y =2C.⎩⎨⎧x =3,y =-1D.⎩⎨⎧x =2,y =126.若-2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是( ) A.2 B.0 C.-1 D.17.某出租车起步价所包含的路程为0~2 km ,超过2 km 的部分按每千米另收费.津津乘坐这种出租车走了7 km ,付了16元;盼盼乘坐这种出租车走了13 km ,付了28元.设这种出租车的起步价为x 元,超过2 km 后超过部分每千米收费y 元,则下列方程组正确的是( ) A.⎩⎨⎧x +7y =16,x +13y =28B.⎩⎨⎧ x +(7-2)y =16,x +13y =28C.⎩⎨⎧x +7y =16,x +(13-2)y =28D.⎩⎨⎧x +(7-2)y =16,x +(13-2)y =288.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A.B.C.D.9.四个形状、大小相同的长方形,如图,拼成一个大的长方形,如果大长方形的周长为280厘米,那么,每块小长方形的面积是( )A.900平方厘米B.1200平方厘米C.1600平方厘米D.1800平方厘米 10.已知关于x 、y 的方程组,给出下列结论:①是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数; ③当a=1时,方程组的解也是方程x +y=4﹣a 的解; ④x ,y 的都为自然数的解有4对. 其中正确的个数为( )A.1个B.2个C.3个D.4个 二、填空题11.若关于x 、y 的二元一次方程3x -ay =1有一个解是⎩⎨⎧x =3y =2,则a =______.12.写出2x ﹣3y =0的一组整数解 .13.已知(x -3)2+│2x -3y+6│=0,则x=________,y=_________. 14.小亮解方程组的解为,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回★这个数★=15.已知一个两位数,它的十位上的数字与个位上的数字的和为12,若对调个位与十位上的数字,得到的新数比原数小18.设原数的个位数字为x,十位数字为y,可列方程组为.16.《九章算术》有个题目,大意是:“五只雀、六只燕,共重16两,雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量分别为x两,y两,可得方程组是.三、解答题17.解方程组:18.解方程组:19.在解方程组时,由于粗心,甲看错了方程组中的a,而得到方程组的解为,乙看错了方程组中的b,而得到方程组的解为(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.20.已知关于x、y的方程组的解满足x+y=-10,求式子m2-2m+1的值.21.打折前,买10件A商品和5件B商品共用了400元,买5件A商品和10件B商品共用了350元.(1)求打折前A商品、B商品每件分别多少钱?(2)打折后,买100件A商品和100件B商品共用了3800元.比不打折少花多少钱?22.某学校现有甲种材料35㎏,乙种材料29㎏,制作A、B两种型号的工艺品,用料情况如下表:需甲种材料需乙种材料1件A型工艺品0.9㎏0.3㎏1件B型工艺品0.4㎏1㎏(1)利用这些材料能制作A、B两种工艺品各多少件?(2)若每公斤甲、乙种材料分别为8元和10元,问制作A、B两种型号的工艺品各需材料多少钱?23.我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置完成的.如图①,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项,把图①所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧x +4y =10,6x +11y =34.请你根据图②所示的算筹图,列出方程组,并求解.参考答案1.A.2.A3.D.4.C.5.D6.D7.D8.A9.B. 10.C. 11.答案为:4 12.答案不唯一,如.13.答案为:x=3,y=4. 14.答案为:-2 15.答案为: 16.答案为:.17.解:x=-6.2,y=-4.4; 18.解:x =1;y =0.19.解:(1)甲把a 看成了4,乙把b 看成了23; (2)x=3,y=4.20.解:关于x 、y 的方程组得(2m -6)+(-m+4)=-10.解得m=-8. ∴m 2-2m+1=(-8)2-2×(-8)+1=81.21.解:(1)设打折前A 商品每件x 元、B 商品每件y 元,根据题意,得 由题意得解之得答:打折前A 商品每件30元、B 商品每件20元. (2)打折前,买100件A 商品和100件B 商品共用: 100×30+100×20=5000 (元) 比不打折少花:5000﹣3800=1200 (元)答:打折后,买100件A 商品和100件B 商品比不打折少花1200元. 22.解:(1)设利用这些材料能制作A 工艺品x 件,B 工艺品y 件 由题意得,,解得:答:利用这些材料能制作A 工艺品30件,B 工艺品20件;(2)制作一件A 型工艺品需要的钱数为:0.9×8+0.3×10=10.2(元) 则制作A 型号的工艺品需材料的钱数为:10.2×30=306(元) 制作一件B 型工艺品需要的钱数为:0.4×8+1×10=13.2(元) 则制作A 型号的工艺品需材料的钱数为:13.2×20=264(元) 答:制作A 、B 两种型号的工艺品各需材料306元,264元. 23.解: 依题意,得⎩⎨⎧2x +y =7, ①x +3y =11. ②由①,得y =7-2x.③把③代入②,得x +3(7-2x)=11.解方程,得x =2. 把x =2代入①,得y =3. ∴方程组的解是⎩⎨⎧x =2y =3.。
二元一次方程组提高应用题
二元一次方程组应用题(1)1.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).2.兄弟二人养了一群羊,当每只羊的价钱(以元为单位)的数值恰等于这群羊的只数时,将这群羊全部卖出,兄弟二人平分卖羊得来的钱:哥哥先取10元,弟弟再取10元;这样依次反复进行,最后,哥哥先取10元,弟弟再取不足10元,这时哥哥将自己的一顶草帽给了弟弟,兄弟二人所得的钱数相等.问这顶草帽值多少钱?3.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行,甲、乙二人在第一次相遇后3小时36分又再次相遇,则A、B两地的距离是多少?4.某水库共有6个相同的泄洪闸,在无上游洪水注入的情况下,打开一个水闸泄洪使水库水位以a米/时匀速下降.某汛期上游的洪水在未开泄洪闸的情况下使水库水位以b米/时匀速上升,当水库水位超警戒线^米时开始泄洪.(1)如果打开n个水闸泄洪x小时,写出表示此时相对于警戒线的水面高度的代数式;(2)经考察测算,如果只打开一个泄洪闸,则需30个小时水位才能降至警戒线;如果同时打开两个泄洪闸,则需10个小时水位才能降至警戒线.问该水库能否在3个小时内使水位降至警戒线?5.我市旅游业计划开发的项目主要是景点和通往景点的公路,随着杭州湾大桥的开通,我市加快旅游业开发,把景点和公路的开发总投资增加至10.5千万元,其中开发景点的投资增加了20%,开发公路的投资增加了10%.已知原计划景点投资比公路投资多3千万元.求我市实际投资景点和公路各多少千万元?6.甲仓库和乙仓库分别存放着某种机器20台和6台.现在准备调运给A厂10台,B厂16台,已知从甲库调运一台机器到A厂的运费为400元,到B厂的运费为800元;从乙库调运一台机器到A厂的运费为300元,到B厂的运费为500元,如果总运费用了16000元.求:从甲库调给A厂,乙库调给B 厂各为多少台机器?7.张老师给同学们出了一个题:我有两个小表弟都在上小学,他们两个岁数的和乘以他们岁数的差等于63,请大家算一算这两个孩子的年龄.8.2010年4月14日青海省玉树发生了7.1级大地震,驻军某部(位于距玉树县城结古镇91公里处的上拉秀镇)接到上级命令,须火速前往结古镇救援.已知该部有120名官兵,且步行的速度为每小时10公里,现仅有一辆时速为80公里的卡车,可乘坐40人,请你设计一个乘车兼步行方案,使该部120人能在最短时间内赶往重灾区结古镇救援.其中中途换车(上、下车)的时间均忽略不计,最快多少时间可以赶到?(可用分数表示)9.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?10.广州市某中学新建了一栋教学大楼,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,每分钟可以通过280名学生;当同时开启一道正门和一道侧门时,每分钟可以通过200名学生.(1)求平均每分钟一道正门和一道侧门分别可以通过多少名学生?(2)紧急情况时因学生拥挤,出门的效率会降低20%,现规定在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学楼共有32间教室,每间教室最多有45名学生,问:建造的这4道门是否符合规定?请说明理由.11.某中学在近日组织师生共900人举行以“感受春天,亲近自然,收获快乐”为主题的春游活动,为此学校决定到野生动物园游览.为确保师生活动安全(如校车等安全),学校、旅行社和相关部分充分协商决定,本次春游费用为:教师每位120元,学生每位100元.该学校共花费91200元,请问在这次春游活动中,教师和学生各有多少人?12.车间里有90名工人,每人每天能生产螺母24个或螺栓15个,若一个螺栓配两个螺母,那么应分配多少人生产螺栓,多少人生产螺母才能使螺栓和螺母正好配套?13.2010年南非世界杯的半决赛门票价格是一等席600美元,二等席400美元,三等席250美元.某公司组织体育比赛获奖的36名职员到南非观看2010年世界杯的半决赛.除去其他费用,计划购买两种门票,恰好用完10050美元,你能设计出几种方案供该公司选择?请说明理由.14.甲、乙、丙三人共解出100道数学题,每人都解出其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题,试问:难题多还是容易题多?(多的比少的)多几道题?15.某人乘汽车,他看到第一块里程碑上写着一个两位数(表示千米);经过1小时,他看到第二块里程碑写的两位数恰好是第一块里程碑上的数字互换了;又经过1小时,他看到第三块里程碑上写着一个三位数,这个三位数恰好是第一块里程碑上的两位数中间加上一个0,问汽车的速度是多少?16.某果品商店进行组合销售,甲种搭配:2千克A水果,4千克B水果;乙种搭配:3千克A水果.8千克B水果,1千克C水果;丙种搭配:2千克A水果,6千克B水果,l千克C水果.已知A水果每千克2元,B水果每千克1.2元,C水果每千克10元.某天该商店销售这三种搭配水果共441.2元.其中A水果的销售额为116元,问C水果的销售额为多少元?17.兴隆货车配货站有长途货车若干辆,计划要装运A、B、C三种不同型号的商品.已知每辆长途货车的容积为38m3,每件A种型号商品的体积为3m3,每件B种型号商品的体积为4m3,每件C种型号商品的体积为6m3.(1)每辆货车安排装运A、B、C三种型号商品,使货车刚好装满,则有几种装运方案?(2)如果装运每件A种型号商品运费50元,装运每件B种型号商品运费60元,装运每件C种型号商品运费65元,货主应选择哪种方案装运比较省钱?。
二元一次方程组提高练习题.doc
二元一次方程组提高练习题二元一次方程组练习题(范围:代数: 二元一次方程组) 一、判断 1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x的解 …………( )2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为b a ………( )12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437y x +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解; (D )无数多个解; 14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+my x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( ) (A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x (C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x 18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( ) (A )15x -3y =6 (B )4x -y =7 (C)10x +2y =4 (D )20x -4y =319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x (C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xyy x 20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14 (B )a =3,b =-7 (C )a =-1,b =9 (D )a =-3,b =1421、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( )(A )32 (B )23(C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( )(A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定 23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4 (D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________;26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________;30、如果x =1,y =2满足方程141=+y ax ,那么a =____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________; 四、解方程组 36、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 37、)(6441125为已知数a a y x ay x ⎩⎨⎧=-=+;38、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 39、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ;40、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 41、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;五、解答题:请写出这个方程组,并求出此方程组的解; 42、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值; 43、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;44、要使下列三个方程组成的方程组有解,求常数a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组 培优题类型一:二元一次方程的概念及求解例(1).已知(a -2)x -by|a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.(2).二元一次方程3x +2y =15的正整数解为_______________.类型二:二元一次方程组的求解例(3).若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. (4).2x -3y =4x -y =5的解为_______________.类型三:已知方程组的解,而求待定系数。
例(5).已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.(6).若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______. 练习:若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。
若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a = ,b= 。
类型四:涉及三个未知数的方程,求出相关量。
设“比例系数”是解有关数量比的问题的常用方法.例(7).已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. (8).解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.练习:若2a +5b +4c =0,3a +b -7c =0,则a +b -c = 。
由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是( )A 、1∶2∶1B 、1∶(-2)∶(-1)C 、1∶(-2)∶1D 、1∶2∶(-1)说明:解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组。
类型五:列方程组求待定字母系数是常用的解题方法.例(9).若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为(10).关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是练习:如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是 ( ) A 、a +4c =2 B 、4a +c =2 C 、a +4c +2=0 D 、4a +c +2=0类型六:方程组有解的情况。
(方程组有唯一解、无解或无数解的情况)方程组⎩⎨⎧=+=+222111c y b x a c y b x a 满足 条件时,有唯一解;满足 条件时,有无数解;满足 条件时,有无解。
例(11).关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m(12)二元一次方程组23x y mx ny -=⎧⎨+=-⎩有无数解,则m= ,n= 。
类型七:解方程组例(13).⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x (14).⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x(15).⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x (16).⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x类型八:解答题例(17).已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值.(18).甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.练习:甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x ;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==45y x 。
试计算20052004101⎪⎭⎫⎝⎛-+b a 的值.(19).已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.(20).当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值; (2)当x =-2时,ax 2+bx +c 的值.类型九:列方程组解应用题1、12.某铁路桥长1750m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了80s,整列火车完全在桥上的时间共60s;设火车的速度为x m/s,火车的长度为y m,根据题意得方程组为___________________2、通讯员要在规定时间内将密件从师部送到团部。
如果他以50km/h的速度行驶就会迟到24min;如果他以75km/h 的速度行驶就会提前24min到达团部。
求若要在规定时间到达速度应该为多少km/h。
3、某校办工厂去年总利润(总利润=总收入-总支出)为50万元。
计划今年的总收入比去年增加10%,总支出节约20%,这样今年总利润为58万元,求今年的总收入和总支出分别为多少万元?4、甲乙两个商店各进洗衣机若干台,若甲店拨给乙店12台,则两店的洗衣机一样多;若乙店拨给甲店12台,则甲店的洗衣机比乙店洗衣机数的3倍还多2台,求甲、乙两店各进洗衣机多少台?若设甲店进洗衣机x台,乙店进洗衣机y台。
则根据题意,可列出方程组为:__________________5、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,甲、乙今年分别多少岁?6、买20枝铅笔、3块橡皮、2本日记本需32元;买39枝铅笔、5块橡皮、3本日记本共需58元;则买5枝铅笔、5块橡皮、5本日记本共需()A、20元B、25元C、30元D、35元7、如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,求图中阴影部分面积。
8、某校初三有两个班,中考体育成绩优秀者共有92人,全年级的优秀率约为92%,其中一班优秀率为96%,二班优秀率为84%。
若设一班人数为x人,二班人数为y人。
则可得方程组为()14cm6cmA DC B9、七(4)、七(5)两班学生到集市上购买苹果,苹果的价格如右表:七(5)班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而七(4)班则一次购苹果70千克。
(1)七(4)班比甲七(5)班少付多少元?10、我市某蔬菜基地生产一种绿色蔬菜,若在市场眼直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售每吨利润涨至7500元。
本地一家农工商公司收购这种蔬菜140吨。
该公司加工的能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可以加工6吨,但两种加工方式不能同时进行。
受季节等条件的限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行的方案:(1)将蔬菜全部进行粗加工;(2)尽可能多地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接销售;(3)将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。
你认为选择哪种方案获利最多?为什么?11、小亮解方程组⎩⎨⎧=-=+1222y x y x ●的解为⎩⎨⎧==★y x 5,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这两个数●= ,★= ;12、二元一次方程103=+y x 的非负整数解共有( )对A 、1B 、2C 、3D 、413、已知关于x,y 的方程组x+y=5mx-y=9m ⎧⎨⎩的解满足2x-3y=9,则m 的值是_________.14、设A 、B 两镇相距x 千米,甲从A 镇、乙从B 镇同时出发,相向而行,甲、乙行驶的速度分别为u 千米/小时、v 千米/小时,①出发后30分钟相遇;②甲到B 镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A 镇还有4千米。
求x 、u 、v 。
根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )A 、4+=u xB 、4+=v xC 、42=-u xD 、4=-v x15、(2004·北京)某山区有23名中、小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:(1)求a、b(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中。
(不需写出计算过程)16、某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种“CNG ”的改烧汽油为天然汽的装置,每辆车改装价格为4000元,公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的320,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费点剩下未改装车辆每天燃料费用的25,问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性全部将出租车改装,多少天后就可以从节省的燃料费中收回成本?17、某电视台在黄金时段的2min 广告时间内,计划插播长度为15s和30s的两种广告,15s广告每播1次收费0.6万元,30s广告每1播次收费1万元,若要求每种广告播放不少于2次,问:(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放收益较大?。