三角函数图像变换PPT课件

合集下载

三角函数的图象与性质 (共44张PPT)

三角函数的图象与性质 (共44张PPT)

(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;

三角函数图象变换ppt课件

三角函数图象变换ppt课件

3
7 12
5 6
x
(3)连线:
-3
(4)根据周期性将作出的简图左右 扩展。
函数 y=sinx
(1)向左平移 3
y=sin(x+ ) 的图象 3

(2)横坐标缩短到原来的 纵坐标不变
1 2
y=sin(2x+ ) 的图象 3 y=3sin(2x+ )的图象 3
(3)横坐标不变 纵坐标伸长到原来的3倍
1 函数 y sin x 2 1. 列表: x
1 x 2
0
0 0




3 2
4
2π 0
2

2. 描点:
sin 1 x 2
1
1 2
0
-1
y 1
. y=sin x 2 . . O
y=sinx
3
4 .
1

1 y=sin x 2
x
纵坐标不变,横坐标伸长到原来的2倍 y=sinx 1 式变:x换成( x)。 2
y=Sin(x+ ) 的图象
(2)横坐标缩短( >1)或伸长(0<<1)到
1 原来的 倍,(纵坐标不变)
y=Sin( x+ ) 的图象
三角函数图象变 换
1 例1 作函数 y 2 sin x及 y 2 sinx 的图象。 解:这两个函数的周期都为 2π,则先画出 [ 0, 2π] 上的简图。
1. 列表:
x
0
1 sin x 2 y 2. 描点、作图: 2
sinx 2sin x
0 0 0
1
2

0 0 0
3 2 1

5.5 三角恒等变换 课件(21张PPT)(2024年)

5.5 三角恒等变换 课件(21张PPT)(2024年)

2
α是 的二倍角,
2是的二倍角,在倍角公式cos 2α=1-2sin2α中,利用换
元法,

用代替2,用
2
代替,得
cos α=1-2sin2

2
1-
2
=
2
2
新知探究
同理,在倍角公式cos

2
2α=2cos α-1中,用代替2,用
cos

2
α=2
2
−1
2
1+
(1)sin αcos β=
2
(2)sin θ+sin φ=2sin θ+φcos θ-φ
2
2
思考1:(2)式与(1)式有什么相同点和不同点?
θ+φ
θ-φ
(换元法)如果我们令α=
,β=
,
2
2
θ+φ θ-φ
θ+φ θ-φ
即α+β=
+
= ,α-β=
=φ,代入(1)中得
2
2
2
2
θ+φ
θ-φ
2sin
cos
=sin θ+sin φ
(+)+(-)
同理,我们还可以得到公式
cos αsin
cos αcos
1
β=
2
1
β=
2
(+)-(-)
(+)+(-)
1
2
sin αsin β= (-)-(+)
我们把以上四个公式叫做“积化和差公式”
例2、求证:
1
[sin(α+β)+sin(α-β)]

2

2

2
, 2 ,2 .
新知探究
例1、试以cos α表示2

三角函数图像变换ppt

三角函数图像变换ppt
分析 : ( 1 )由图意知,最大温度差为 30 10 20
( 2 )此图为y A sin( x ) b的图像,求出各个参数即可 .
图中从6时到 时是半个周期的图像 14
2 T 16 , 16 8
又由图意知A 30 10 30 10 10 ,b 20 2 2
与x轴两相邻交点之间的距离为:___________________; 2
π ⑥两相邻最大值之间的距离是:___________________;
最小值与相邻x轴交点之间的距离为:___________________。 4
例1、 已知函数y 2 sin x cosx 2 3 cos2 x 3 ,填空:
①振幅是: 频率是: 初相是: ② 定义域是:
2
1
周期是: 相位是:
π
2x 3
3
x k ( k Z ) 2 ③当x __________ 时 ; 12 _____ ,y max _______
[k
R
值域是: [-2,2]
7 ,k ]( k Z ) 12 12 ④ 递减区间是:_________________ k x (kZ) 12 2 ⑤图像的对称轴方程为:__________________; k ( ,0)(k Z) 图像的对称中心为:__________________; 6 2
( 1) 当函数y取最大值时, 求自变量x的集合; ( 2) 该函数的图像可由 y sin x( x R )的图像经过怎样平移和 伸缩变换得到? 1 3 2 解 : ( 1 )y cos x sin x cos x 1 2 2
1 cos 2x 1 3 sin 2x 1 2 2 4

三角函数图像变换ppt

三角函数图像变换ppt
4 (C)向左平移 个长度单位 2
2.将函数 y sin 2 x 的图象向左平移 个单位, 再向上平移 1 个单位,所得图象的函数解析 式是
y sin x ( x R )的图象上所有点向左平行移动 3 个单位长度,再把所得图象上所有点的 3、把函数
1 横坐标缩短到原来的 2 倍(纵坐标不变) ,得到的图象所表示的函数是
6
2
2
6

ቤተ መጻሕፍቲ ባይዱ
四、诱导公式 我们可以根据图像的平移来确定诱导公式

sin(2kπ +α )=sinα (k∈Z) cos(2kπ +α )=cosα (k∈Z) sin(π +α )=-sinα cos(π +α )=-cosα sin(-α )=-sinα cos(-α )=cosα sin(π -α )=sinα cos(π -α )=-cosα

3
2 3
0, ,所以,当 k=1 时,φ 2
⑸ 综上,解析式为: y
3 sin(2 x

3
)
例5 : 图中曲线是函数y A sin( x )的图像的一部分 , 求这个函数的解析式 。
Y 2
解析: 显然A 2
2 2 T
5 T 2( ) 6 3
4
4 (D)向右平移 个长度单位 2
(B)向右平移 个长度单位
2、如何根据“图像”求解析式
规律总结:

① A= 最大值-最小值 =最大值= 最小值
2
(其中,最高点到最低点的距离=最大值-最小值)
② W 和周期有关,周期表示为T= 2
w
(两个对称轴之间的距离= 2
③φ

三角函数的图象PPT课件-42页精选文档

三角函数的图象PPT课件-42页精选文档

(1)求f(x)的解析式;
1
(2)将y=f(x)图象上所有点的横坐标缩短到原来的
3
(纵坐标不变),然后再将所得图象向 x 轴正方向
平移 3 个单位,得到函数y=g(x)的图象。
写出函数y=g(x)的解析式。
答(1)案f:(x)2sinx() (2)g(x)2sinx()
36
6
知识迁移四:利用图象解决一些三角不等式 及体现数形结合思想的习题
上的图像。
22
解:(1) f(x)2si2n x2sixncoxs
1 co 2 x ssi2 x n
12(s2 ixc no sco 2xssin )
4
4
1 2sin2x( )
4
所以函数f(x)的最小正周期为, 最大值为1 2
(2)由
y1 2sin2x()
4
x
3
8
y1 2sin2x( ) 4
特点: 在对称点处 y = 0
y 1
33 55 22
22 33 22
22
o 33
22
22
-1
22 55 33 x
22
2.余弦函数y=cosx的图象特征:
①对称轴方程:xk ,kZ
特点:在对称轴处,y取最大(小)值
②对称点坐标:(k,0) ,(kZ)
2
特点: 在对称点处 y = 0
y 1
1
8
1 2
3 88
1 1 2
5 8
1
故函数y=f(x)在区间 [ , ]上的图象是
22
y
5
2
2
3 2
1
1
2
2
3 84
o

三角函数的图象变换-课件

三角函数的图象变换-课件

yyssiinn(1212xx++44π)
典型例题
例1
画出函数
y=2
sin(3x
)的简图. 6
方法 2:五点法.
问题 3:类比正弦曲线的画法,你能用“五点法” 画出函数 y=2sin(3x 6)的图象吗?
典型例题
例1
画出函数
y=2
sin(3x
)的简图. 6
方法 2:五点法.
典型例题
例1
画出函数
用数形结合的思想研究函数 y Asin( x )的图象和 性质.在确定参数 A,, 对函数 y Asin(x )图象的影响 时,体会了从特殊到一般的研究过程, 并利用函数的思想解决 实际问题,进一步感受三角函数刻画周期变化现象时的作用.
课堂小结
(3)通过筒车和摩天轮的学习,谈谈你对数学建模过程 与方法的认识.
y
sin(3x
6
)
y 2sin(3x 6 ).
典型例题
例1 画出函数 y=2sin(3x 6)的简图.
y
sin(3x
6
)
纵坐标变为原来的 2 (横坐标不变)

y
2
sin(3x
6
).
典型例题
例1 画出函数 y=2sin(3x 6)的简图. 方法 1:图象变换. 问题 :事实上这三种变换的先后顺序并无特别 规定,还有不同的变换方式吗?
为原点,与地面平行的直线为 x 轴建立平面直角坐标系. H 55sin(15 t 2 ) 65,
实际问题
(2)求游客甲在开始转动 5 min 后离地面的高度;
解:当t 5时,H 55sin(15 5 2 ) 65=37.5. 所以,游客甲在开始转动 5min 后距离地面的高度约为 37.5m.

三角函数图像变换课件

三角函数图像变换课件

π , y 取最大值或最小值. ∴当 x=- 8 时 取最大值或最小值 π |sin2(- π )+acos2(- )|2=a2+1 8 解得 a=-1. 8
π 对称 法3 ∵函数 y=sin2x+acos2x 的图象关于直线 x=- 8 对称, π 时的函数值相同 ∴当自变量取 0, - 4 时的函数值相同. ∴sin0+acos0=sin2(- π )+acos2(- π ). 即 0+a=-1+0. π 对称 法4 ∵函数 y=sin2x+acos2x 的图象关于直线 x=- 对称, π + π = π 时, 函数值为 0. ∴当 x=- 8 4 8 ∴sin π +acos π =0.
五、典型例题
o
x
3.求函数 y=sin4x+2 3 sinxcosx-cos4x 的最小正周期和最小值 求函数 的最小正周期和最小值, 上的单调增区间. 并写出该函数在 [0, π] 上的单调增区间 解: ∵ y=sin4x+2 3 sinxcosx-cos4x =(sin2x-cos2x)(sin2x+cos2x)+ 3 sin2x = 3 sin2x-cos2x 故该函数的最小正周期是 π, 最小值是 -2. =2sin(2x- π ) -6
一、三角函数图象的作法
作图步骤: 1.几何法 y=sinx 作图步骤 几何法 (1)等分单位圆作出特殊角的三角函数线 等分单位圆作出特殊角的三角函数线; 等分单位圆作出特殊角的三角函数线 (2)平移三角函数线 平移三角函数线; 平移三角函数线 (3)用光滑的曲线连结各点. (3)用光滑的曲线连结各点. 用光滑的曲线连结各点 y 1 o1 Ao -1 y=sinx 3π 2 P M o y

高中数学:131《三角函数图像的变换》课件必修

高中数学:131《三角函数图像的变换》课件必修
这些操作包括平移、伸缩、翻折和旋转等,可以单独或组合使用。
变换的目的是为了更好地理解三角函数的性质,解决实际问题,以及进行图像处理 等。
变换的种类和特点
01
02
03
04
平移变换
将图像沿x轴或y轴方向移动 ,保持图像形状不变。
伸缩变换
通过改变x轴和y轴的比例来 改变图像的大小,可以横向或
纵向伸缩。
翻折变换
利用伸缩变换的性质求解函数的极值
例如,利用正弦函数的伸缩性质,可以求解y=sin(3x)在x=π/9处的极小值为1。
利用对称变换的性质求解函数的对称轴或对称中心
例如,利用正弦函数的对称性质,可以求解y=sin(x)的对称轴为x=kπ+π/2,k∈Z。
变换在实际问题中的应用
物理学中的应用
三角函数图像的综合变换在物理学中有广泛的应用,如振 动和波动现象、交流电等。通过变换可以更好地理解物理 现象和解决实际问题。
x轴缩短为原来的1/2,则图像的 周期变为原来的2倍。
01
03
02 04
总结词:影响相位
详细描述:沿x轴伸缩不仅改变 了图像的周期,还会影响函数的 相位。例如,将x轴缩短为原来 的1/2,相当于将相位滞后了π。
沿y轴伸缩
总结词:改变振幅
详细描述:沿y轴伸缩是 指保持x轴不变,通过改 变y轴的长度来改变整个 图像的振幅。例如,将y 轴放大为原来的2倍,则 图像的振幅变为原来的2 倍。
翻折变换
旋转变换
$y = -f(-x)$ 或 $y = f(x)$,前者表示沿x 轴翻折,后者表示沿y轴翻折。
$x = xcostheta - ysintheta$ 和 $y = xsintheta + ycostheta$,其中$theta$为 旋转角度。

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

,解
得 ω=32 .
法二:由题意,得 f(x)max=fπ3
2.(必修 4P35 例 2 改编)若函数 y=2sin 2x-1 的最小正周期为 T,最大
值为 A,则( )
A.T=π,A=1
B.T=2π,A=1
C.T=π,A=2
D.T=2π,A=2
A [T=22π =π,A=2-1=1.]
3.(必修 4P40 练习 T4 改编)下列关于函数 y=4cos x,x∈[-π,π]的单 调性的叙述,正确的是( )
求三角函数单调区间的两种方法 (1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个 角 u(或 t),利用复合函数的单调性列不等式求解.(如本例(1)) (2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间. [注意] 要注意求函数 y=A sin (ωx+φ)的单调区间时 ω 的符号,若 ω<0, 那么一定先借助诱导公式将 ω 化为正数.同时切莫漏掉考虑函数自身的定义 域.
又当 x∈[0,π2
]时,f(x)∈[-
2 2
,1],所以π2
≤ω2π
-π4
≤5π4
,解得
3 2
≤ω≤3,故选 B.
π
π
π
优解:当 ω=2 时,f(x)=sin (2x- 4 ).因为 x∈[0,2 ],所以 2x- 4 ∈
π [- 4
,3π4
π ],所以 sin (2x- 4
)∈[-
2 2
,1],满足题意,故排除 A,C,
B.[kπ,kπ+π2 ](k∈Z)
C.[kπ+π6 ,kπ+23π ](k∈Z)
D.[kπ-π2 ,kπ](k∈Z)
(2)函数 y=tan x 在-π2,32π 上的单调减区间为__________.

三角函数的图象PPT课件

三角函数的图象PPT课件


6
)
2. (04全国高考)
为了得到函数 y sin( 2 x

6
) 的图象,可以将
函数y cos 2 x 的图象( B )
A.向右平移

B.向右平移

6
个单位长度 个单位长度
3
C.向左平移
D.向左平移

6 3
个单位长度
个单位长度
3.将函数 y=f(x)sinx 的图象向右平移
则f(x) 可以是( B ) A. cosx B. 2cosx C. sinx

3
)
y=sin(x+


3
)
6
1
o
12

3

3
7 12
5 6

-1 -2
y=sin(2x+

3
)
3 5 2 2 3 y=sinx
x
评注: 作出正弦型函数的图象以五点法最为方便, 但必须清楚它的图象与正弦函数图象间的关系,
即弄清正弦型函数的图象是怎样由正弦函数的图
象经过几种变换得到的。要注意虽然各种变换的
例2.已知下图是 y
Asin( x )( A 0, 0, )
y
2
的图象,试确定该函数的解析式。 解:由图知A=2, 即函数 y
7 ,0)与点(0,1) 又函数图象过点 P( -2 12 7 7 sin( ) 0 2 12 12 解得 : 1 sin 6 6 2
A.关于直线 x 对称
6
B.关于直线 x 对称 12

三角函数图像变换课件

三角函数图像变换课件

利用三角函数的和差 化积公式,将复杂波 形分解为简单波形的 组合。
考虑不同波形的振幅、 频率和相位差,合理 调整参数以生成目标 波形。
利用傅里叶级数展开分析复杂波形
傅里叶级数是一种将周期函数表示为 无穷级数的方法,适用于分析复杂波 形。
利用傅里叶级数的系数,可以定量描 述波形中各频率成分的振幅和相位。
波形
正弦函数的图像呈现出 平滑的波形,具有连续
性和可导性。
余弦函数图像特点
01
02
03
04
周期性
余弦函数同样是周期函数,其 图像在x轴上无限延伸,且每隔
2π个单位重复一次。
振幅
余弦函数的振幅也是1,表示 图像在y轴上的最大偏移量为1。
相位
余弦函数的相位与正弦函数相 差π/2,因此其图像相对于正
弦函数有一定的平移。
鼓励学生提出自己的见解和思考, 促进课堂交流和互动。
THANKS FOR WATCHING
感谢您的观看
波形
余弦函数的图像也呈现出平滑 的波形,与正弦函数类似,但
相位不同。
正切函数图像特点
周期性
正切函数是周期函数,其周期为π,图像 在x轴上无限延伸,且每隔π个单位重复一
次。
趋于无穷
当x趋近于(kπ + π/2)时,正切函数的值会 趋于无穷大或无穷小,因此在这些点上图
像会出现垂直渐近线。
不连续性
正切函数在(kπ + π/2)处存在间断点,其 中k为整数,因此在这些点上图像不连续。
应用举例
在振动分析、图像处理等领域中,伸缩变换常用于调整信 号的频率、幅度等参数。
周期性和对称性变换
周期性定义
三角函数具有周期性,即函数值在一定区间内重 复出现。通过周期性变换,可以实现函数图像的 重复和延拓。

三角函数图像变化PPT课件

三角函数图像变化PPT课件
2
2
,1)
最低点: ( 3
,1)
y=cosx=sin(x+

2
)
2
与x轴的交点: (0,0) ( ,0) (2 ,0)
周期: T
在精度要求不高的情况下,我们可以利用这5个点画出函数 数的简图,一般把这种画图方法叫“五点法”。
概念介绍:
当函数 S Asin(t ), x [0, )( A 0, 0) 表示一个振动量时,A就表示物体振动时离开平 衡位置的最大距离,通常称 A 为这个振动的振幅. 往复振动一次所需要的时间T 2 ,T称为这个振
1 例2 对于函数y sin x 和 y=sin2x 与 2
y=sinx 的图像。
y
0
y sin 2 x
x
y sin x
y sin 1 x 2
结论二 周期变换(横向伸缩变换)
y sin x (0<ω <1时)到原来的1/ω倍 y sin x
横坐标缩短(ω >1时)或伸长 (纵坐标不变)
画出正弦曲线在长度为2π 的闭区间上的简图
横坐标伸长 缩短
y sin 2 x

6
0
得到sinωx x∈R在长度为一 个周期的闭区间上简图
沿x轴 平行移动
得到sin(ωx+φ) x∈R在长度 为一个周期的闭区间上简图

3
5 6
x
纵坐标
伸长或缩短
得到Asin(ωx+φ) x∈R在长度为 一个周期的闭区间上简图
y sin 2 x y sin( 2 x ) 3 y 3 sin( 2 x ) 3
方法一变换过程
y sin x y sin( x ) 3 横坐标向左平移π/3 个单位

1.5.(1)三角函数的图形变换PPT课件

1.5.(1)三角函数的图形变换PPT课件

.
35
3.将函数 y=sin x 的图像上所有的点的横坐标缩短到原来
的14倍(纵坐标不变)得y_=__s_i_n__4_x的图像.
解析:依题意知,将 y=sin x 图像上所有点的横坐标缩 短到原来的14倍后,可得 y=sin 4x 的图像.
.
36
4.将函数 y=cos x 的图像向左平移 φ(0≤φ<2π)个单位长度 后,得到函数 y=cosx-π6的图像,则 φ=____16_1___.
x -4
)的图象
.
27
快速抢答
1:已知函数y 3sin(x )的图象为C.为了得到函数
5
C y 3sin(x )的图象,只要把C上所有的点(

5
( A)向右平行移动 个单位长度.
5
(B)向左平行移动 个单位长度.
5
(C)向右平行移动 2 个单位长度.
5
(D)向左平行移动 2 个单位长度.
Asin(ωx+φ)的图象的影响?
.
7
y
y sin(x ) 31o Nhomakorabea23
6
yyyyyyysyysiysnysiysinysinysxinsinsxinsxinsxinsxinsxinsxinxinxinxnxxxx
y sin(x )
6
比较这两个函数与 函数y=sinx的图象 的形状和位置,你
• 重点:将考察参数A、ω、φ对函数图象y=Asin(ωx+φ) , (A>0、ω>0)的影响的问题进行分解,从而学习如何 将一个复杂问题分解为若干个简单问题的方法。
• 难点:ω对函数y=Asin(ωx+φ) ,(A>0、ω>0)图象的影 响规律的概括。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(A)y=sin4x y=sin(4x+ )
3
(B)
8

(C)y=sinx
8
(D)
y=sin(4x+ )
• 3. 要得到函数 y=sin(x + π/3)的图象, 只需将 y=sinx 图象( C) A. 向左平移π/6个单 B. 向右平移π/6个单位 C. 向左平移π/3个单位 D. 向右平移π/3个单位 • 4. 要得到函数 y=sin(2x-π/3)的图象,只需将

x-
4
4
0
sin(x- ) 2
4
0
-y1
y=sin(x+
)兀3 1
-
3
o
4
3
5 7
9
4
4
4
4


3

2
2
1
0
0
y=sinx y=sin(x-4兀

5 3
) 9
2 4
3
5
7
x
4
4
4
-1
结论:y=sin(x+φ)的图象,可以看作把y=sinx的图象向左(当φ>0)或向右 (当φ<0)平移|φ|个单位长度而得到.(简记为:左加右减)
6
练习一:
(式(1为2) )将将yy==ssiinn2(12x的图x3 +象向右)平的移图象6向经右平过,移则23 所个得单图象解析
y=sin(2x-
3
1 2


换可得y=sin x的图象

练习二:
把函数y=sin(2x+
4
)的图象向右平8移
原来1 的
,则其解析式A 为(

2
个单位,再将横坐标缩小到
问题3
作函数y=sin(x+
y=sin(x-
)3
)和
4
的简图,并指出它们与y=sinx图象之
间的关系。
x
_

2 7 5
x+
sin(x+3 )2
3
3
0
0
6

2
3

1
6 3
2
3

0
-1 y
0
y=sin(x+
)兀3 1
y=sinx

2
- o 2
7
5
x
3
6
3
6
3
-1
x
y=sin2x图象( ) D • A. 向左平移π/3 个单位 • B. 向右平移π/3个单位 • C. 向左平移π/ 6个单位 • D. 向右平移π/6 个单位
Ex:为了得到y=3sin(2x+π/5)的图象,只需将函数
y=3sin(x+π/5)的图象上各点的 B(
)而得
到. A.横坐标伸长到原来的2倍,纵坐标不变.
值,我们把A 叫做振幅。
A的作用
纵向伸
2、函数图象的横向伸缩变换
问题2 作函数y=sin2x及y12=sin x的简图,并指出它们与y=sinx图象 间的关系。
x
0


4
2
2x
0


2
sin2x
0
1
y y=0sin2x
1 y=sinx

2
o 3
3
42 4
2
-1
3
4

3 2
2
-1
2、用五点法画函数y=sinx在[0,2 ]的图象的关键点是:(如图)
y
1
y=sinx
o
最高点 曲线与x轴交点


2
3
2
2
x
-1
1、函数图象的纵向伸缩变换
问题1
在同一坐标系中作出 y=2sin12x及 y= sinx的简图, 并指出它们与y=sinx图象间的关 系。
x
0

2

3
2
2
图象D (

A.横坐标扩大原来的两倍 倍
C.横坐标扩大到原来的两倍 倍
B. 纵坐标扩大原来的两
D
D. 纵坐标扩大到原来的两
•2. 要得到函数 y=sin3x 的图象,只需将 y=sinx 图象 ()
A. 横坐标扩大原来的3倍
B.横坐标扩大到原来的3倍
C. 横坐标缩小原来的1/3倍
3、函数图象的左右平移变换
引: 函数y=Asin(ωx+φ)表示一个振动量时 A就表示这个量振动时离开平衡位置的最大距离,通常把它叫
做这个振动的振幅。
往复振动一次所需要的时间T=
2
它叫做振动的周期。
为了研究形如y=Asin(ωx+φ)函数的图象下面分别研究:
(1)y=Asinx与y=sinx图象的关 系 (2)y=sinωx与y=sinx图象的关系
(横坐标不变)

y=sinx的图象各倍点的纵(坐横标坐缩标短不到变原) 来的1/2y图=象12
sinx的
结论: y=Asinx (其中A>0) 的图象可看成是由y=
sinx的图象上的所有点的横坐标不变,纵坐标伸长
(A>1时) 或 缩短(0<A<1时)到原来的A倍而得到.
注:A引起图象的纵向伸缩,它决定函数的最大(最小)
注:φ 引起图象的左右平移,它改变图象的位置,不改
变图象的形状.φ 叫做初相.

巩固练习:4__._函_数_,y它的si图n(x象是左6由) y=sinx的图6象_的__初_平相移是
_____个单位长度而得到. 6

5长.度把,函得数到y函=ys数ins2in_x(_2_的x__图__象)_向__右__平__移的12图象个. 单位
1 2
y=sin x的图象
结论:函数y=sinωx (其中ω>0) 的图象,可看 作把y=sinx图象上所有点的纵坐标不变横坐标伸长(当 0<ω<1)或缩短(当ω>1) 到原来的1/ω倍而得到.
注: ①ω决定函数的周期T=2π/ω,它引起横 向伸缩
巩固练习
•1. 要得到函数 y= 2 sin x 的图象,只需将 y= sinx
0
3
4
x
x


2
1 2
x

02

sin1 x
2
2
0
1
y y=sin-2x1
1
y=sin 01x 2
y=sinx

2
o 3
3
42 4
2
-1
3 4
3

2
0
3
4
x
上述变换可简记为:
Y=sinx的图象
各点的横坐标缩短到原来的1/2倍 (纵坐标不变)
yY==ssiinn2xx的的图图象象各点的横(坐纵标坐伸标长不到变原) 来的2倍
sinx
0
1
0
2sinx -1 0
02
0
1 sinx -2 0
2
y
2
1
10 0
2
y=2sinx
y=sinx
3
1 2
0
y=
1 2
sinx
o


2
2
x
2
-1
-2
y
2
y=2sinx
1
y 1 sin x 3
o

2
2
y=sinx
x
-1
2
-2
上述变换可简记为:
y=sinx的图象 各点的纵坐标伸长到原来的2倍y=2sinx的图
(3) y=sin(x+φ)与y=sinx图象的关 系 通过以上几种形式的讨论和研究,得出形如
y=Asin(ωx+φ)与y=sinx函数的图象间的关系。
1.作三角函数的图象的方法一般有: (1) 描点法;(2)几何法;
2. 作三角函数的简图:
主要先找出在确定图象性质时 起
关键作用的五个点: (1)最大值点 (2) 最小值点 (3)与x轴 的交点
B.横坐标缩短到原来的1/2倍,纵坐标不变.
C.纵坐标伸长到原来的2倍,横坐标不变.
相关文档
最新文档