《统计学》答案_第三版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 统计数据的描述——练习题

●2. 解:(1)要求对销售收入的数据进行分组,

全部数据中,最大的为152,最小的为87,知数据全距为152-87=65;

为便于计算和分析,确定将数据分为6组,各组组距为10,组限以整10划分; 为使数据的分布满足穷尽和互斥的要求,注意到,按上面的分组方式,最小值87可能落在最小组之下,最大值152可能落在最大组之上,将最小组和最大组设计成开口形式;

按照“上限不在组内”的原则,用划记法统计各组内数据的个数——企业数,也

可以用Excel 进行排序统计(见Excel 练习题2.2),将结果填入表内,得到频数分布表如下表中的左两列;

将各组企业数除以企业总数40,得到各组频率,填入表中第三列; 在向上的数轴中标出频数的分布,由下至上逐组计算企业数的向上累积及频率的

向上累积,由上至下逐组计算企业数的向下累积及频率的向下累积。

整理得到频数分布表如下:

●13.

因为女生的离散系数为

V=

s x =550

=0.1 男生体重的离散系数为 V=

s x =560

=0.08 对比可知女生的体重差异较大。

(2) 男生:x =

602.2公斤公斤=27.27(磅),s =2.25公斤

公斤=2.27(磅);

女生:x =

2.250公斤公斤=22.73(磅),s =2.25公斤

公斤

=2.27(磅);

(3)68%; (4)95%。

14 解:(1)应采用离散系数,因为成年人和幼儿的身高处于不同的水平,采用标准差比较

不合适。离散系数消除了不同组数据水平高低的影响,采用离散系数就较为合理。

(2)利用Excel 进行计算,得成年组身高的平均数为172.1,标准差为4.202,从而得:

成年组身高的离散系数:024.01

.1722

.4==

s v ; 又得幼儿组身高的平均数为71.3,标准差为2.497,从而得:

幼儿组身高的离散系数: 2.497

0.03571.3

s v =

=; 由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离散程度相对较大。

第四章参数估计

(1) ●1. 解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差

x σσ

5=0.7906

(2)已知置信水平1-α=95%,得 α/2Z =1.96,

于是,允许误差是E =

α/2

σ

Z 6×0.7906=1.5496。 ●2. 解:(1)已假定总体标准差为σ=15元, 则样本均值的抽样标准误差为

x σσ15

=2.1429

(2)已知置信水平1-α=95%,得 α/2Z =1.96,

于是,允许误差是E =

α/2

σ

Z 6×2.1429=4.2000。 (3)已知样本均值为x =120元,置信水平1-α=95%,得 α/2Z =1.96, 这时总体均值的置信区间为

±α/2

σ

x Z 0±4.2=124.2115.8

可知,如果样本均值为120元,总体均值95%的置信区间为(115.8,124.2)元。

●3. 解:⑴计算样本均值x :将上表数据复制到Excel 表中,并整理成一列,点击最后数据下面空格,选择自动求平均值,回车,得到x =3.316667,

⑵计算样本方差s :删除Excel 表中的平均值,点击自动求值→其它函数→STDEV →选定计算数据列→确定→确定,得到s=1.6093

也可以利用Excel 进行列表计算:选定整理成一列的第一行数据的邻列的单元格,输入“=(a7-3.316667)^2”,回车,即得到各数据的离差平方,在最下行求总和,得到:

2i

(x -x )=90.65

再对总和除以n-1=35后,求平方根,即为样本方差的值

。 ⑶计算样本均值的抽样标准误差: 已知样本容量 n =36,为大样本, 得样本均值的抽样标准误差为 x σ

1.6093=0.2682

⑷分别按三个置信水平计算总体均值的置信区间:

① 置信水平为90%时:

由双侧正态分布的置信水平1-α=90%,通过2β-1=0.9换算为单侧正态分布的置信水平β=0.95,查单侧正态分布表得 α/2Z =1.64, 计算得此时总体均值的置信区间为

±α/2

s

x Z 7±1.64×0.2682= 3.75652.8769

可知,当置信水平为90%时,该校大学生平均上网时间的置信区间为(2.87,3.76)

小时;

② 置信水平为95%时:

由双侧正态分布的置信水平1-α=95%,得 α/2Z =1.96,

计算得此时总体均值的置信区间为

±α/2

s

x Z 7±1.96×0.2682= 3.84232.7910

可知,当置信水平为95%时,该校大学生平均上网时间的置信区间为(2.79,3.84)

小时;

③ 置信水平为99%时:

若双侧正态分布的置信水平1-α=99%,通过2β-1=0.99换算为单侧正态分布的置信水平β=0.995,查单侧正态分布表得 α/2Z =2.58, 计算得此时总体均值的置信区间为

±α/2

s

x Z 7±2.58×0.2682= 4.00872.6247

●6. 解:已知样本容量n =200,为大样本,拥有该品牌电视机的家庭比率p =23%,

拥有该品牌电视机的家庭比率的抽样标准误差为

p σ

相关文档
最新文档