利用三角形全等测距离

合集下载

《利用三角形全等测距离》教学设计

《利用三角形全等测距离》教学设计

《利用三角形全等测距离》教学设计一、教学内容《利用三角形全等测距离》是北师大版数学七年级(下)第三章第五节的内容。

二、教学目标及重难点1.教学目标:教学目标:(1)知识与技能会利用“边角边”,“角边角”,“角角边”来构造全等三角形测距离,培养学生把实际问题转化为数学问题的能力。

(2)过程与方法在经历从现实生活中抽象出几何模型的过程中,有意识地培养学生合作探究精神及有条理的思考、表达能力,以及创新意识,体会数学与实际生活的联系。

(3)情感态度与价值观通过情境创设,激发学生学习兴趣,体会数学来源于实际,又服务于实际生活的重大意义.教学重点――利用三角形全等测距离。

教学难点――如何把实际问题转化为数学问题(数学建模)。

三、教学方法:小组合作、探究式相结合四、教学工具:多媒体课件五、教学基本流程:一.回顾思考,温故知新二.创设情境,激发兴趣三.动手实践,探索新知四.小组合作,学以致用五.归纳总结,反思提高六.反馈练习,强化新知七.布置作业,课后延拓六、教学过程:教师活动学生活动设计意图一、回顾思考,温故知新(1)要判定两个全三角形全等有哪些方法?并思考在判定的三个条件中至少要有一个什么条件?(2)全等三角形有什么性质?学生独立思考后,举手回答问题(1)SSS,SAS,ASA,AAS 三个条件中至少需要一个边的条件(2)全等三角形的对应边相等,对应角相等。

通过提问可以温习与本节有关的知识,帮助基础较弱或掌握不牢的学生巩固旧知识,同时也是本节课的理论基础。

二.创设情境,激发兴趣出示一个玻璃瓶,两根等长的小棒,一把刻度尺提问:谁能利用我们所学的知识,用现在的这些器材测量出玻璃瓶的内径?这就是今天要学习的内容——利用三角形全等测距离。

启示:通过三角形的全等将不易测,不能到达的两点间的距离转化为可以测量的两点间的距离。

学生分小组讨论后派代表上前演示:把两根木棍的中点穿在一起,让木棍可以自由地活动,然后把两根木棍重叠在一起,插入瓶中,将两根木棍的角度打开,让木棍下面两端靠着瓶子内壁,只需测量外面两个点之间的距离就得到瓶子的内径。

利用三角形全等测距离

利用三角形全等测距离

利用三角形全等测距离2篇文章1一、什么是三角形全等测距离?三角形全等测距离是指通过观察和测量三角形的各个边长和角度,来确定两个或多个三角形之间的距离。

在实际应用中,我们常常需要测量一些无法直接测量的物体的距离,而三角形全等测距离提供了一种有效的方法。

通过观察和测量三角形的特征,我们可以推导出相似三角形之间的比例关系,从而计算出距离。

二、如何利用三角形全等测距离测量距离?要进行三角形全等测距离的测量,我们需要以下步骤:步骤一:选择一个可测量的标志物体。

在测量过程中,我们需要选择一个已知距离的标志物体作为参照。

这个标志物体可以是任何形状的物体,但是必须要有明确的测量标准。

例如,我们可以选择一根知道长度的杆子或测量单位已知的标尺作为参考。

步骤二:确定视角。

为了进行距离的测量,我们需要确定测量者与被测量物体之间的视角。

视角的选择将直接影响到后续的测量结果。

步骤三:观察和记录。

通过眼睛观察被测物体和标志物体之间的角度和边长关系,并将其记录下来。

这些记录将作为计算距离的依据。

步骤四:计算距离。

利用已知角度和边长的比例关系,我们可以通过简单的几何运算计算出待测物体与标志物体之间的距离。

具体的计算公式可以根据实际情况进行调整,但原理是相同的。

三、三角形全等测距离的应用领域三角形全等测距离在现实生活中有广泛的应用。

以下是其中一些应用场景:1.地图测量在绘制地图时,我们需要准确测量不同地理特征之间的距离,并将其绘制到比例尺上。

利用三角形全等测距离,我们可以通过测量一些关键标志物体之间的距离来计算出其他位置的距离。

2.建筑设计在建筑设计中,我们常常需要测量建筑物与周围地物的距离。

例如,在规划一片土地时,我们需要计算出建筑物与道路、河流等的距离。

通过利用三角形全等测距离,我们可以准确测算出各个位置之间的距离。

3.导航系统导航系统需要准确测量车辆或行人与目标地点之间的距离。

通过利用三角形全等测距离,我们可以在导航系统中引入三角测量的原理,从而提供准确的距离信息。

在生活中应用全等三角形测距离

在生活中应用全等三角形测距离

在生活中应用全等三角形测距离在现实生活中,有很多问题需要用全等三角形的知识来解决。

下面,我们举例谈谈怎样构造全等三角形,测量两地的距离,看看在实际生活中的应用。

例1:有一池塘,要测池塘两端A、B间的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA,连结BC并延长到E,使CE=CB,连结DE,量出DE的长,这个长就是A、B之间的距离。

(1)按题中要求画图。

(2)说明DE=AB的理由,并试着把说明的过程写出来。

解:(1)如图1。

(2)因为在△ABC和△DEC中,CA CDACB DCECB CE所以△ABC≌△DEC所以DE=AB例2、如图2,某同学把一块三角形的玻璃摔成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以()A.带①去B.带②去C.带③去D.带①和②去。

析解:怎样做一个三角形与已知三角形全等,可以依据全等三角形的判定方法进行具体分析,题目中的一块三角形的玻璃被摔成三块,其中①仅留一个角,仅凭一个角无法做出全等三角形;而②没边没角;③存在两角和夹边,于是根据“ASA”不难做出与原三角形全等的三角形。

故应选C。

例3、如图3、小红和小亮两家分别位于A、B两处隔河相望,要测得两家之间的距离,请你设计出测量方案。

分析:本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,使一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,就可求出两家的距离。

方案:如图3,在点B所在的河岸上取点C,连结BC并延长到D,使CD=CB,利用测角仪器使得∠B=∠D,A、C、E三点在同一直线上。

测量出DE的长,就是AB的长。

因为∠B=∠D,CD=CB,∠ACB=∠ECD,所以△ACB≌△ECD所以AB=DE。

例4、如图4,点C是路段AB的中点,两人从C点同时出发,以相同的速度分别沿两条直线行走,并同时到过D、E两地,DA⊥AB,EB⊥AB,D、E到路段AB 的距离相等吗?为什么?分析:因为两人是以相同的速度从点C同时出发,且同时到达D、E两点,所以CD=CE。

4.5利用三角形全等测距离 教案(表格式)2023-2024学年度北师大版数学七年级下册.doc

4.5利用三角形全等测距离 教案(表格式)2023-2024学年度北师大版数学七年级下册.doc

4.5利用三角形全等测距离【例1】在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,如何估测这个距离呢?一位战士想出来这样一个办法:他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸的某一点上.接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡间的距离.分析:由战士所讲述的方法可知:战士的身高AD不变,战士与地面是垂直的(AD⊥BC);视角∠DAC=∠DAB.战士要测的是敌碉堡(B)与我军阵地(D)的距离,战士的结论是只要按要求测得DC的长度即可.(即BD=DC)探索新知合作探究【例2】如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B 间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出它的长度.(1)DE=AB吗?请说明理由;(2)如果DE的长度是8 m,则AB的长度是多少?教师指导1.易错点在构建全等三角形的时候,需要考虑的就是三角形全等的条件,然后再结合实际条件进行考虑.2.归纳小结能利用三角形的全等解决实际问题,能在解决问题的过程中进行有条理的思考和表达.3.方法规律根据三角形全等测距离,主要是根据三角形全等的性质,对应边相等进行求解.只需要去构建全等的三角形就能够解决问题.当堂训练1.如图所示,要测量河岸相对的两点A,B之间的距离,先从B处出发与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续朝前走50米到D处,在D处转90°沿DE方向再走17米,到达E处,使A,C与E在同一直线上,那么测得A,B的距离为.2.如图,两根长12 m的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.。

《第四章5利用三角形全等测距离》作业设计方案-初中数学北师大版12七年级下册

《第四章5利用三角形全等测距离》作业设计方案-初中数学北师大版12七年级下册

《利用三角形全等测距离》作业设计方案(第一课时)一、作业目标本作业旨在通过《利用三角形全等测距离》的学习,使学生能够:1. 理解三角形全等的概念和条件;2. 掌握利用三角形全等测量距离的方法;3. 培养学生的空间想象能力和实际操作能力;4. 提高学生的数学应用意识和解决问题的能力。

二、作业内容本作业内容主要包括以下几个方面:1. 理论学习:学生需认真阅读教材中关于三角形全等的理论知识,理解全等三角形的定义及判定条件。

2. 实例分析:学生需通过实例分析,掌握如何运用三角形全等的知识来测量距离,例如通过标志物、建筑物等形成三角形关系进行距离计算。

3. 实践操作:学生需利用课堂所学知识,选择合适地点进行实地操作练习,例如在学校、家中或公园等地测量两个地点之间的距离。

4. 归纳总结:学生在完成实践操作后,需对所测量的数据进行整理,总结出利用三角形全等测量距离的步骤和注意事项。

三、作业要求为保证作业的完成质量和效果,特提出以下要求:1. 理论学习部分要求学生对全等三角形的概念和判定条件有清晰的认识,并能准确表述;2. 实例分析部分要求学生能够结合实际问题,灵活运用所学知识进行分析和计算;3. 实践操作部分要求学生按照规范步骤进行操作,确保测量数据的准确性;4. 归纳总结部分要求学生对所测量的数据进行分析,总结出有效的测量方法和经验教训。

四、作业评价本作业的评价将从以下几个方面进行:1. 理论学习评价:评价学生对全等三角形概念和判定条件的掌握程度;2. 实例分析评价:评价学生运用所学知识进行实例分析的能力和准确性;3. 实践操作评价:评价学生实际操作的能力和测量数据的准确性;4. 归纳总结评价:评价学生对所测数据的整理和分析能力,以及总结出的经验和教训。

五、作业反馈本作业完成后,教师将对学生的作业进行批改和评价,并根据学生的完成情况和存在的问题进行针对性的指导和讲解。

同时,学生也需要根据教师的反馈意见进行反思和总结,以便更好地掌握所学知识和提高自己的能力。

利用三角形全等测距离 优秀教案

利用三角形全等测距离 优秀教案

利用三角形全等测距离教学设计〖教学目标〗1.知识技能:会利用三角形全等测距离。

2.教学思考:在利用三角形全等知识测距离的过程中,培养思维的逻辑性和发散性。

3.解决问题:体会数学与生活的密切联系,能够利用三角形全等解决生活中的实际问题。

4.情感态度与价值观:通过情境创设,激发学生的积极性,感受数学与生活的密切联系。

在学生合作交流解决问题的过程中,培养学生的合作精神,锻炼口头表达能力。

〖教材分析〗学习的最高境界是将知识进行迁移,也就是知识的应用。

在本章前几节学生已经掌握三角形全等知识的基础上,本课时利用全等知识测距离。

〖教学设计〗(一)情境引入教师讲教科书上的故事:在一次战役中,我军阵地与敌军碉堡隔河相望。

为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离。

在不能过河又没有任何测量工具的情况下,一个战士想出来这样一个办法:他面向碉堡站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部。

然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸上的某一点上。

接着,他用步测的办法量出自己与那个点之间的距离,这个距离就是他与碉堡的距离。

提问:你相信这个故事中的测量方法能够测量出我军与碉堡的距离吗?由学生说出自己的猜测,有不同意见时正好让学生体验战士的测量方法。

(设计说明:用真实的故事引入新课,体现了三角形全等在生活中的广泛应用,适时的提问,激发了学生的学习积极性和好奇心。

)(二)探索研讨1.情境探究一位经历过战争的老人讲述过这样一个故事:在抗日战争期间,为了炸毁与我军阵地隔河相望的日本鬼子的碉堡,需要测出我军阵地到鬼子碉堡的距离。

由于没有任何测量工具,我八路军战士为此绞尽脑汁,这时一位聪明的八路军战士想出了一个办法,为成功炸毁碉堡立了一功。

这位聪明的八路军战士的方法如下:B战士面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿势,这时,视线落在了自己所在岸的某一点上;接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡的距离(1)学生亲自体验战士的测量方法。

4.5利用三角形全等测距离(教案)

4.5利用三角形全等测距离(教案)
5.培养学生的创新意识,鼓励学生在解决测量问题时,探索多种方法和思路,激发学生对几何学习的兴趣。
三、教学难点与重点
1.教学重点
-理解全等三角形的定义及其判定方法(SSS、SAS、ASA、AAS)。
-学会运用全等三角形的性质解决实际问题,特别是利用全等三角形测距离的方法。
-掌握在实际测量中,如何根据已知条件和全等三角形的性质,构建全等关系,从而求解未知距离。
4.5利用三角形全等测距离(教案)
一、教学内容
本节课选自八年级下册《几何》第四章“全等三角形”的4.5节“利用三角形全等测距离”。教学内容主要包括:了解全等三角形的性质和判定方法,掌握利用全等三角形测距离的方法。具体内容包括:
1.熟悉全等三角形的定义和性质,如SSS、SAS、ASA、AAS等全等判定方法。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和在实际测量中的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形测距离相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何利用全等三角形的基本原理进行距离测量。
五、教学反思
在今天的教学中,我尝试了通过实际问题引入全等三角形的概念,让学生们感受到几何学的实际应用。我发现,当学生们能够将新知识与现实生活联系起来时,他们对学习内容更感兴趣,也更愿意主动参与课堂讨论。
课堂上,我注意到在讲解全等三角形的判定方法时,有些学生对于SSS、SAS等判定条件的理解还存在困难。于是,我及时调整了教学方法,通过举例和画图,让学生更直观地感受全等三角形的性质。在接下来的时间里,我会继续关注这部分学生的学习情况,适时给予个别辅导,帮助他们突破这个难点。

【公开课教案】《利用三角形全等测距离》教案

【公开课教案】《利用三角形全等测距离》教案

利用三角形全等测距离教学目标:知识与技能:能利用三角形的全等解决实际问题。

过程与方法:通过让学生体会教科书中提供的情境,明白战士的具体做法,并尝试思考其中的道理,体会数学与实际生活的联系。

情感与态度: 通过生动、有趣、现实的例子激发学生的兴趣,引发他们去思考,并能在利用三角形全等解决实际问题的过程中进行有条理的思考和表达。

教学重点:能利用三角形的全等解决实际问题.教学难点:能在解决问题的过程中进行有条理的思考和表达.一、 目标导学① 复习全等三角形的性质及判定条件② 在下列各图中,以最快的速度画出一个三角形,使它与△ABC 全等,比比看谁快!二、自主探学引入一位经历过战争的老人讲述的一个故事,(图片显示);在一次战役中,为了炸毁与我军阵地隔河相望的敌军碉堡,需要测出我军阵地到敌军碉堡的距离。

由于没有任何测量工具,我军战士为此绞尽脑汁,这时一位聪明的战士想出了一个办法,为成功炸毁碉堡立了一功。

提出问题:你知道聪明的战士用的是什么方法吗?能解释其中的原理吗?B ACB A CA C B三、合作研学、展示赏学小明在上周末游览风景区时,看到了一个美的池塘 ,他想知道最远两点A 、B 之间的距离, 但是他没有船,不能直接去测。

手里只有一根绳子和一把尺子,他怎样才能测出A 、B 之间的距离呢?1. 写出这位叔叔的思路。

2.把你的设计方案在图上画出来。

要求:① 画出此种测量方法的图形。

② 标出此方法中需要的数据。

③ 展示各组方案,小组成员代表讲述画法和原理。

四、检测评学如图要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再定出BF 的垂线DE ,可以证明△EDC ≌△ABC ,得ED=AB ,因此,测得ED 的长就是AB 的长。

判定△EDC ≌△ABC 的理由是( )A 、SSSB 、ASAC 、AASD 、SAS五、小结师生互相交流利用全等三角形测量距离的合理性,在解决问题的过程中,采用了那些方案使不能直接测量的物体间的距离转化为可以测量的距离。

北师大版七下数学4.5利用三角形全等测距离说课稿

北师大版七下数学4.5利用三角形全等测距离说课稿

北师大版七下数学4.5利用三角形全等测距离说课稿一. 教材分析北师大版七下数学4.5利用三角形全等测距离是本册书的重要内容之一。

本节课主要让学生掌握三角形全等的性质,并能够运用三角形全等来解决实际问题,特别是测距离问题。

通过前面的学习,学生已经掌握了三角形的基本概念和性质,全等三角形的判定和性质,以及相似三角形的性质。

本节课将引导学生将理论知识应用到实际问题中,培养学生的动手操作能力和解决问题的能力。

二. 学情分析七年级的学生已经有了一定的数学基础,对三角形的基本概念和性质有所了解。

但是,他们在实际应用中可能还存在着一定的困难,特别是对于测量距离这个问题,可能还不太会运用所学的知识来解决。

因此,在教学过程中,我将会引导学生将理论知识与实际问题相结合,通过动手操作和思考,提高他们解决问题的能力。

三. 说教学目标1.知识与技能目标:让学生掌握三角形全等的性质,并能够运用三角形全等来解决实际问题,特别是测距离问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和团队合作能力。

3.情感态度与价值观目标:让学生体验到数学在生活中的应用,增强学生对数学的兴趣和信心。

四. 说教学重难点1.教学重点:三角形全等的性质,以及如何运用三角形全等来解决测距离问题。

2.教学难点:如何引导学生将理论知识与实际问题相结合,提高他们解决问题的能力。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和合作学习法。

2.教学手段:利用多媒体课件、实物模型和测量工具辅助教学。

六. 说教学过程1.导入:通过一个实际问题,引发学生对测量距离的思考,激发学生的学习兴趣。

2.理论讲解:讲解三角形全等的性质,引导学生理解三角形全等与测量距离之间的关系。

3.案例分析:分析一个具体的测量距离问题,引导学生运用三角形全等来解决问题。

4.动手操作:让学生分组进行实际测量,亲身体验三角形全等在测量距离中的应用。

利用三角形的全等测距离

利用三角形的全等测距离

明想用绳子测量A,B间的距离,但绳子不够长,一
个叔叔帮他出了这样一个主意:先在地上取一个可
以直接到达点A和点B的点C,连接AC并延长到D,使
CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量
出它的长度,DE的长就是A,B间的距离。 你能说明
其中的道理吗?请把你的思路写下来。
解:在△ABC与△DEC 中
接着,他用步测的办法量出自己与那个点的 距离,这个距离就是他与碉堡间的距离。 你能解释其中的道理吗?
D
A
B
C
在△ABD和△CBD中,
∠ADB= ∠CDB

BD=BD
∠ABD= ∠CBD
∴ △ABD≌△CBD (ASA) ∴ AB=BC (全等三角形的对应边相等)
如图,A,B两点分别位于一个池塘的两端,小
随堂检测
1. 如图要测量河两岸相对的两点A、B的距离, 先在AB 的垂线BF上取两点C、D,使CD=BC, 再定出BF的垂线DE,可以证明△EDC≌△ABC, 得ED=AB,因此,测得ED的长就是AB的长。
判定△EDC≌△ABC的理由是( B )
A、SSS B、ASA A C、AAS D、SAS ●
AC=DC(已知)Fra bibliotekA∵ ∠ACB=∠DCE(对顶角相等)
E
BC=EC(已知)
C
∴ △ABC≌ △DEC (SAS)
∴ AB=DE(全等三角形对应边相等) B
D
归纳总结
利用三角形全等测距离的 目的、依据、关键: 目的:变不可测距离为可测距离。 依据:全等三角形的性质。 关键:构造全等三角形。 构造全等三角形的方法:延长法
的理由是( D )
D
A、SSS

《第四章 5 利用三角形全等测距离》作业设计方案-初中数学北师大版12七年级下册

《第四章 5 利用三角形全等测距离》作业设计方案-初中数学北师大版12七年级下册

《利用三角形全等测距离》作业设计方案(第一课时)一、作业目标本节课的作业设计旨在让学生通过实践操作,理解并掌握三角形全等的基本概念,并能运用三角形全等知识解决实际生活中测距离的问题。

通过作业,加深学生对数学知识的理解,提升其数学应用能力。

二、作业内容作业内容主要围绕三角形全等的应用展开,具体包括:1. 理论学习:学生需复习三角形全等的定义及判定条件,了解其在实际问题中的运用。

2. 案例分析:通过课本及教辅材料提供的案例,分析并掌握如何运用三角形全等解决测距离问题。

3. 实践操作:学生需选择一个实际场景(如校园内的一段距离),利用三角形全等原理,设计并实施测量方案。

4. 记录与报告:学生需将测量过程及结果详细记录,并撰写一份简短的报告,说明如何利用三角形全等测得距离及注意事项。

三、作业要求为保证作业质量,提出以下要求:1. 认真阅读教材及相关资料,充分理解三角形全等的基本概念及判定条件。

2. 案例分析时,要细致阅读案例,理解并掌握其解题思路及方法。

3. 在实践操作中,要确保测量工具的准确性,严格按照设计方案进行测量,并注意安全事项。

4. 记录与报告中,需详细记录测量步骤及结果,报告要简洁明了,重点突出。

5. 作业需按时完成,并在规定时间内提交。

四、作业评价作业评价将从以下几个方面进行:1. 理论学习情况:是否充分理解三角形全等的基本概念及判定条件。

2. 案例分析:是否能正确分析并掌握如何运用三角形全等解决实际问题。

3. 实践操作:测量过程是否规范,结果是否准确。

4. 记录与报告:记录是否详细,报告是否简洁明了,重点是否突出。

评价结果将分为优秀、良好、及格和不及格四个等级,作为学生平时成绩的一部分。

五、作业反馈作业反馈是提高教学质量的重要环节。

教师将根据学生的作业情况,进行针对性的反馈:1. 对表现优秀的学生给予肯定和鼓励,激发其学习积极性。

2. 对存在问题的学生进行指导,指出其不足之处,并提供改进建议。

《第四章5利用三角形全等测距离》作业设计方案-初中数学北师大版12七年级下册

《第四章5利用三角形全等测距离》作业设计方案-初中数学北师大版12七年级下册

《利用三角形全等测距离》作业设计方案(第一课时)一、作业目标本作业旨在通过《利用三角形全等测距离》的学习,使学生能够掌握三角形全等的基本判定方法,并能够运用这些方法解决实际问题,特别是通过测量距离来应用三角形全等的原理。

通过作业的完成,加深学生对三角形全等概念的理解,提高其解决实际问题的能力。

二、作业内容本课时作业内容主要围绕三角形全等的相关知识展开,具体包括以下几个方面:1. 掌握三角形全等的定义及基本判定方法(如SSS、SAS、ASA、AAS等)。

2. 学会利用全等三角形的性质进行简单图形的计算与测量。

3. 通过实际操作,掌握使用工具(如尺规、测角仪等)测量物体之间距离的方法。

4. 通过问题解答的形式,让学生自主思考和解决问题,提高解决问题的能力。

三、作业要求1. 学生需熟练掌握三角形全等的判定方法,并能准确应用在解题过程中。

2. 学生在完成作业时,应注重实际操作,利用尺规等工具进行测量和计算。

3. 作业中应包含至少三道涉及利用三角形全等测距离的实际问题,并要求学生详细写出解题步骤和思路。

4. 作业需在规定时间内独立完成,不得抄袭他人答案。

5. 学生在完成作业后,需对所做题目进行自查,确保答案的准确性。

四、作业评价1. 评价标准:评价将根据学生掌握三角形全等知识的准确性、解决问题的能力和实际操作的熟练程度进行综合评定。

2. 评价方式:教师将根据学生的作业完成情况进行打分,同时结合学生的课堂表现和实际操作能力进行评价。

3. 反馈方式:教师将对学生的作业进行详细批改,指出错误并给出正确答案,同时对学生的表现给予鼓励和建议。

五、作业反馈1. 对于学生在作业中出现的错误,教师将进行详细讲解,帮助学生找出错误原因并加以改正。

2. 对于学生的优秀表现和独特思路,教师将在课堂上进行表扬和展示,激发学生的学习积极性和创新精神。

3. 教师将根据学生的作业完成情况和课堂表现,为学生提供针对性的学习建议和指导,帮助学生更好地掌握三角形全等的知识点。

《第四章5利用三角形全等测距离》作业设计方案-初中数学北师大版12七年级下册

《第四章5利用三角形全等测距离》作业设计方案-初中数学北师大版12七年级下册

《利用三角形全等测距离》作业设计方案(第一课时)一、作业目标本节课的作业设计旨在让学生通过实际操作,理解并掌握三角形全等的基本原理,并能够运用这一原理来测量实际距离。

通过作业的完成,达到巩固知识、提升技能的目标,为后续学习打下坚实基础。

二、作业内容1. 理论知识复习:学生需回顾并熟练掌握三角形全等的定义、性质和判定方法,了解不同全等条件下的三角形关系。

2. 动手实践操作:(1)绘制一系列全等的三角形图案,通过剪切和拼接的方式,直观感受三角形全等的基本概念。

(2)结合生活实际,选择合适的地点(如校园内、家中),利用三角形全等原理,测量已知角度的两点间的距离。

学生需绘制测量示意图,并记录详细的测量步骤和结果。

3. 作业题目练习:设计一系列与三角形全等相关的题目,包括选择题、填空题和解答题,重点考察学生对三角形全等知识的理解和应用能力。

三、作业要求1. 理论复习部分:学生需自行整理笔记,总结三角形全等的相关知识点,并能够流利地与同学进行交流。

2. 动手实践操作部分:(1)图案绘制要求准确、清晰,剪切和拼接过程需保持小心谨慎,确保三角形全等的准确性。

(2)实地测量时,学生需注意安全,遵循正确的测量步骤,准确记录测量数据和结果。

测量示意图应清晰明了,能够准确反映测量过程和结果。

3. 作业题目练习部分:学生需独立完成题目,并按照格式要求书写答案。

如有不懂之处,可查阅教材或请教老师。

四、作业评价1. 教师将根据学生提交的作业进行批改,对理论知识复习部分进行评价,看学生是否掌握了三角形全等的基本概念和原理。

2. 对动手实践操作部分进行评价,看学生是否能够正确运用三角形全等原理进行实地测量,并准确记录测量结果。

3. 对作业题目练习部分进行评价,看学生是否能够正确理解和应用三角形全等的知识点。

五、作业反馈1. 教师将针对学生的作业情况进行反馈,对表现优秀的学生给予表扬和鼓励,对存在问题的地方进行指导和纠正。

2. 学生需根据教师的反馈意见进行反思和总结,找出自己的不足之处,并加以改进。

利用三角形全等测距离利用三角形全等测距离事件报告的证明过程

利用三角形全等测距离利用三角形全等测距离事件报告的证明过程

利用三角形全等测距离利用三角形全等测距离事件报告的证明过程x一、实验目的和原理1.1 实验目的本实验旨在证明,通过利用三角形全等测距离,可以测量出两点之间的距离,求出每一个角的大小,并最终确定两点之间的距离。

1.2 实验原理本实验的原理为三角形全等测距原理。

通过三角形全等测距,将测量区域划分为三角形,将其中一点作为起始点,从该点开始测量两边的距离,即可确定该角度的两条边与其相对角度的距离。

二、实验器材、工具及材料2.1 实验器材本次实验主要使用的器材为仪器站(Instrument Station),由两部分组成,包括水准仪(Level)和量角器(Theodolite)。

2.2 实验工具实验所用的工具包括水准仪杆和测距绳,水准仪杆用于测量水平距离,而测距绳则是用于测量垂直距离的。

2.3 实验材料本实验需要铅笔、纸条和尺子。

铅笔用于标出实验所需标记点的位置;纸条用于记录所测角度和距离,以保证实验结果的准确性;尺子则用于确定垂直距离。

三、实验步骤1. 使用铅笔在实验区域画出三个标记点,标记点在到达测量点时进行标记。

2. 将水准仪调节至等高线,并测量第一个标记点到第二个标记点的水平距离。

3. 使用量角器测量从第一个标记点到第二个标记点之间的角度。

4. 使用测距绳测量从第二个标记点到第三个标记点之间的距离。

5.重复步骤2-4,测量第二个标记点到第三个标记点的水平距离和角度。

6. 计算第一个标记点到第三个标记点之间的距离,使用测距公式:D = c/2sinA三角形腰等腰定理,D表示第一个标记点到第三个标记点的距离,c为第一个标记点到第二个标记点的水平距离,A为第一个标记点到第二个标记点的角度。

7. 重复步骤6,计算第二个和第三个标记点之间的距离。

8. 将所得结果进行核对,确保结果的准确性。

四、实验结果和分析实验结果表1 三点实验结果标记点距离(米)角度1 -2 12.3 33.2°2 -3 16.2 45.8°1 - 3 11.4从表中可以看出,最终计算出的第一个标记点到第三个标记点的距离为11.4米,与实际测量的结果基本一致。

1.5 利用三角形全等测距离

1.5 利用三角形全等测距离
1.5 利用三角形全等测 距离
复习回顾
1、要证明两个三角形全等应有哪些必 要条件?
(1)“SSS”:三边对应相等的两个三角形全等. (2)“ASA”:两角和它们的夹边对应相等的两个三 角 形全等. (3)“AAS”:两角和其中一角的对边对应相等的两个 三角形全等. (4)“SAS”:两边和它们的夹角对应相等的两个三 角 形全等.
方案2: 方案3:
方 案 一
先在地上取一个可以直接 到达A点和B点的点C,连 接AC并延长到D,使 CD=AC;连接BC并延长到 E,使CE=CB,连接DE并 测量出它的长度,DE的长 度就是A,B间的距离. DEC中,
A
E
C
B
D
证明:在 ABC与 AC = DC ∠ACB=∠DCE BC = EC
在战士所讲述的方法可 (1)战士所 知:战士的身高AH不变, 讲述的方法中, 战士与地面是垂直的 已知条件是什 (AH⊥BC);视角 么? A ∠HAC=∠HAB战士要测 的是敌碉堡(B)与我军阵 地(H)的距离,战士的结论 是只要按要求(如图(1)) 测得HC的长度即可.(即 BH=HC)
B(敌) H(我) C
AB = CD
B
如图,找一点D, 使AD⊥BD,延长 AD至C,使 A C D CD=AD,连结BC,解: 量BC的长即得AB 在Rt ADB与Rt CDB中 的长. BD=BD
∠ADB=∠CDB CD=AD ADB≌ CDB(SAS) 所以 BA对等角” 的理由吗?如在 ABC中,AB=AC, 那么∠B=∠C吗?请说明理由
议一议
议一议
(2)请用所学的数学知识说明BH = CH A 的理由!
证明:在△AHB与△AHC中, ∠BAH=∠CAH AH=AH

生活中的“利用三角形全等测距离”

生活中的“利用三角形全等测距离”

生活中的“利用三角形全等测距离”利用三角形全等测距离实际就是构造两个全等的三角形,通过全等三角形对应边相等这一性质,把较难测得长度的线段,转化为已知的或是较易得到结果的线段.[例1]某铁路施工队在建设铁路的过程中,需要打通一座小山,设计时要测量隧道的长度.小山前面恰好是一块空地,利用这样的有利地形,测量人员是否可以利用三角形全等的知识测量出需要开挖的隧道的长度说明道理.点拨:A、B两点直接测量有难度,因此,可利用山前面的空地,构造全等的两个三角形,使含AB的一对对应边相等,则测量出对应边的长,即得出AB 的长.解:方法:可在空地上取一个能直接到达A点、B点的点O,连结AO延长到D,使OD=OA;连接BO延长到E,使OE=OB。

连结DE并测出它的长度,则DE的长就是A、B间的距离.如图所示:∴△AOB≌△DOE(SAS)∴AB=DE(全等三角形,对应边相等).[例2]如图,要测量河两岸两点A、B间的距离,可用什么方法并说明这样做的合理性.点拨:直接测量A、B间的距离有困难,而若用上题中的方法,则会出现这种情况:得到的O点在河中间,很难取到;即使O点取好,而寻找的全等三角形中AB的对应边CD的两点仍然在河的两岸,与A、B的位置相同,因此此法不可取.要寻求另一种使对应边在岸上的方法.利用下面图示的方法就行了.解:方法:在AB的垂线BE上取两点C、D,使CD=BC。

过点D作BE的垂线D G,并在DG上取一点F,使A、C、F在一条直线上,这时测得的DF的长就是A、B间的距离.理由:∵AB⊥BE,DG⊥BE∴∠B=∠BDF=90°∴△ABC≌△FDC(ASA)∴AB=DF(全等三角形对应边相等).注意:要注意区分这两种情况,根据具体情况或题目的语言叙述来判断方法.最明显的区别是第一种没有垂直的情况,利用SAS证全等;而第二种有垂直的情况,会用ASA证明三角形全等.当然,若特殊情况,需具体分析.。

《第四章5利用三角形全等测距离》作业设计方案-初中数学北师大版12七年级下册

《第四章5利用三角形全等测距离》作业设计方案-初中数学北师大版12七年级下册

《利用三角形全等测距离》作业设计方案(第一课时)一、作业目标本课作业旨在通过练习和实际操作,使学生能够:1. 理解三角形全等的概念及其在现实生活中的应用。

2. 掌握利用三角形全等测量距离的基本方法。

3. 培养学生的空间想象能力和实际操作能力。

二、作业内容本课作业主要包括理论练习和实际操作两部分。

(一)理论练习1. 基础概念练习:让学生复习三角形全等的定义及全等三角形的性质。

2. 案例分析:提供几个利用三角形全等测距离的实例,让学生分析其应用过程。

(二)实际操作1. 实地测量任务:要求学生选择校园内的一个场景,利用三角形全等原理,实地测量两点之间的距离,并记录测量过程和结果。

2. 制作报告:学生需将实地测量的过程和结果整理成书面报告,包括测量步骤、所使用的工具、测量结果及误差分析等。

三、作业要求1. 理论练习部分:学生需认真完成案例分析,理解并掌握三角形全等测距离的原理和方法。

2. 实际操作部分:学生需在保证安全的前提下,按照测量步骤进行实地测量,确保测量结果的准确性。

报告需详细记录测量过程和结果,字迹工整,条理清晰。

3. 提交方式:学生需在规定时间内将书面报告交给老师,同时将实地测量的照片或视频(如有)一并提交,以便老师了解学生的实际操作情况。

4. 作业评分:老师将根据学生的理论练习完成情况、实地测量的准确性和报告的完整性、条理性等方面进行评分。

四、作业评价1. 过程评价:老师将关注学生在完成作业过程中的态度、合作能力和实际操作能力,给予相应的指导和建议。

2. 结果评价:老师将根据学生的理论练习和实地测量的结果,以及报告的完整性、条理性等方面进行评价,给出相应的分数。

3. 反馈机制:老师将对学生的作业进行详细批改,指出存在的问题和不足,提出改进建议,帮助学生更好地掌握知识和技能。

五、作业反馈1. 对于学生在作业中表现出的优点和亮点,老师将在课堂上进行表扬和鼓励,激发学生的学习兴趣和自信心。

2. 对于学生在作业中存在的问题和不足,老师将通过个别指导、小组讨论等方式进行辅导和帮助,确保学生能够及时纠正错误,提高学习效果。

初中数学_利用三角形全等测距离教学设计学情分析教材分析课后反思

初中数学_利用三角形全等测距离教学设计学情分析教材分析课后反思

《利用三角形全等测距离》教学设计执教者指导教师一、课题:利用三角形全等测距离二、解读理念:面向全体学生,着眼于学生的全面发展,帮助学生过积极健康的生活,促进学生个性发展;尊重学生,充分调动学生学习的主动性和积极性;引导学生解决成长过程中的实际问题;鼓励学生实施自主、合作、探究学习,注重培养学生的独立思考能力和实践能力。

三、教材分析:1、地位和作用:这节课是在学生学习了全等三角形的性质及其判定条件之后的一节综合应用课。

利用三角形全等解决实际问题,首先就要把实际问题转化为三角形全等问题。

其目的是培养学生构建数学模型,并用数学知识来解决实际问题。

同时,培养学生说理表达能力,为今后学习几何证明打下良好的基础。

2、教育教学目标:根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:知识目标:能够利用三角形全等解决实际问题。

能力目标:通过自主探究、实验,培养学生的自主探究能力、小组合作能力、语言表达能力,以及灵活运用所学解决实际问题的能力。

情感目标:通过学习使学生明白数学来源于生活,学习数学是为了解决实际问题,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣,通过小组合作,培养合作意识。

3. 重点,难点以及确定依据:教学重点:根据新课标的要求以及对教学目标的分析将重点设定为能够利用三角形全等测量距离。

教学难点:针对本节课内容及学生的心理、认知结构将难点设定为灵活利用三角形全等解决实际问题。

四、教学策略本节课涉及的知识点不多,知识的切入点比较低。

教师以多媒体为教学平台,通过精心设计的问题串和活动系列来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动学生的学习积极性,达到事半功倍的教学效果。

在教学中,教师主要采用启发引导的方法,鼓励学生发现问题,利用所学解决问题,在探究阶段,教师应关注学生的思路、方法,鼓励学生小组合作,教师进行适当点拨,以这种形式突出重点,突破难点,同时培养学生的合作意识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题(共12小题)1.(2017春•普宁市期末)如图所示,为了测量出A,B两点之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定D,使CD=BC,那么只要测量出AD的长度也就得到了A,B两点之间的距离,这样测量的依据是()A.AAD B.SAS C.ASA D.SSS【分析】根据SAS即可证明△ACB≌△ACD,由此即可解决问题.【解答】解:∵AC⊥BD,∴∠ACB=∠ACD=90°,在△ACB和△ACD中,,∴△ACB≌△ACD(SAS),∴AB=AD(全等三角形的对应边相等).故选B.【点评】本题考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.2.(2017春•槐荫区期末)如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SAS B.SSS C.ASA D.AAS【分析】根据垂直的定义、全等三角形的判定定理解答即可.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA)故选:C.【点评】本题考查的是全等三角形的应用,掌握全等三角形的判定定理是解题的关键.3.(2016秋•天津期末)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.4.(2016秋•临清市期末)如图,要量湖两岸相对两点A、B的距离,可以在AB 的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在一条直线上,这时可得△ABC≌△EDC,用于判定全等的是()A.SSS B.SAS C.ASA D.AAS【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:C.【点评】此题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.(2016秋•微山县期末)如图,两棵大树间相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为lm/s,小华走的时间是()A.13 B.8 C.6 D.5【分析】首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=5m,再求出BE的长,然后利用路程除以速度可得时间.【解答】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC,在△ABE和△DCE中,∴△ABE≌△ECD(AAS),∴EC=AB=5m,∵BC=13m,∴BE=8m,∴小华走的时间是8÷1=8(s),故选:B.【点评】此题主要考查了全等三角形的应用,关键是正确判定△ABE≌△ECD.6.(2015秋•校级月考)要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,点O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则此工件的外径必是CD之长了,其中的依据是全等三角形的判定条件()A.SSS B.SAS C.ASA D.AAS【分析】连接AB、CD,然后利用“边角边”证明△ABO和△DCO全等,根据全等三角形对应边相等解答.【解答】解:如图,连接AB、CD,在△ABO和△DCO中,,∴△ABO≌△DCO(SAS),∴AB=CD.故选:B.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.7.(2014春•富平县期末)如图,△ABD≌△CDB,且AB,CD是对应边.下面四个结论中不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【分析】全等的两个三角形一定能够完全重合,故面积、周长相等.AD和BC是对应边,因此AD=BC.【解答】解:∵△ABD≌△CDB,AB,CD是对应边∴∠ADB=∠CBD,AD=BC,△ABD和△CDB的面积相等,△ABD和△CDB的周长相等∴AD∥BC则选项A,B,D一定正确.由△ABD≌△CDB不一定能得到∠ABD=∠CBD,因而∠A+∠ABD=∠C+∠CBD不一定成立故选C.【点评】本题主要考查了全等三角形性质的应用,做题时要结合已知与图形上的条件进行思考.8.(2016春•期末)如图,是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需这种材料的总长度为()A.45cm B.48cm C.51cm D.54cm【分析】根据BF=EC以及边与边的关系即可得出BC=EF,再结合∠B=∠E、AB=DE 即可证出△ABC≌△DEF(SAS),进而得出C△DEF=C△ABC=24cm,结合图形以及CF=3cm 即可得出制成整个金属框架所需这种材料的总长度.【解答】解:∵BF=EC,BC=BF+FC,EF=EC+CF,∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴C△DEF=C△ABC=24cm.∵CF=3cm,∴制成整个金属框架所需这种材料的总长度为C△DEF+C△ABC﹣CF=24+24﹣3=45cm.故选A.【点评】本题考查了全等三角形的应用,解题的关键是熟练掌握全等三角形的判定定理(SAS).本题属于基础题,难度不大,解决该题型题目时,熟练掌握全等三角形的判定定理是关键.9.已知△ABC≌△A′C′B′,∠B与∠C′,∠C与∠B′是对应角,那么下列说法中:①BC=C′B′;②∠C的平分线与∠B的平分线相等;③AC上的高与A′B′边上的高相等;④AB上的中线与A′B′边上的中线相等,其中正确的说法的个数()A.1个B.2个C.3个D.4个【分析】全等三角形的对应边相等,对应角相等,对应边上的对应高相等,对应中线相等,对应角平分线相等.不是对应边上的高线,中线就不一定相等.不是对应角的平分线也不一定相等.【解答】解:∵△ABC≌△A′C′B′∴BC=C′B′,AC上的高与A′B′边上的高相等.①、③项正确.故选B.【点评】本题考查了全等三角形性质的应用;容易出现的错误是:受字母的影响,找错对应角,与对应顶点,正确确定对应关系是解题的关键.10.(2005春•怀宁县期末)小明不慎将三角形模具打碎为四块,若他只带其中一块到商店去,就能还配一块与原来一模一样的三角形模具,应带()块去合适.A.A B.B C.C D.D【分析】此题应采用排除法通过逐个分析,只有D中保留了两角及一边,可确定其形状.从而确定最终答案.【解答】解:A只保留了一个角及部分边,不能配成和原来一样的三角形玻璃;B,C则只保留了部分边,不能配成和原来一样的三角形玻璃;而D不但保留了一个完整的边还保留了两个角,所以应该带“D”去,根据全等三角形判定“ASA”可以配出一块和原来一样的三角形玻璃.故选D.【点评】此题是对全等三角形的判定方法在实际生活中的考查,通过实际情况来考查学生对常用的判定方法的掌握情况.11.(2012秋•校级期中)如图,欲测量部无法到达的古塔相对两点A,B间的距离,可延长AO至C,使CO=AO,延长BO至D,使DO=BO,则△COD≌△AOB,从而通过测量CD就可测得A,B间的距离,其全等的根据是()A.SAS B.ASA C.AAS D.SSS【分析】根据已知:CO=AO,DO=BO,对顶角∠AOB=∠COD,利用SAS可判断△COD ≌△AOB.【解答】解:在△COD和△AOB中,∵,∴△COD≌△AOB(SAS).故选A.【点评】本题考查了全等三角形的应用,在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.12.(2012•模拟)我国的纸伞工艺十分巧妙,如图,伞不论开还是缩拢,△AED 与△AFD始终保持全等,因此伞柄AP始终平分同一平面两条伞骨所成的角∠BAC,从而保证伞圈D能沿着伞柄滑动.你知道△AED≌△AFD的理由吗?()A.SAS B.ASA C.SSS D.AAS【分析】由题意可知AE=AF,AD=AD,DE=DF根据三对边相等的两三角形全等即可证明△AED≌△AFD.【解答】解:理由如下,证明:∵E、F为定点,∴AE=AF,又∵AD=AD,ED=FD,∴在△AED和△AFD中,∴△AED≌△AFD(SSS).故选C.【点评】本题考查了全等三角形的判断方法,常见的判断定理有:(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.二.填空题(共7小题)13.(2016春•校级期末)“三月三,放风筝”,如图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH,小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是SSS (用字母表示).【分析】根据题目中的条件DE=DF,EH=FH,再加上公共边DH=DH,可利用SSS 证明△DEH≌△DFH,再根据全等三角形的性质可得∠DEH=∠DFH.【解答】证明:∵在△DEH和△DFH中,∴△DEH≌△DFH(SSS),∴∠DEH=∠DFH.故答案为:SSS.【点评】此题主要考查了全等三角形的应用,关键是掌握判定三角形全等的方法,SSS、ASA、AAS、SAS.14.(2016秋•临城县期末)某大学计划为新生配备如图1所示的折叠凳,图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD 的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度也为30cm,依据是全等三角形对应边相等和两边及夹角对应相等的两个三角形全等(用文字语言叙述).【分析】根据中点定义求出OA=OB,OC=OD,然后利用“边角边”证明△AOD和△BOC全等,根据全等三角形对应边相等即可证明.【解答】解:∵O是AB、CD的中点,∴OA=OB,OC=OD,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴CB=AD,∵AD=30cm,∴CB=30cm.所以,依据是两边及夹角对应相等的两个三角形全等,全等三角形对应边相等.故答案为:两边及夹角对应相等的两个三角形全等,全等三角形对应边相等.【点评】本题考查了全等三角形的应用,比较简单,证明得到三角形全等是解题的关键.15.(2016秋•诸暨市期中)阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD垂足为D.已知AB=20米.根据上述信息,标语CD的长度为20 m.【分析】根据两平行线间的距离相等得到OB=OD,再由一对直角相等,一对错角相等,利用ASA得到三角形AOB与三角形COD全等,利用全等三角形对应边相等即可求出CD的长.【解答】解:∵AB∥OH∥CD,相邻两平行线间的距离相等,∴OB=OD,∵OB⊥AB,OD⊥DC,∴∠ABO=∠CDO=90°,在△ABO和△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20m,故答案为:20【点评】此题考查了全等三角形的应用,垂直定义,以及平行线间的距离,熟练掌握全等三角形的判定与性质是解本题的关键.16.(2013秋•莱城区校级期中)老师拿着一三角形的硬纸板(△ABC)让各小组自制一个与它全等的三角形,第一小组测量了∠A的度数和AB、BC的长度;第二小组分别测量了三边的长度;第三小组测量了三个角的度数;第四小组测量了BC、AC的长度及∠C的度数,那么你认为第二、四小组能制作出符合要求的三角形.【分析】分别利用全等三角形的判定方法进行判断得出符合题意的图形.【解答】解:如图所示:第一小组测量了∠A的度数和AB、BC的长度;此时利用ASS无法证明全等,故不能制作出符合要求的三角形;第二小组分别测量了三边的长度;此时利用SSS证明全等,故能制作出符合要求的三角形;第三小组测量了三个角的度数;此时利用AAA无法证明全等,故不能制作出符合要求的三角形;第四小组测量了BC、AC的长度及∠C的度数,此时利用SAS证明全等,故能制作出符合要求的三角形;故答案为:二、四.【点评】此题主要考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题关键.17.(2010•校级模拟)“石门福地”小区有一块直角梯形花园,测量AB=20米,∠DEC=90°,∠ECD=45°,则该花园面积为200 平方米.【分析】先根据,∠DEC=90°,∠ECD=45°得出△CDE是等腰直角三角形,即DE=CE,再根据平行线的性质及直角三角形的性质得出∠1=∠4,2=∠3,进而判断出△ADE ≌△BEC,由全等三角形的性质可得出AD+BC=AB,再由梯形的面积公式即可求解.【解答】解:∵∠DEC=90°,∠ECD=45°,∴∠EDC=45°,∴DE=CE,∵四边形ABCD是直角梯形,∴AD∥BC,∠A=∠B=90°,∴∠ADC+∠BCD=180°,∵∠ECD=∠EDC=45°,∴∠1+∠3=90°,∵∠1+∠2=90°,∠3+∠4=90°,∴∠1=∠4,∠2=∠3,在Rt△ADE与Rt△BEC中,∠1=∠4,ED=CE,∠2=∠3,∴Rt△ADE≌Rt△BEC,∴AD=BE,AE=BC,∴AD+BC=AB=20米,∴该花园面积=(AD+BC)×AB=×20×20=200(平方米).故答案为:200.【点评】本题考查的是全等三角形的应用及梯形的面积公式、平行线的性质,根据题意得出Rt△ADE≌Rt△BEC是解答此题的关键.18.如图,在新修的小区中,有一条“Z”字形绿色长廊ABCD,其中AB∥CD,在AB,BC,CD三段绿色长廊上各修一小亭E,M,F,且BE=CF,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F的距离,只需要测出线段EM 的长度.理由是依据全等三角形的对应边相等可以证明△BEM≌△CFM ,从而由全等三角形对应边相等得出.【分析】先根据SAS判定△BEM≌△CFM,从而得出CF=BE,即测量BE之间的距离相当于测量CF之间的距离.【解答】解:要想知道M与F的距离,只需要测出线段EM的长度.理由是依据全等三角形的对应边相等可以证明△BEM≌△CFM,从而由全等三角形对应边相等得出.证明:连接EF∵AB∥CD,(已知)∴∠B=∠C(两线平行错角相等).∵M是BC中点∴BM=CM,∵在△BEM和△CFM中,∴△BEM≌△CFM(SAS).∴CF=BE(对应边相等).故答案为:EM,全等三角形的对应边相等,△BEM≌△CFM.【点评】本题考查了全等三角形的应用;关键是要把题目的问题转化为证明对应边相等.19.如图所示.A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1km,DC=1km,村庄AC,AD间也有公路相连,且公路AD是南北走向,AC=3km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2km,BF=0.7km.试求建造的斜拉桥长至少有 1.1 km.【分析】根据BD=CD,∠BDA=∠CDA=90°,AD=AD,得出△ADB≌△ADC,进而得出AB=AC=3,这样可得出斜拉桥长度.【解答】解:由题意知:BD=CD,∠BDA=∠CDA=90°,∵在△ADB和△ADC中,,∴△ADB≌△ADC(SAS),∴AB=AC=3km,故斜拉桥至少有3﹣1.2﹣0.7=1.1(千米).故答案为:1.1.【点评】此题主要考查了全等三角形的判定以及其性质,根据已知得出△ADB≌△ADC是解问题的关键.三.解答题(共9小题)20.(2017春•景泰县期末)小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?【分析】根据题意可得△CPD≌△PAB(ASA),进而利用AB=DP=DB﹣PB求出即可.【解答】解:∵∠CPD=36°,∠APB=54°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=54°,在△CPD和△PAB中∵,∴△CPD≌△PAB(ASA),∴DP=AB,∵DB=36,PB=10,∴AB=36﹣10=26(m),答:楼高AB是26米.【点评】此题主要考查了全等三角形的应用,根据题意得出△CPD≌△PAB是解题关键.21.(2017春•县期中)课间,小明拿着老师的等腰直角三角板玩,不小心掉到两墙之间,如图所示.(1)试判断DC与BE的数量关系,并说明理由.(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖的厚度a的大小(每块砖的厚度相等)【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB 即可得出答案;(2)由题意得:AD=4a,BE=3a,根据全等可得DC=BE=3a,根据勾股定理可得(4a)2+(3a)2=252,再解即可.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE;(2)解:由题意得:∵一块墙砖的厚度为a,∴AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,在Rt△ACD中:AD2+CD2=AC2,∴(4a)2+(3a)2=252,∵a>0,解得:a=5,答:砌墙砖块的厚度a为5cm.【点评】此题主要考查了全等三角形的应用,以及勾股定理的应用,关键是正确找出证明三角形全等的条件.22.(2016春•府谷县期末)如图,A、B两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN,且使MN⊥AB于点B,在BN上截取BC=CD,过点D作DE⊥MN,使点A、C、E在同一直线上,则DE的长就是A、B两建筑物之间的距离,请说明理由.【分析】可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE ⊥BF,使E、C、A在一条直线上,证明出这两个三角形全等,从而可得到结论.【解答】解:∵AB⊥MN,∴∠ABC=90°,同理∠EDC=90°,∴∠ABC=∠EDC,在△ABC和△EDC中∴△ACB≌△ECD(ASA),∴AB=DE.【点评】本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.23.(2016秋•乳山市期中)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【分析】根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可,利用全等三角形的性质进行解答.【解答】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CE B=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.24.(2016秋•玉环县期中)如图,在一个风筝ABCD中,AB=AD,BC=DC,分别在AB、AD的中点E、F处贴两根彩线EC、FC.(1)∠B 与∠D相等吗?请说明理由;(2)求证:EC=FC.【分析】(1)结论∠B=∠D,只要证明△ABC≌△ADC即可.(2)欲证明EC=FC,只要证明△EBC≌△FDC,或△ACE≌△ACF即可.【解答】(1)解:结论∠B=∠D.理由:连接AC.在△ACB和△ACD中,,∴△ABC≌△ADC(SSS)∴∠B=∠D(2)∵点E与F分别是AB、AD的重点∴BE=AB,DF=AD,∵AB=AD∴BE=DF,在△EBC和△FDC中,,∴△EBC≌△FDC(SAS)∴EC=FC.【点评】本题考查全等三角形的判定和性质,解题的关键是根据条件正确寻找全等三角形解决问题,属于基础题.25.(2016秋•九龙坡区月考)如图,两根旗杆AC与BD相距12m,某人从B点沿AB走向A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为0.5m/s,求这个人走了多长时间?【分析】根据题意证明∠ACM=∠DMB,利用AAS证明△ACM≌△BMD,根据全等三角形的性质得到AC=BM=3m,计算即可.【解答】解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠ACM=90°,∴∠ACM=∠DMB,在△ACM和△BMD中,,∴△ACM≌△BMD(AAS),∴AC=BM=3m,∴他到达点M时,运动时间为3÷0.5=6(s),答:这个人从B点到M点运动了6s.【点评】本题考查的是全等三角形的应用,掌握全等三角形的判定定理和性质定理是解题的关键.26.(2015秋•南江县校级期中)数学家鲁弗斯设计了一个仪器,它可以三等分一个角.如图所示,A、B、C、D分别固定在以O为公共端点的四根木条上,且OA=OB=OC=OD,E、F可以在中间的两根木条上滑动,AE=CE=BF=DF.求证:∠AOE=∠EOF=∠FOD.【分析】直接利用全等三角形的判定方法得出△AOE≌△COE(SSS),进而得出∠AOE=∠COE,同理可得∠COE=∠FOD,即可得出答案.【解答】证明:在△AOE和△COE中,,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,同理∠COE=∠FOD,∴∠AOE=∠EOF=∠FOD.【点评】此题主要考查了全等三角形的应用,根据题意得出△AOE≌△COE是解题关键.27.(2014秋•期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【分析】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC,证角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【解答】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【点评】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.28.(2014春•新津县期中)如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结DF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC 互补,而且他还发现BC=EF.小华的想法对吗?为什么?【分析】通过全等三角形得到错角相等,得到两直线平行,进而得到同旁角互补.【解答】解:∵O是CF的中点,∴CO=FO(中点的定义)在△COB和△FOE中,∴△COB≌△FOE(SAS)∴BC=EF(对应边相等)∠BCO=∠F(对应角相等)∴AB∥DF(错角相等,两直线平行)∴∠ACE和∠DEC互补(两直线平行,同旁角互补),【点评】本题考查了三角形的全等的判定和性质;做题时用了两直线平行错角相等,同旁角互补等知识,要学会综合运用这些知识.。

相关文档
最新文档