初等数学研究第三章答案
初等数学研究课后习题答案(2020年7月整理).pdf
初等代数研究课后习题20071115033 数学院 07(1) 杨明1、证明自然数的顺序关系具有对逆性与全序性,即(1)对任何N b a ∈,,当且仅当b a <时,a b >.(2))对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立.证明:对任何N b a ∈,,设a A ==,b B ==(1)“⇒” b a <,则B B ⊂∃,,使,~B A ,A B B ~,⊃∴,a b >∴“⇐” a b >,则B B ⊂∃,,使A B ~,,B B A ⊂∴,~,b a <∴综上 对任何N b a ∈,,b a <⇔a b >(2)由(1)b a <⇔a b > b a <∴与b a >不可能同时成立,假设b a <∴与b a =同时成立,则B B ⊂∃,,使,~B A 且B A ~, ,~B B ∴与B 为有限集矛盾,b a <∴与b a =不可能同时成立,综上,对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立..2、证明自然数的加法满足交换律.证明:对任何N b a ∈,设M 为使等式a b b a +=+成立的所有b 组成的集合先证 a a +=+11,设满足此式的a 组成集合k ,显然有1+1=1+1成立φ≠∈∴k 1,设k a ∈,a a +=+11,则+++++++=+=+==+a a a a a 1)1()1()(1k a ∈∴+,N k =∴, 取定a ,则1M φ∈≠,设,b M a b b a ∈+=+,则 ()()a b a b b a b a +++++=+=+=+ ,b M M N +∴∈∴= ∴ 对任何N b a ∈,,a b b a +=+3、证明自然数的乘法是唯一存在的证明:唯一性:取定a ,反证:假设至少有两个对应关系,f g ,对b N ∀∈,有 (),()f b g b N ∈,设M 是由使()()f b g b =成立的所有的b 组成的集合,()()1f b g b a ==⋅ 1M φ∴∈≠ 设b N ∈则()()f b g b =()()f b a g b a ∴+=+ ()()f b g b ++∴=,b M +∴∈,M N ∴= 即b N ∀∈,()()f b g b =乘法是唯一的存在性:设乘法存在的所有a 组成集合K 当1a =时,b N ∀∈,111,1111b b b b ++⋅=⋅==+=⋅+ φ≠∈∴k 1,设a K ∈,b N ∀∈,有,a b 与它对应,且1a a ⋅=,ab ab a +=+,对b N ∀∈,令a b ab b +=+ 1111a a a a ++⋅=⋅+=+=1()(1)a b ab b ab a b ab b a a b a ++++++=+=+++=+++=+a K +∴∈ K N ∴= 即乘法存在p24—5、解:满足条件的A 有1{1,2}A =,2{1,2,3}A =,3{1,2,4}A =,4{1,2,5}A = 5{1,2,3,4}A =,6{1,2,3,5}A =,7{1,2,4,5}A =,8{1,2,3,4,5}A =123456782,3,4,5A A A A A A A A ========∴========基数和为23343528+⨯+⨯+= p24—6、证明:,A a B b ==,A 中的x 与B 中的y 对应 A B ab ∴⨯=,B A ba ab ∴⨯==A B ab ⨯= A B A B B A ∴⨯=⋅=⨯p24—8、证明:1)3+4=73134++== 3231(31)45++++=+=+==3332(32)56++++=+=+==3433(33)67++++=+=+==2)3412⋅= 313⋅= 32313136+⋅=⋅=⋅+=33323239+⋅=⋅=⋅+=343333312+⋅=⋅=⋅+=p24—12、证明:1)()m n m n +++++=+()1(1)m n m n m n m n +++++++=++=++=+2)()mn nm m +++=+ ()1(1)mn mn mn m nm m ++++=+=++=+p26—36、已知(,)f m n 对任何,m n N ∈满足(1,)1(1,1)(,2)(1,1)(,(1,))f n n f m f m f m n f m f m n =+⎧⎪+=⎨⎪++=+⎩求证:1)(2,)2f n n =+2)(3,)22f n n =+3)1(4,)22n f n +=−证明:1)当1n =时,(2,1)(11,1)(1,2)2112f f f =+==+=+结论成立,假设n k =时,结论成立,即(2,)2f k k =+,当1n k =+时,(2,1)(11,1)(1,(2,))(1,2)(2)1(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立2)当1n =时,(3,)(21,)(2,2)22212f n f n f =+==+=⋅+结论成立假设n k =时,结论成立,即(3,)22f k k =+当1n k =+时,(3,1)(21,1)(2,(3,))(2,22)2222(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立3)当1n =时,11(4,1)(31,1)(3,2)22222f f f +=+==⨯−=−结论成立 假设n k =时,结论成立,即1(4,)22k f k +=− 当1n k =+时,112(4,1)(3,(4,))(3,22)2(22)222k k k f k f f k f ++++==−=−+=−所以对一切自然数结论都成立p62—1、证明定理2.1证明:[,],[,]a b c d Z ∀∈,[,][,][,]a b c d a c b d +=++因为自然数加法满足交换律[,][,]a c b d c a d b ∴++=++而[,][,][,]c d a b c a d b +=++[,][,][,][,]a b c d c d a b ∴+=+[,],[,],[,]a b c d e f Z ∀∈,[,][,][,][,][,][(),()]a b c d e f a c b d e f a c e b d f ++=+++=++++以为自然数满足加法结合律([,][,])[,][,]([,][,])a b c d e f a b c d e f ∴++=++ 即整数加法满足交换律和结合律p62—2、已知[,],[,]a b c d Z ∈,求证[,][,]a b c d =的充要条件是[,][,][1,1]a b c d −= 证明:“⇒” 已知[,][,]a b c d =则a d b c +=+[,][,][,][1,1]a b c d a d b c ∴−=++=“⇐” 已知[,][,][1,1]a b c d −=则[,][1,1]a d b c ++=,a d b c +=+[,][,]a b c d ∴=p62—4、已知N b a ∈,,求证([,])[,]a b a b −−=证明:[,][,]a b b a −= ([,])[,][,]a b b a a b −−=−=p62—5、已知[,],[,]a b c d Z ∈,求证([,][,])[,][,]a b c d a b c d −−=−+证明:左边([,][,])[,][,]a b c d a d b c b c a d −−=−++=++右边[,][,][,][,][,]a b c d b a c d b c a d −+=+=++所以左边等于右边([,][,])[,][,]a b c d a b c d ∴−−=−+p62—7、已知,,a b c N ∈,求证当且仅当a d b c +<+时[,][,]a b c d <证明:“⇒” 已知a d b c +<+,[,][,][,]a b c d a d b c −=++因为 a d b c +<+ [,]a d b c ∴++是负数,[,][,]a b c d ∴<“⇐” 已知[,][,]a b c d <则[,][,][,]a b c d a d b c −=++因为[,]a d b c ++是负数,a d b c ∴+<+p62—9、已知,Z αβ∈,求证:1)αβαβ+≤+ ,2) αβαβ=证明:设[,],[,]a b c d αβ== 1)[,]a c b d αβ+=++ ()()a c b d αβ∴+=+−+而,a b c d αβ=−=−()()()()a c b d a b c d a b c d +−+=−+−≤−+−αβαβ∴+≤+2)[,]ac bd ad bc αβ=++ ()ac bd ad bc αβ∴=+−+而,a b c d αβ=−=−()()()()()ac bd ad bc a c d b d c a b c d a b c d +−+=−+−=−−=−− αβαβ∴=p63—12、n 名棋手每两个比赛一次,没有平局,若第k 名胜负的次数各为,k k a b ,1,2,........,k n =,求证:2222221212......n n a a a b b b +++=+++ 证明:对于(1,2,...,)k a k n =,必存在一个(1,2,...,)j b j n =使得k j a b =⇒22(,1,2,...,)k j a b k j n == 2222221212......n n a a a b b b ∴+++=+++p63—16、已知10p a b −,10p c d −,求证p ad bc −证明:由已知:,s t Z ∃∈使10a b ps −=,10c d pt −=⇒ 10,10b a ps d c pt =−=−10(10)()ad bc ac apt ac cps p cs at ∴−=−−−=−p ad bc ∴−p63—17、设2不整除a ,求证281a +证明:因为2不整除a ,所以存在唯一一对,q r Z ∈,使2a q r =+,其中02r <<⇒1r =,22441a q q ∴=++⇒214(1)a q q −=+ 281a ∴−p63—20、设a Z ∈,求证(1)(2)(3)1a a a a ++++是奇数的平方证明:22222(1)(2)(3)1[(1)1](1)[(2)(2)1]1[(1)(1)][(2)(2)]1(1)(2)2(1)(2)1[(1)(2)1]a a a a a a a a a a a a a a a a a a ++++=+−+++++=+−+++++=++−+++=++−1,2a a ++肯定一奇一偶(1)(2)a a ∴++肯定为偶数(1)(2)1a a ∴++−肯定为奇数p63—22、证明:前n 个自然数之和的个位数码不能是2、4、7、9证明:前n 个自然数的和为(1)2n n + 因为:n 个自然数的和仍为自然数∴ 1+n 与n 中必定一个为奇数一个为偶数若个位数码为2则1+n 与n 的个位数码只能是1,4或4,1而(1+n )- n=1 ∴个位数码不能为2若个位数码为4则1+n 与n 的个位数码只能是1,8或8,1也不可能成立若个位数码为7则1+n 与n 的个位数码有2种可能,则2,7或1,14也不可能成立,若个位数码为9则1+n 与n 的个位数码有2种可能,即2,9或1,18也不可能成立,综上,前n 个自然数和的个位数码不能是2,4,7,9p63—26、证明2.3定理1(12,,......,n a a a )=(12,,......n a a a )证明:因为:(12,,......,n a a a )是12,,......n a a a 的公因数中的最大数所以R 需考虑非负整数 ∴(12,,......,n a a a )=(12,,......n a a a ) p63—29、证明2.3定理4的推论(,)1a b =的充要条件是有,x y Z ∈使得1ax by += 证明:因为(,)1a b = ,a b ∴不全为0“⇒” 由定理4 ,x y Z ∃∈使(,)1ax by a b +==“⇐” 设(,)a b d =则,d a d b ,d ax by ∴+ 1d ∴ (,)1d a b ∴== p63—30、证明2.3定理6及其推论。
初等数学研究(程晓亮、刘影)版课后习题答案教程文件
初等数学研究(程晓亮、刘影)版课后习题答案 第一章 数1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数bi a +. 2(略)3从数的起源至今,总共经历了五次扩充:为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集.公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集.为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集.直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集.虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集.4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'⊃;若d c ≥从而必存在非空有限集'C ,使得D C C ~'⊃,所以)(C A ⋃)(D B ⋃⊃所以集合C A ⋃的基数c a +大于集合D B ⋃的基数d b +,所以d b c a +>+.5(1)解:按照自然数序数理论加法定义, 1555555155155)25(2535''=++=++⋅=+⋅=+⋅=⋅=⋅ (2)解:按照自然数序数理论乘法定义87)6(])15[()15()25(2535'''''''''===+=+=+=+=+ 6证明:︒1当2=n 时,命题成立.(反证法)()()()()()()()01121,1111111,111101111111,,2,1,0111,,2,1,0)2(212122121212121212122221212122111112111212222121≥++-+⇒≥++-++≥+-+-≥++++∴≥⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛->-=-++-+-=+++++=>+=≥+++=+++=>≥=︒+++++++++++++++++k k k k k k k k k k k k k k k i k k k k k k i k k i a k a k k a k k a k k a ka a ka a a a a k a a a a a a a a a a a a a a a a a a k i a k n ka a a a a a k i a k k n ,即要证由归纳假设,得,且得,,且时,由当。
初等代数研究(第三章方程)ppt2
定义域的交集
称为方程的定义域。
二、方程的分类
指数方程 超越方程 对数方程 三角方程 反三角方程 一次方程 方程 整式方程 二次方程 有理方程 高次方程 代数方程 分式方程 无理方程
一、方程的定义:
形如 f x1 , x2 ,, xn g x1 , x2 ,, xn 的等式 叫做方程,其中 f x1 , x2 ,, xn , g x1 , x2 ,, xn 是 两个解析式,且至少有一个不是常函数。
f x1 , x2 ,, xn , g x1 , x2 ,, xn
第三节、几种常见方程的变形 在解方程时,除了利用同解变形外,有 时还要作以下几种变形: n n f ( x ) g ( x) 是方程 f ( x) g ( x) 的 ⒈方程 结果; 正整数 n 是对函数 f ( x), g ( x) 施行乘方运 算的指数。可能产生增根,如 2x 1 3x 5 。
㈠二项方程和三项方程的解法 形如 x A 0 的方程叫做二项方程,解 此方程就是求A的n次方根
n
例3 解方程
x 5 32 0
形如 x 2n pxn q 0 的方程叫做三项方程 . 例 解方程
x 6 4x 3 3 0
(二)一元三次方程
1、一元三次方程 的化简
定理 1 如果函数 A( x ) 对于方程 f ( x ) g ( x ) 的定义域
M 中的数都有意义,那么方程⑴ f ( x) g ( x) 与方程⑵
f ( x) A( x) g ( x ) A( x ) 同解。
定理 2 如果函数 A( x ) 对于方程 f ( x) g ( x) 的定义域M 中的数都有意义,并且不等于零,那么方程⑴
初等数学研究课后题
现代远程教育《初等数学研究》课程学习指导书课程学习方法指导1、为什么要学习初等数学研究?作为一个中学数学教师,仅仅具备中学中所涉及到的知识,是远远不够的。
为了更好地掌握并处理好中学数学教材,必须懂得更多的数学。
好比用一桶水去斟一杯水,才显得胸有成竹,游刃有余。
大学里学习那么多高等数学,目的即在于此。
但是高等数学知识怎样和初等数学相结合?如何指导中学数学教学?也就是说怎样用高等数学的方法去处理中学数学问题?怎样使教师的知识更加现代化?怎样用最新的数学观念去理解中学数学中的有关内容?其次,中学数学的重要任务之一,是培养学生运用数学知识解决问题的能力。
因此,教师本身就应具备这方面的较强的能力。
学习高度数学可以提高数学修养,提高解题能力。
但是怎样结合中学实际,运用中学生可以接受的方法,特别是运用初等的方法来处理初等数学中的问题。
这方面有许多技能与技巧,还必须作专门的训练。
这就是我们要学习初等数学研究的目的。
2、怎样阅读教材?阅读教材时,应边阅读边作笔记。
把重要的、不懂的、难理解的记录下来,以便和录像中的讲解进行对比学习。
每天看书不要太多,以免贪多嚼不烂,要循序渐进。
要结合录像看书学习,对每道例题,要亲自动手再作一作,理解了,会了,再向下学习。
学贵有恒,贵在坚持。
3、怎样观看录像?观看录像时,应先看书,后看录像。
对每个例题、定理的证明,要先思考,后看录像,以验证自己的思维。
要充分理解领会每个例题的解证思路与方法,并运用数学方法论思想去审视每道题目的解证方法。
既要理解数学的概念和原理,更要理解数学的本质、数学的价值;既要理解数学的探究过程,又要了解数学发展的历史和方法。
每次观看录像不宜太多,每次观看一节课为宜。
4、怎样解题?学习数学,必须学会解题。
要以波利亚的“怎样解题表”为指南进行解题训练,要注意解后回顾,要注意提炼、总结数学方法。
附波利亚怎样解题表和解题思考步骤、程序表:怎样解题表第一你必须弄清的问题1、未知数是什么?已知数数据是什么?条件是什么?满足条件是否可能?要确定未知数,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?2、画张图,引入适当的符号。
初等数学研究第三章
F (x1, x2 ,..., xn )、(x1, x2 ,..., xn )中至少有一个不是常数 。
方程的定义域: M D(F) D()
类似不等式的定义域
方程定义域与其解的关系
解方程:(x 1)( x 2 3)( x 2 1) 0
方程定义域
解
Q x 1
R x1 1, x2 3, x3 3
方程(组)的解法.
方程的有关概念
含有未知数的等式 方程。 能够使方程左右两边的值相等的未知数的值
方程的解 只含一个未知数的方程的解也叫方程的根。 求方程的解或确定方程没有解的过程叫做解方程。
方程的定义域(存在域)
方程:F (x1, x2 ,..., xn ) (x1, x2 ,..., xn )
1,2,...,n).
变化后方程是原方程的根的k倍
推论1若a0 x n a1 x n1 a2 x n2 ... an1 x an 0 根xi ,则 a0 x n a1kxn1 a2 k 2 x n2 ... an1k n1 x an k n 0 根kxi
证明思路:
若f ( x) xi
解:设ax2 bx c 0方程的根为x1、x2 ,
由韦达定理有:x1
x2
b a
, x1x2
c a
所求方程 x 2 Ax B 0的根为 1 1, 1 1
由韦达定理有:1 1 1 1 A, x1x2x1 Nhomakorabeax2
( 1 1)( 1 1) B
x1
x2
A b 2c , B a b c
初等数学研究课后答案
初等数学研究课后答案引言:初等数学作为学习数学的基础课程,对于培养学生的数学思维和解决实际问题的能力有着重要的作用。
为了让学生更好地掌握所学知识,教师在教学过程中往往会布置一些课后作业,以便学生巩固和练习所学内容。
然而,学生在完成课后作业时可能会遇到一些疑惑和困惑,尤其是对于一些复杂的问题。
因此,提供一份初等数学研究课后答案对于学生来说是很有必要的。
本文将为学生提供一份初等数学研究课后答案,帮助学生更好地理解和掌握相关知识。
一、代数学1. 解方程:题目:求解方程2x + 5 = 17.答案:首先,将方程转化为x的形式,得到2x = 17 - 5,即2x = 12. 然后,将方程两边同时除以2,得到x = 6.2. 因式分解:题目:将多项式x² - 5x + 6因式分解.答案:首先对多项式进行因式分解,得到(x - 2)(x - 3).3. 求解不等式:题目:求解不等式2x - 3 < 5.答案:将不等式转化为x的形式,得到2x < 8. 然后将不等式两边同时除以2,得到x < 4.二、几何学1. 直角三角形的性质:题目:已知直角三角形的两条直角边分别为3和4,求斜边的长度.答案:根据勾股定理,直角三角形的斜边长度为√(3² + 4²),即√(9 + 16),即√25,所以斜边的长度为5.2. 圆的面积计算:题目:已知一个圆的半径为5,求其面积.答案:根据圆的面积公式S = πr²,将半径r替换为5,得到面积S = π(5)²,即S = 25π.三、概率论1. 事件的概率计算:题目:一个箱子中有4个红球和6个蓝球,从箱子中随机取出一个球,求取到红球的概率.答案:共有10个球,其中4个是红球,所以取到红球的概率为4/10,即2/5.2. 排列组合问题:题目:从10个人中选出3个人组成一支篮球队,求有多少种不同的选法.答案:根据排列组合的公式C(n, k) = n! / (k! * (n - k)!),将n替换为10,k替换为3,得到C(10, 3) = 10! / (3! * (10 - 3)!) = 120.四、数列与级数1. 等差数列的通项计算:题目:已知等差数列的首项为2,公差为3,求第n项的表达式.答案:等差数列的通项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差。
初等数学研究答案第一章到第六章
大学数学之初等数学研究,李长明,周焕山版,高等教育出版社 习题一1答:原则:(1)A ⊂B(2)A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能施行的某种运算,在B 中总能施行。
(4) 在同构的意义下,B 应当是A 满足上述三原则的最小扩展,而且由A 唯一确定。
方式:(1)添加元素法;(2)构造法2证明:(1)设命题能成立的所有c 组成集合M 。
a=b ,M 11b 1a ∈∴⋅=⋅∴, 假设bc ac M c =∈,即,则M c c b b bc a ac c a ∈'∴'=+=+=',由归纳公理知M=N ,所以命题对任意自然数c 成立。
(2)若a <b ,则bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 则ac<bc 。
(3)若a>b ,则ac mc bc ac,m)c (b )1(a m b N m =+=+=+∈∃即,,由,使得 则ac>bc 。
3证明:(1)用反证法:若b a b,a b a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。
则a=b 。
(2)用反证法:若b a b,a b a =>或者,则由三分性知不小于。
当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。
则a <b 。
(3)用反证法:若b a b,a b a =<或者,则由三分性知不大于。
当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。
初等数学研究课后答案习题三
习题三1解:(1)由.222r x AE AB AE AD =⋅=得则.2)(22rx r AE r CD -=-= 则)20.(2422r x r x x r x AB CD y <<-+=++= (2) .5.5)(124max 22r y r x r r x r r x x r y ==+--=-+=时,当 2证明:(1)令时,0n m ==).0()0()0(f f f =即或者0f(0)=1;f(0)= 当时0f(0)=0)0()()(==f m f m f ,又当时0m ≠f(0).f(m)≠则 1.f(0)= (2)时,,当0n n m >-=即,1)()()(=-=+-n f n f n n f )(1)(n f n f -=则)(1)(x f x f -=;又当,则时1f(x),0x >>1)(1>-x f ,即1)(0<-<x f 由此得;0;1)(001)(0;1)(⎪⎩⎪⎨⎧<<<==>>x x f x x f x x f ; 则对于任意.0f(x)R,x >∈均有3答:(1)是;(2)不是4解:(1)由}45,088|{01||80||054≠≠≤≤-⎪⎪⎩⎪⎪⎨⎧≥-≠≠-x x x x x x x 且得:.(2) 由}132|{112012023≠>⎪⎩⎪⎨⎧≠->->-x x x x x x 且得:(3) 由].1,22()22,1[001log 0)1(log log 222225.0⋃--∈⎪⎩⎪⎨⎧>>+≥+x x x x 得: (4) 由}.8log 25|{0)39lg(0390|2|73≠<≤-⎪⎩⎪⎨⎧≠->-≥--x x x x x x且得:(5) }21|{0)31(112≥≥--x x x 得:由(6) 由.)25,1[00250lg ∈⎪⎩⎪⎨⎧>>-≥x x x x 得:(7) }.121|{1212≤≤-≤-≤-x x x x 得:由 (8) 由]2,51(015111∈⎩⎨⎧>-≤-≤-x x x 得:(9) 由}2,1,0,22|{0sin 101sin ±±=+=⎩⎨⎧≥-≥-k k x x x x ππ得:(10)由得:03cos >x }2,1,0,326326|{ ±±=+<<+-k k x k x ππππ5. (1)解:}.121211|{4112≤≤-≤≤-≤≤x x x x或得:由(2)解:}.40|{22≤≤≤≤-x x x 得:由(3) 解:}.1010|{3lg 213≤≤≤≤x x x 得:由6证明:⇒f(x)的定义域为实数集R ,则0.1-k 1k 4k 4kx -x 22>+++ 即.1,0144)114(41622><---=-++-=∆k k k k k k k 则 ⇒当时1>k ,0144)114(41622<---=-++-k k k k k k 则 即0.1-k 1k 4k 4kx -x 22>+++故f(x)的定义域为实数集R 7解:(1)-=+++=11x x y 22x x-=++11x 12x 43)21(x 12++;而,3443)21(x 102≤++<则).1,31[1x x 22-∈+++=x x y (2)]23,23[3)6sin(23sin cos +-∈++=++x x x π,则].23,23[3sin cos 7+-∈++=x x y(3),则由1076312≤++-≤x x .1)763lg(02≤++-≤x x(4) 133212122-+-=-+-=x x x x x y ,则0)3()3(22=+++-y x y x , ,01522≥--=∆y y 得.35-≤≥y y 或法二:=-+-=1212x x y 1)1(212+-+-x x ;则 =-+-|)1(212|x x 4|)1(|2|12|≥-+-x x 即或4)1(212≥-+-x x 4)1(212-≤-+-x x 则]3,(),5[1212--∞+∞∈-+-=或x x y (5) 令,413t x =-则44)1(21413322≤+--=-+-=t x x y(6)=-++-=344342x x x y 4)12(342-++-x x当).,23[,2343min +∞∈==y y x 则时, (7) ,11ln 21y yx e e e e y xx x x -+=+-=--得由即.11,011<<->-+y y y 则 (8))23lg ,45(lg )211lg(212lg 11122lg 1∈+=+=-++=x x x x x y y 得,由则).54lg 1,32lg 1++∈(y (9) ]3,0[)21arccos(3π∈-=x y ;(10) ∴∈-],3,0[12x]2,6[12ππ∈-=x arcctgy8 解:令t x =+14,则即,112t 11t 5)(2--+=t t f ∆≡--+=112x 11x 5)(2x x f y 则.01111)52(2=--+-y x y yx当0=y 时,有意义;当0≠y 时,.,0R y ∈>∆即9解:(1)2x 2y +--=由得反函数为212x y -=.其定义域和值域为.1,0≤≤y x(2)由1x 5x 2y +=得反函数为x x y 52-=.其定义域和值域为.51,52-≠≠y x 10证明:对使,1,00Mx M =∃>∀M M >+=+=1x 11y 2,则2x 11y +=无上界.但对,0≠∀x 2x 11y +=>1,则任何小于1的数都是2x 11y +=的下界.11 证明: 由于f(x)是有界函数,则.|)(|,,0M x f D x M <∈∀>∃有对而g(x)没有上界,则对.)(,,0N x g D x N >∈∃>∀有则W M N x g x f ∆≡->+)()(对使,,0x W ∃>∀W x g x f >+)()(,则f(x)与g(x)的和在定义域D 上无上界. 12 解:.),0[,2.822y 2上单调递增当,令+∞∈=++-==u y x x u u u在上单调递增当而.)1,2[.822-∈++-=x x x u .]4,1[上单调递减∈x 则8x 2x 22y ++-=在上单调递增当.)1,2[-∈x .]4,1[上单调递减∈x13. (1)奇函数 (2)偶函数 (3)非奇非偶函数 (4)非奇非偶函数 (5)偶函数 (6)偶函数14解: )211a 1g(-x)(f (-x)x-+-=)21a-1a g(-x)(x x +=f (x))211a 1g(x)(x =+-= 则)(x f 是偶函数. 15解: 则-f (x),x 1x 1lgf (-x)=-+=.它是奇函数)1,1(,0x1x 1-∈>-+x 得定义域为而 .)1,1(x 1x 1上单调递减在而-∈-+x 则x1x 1lg y +-=.)1,1(上单调递减在-∈x 16解:(1) =++==)1lg(-x f(-x)y 2x =++)1lg(-x 2x ).()1lg(x -2x f x -=++则f(x)的定义域为R x ∈,它是奇函数.(2)由和)1lg(x y 2++=x ,110110)1lg(-x y -222⎪⎩⎪⎨⎧+-=-++=++=-xx x x x y y 得 则即y y x 1021102⋅-=.102110)(21xx x f ⋅-=- (3) 则由于,11x 2≥++x ),0[)1lg(x f(x)y 2+∞∈++==x(4) 对),()(,2121x f x f x x <<∀.f(x)在其定义域上是增函数则 17解:当0x <时,0x ->即.2x x f(-x)2++=又f(x)是奇函数,则)()(x f x f -=-则.2x x f(x)2---= 18解:则,cosx sinx 1cosx -sinx 1f (-x)+--=++++=+cosx sinx 1cosx -sinx 1f (x)f (-x)cosxsinx 1cosx-sinx 1+--=0则.cosxsinx 1cosx-sinx 1f (x)是奇函数函数+++=19解:(1)a,632z y x ===令 1.a ,R z y,x,>∈+则由于.log ,log ,log 632a z a y a x ===即6log log 6log 66,3log log 3log log 33,log 22226223332aa z a a a y a x ======。
初等数学研究第三章
方程是函数变化过程中的一个特殊状态, 即方程的解是函数的零点。
eg : 求f (x) 0的解,就是求函数 y f (x)的零点。
方程思想、函数思想解决问题
一、方程
讲授的内容 1、方程与方程组的有关概念 2、方程与方程组的同解变形 3、各类方程与方程组的解法 重点:方程(组)的同解性判定;
节 整
设两个根为 x1、x2 ,则x1
x2
b a
,
x1
x2
c. a
式
方 法国数学家——系统地引入了代 程 数符号,推进了方程的发展——
现代数学之父
第 韦达定理(复数范围)
三 定理1方程 节 f (x) a0 x n a1 x n1 ... an1 x an 0(a0 0)
整 的n个根是x1 , x2 ,...,xn1 , xn , 那么
方程组也可以类似的分类
二、方程与方程组的同解性
F1 (x1, x2 ,...,xn ) 1 (x1, x2 ,...,xn ) A1 F2 (x1, x2 ,...,xn ) 2 (x1, x2 ,...,xn ) A2
如果A1 A2 ,则
F1 (x1, x2 ,...,xn ) 1 (x1, x2 ,...,xn )与 F2 (x1, x2 ,...,xn ) 2 (x1, x2 ,...,xn )为同解方程。 注:没有特别说明方程的同解不考虑重数
互为结果方程的两个方程同解。
每一个方程是无解方程的结果方程。
定理1 如果
等价转换
F1 (x1 , x2 ,...,xn ) 1 (x1 , x2 ,...,xn ), F2 (x1 , x2 ,...,xn ) 2 (x1 , x2 ,...,xn ),
闵嗣鹤、严士健,初等数论第三章习题解答
第三章 同余§1习题(P53)1. 证明定理2及性质庚、壬 01定理2 若11(mod )k k A B m αααα≡(mod )i i x y m ≡ ,1,2,,i k =则1111k k kk A x x αααααα≡∑ 1111(mod )k k kk B y y m αααααα∑证:由(mod )i i x y m ≡ ⇒戊(mod )ii ii x y m αα≡11kkx x αα⇒≡戊11(mod )k k y y m αα111kk k A x x αααα⇒≡ 戊111(mod )k kk B y y m αααα1111kk kkA x x αααααα⇒∑≡ 丁1111(mod )k k kk B y y m αααααα∑02庚证:(i )(mod )a b m ≡∵ 由P48定理1m a b km ka kb ⇒−⇒−,0(mod )km ak bk mk >⇒≡ (ii )设1a a d =,1b b d =,1m m d =0m >∵,100d m >⇒>(mod )a b m ≡∵ 111()m a b dm d a b ⇒−⇒−111111(mod )(mod a b mm a b a b m d d d⇒−⇒≡⇒≡2. 设正整数101010nn a a a a =+++ 010i a <-,试证11/a 的充要条件是011(1)ni i i a =−∑。
证:由101(mod 11)10(1)(mod 11)i i ≡−⇒≡−10(1)(mod 11)10(1)(mod 11)nni iii i i i i i i a a a a ==⇒≡−⇒≡−∑∑01110(1)nnii i i i i a a ==⇒−−∑∑于是11a 011(1)ni i i a =⇔−∑3. 找出整数能被37,101整除的判别条件来。
01 由10001(mod 37)≡ 及1010001000n n a a a a =+++ ,01000i a <-,由上面证明之方法得3737ni i a a =⇔∑02 由1001(mod 101)≡− 及10100100n n a a a a =+++ 0100i a <- 由上面证明之方法可得:101101(1)ni i i a a =⇔−∑4. 证明3264121+证:由7640251(mod 641)=×≡− 及4456252(mod 641)−=−≡3272577252122252(25)∴+≡×−×=−742173212(525)2(5)(521)≡−×−≡×−×+32173(521)(25)1≡×+≡×= 3(1)10(mod 641)≡−+≡3264121∴+5. 若a 是任一单数,则221(mod 2)nn a +≡(1)n . 证明:当n =1时,322/1a − 2(21)14(1)k k k +−=+∵ 假定2221nn a +−,则有1222222211()1(1)(1)n nn n na a a a a +⋅−=−=−=−+由2221nn a +−,221na +(∵a 是单数,∴21na +是双数)∴1321n n a a ++−,即1221(mod 2)n n a ++≡6. 应用检查因数的方法求出下列各数的标准分解式(i )1535625 (ii )1158066 解:(i )由215356252561425252457=×=×由3245718+++=,324573819391=×=× 由91713=×43153562553713∴=⋅⋅⋅(ii )由311586627+++++=,11580663386022=×33862221++++=,3860223128674=×由7128674546−+=,128674718382=×718382364−+=,1838272626=×262621313213101=×=×× 22115806637131012∴=⋅⋅⋅⋅§2习题(P57)1. 证明s t x u p v −=+,u =0,1,…,1s t p −−,v =0,1,…,1t p −,t s -,是模s p 的一个 完全剩余系。
《初等数学研究习题解答》
《初等数学研究》习题解答第一章 数系1.1 集合论初步·自然数的基数理论习题1.11.证明集合0{|}x x >与实数集对等。
证明:取对应关系为ln y x =,这个函数构成0(,)+∞与(,)-∞+∞的一一对应,所以集合0{|}x x >与实数集对等。
2.证明()()()A B C A B A C = 证明:()x AB C x A ∀∈⇒∈或x B C ∈,x A ⇒∈或(x B ∈且x C ∈),那么有x A ∈或x B ∈同时还有x A ∈或x C ∈,即x A B ∈同时还有x A C ∈,所以()()()()()x A B A C A B C A B A C ∈⇒⊆反过来:()()x AB AC x A B ∀∈⇒∈且x A C ∈,对于前者有x A ∈或者x B ∈;对于后者有x A ∈或者x C ∈,综合起来考虑,x B ∈与x C ∈前后都有,所以应是“x B ∈且x C ∈”即“x B C ∈”,再结合x A ∈的地位“或者x A ∈”以及前后关系有“x A ∈或x BC ∈”即()x A B C ∈,所以()()()()x AB C A B C A B A C ∈⇒⊇所以()()()A B C A B A C =。
3.已知集合A 有10个元素,,B C 都是A 的子集,B 有5个元素,C 有4个元素,B C有2个元素,那么()BA C -有几个元素?解:集合()BA C -如图1所示:由于452(),(),()r C r B r B C ===,所以32(),()r B C r C B -=-=, 从而1028(())r B A C -=-=, 即()BA C -有8个元素4.写出集合{,,,}a b c d 的全部非空真子集。
图1CBA5.证明,按基数理论定义的乘法对加法的分配律成立。
证明:设,,A B C 是三个有限集合,并且B C φ=,记(),(),()a r A b r B c r C ===首先:由于BC φ=,所以A B A C φ⨯⨯=,所以其次:对于(,)(){(,)|,}a x A B C a x a A x B C ∀∈⨯=∈∈,由于x B C ∈,那么若x B ∈,于是(,)a x A B ∈⨯; 若x C ∈,于是(,)a x A C ∈⨯,所以总有(,){(,)|,}{(,)|,}a x a x a A x B a x a A x C A B A C ∀∈∈∈∈∈=⨯⨯即()(())()A BC A B A C r A B C r A BA C ⨯⊆⨯⨯⇒⨯≤⨯⨯反过来:(,)a x A B A C ∀∈⨯⨯,那么(,)a x A B ∈⨯或者(,)a x A C ∈⨯于是有,a A ∈x B ∈或者x C ∈,即,a A ∈x B C ∈,所以(,)()a x A B C ∈⨯即()(())()A BC A B A C r A B C r A BA C ⨯⊇⨯⨯⇒⨯≥⨯⨯所以()a b c ab ac +=+6.在基数理论定义的乘法下,证明1a a ⨯=。
初等数学研究习题解答
《初等数学研究》习题解答第一章 数系1.1 集合论初步·自然数的基数理论习题1.11.证明集合0{|}x x >与实数集对等。
证明:取对应关系为ln y x =,这个函数构成0(,)+∞与(,)-∞+∞的一一对应,所以集合0{|}x x >与实数集对等。
2.证明()()()A B C A B A C =证明:()x A B C x A ∀∈⇒∈或x B C ∈,x A ⇒∈或(x B ∈且x C ∈),那么有x A ∈或x B ∈同时还有x A ∈或x C ∈,即x A B ∈同时还有x A C ∈,所以()()()()()x A B A C A B C A B A C ∈⇒⊆反过来:()()x A B A C x A B ∀∈⇒∈且x A C ∈,对于前者有x A ∈或者x B ∈;对于后者有x A ∈或者x C ∈,综合起来考虑,x B ∈与x C ∈前后都有,所以应是“x B ∈且x C ∈”即“x B C ∈”,再结合x A ∈的地位“或者x A ∈”以与前后关系有“x A ∈或x B C ∈”即()x A B C ∈,所以()()()()x A B C A B C A B A C ∈⇒⊇ 所以()()()A B C A B A C =。
3.已知集合A 有10个元素,,B C 都是A 的子集,B 有5个元素,C 有4个元素,B C 有2个元素,那么()B A C -有几个元素?解:集合()B A C -如图1所示:由于452(),(),()r C r B r B C ===,所以32(),()r B C r C B -=-=,图1CBA从而1028(())r B A C -=-=, 即()B A C -有8个元素4.写出集合{,,,}a b c d 的全部非空真子集。
{,}{},{},{},{,},{,},{,},{,},{,},{,},{,,},{,,},{,,},{,,}a b c d a b a c a d b c b d c d a b c a b d a c d b c d5.证明,按基数理论定义的乘法对加法的分配律成立。
初等数学研究习题解答
《初等数学研究》习题解答第一章 数系1.1 集合论初步·自然数的基数理论习题1.11.证明集合0{|}x x >与实数集对等。
证明:取对应关系为ln y x =,这个函数构成0(,)+∞与(,)-∞+∞的一一对应,所以集合0{|}x x >与实数集对等。
2.证明()()()A B C A B A C = 证明:()x AB C x A ∀∈⇒∈或x B C ∈,x A ⇒∈或(x B ∈且x C ∈),那么有x A ∈或x B ∈同时还有x A ∈或x C ∈,即x A B ∈同时还有x A C ∈,所以()()()()()x A B A C A B C A B A C ∈⇒⊆反过来:()()x AB AC x A B ∀∈⇒∈且x A C ∈,对于前者有x A ∈或者x B ∈;对于后者有x A ∈或者x C ∈,综合起来考虑,x B ∈与x C ∈前后都有,所以应是“x B ∈且x C ∈”即“x B C ∈”,再结合x A ∈的地位“或者x A ∈”以及前后关系有“x A ∈或x BC ∈”即()x A B C ∈,所以()()()()x AB C A B C A B A C ∈⇒⊇所以()()()A B C A B A C =。
3.已知集合A 有10个元素,,B C 都是A 的子集,B 有5个元素,C 有4个元素,B C有2个元素,那么()BA C -有几个元素?解:集合()BA C -如图1所示:由于452(),(),()r C r B r B C ===,所以32(),()r B C r C B -=-=, 从而1028(())r B A C -=-=, 即()BA C -有8个元素4.写出集合{,,,}a b c d 的全部非空真子集。
图1CBA{,}{},{},{},{,},{,},{,},{,},{,},{,},{,,},{,,},{,,},{,,}a b c d a b a c a d b c b d c d a b c a b d a c d b c d5.证明,按基数理论定义的乘法对加法的分配律成立。
初等数学研究答案第一到第三章
习题一1、数系扩展的原则是什么?有哪两种扩展方式?(P9——P10) 答:设数系A 扩展后得到新数系为B ,则数系扩展原则为:(1)B A ⊂(2)A 的元素间所定义的一些运算或几本性质,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能实施的某种运算,在B 中总能施行。
(4)在同构的意义下,B 应当是A 的满足上述三原则的最小扩展,而且有A 唯一确定。
数系扩展的方式有两种:(1)添加元素法。
(2)构造法。
2、对自然数证明乘法单调性:设,,,a b c N ∈则(1),;a b ac bc ==若则(2),;a b ac bc <<若则(3),a b ac bc >>若则;证明:(1)设命题能成立的所有C 组成集合M 。
a b,a a 1,b b 1,P13(1),(1)a 111,a ac a c ac a bc b c bc bb Mc M c bc==⋅=⋅=+=+=+=+''∴⋅=⋅∴∈∈= (规定)假设即ac ,ac a c .bc a b a bc b c bc M ==∴+=+∴=''∴∈' 又 由归纳公理知,,N M =所以命题对任意自然数成立。
(2),,.a b b a k k N <=+∈若则有 (P17定义9)由(1)有()bc a k c =+a c kc =+ac bc ∴< (P17.定义9)或:,,.a b b a k k N <=+∈若则有 bc ()a k c ac kc =+=+ ()ac ac kc a k c bc ∴<+=+=.ac bc ∴=(3),,.a b a b k k N >=+∈若则有a ().cb kc bc kc =+<+ac bc ∴>3、对自然数证明乘法消去律:,,,a b c N ∈设则(1),;ac bc a b ==若则(2)ac bc a b <<若,则;(3)ac bc a b >>若,则。
(完整版)初等数学研究课后习题答案
初等代数研究课后习题20071115033 数学院 07(1) 杨明1、证明自然数的顺序关系具有对逆性与全序性,即(1)对任何N b a ∈,,当且仅当b a <时,a b >.(2))对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立.证明:对任何N b a ∈,,设a A ==,b B ==(1)“⇒” b a <,则B B ⊂∃,,使,~B A ,A B B ~,⊃∴,a b >∴“⇐” a b >,则B B ⊂∃,,使A B ~,,B B A ⊂∴,~,b a <∴综上 对任何N b a ∈,,b a <⇔a b >(2)由(1)b a <⇔a b > b a <∴与b a >不可能同时成立,假设b a <∴与b a =同时成立,则B B ⊂∃,,使,~B A 且B A ~, ,~B B ∴与B 为有限集矛盾,b a <∴与b a =不可能同时成立,综上,对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立..2、证明自然数的加法满足交换律.证明:对任何N b a ∈,设M 为使等式a b b a +=+成立的所有b 组成的集合先证 a a +=+11,设满足此式的a 组成集合k ,显然有1+1=1+1成立φ≠∈∴k 1,设k a ∈,a a +=+11,则+++++++=+=+==+a a a a a 1)1()1()(1k a ∈∴+,N k =∴, 取定a ,则1M φ∈≠,设,b M a b b a ∈+=+,则 ()()a b a b b a b a +++++=+=+=+ ,b M M N +∴∈∴= ∴ 对任何N b a ∈,,a b b a +=+3、证明自然数的乘法是唯一存在的证明:唯一性:取定a ,反证:假设至少有两个对应关系,f g ,对b N ∀∈,有 (),()f b g b N ∈,设M 是由使()()f b g b =成立的所有的b 组成的集合,()()1f b g b a ==⋅ 1M φ∴∈≠ 设b N ∈则()()f b g b =()()f b a g b a ∴+=+ ()()f b g b ++∴=,b M +∴∈,M N ∴= 即b N ∀∈,()()f b g b =乘法是唯一的存在性:设乘法存在的所有a 组成集合K 当1a =时,b N ∀∈,111,1111b b b b ++⋅=⋅==+=⋅+ φ≠∈∴k 1,设a K ∈,b N ∀∈,有,a b 与它对应,且1a a ⋅=,ab ab a +=+,对b N ∀∈,令a b ab b +=+ 1111a a a a ++⋅=⋅+=+=1()(1)a b ab b ab a b ab b a a b a ++++++=+=+++=+++=+a K +∴∈ K N ∴= 即乘法存在p24—5、解:满足条件的A 有1{1,2}A =,2{1,2,3}A =,3{1,2,4}A =,4{1,2,5}A = 5{1,2,3,4}A =,6{1,2,3,5}A =,7{1,2,4,5}A =,8{1,2,3,4,5}A =123456782,3,4,5A A A A A A A A ========∴========基数和为23343528+⨯+⨯+= p24—6、证明:,A a B b ==,A 中的x 与B 中的y 对应 A B ab ∴⨯=,B A ba ab ∴⨯==A B ab ⨯= A B A B B A ∴⨯=⋅=⨯p24—8、证明:1)3+4=73134++== 3231(31)45++++=+=+== 3332(32)56++++=+=+==3433(33)67++++=+=+==2)3412⋅= 313⋅= 32313136+⋅=⋅=⋅+=33323239+⋅=⋅=⋅+=343333312+⋅=⋅=⋅+=p24—12、证明:1)()m n m n +++++=+()1(1)m n m n m n m n +++++++=++=++=+2)()mn nm m +++=+ ()1(1)mn mn mn m nm m ++++=+=++=+p26—36、已知(,)f m n 对任何,m n N ∈满足(1,)1(1,1)(,2)(1,1)(,(1,))f n n f m f m f m n f m f m n =+⎧⎪+=⎨⎪++=+⎩求证:1)(2,)2f n n =+2)(3,)22f n n =+3)1(4,)22n f n +=-证明:1)当1n =时,(2,1)(11,1)(1,2)2112f f f =+==+=+结论成立,假设n k =时,结论成立,即(2,)2f k k =+,当1n k =+时,(2,1)(11,1)(1,(2,))(1,2)(2)1(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立2)当1n =时,(3,)(21,)(2,2)22212f n f n f =+==+=⋅+结论成立假设n k =时,结论成立,即(3,)22f k k =+当1n k =+时,(3,1)(21,1)(2,(3,))(2,22)2222(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立3)当1n =时,11(4,1)(31,1)(3,2)22222f f f +=+==⨯-=-结论成立 假设n k =时,结论成立,即1(4,)22k f k +=- 当1n k =+时,112(4,1)(3,(4,))(3,22)2(22)222k k k f k f f k f ++++==-=-+=-所以对一切自然数结论都成立p62—1、证明定理2.1证明:[,],[,]a b c d Z ∀∈,[,][,][,]a b c d a c b d +=++因为自然数加法满足交换律[,][,]a c b d c a d b ∴++=++而[,][,][,]c d a b c a d b +=++[,][,][,][,]a b c d c d a b ∴+=+[,],[,],[,]a b c d e f Z ∀∈,[,][,][,][,][,][(),()]a b c d e f a c b d e f a c e b d f ++=+++=++++以为自然数满足加法结合律([,][,])[,][,]([,][,])a b c d e f a b c d e f ∴++=++ 即整数加法满足交换律和结合律p62—2、已知[,],[,]a b c d Z ∈,求证[,][,]a b c d =的充要条件是[,][,][1,1]a b c d -= 证明:“⇒” 已知[,][,]a b c d =则a d b c +=+[,][,][,][1,1]a b c d a d b c ∴-=++=“⇐” 已知[,][,][1,1]a b c d -=则[,][1,1]a d b c ++=,a d b c +=+[,][,]a b c d ∴=p62—4、已知N b a ∈,,求证([,])[,]a b a b --=证明:[,][,]a b b a -= ([,])[,][,]a b b a a b --=-=p62—5、已知[,],[,]a b c d Z ∈,求证([,][,])[,][,]a b c d a b c d --=-+证明:左边([,][,])[,][,]a b c d a d b c b c a d --=-++=++右边[,][,][,][,][,]a b c d b a c d b c a d -+=+=++所以左边等于右边([,][,])[,][,]a b c d a b c d ∴--=-+p62—7、已知,,a b c N ∈,求证当且仅当a d b c +<+时[,][,]a b c d <证明:“⇒” 已知a d b c +<+,[,][,][,]a b c d a d b c -=++因为 a d b c +<+ [,]a d b c ∴++是负数,[,][,]a b c d ∴<“⇐” 已知[,][,]a b c d <则[,][,][,]a b c d a d b c -=++因为[,]a d b c ++是负数,a d b c ∴+<+p62—9、已知,Z αβ∈,求证:1)αβαβ+≤+ ,2) αβαβ=证明:设[,],[,]a b c d αβ== 1)[,]a c b d αβ+=++ ()()a c b d αβ∴+=+-+而,a b c d αβ=-=-()()()()a c b d a b c d a b c d +-+=-+-≤-+-αβαβ∴+≤+2)[,]ac bd ad bc αβ=++ ()ac bd ad bc αβ∴=+-+而,a b c d αβ=-=-()()()()()ac bd ad bc a c d b d c a b c d a b c d +-+=-+-=--=-- αβαβ∴=p63—12、n 名棋手每两个比赛一次,没有平局,若第k 名胜负的次数各为,k k a b ,1,2,........,k n =,求证:2222221212......n n a a a b b b +++=+++ 证明:对于(1,2,...,)k a k n =,必存在一个(1,2,...,)j b j n =使得k j a b =⇒22(,1,2,...,)k j a b k j n == 2222221212......n n a a a b b b ∴+++=+++p63—16、已知10p a b -,10p c d -,求证p ad bc -证明:由已知:,s t Z ∃∈使10a b ps -=,10c d pt -=⇒ 10,10b a ps d c pt =-=-10(10)()ad bc ac apt ac cps p cs at ∴-=---=-p ad bc ∴-p63—17、设2不整除a ,求证281a +证明:因为2不整除a ,所以存在唯一一对,q r Z ∈,使2a q r =+,其中02r <<⇒1r =,22441a q q ∴=++⇒214(1)a q q -=+ 281a ∴-p63—20、设a Z ∈,求证(1)(2)(3)1a a a a ++++是奇数的平方证明:22222(1)(2)(3)1[(1)1](1)[(2)(2)1]1[(1)(1)][(2)(2)]1(1)(2)2(1)(2)1[(1)(2)1]a a a a a a a a a a a a a a a a a a ++++=+-+++++=+-+++++=++-+++=++- 1,2a a ++肯定一奇一偶(1)(2)a a ∴++肯定为偶数(1)(2)1a a ∴++-肯定为奇数p63—22、证明:前n 个自然数之和的个位数码不能是2、4、7、9证明:前n 个自然数的和为(1)2n n + 因为:n 个自然数的和仍为自然数∴ 1+n 与n 中必定一个为奇数一个为偶数若个位数码为2则1+n 与n 的个位数码只能是1,4或4,1而(1+n )- n=1 ∴个位数码不能为2若个位数码为4则1+n 与n 的个位数码只能是1,8或8,1也不可能成立若个位数码为7则1+n 与n 的个位数码有2种可能,则2,7或1,14也不可能成立,若个位数码为9则1+n 与n 的个位数码有2种可能,即2,9或1,18也不可能成立,综上,前n 个自然数和的个位数码不能是2,4,7,9p63—26、证明2.3定理1(12,,......,n a a a )=(12,,......n a a a )证明:因为:(12,,......,n a a a )是12,,......n a a a 的公因数中的最大数所以R 需考虑非负整数 ∴(12,,......,n a a a )=(12,,......n a a a ) p63—29、证明2.3定理4的推论(,)1a b =的充要条件是有,x y Z ∈使得1ax by += 证明:因为(,)1a b = ,a b ∴不全为0“⇒” 由定理4 ,x y Z ∃∈使(,)1ax by a b +==“⇐” 设(,)a b d =则,d a d b ,d ax by ∴+ 1d ∴ (,)1d a b ∴== p63—30、证明2.3定理6及其推论。
初等数学研究课后题
现代远程教育《初等数学研究》课程学习指导书课程学习方法指导1、为什么要学习初等数学研究?作为一个中学数学教师,仅仅具备中学中所涉及到的知识,是远远不够的。
为了更好地掌握并处理好中学数学教材,必须懂得更多的数学。
好比用一桶水去斟一杯水,才显得胸有成竹,游刃有余。
大学里学习那么多高等数学,目的即在于此。
但是高等数学知识怎样和初等数学相结合?如何指导中学数学教学?也就是说怎样用高等数学的方法去处理中学数学问题?怎样使教师的知识更加现代化?怎样用最新的数学观念去理解中学数学中的有关内容?其次,中学数学的重要任务之一,是培养学生运用数学知识解决问题的能力。
因此,教师本身就应具备这方面的较强的能力。
学习高度数学可以提高数学修养,提高解题能力。
但是怎样结合中学实际,运用中学生可以接受的方法,特别是运用初等的方法来处理初等数学中的问题。
这方面有许多技能与技巧,还必须作专门的训练。
这就是我们要学习初等数学研究的目的。
2、怎样阅读教材?阅读教材时,应边阅读边作笔记。
把重要的、不懂的、难理解的记录下来,以便和录像中的讲解进行对比学习。
每天看书不要太多,以免贪多嚼不烂,要循序渐进。
要结合录像看书学习,对每道例题,要亲自动手再作一作,理解了,会了,再向下学习。
学贵有恒,贵在坚持。
3、怎样观看录像?观看录像时,应先看书,后看录像。
对每个例题、定理的证明,要先思考,后看录像,以验证自己的思维。
要充分理解领会每个例题的解证思路与方法,并运用数学方法论思想去审视每道题目的解证方法。
既要理解数学的概念和原理,更要理解数学的本质、数学的价值;既要理解数学的探究过程,又要了解数学发展的历史和方法。
每次观看录像不宜太多,每次观看一节课为宜。
4、怎样解题?学习数学,必须学会解题。
要以波利亚的“怎样解题表”为指南进行解题训练,要注意解后回顾,要注意提炼、总结数学方法。
附波利亚怎样解题表和解题思考步骤、程序表:怎样解题表第一你必须弄清的问题1、未知数是什么?已知数数据是什么?条件是什么?满足条件是否可能?要确定未知数,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?2、画张图,引入适当的符号。
初等数学研究(程晓亮、刘影)版课后的习题集答案.doc
初等数学研究(程晓亮、刘影)版课后习题答案 第一章 数1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数bi a +. 2(略)3从数的起源至今,总共经历了五次扩充:为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集.公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集.为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集.直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集.虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集.4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'⊃;若d c ≥从而必存在非空有限集'C ,使得D C C ~'⊃,所以)(C A ⋃)(D B ⋃⊃所以集合C A ⋃的基数c a +大于集合D B ⋃的基数d b +,所以d b c a +>+.5(1)解:按照自然数序数理论加法定义, 1555555155155)25(2535''=++=++⋅=+⋅=+⋅=⋅=⋅ (2)解:按照自然数序数理论乘法定义87)6(])15[()15()25(2535'''''''''===+=+=+=+=+ 6证明:︒1当2=n 时,命题成立.(反证法)()()()()()()()01121,1111111,111101111111,,2,1,0111,,2,1,0)2(212122121212121212122221212122111112111212222121≥++-+⇒≥++-++≥+-+-≥++++∴≥⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛->-=-++-+-=+++++=>+=≥+++=+++=>≥=︒+++++++++++++++++k k k k k k k k k k k k k k k i k k k k k k i k k i a k a k k a k k a k k a ka a ka a a a a k a a a a a a a a a a a a a a a a a a k i a k n ka a a a a a k i a k k n ,即要证由归纳假设,得,且得,,且时,由当。
初等数学研究答案第一章到第六章
大学数学之初等数学研究,李长明,周焕山版,高等教育出版社 习题一1答:原则:(1)A ⊂B(2)A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能施行的某种运算,在B 中总能施行。
(4) 在同构的意义下,B 应当是A 满足上述三原则的最小扩展,而且由A 唯一确定。
方式:(1)添加元素法;(2)构造法2证明:(1)设命题能成立的所有c 组成集合M 。
a=b ,M 11b 1a ∈∴⋅=⋅∴,假设bc ac M c =∈,即,则M c c b b bc a ac c a ∈'∴'=+=+=',由归纳公理知M=N ,所以命题对任意自然数c 成立。
(2)若a <b ,则bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 则ac<bc 。
(3)若a>b ,则ac m c bc ac,m )c (b )1(a m b N m =+=+=+∈∃即,,由,使得 则ac>bc 。
3证明:(1)用反证法:若b a b,a b a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。
则a=b 。
(2)用反证法:若b a b,a b a =>或者,则由三分性知不小于。
当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。
则a <b 。
(3)用反证法:若b a b,a b a =<或者,则由三分性知不大于。
当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题三1、已知半径为r 的圆为内接等腰梯形ABCD。
它的下底AB 是圆O 的直径,上底CD 的端点在圆周上。
(1)写出梯形的周长y 和腰长x 间的函数关系式,并求其定义域;(2)当腰长为何值时,该等腰梯形的周长有最大值,并求出最大值。
解:(1)作DE ⊥AB 于 E 连DB,则∠ADB = 90°∴ADB∽AED ∴AD AB = AE AD 2 AD 2 ∴AD = AE ? AB ∴AE = AB 又Q DC = AB ? 2 AE ∴y = DC + AB + 2 AD = AB ? 2 AE + AB + 2 AD AD 2 = 2r ? 2 + 2r + 2 x AB 2x2 = 2r ? + 2r + 2 x 2r x2 = 4r ? + 2 x r x2 = ? + 2 x + 4r . r x2 又Q x > 0 ,且= AE < r ,即x < 2r 2r ∴函数的定义域为(0,2r)。
(2)y = ? (r ? x) 2 + 5r ,所以当腰长x=r 时,周长y 有最大值5r.2、设函数y = f ( x) 定义在R 上,当x>0 时,f ( x) > 1 ,且对于任意m, n ∈R ,有f (m + n) = f (m) ? f (n). 又当m ≠ n 时,f (m) ≠ f (n). 求证:(1)f (0) = 1. (2)对于任意x ∈R ,均有f ( x) > 0.证明:(1)Q对任意m, n ∈R ,有f (m + n) = f (m) ? f (n). 1 r ∴令m=n=0,则有f (0 +0) = f (0) + f (0) 即f (0) = f (0) + f (0) . ∴f (0) ? [ f (0) ? 1] = 0. ∴f (0) = 1 或f (0) = 0. 若f (0) = 0.则对于任意m>0,有f ( m) = f ( m + 0) = f ( m) ? f (0) = 0 和题设矛盾。
因此,f (0) =1.(2)由题设和(1)的结论,当x ≥ 0 时, f ( x) ≥ 1 > 0 ,假设x < 0 ,则? x > 0 ,因而 f (? x) > 1。
但是 f ( x) ? f (? x) = f ( x ? x) = f (0) = 1 所以, f ( x) = 1 > 0. f (? x)3、判断下列各组函数是不是同一函数,并说出理由。
(1)f ( x) = lg x 2 , (2)f ( x) = x , g ( x) = 2lg rx . g ( x) = 3 x 3 .解:(1)是同一函数。
因为定义域相同:x ∈R ? {0} . 且对每个x,对应值也相等。
(2)不是同一函数。
因为当x<0 时,f ( x) > 0 ,而g ( x) < 0 .4、求下列函数的定义域(1)y = (4 x ? 5) + 8 ?1 x (2)y = log (2 x?1) (3 x ? 2) (3)y = log 0.5 (log 2 x 2 + 1) (4)y = 7? x?2 lg(9 ? 3x ) (5)y = 1 ? ( ) 2 x?1 (6)y = lg x + lg(5 ?2 x ) (7)y = arccos(2 x 2 ? x) (8)y = arcsin( x ? 1) + 13 1 5x ? 1 14 (9)y = sin x ? 1 + (1 ? sin x ) (10)y = lg cos3x ?4 x ?5 ≠ 0 ? ?8解:(1)Q ? ? 1 ≥ 0 ? x ? x ≠0 ? 5 ? x≠ ? 4 ? ,∴? x ≤ 8 ?x ≠0 ? ? 5 4 5 4 5 ? x≠ ? 4 ? ,∴? ?8 ≤ x ≤ 8 ? x≠0 ? ? ∴函数定义域为:[?8,0) U (0, ) U ( ,8] . ?3 x ? 2 > 0 ?(2)Q ? 2 x ? 1 > 0 ?2 x ? 1 ≠ 1. ? 2 3 2 ? x> ? 3 ? 1 ? ∴?x > 2 ? ? x ≠1 ? ? ∴函数的定义域为:( ,1) U (1, +∞). ?log 0.5 (log 2 x 2 + 1) ≥ 0 ?(3)Q ? log 2 x 2 + 1 > 0 ? x2 > 0 ? ? 0 < log 2 x 2 + 1 ≤ 1 ? ∴?log 2 x 2 > ?1 ?x≠0 ? ?2-1 ≤ x 2 ≤ 1 ? ∴? x 2 > 2?1 ?x ≠ 0 ? ? 2 2 ≤ x ≤ 1 或?1 ≤ x ≤ ? ? 2 ? 2 ? 2 2 或x<? ? x> ∴? 2 2 ? ? x≠0 ? ? ? 2 2 函数定义域为:[(?1, ? )U( ,1)] . 2 2 ?lg(9 ? 3x ) ≠ 0 ? Q(4)? 9 ? 3x > 0 ?7 ? x ? 2 ≥ 0 ? ? x ≠ log 3 8 ? ∴? x < 2 ??5 ≤ x ≤ 9 ? ? 9 ? 3x ≠ 1 ? ∴? 3x < 9 ? x?2 ≤ 7 ? ? 3x ≠ 8 ? ∴? 3x < 32 ??7 ≤ x ? 2 ≤ 7 ? ∴log 3 8 < x < 2 或?5 ≤ x < log 3 8 ∴函数定义域为:[(?5,log 3 8) U (log 3 8, 2)].(5)Q1 ? ( ) 2 x?1 ≥ 0. 1 3 ∴( )2 x?1 ≤ 1. ∴ 2 x ? 1 ≥ 0. ? log x ≥ 0 ?(6)Q ? x > 0 ?5 ? 2 x > 0 ? 1 3 ∴1 ≤ x < log 5 2 1 1 ∴函数定义域为[ , +∞] 2 2 x ≥1 ? ? x ≥1 ? ? ∴? x > 0 ∴? x > 0 5 ? ?2 x < 5 ? x< ? 2 ∴x ≥ 5 ∴函数定义域为:[1, ) . 2(7)Q ?1 ≤ 2 x 2 ? x ≤ 1 ? 2 x 2 ? x ? 1 ≤ 0LL ①∴? 2 ?2 x ? x + 1 ≥ 0LL ② 1 ? ?由①? ≤ x ≤ 1 ∴? 2 ?由②x ∈R ? ∴函数的定义域为:[1, ) . ??1 ≤ x ? 1 ≤ 1(8)Q ? ? 5x ? 1 > 0 1 5 ?0 ≤ x ≤ 2 1 ? ∴? ∴<x≤2 1 5 x> ? 5 ? 5 2 ∴函数的定义域为:( ,2].(9)Q ? ?sin x ? 1 ≥ 0 π ∴sin x = 1 ∴x = + 2kπ .k ∈Ζ. 2 ?1 ? sin x ≥ 0 ∴函数的定义域为:? x x = ? ? π ? + 2 kπ , k ∈Ζ ? . 2 ?(10)Q cos3 x > 0 ∴2kπ ? π 2 < 3x < π 2 + 2 kπ . ∴ 2 kπ π n 2 kπ ? x< + , k ∈Ζ. 3 6 6 3 ∴函数的定义域为:? x ? 2 kπ π 2 kπ π ? ? <x< + , k ∈Ζ.? 6 3 6 ? 3 ?5、(1)已知函数f(x)的定义域是[1,4],求f ( 1 ) 的定义域。
x2(2)已知函数f(x)的定义域是[-2,2],求f ( x ) 的定义域。
(3)已知函数f(x)的定义域是( ,3) , f (lg x) 的定义域。
解:(1)Q1 ≤ 1 2 1 ≤4 x2 ? 2 1 ?x ≥ ∴? 4 2 ? x ≤1 ? 1 1 ? ?x ≥ x 或≤ ? ∴? 2 2 ? ?1 ≤ x ≤ 1 ?1 1 ∴≤ x ≤ 1 或?1 ≤ x ≤ ?2 2 1 1 1 ∴函数f ( 2 ) 的定义域为[ ,1] U [?1, ? ] . x 2 2(2)Q ?2 ≤ x ≤2 ∴0 ≤ x ≤ 4 ∴函数定义域为[0, 4] . ?1 ? < lg x < 3(3)Q ? 2 ? x>0 ? ∴10 < x < 103 ∴函数定义域为( 10,103 ). 1 ?1 6 、设函数 f ( x) = ( x ? 4kx + 4k + k + ) 2 (k ∈Ζ). 求证k ?1 f ( x) 的定义域为实数集R 的充要条件是k > 1. 2 2 1 2 1 ? 3 2 ? ∴?lg10 < lg x < lg10 ? x>0 ? 证明: 1 ?2 Q f ( x) = ( x ? 4kx + 4k + k + ) (k ∈Ζ). k ?1 2 2 1 ∴f ( x) 的定义域为实数集R 的充要条件是对任意x ∈R ,有x 2 ? 4kx + 4k 2 + k + (*)成立的充要条件是1 > 0LL (*) k ?1 1 ) < 0. k ?1 4 <0 即16k 2 ? 16k 2 ? 4k ? k ?1 1 k 2 ? k +1 ∴k + >0 ∴> 0. k ?1 k ?1 ∴k > 1. = (4k ) 2 ? 4(4k 2 + k + ∴f ( x) 的定义域为实数集R 的充要条件是k > 1. 7、求下列函数的值域:x2 + x (1)y = 2 x + x +1 7(2)y = cos x + sin x + 3(3)y = lg(?3 x 2 + 6 x + 7)(4)y = 2 + 2x ?1 x ?1(5)y = 2 x ? 3 + 13 ? 4 x 2(6)y = 4 x ? 3 + 4 x + 4 x ? 3 e x ? e? x(7)y = x e + e? x 2x(8)y = 1 + lg x (1 < x < 2) 2 +1 1(9)y = 3arccos( x ? ) 2(10)y = arcctg 2 x ? 1 (0 ≤ x ≤ 2) x2 + x ,有:x 2 + x = y ( x 2 + x + 1)解:(1)由y = 2 x + x +1 ∴( y ? 1) x 2 + ( y ? 1) x + y = 0. Q x 2 + x ≠ x 2 + x + 1. ∴y ≠ 1. Q x ∈R. ∴= ( y ? 1) 2 ? 4( y ? 1) y ≥ 0 ∴3 y 2 ? 2 y ? 1 ≤ 0. ? 1 ?? ≤ y ≤ 1 ∴? 3 ? y ≠1 ?1 ∴函数值域为[? ,1). 3(2)Q cos x + sin x = 2( 2 2 cos x + sin x) 2 2 = 2(sin 又Q ? 2 ≤ 2 sin( π 4 cos x + cos π sin x) = 2 sin( + x). 4 4 π π 4 + x) ≤ 2 ∴3 ? 2 ≤ cos x + sin x + 3 ≤ 3 + 2 ∴∴7 7 7 ≤ ≤ (3 + 2) cos x + sin x + 3 3 ? 2 7(3 ? 2) 7 7(3 + 2) ≤ ≤ (3 + 2)(3 ? 2) cos x + sin x + 3 (3 ? 2)(3 + 2) 7 ≤ 3+ 2 cos x + sin x + 3 ∴3 ? 2 ≤ ∴3 ? 2 ≤ y ≤ 3 + 2 ∴函数值域为[3 ? 2,3 + 2].(3)设u = lg(?3 x 2 + 6 x + 7), v = ?3 x 2 + 6 x + 7 = ?3( x ? 1) 2 + 10. 又Q u = lg(?3 x 2 + 6 x + 7) 为增函数∴y = u 也是增函数。