管壳式换热器节能技术综述模板
(完整)管壳式换热器强化传热技术概述
管壳式换热器强化传热技术概述马越中国矿业大学化工学院,江苏徐州,221116摘要:总结了近年来国内外新型管壳式换热器的研究进展,从管程、壳程、管束三方面介绍了管壳式换热器的发展历程、结构改进及强化传热机理,并与普通弓形折流板换热器进行对比,概括了各式换热器的强化传热特点。
最后指出了换热器的研究方向。
关键词:管壳式换热器;强化传热;研究方向Overview of the Shell and Tube Heat Exchangers about Heat TransferEnhancement TechnologyMA YueCUMT,Xuzhou,jiangsu,221116Abstract:Abstract : The research progress of shell and tube heat exchanger were summarized. The development structural improvement and heat transfer enhancement of the heat exchangers were introduced through three aspects e. g. tube pass shell pass and the whole tub bundle etc. Compared with the traditional segmental bame heat exchanger various types of heat exchangers'characteristics about heat transfer enhancement were epitomized。
At last,the studying directions of heat exchangers were pointed out.Key words:shell and tube heat exchanger;heat transfer enhancement;studying direction1引言《“十二五”节能减排综合性工作方案》明确提出,到2015年,全国万元国内生产总值能耗下降到0。
换热器文献综述new1
换热器节能研究的文献综述一、引言当今社会,能源危机,为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高技能换热设备[1]。
这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。
所以,这些年来,换热器的开发与研究成为人关注的课题。
大量的强化传热技术应用于工业装置,我国换热器产业在技术水平上获得了快速提升,板式换热器日渐崛起。
与此同时,近几年,我国在大型管壳式换热器、大直径螺纹锁紧环高压换热器、高效节能板壳式换热器、大型板式空气预热器方面也获得了重大突破[3]。
国外在换热器的强化传热研究、强化传热元件开发、新型壳程结构设计中也有了突破性的进展[4]。
而且随着制造技术的进步,强化传热元件的开发,使得新型高效换热器的研究有了较大的发展,根据不同的工艺条件与换热工况设计制造了不同结构形式的新型换热器,并已在化工、炼油、石油化工、制冷、空分及制药各行业得到应用与推广,取得了较大的经济效益。
二、研究主要成果2009年4月,中国石化组织专家对“大直径螺纹锁紧环高压换热器国产化研制攻关”项目进行了科学技术成果鉴定。
该换热器的国产化标志着我国已经具备设计和制造DN2000以下的螺纹锁紧环高压换热器的能力,大大降低了石化工程建设成本,单台即可节约采购资金1400万元,且缩短了交货期,打破了国外公司垄断地位[5]。
国内首台超大型管壳式换热器(E一6111型)已经通过最终检查和验收。
该换热器尺寸庞大,结构复杂,是首台国内自主研制的超大型固定管板式换热器,其成功研制打破了国外长期对大型换热器的垄断格局,大大提高了我国石化装备制造业的创新能力,推进了我国每年100万吨乙烯成套装备国产化的进程[6]。
同时国外的换热器研究也取得了可喜的成果。
例如:ABB公司的螺旋折流板换热器[7],此换热器结构克服了普通折流板设计的主要缺点,其先进性已为流体动力学研究和传热实验结果所证实。
管壳式换热器设计总结
管壳式换热器设计总结管壳式换热器是一种常见的热交换设备,广泛应用于化工、石油、制药等行业。
其设计涉及到许多方面,包括换热原理、结构设计、材料选择等。
本文将从这些方面对管壳式换热器的设计进行总结和分析。
管壳式换热器的换热原理是通过管内流体与壳侧流体之间的热传导来实现热量的交换。
管内流体一般为待加热或待冷却的介质,而壳侧流体一般为冷却剂或加热介质。
通过这种方式,可以实现两种介质之间的热量转移,达到加热或冷却的目的。
管壳式换热器的结构设计是十分重要的。
它由管束、壳体、管板、管侧流体进出口以及壳侧流体进出口等部分组成。
管束是换热的核心部分,通过将多根管子固定在管板上,形成流体的通道。
而壳体则是管束的外部保护壳,起到支撑和密封的作用。
管侧流体通过管侧进出口进入管束内,与管内流体进行热量交换,然后再通过壳侧进出口流出。
这样的结构设计,既保证了换热效率,又方便了设备的安装和维护。
管壳式换热器的材料选择也是十分重要的一环。
由于在换热过程中,介质可能存在腐蚀、高温等问题,因此需要选择耐腐蚀、耐高温的材料。
常见的材料有不锈钢、钛合金等。
对于特殊的工况,还可以采用陶瓷、镍基合金等材料。
在管壳式换热器的设计过程中,还需要考虑一些其他因素。
首先是换热面积的确定,它与换热效果直接相关。
一般来说,换热面积越大,换热效果越好。
其次是流体的流速和流量,它们对换热器的换热效果和压力损失有着重要影响。
此外,还需要考虑到换热器的尺寸和重量,以及设备的安全性和可靠性等方面。
在实际应用中,还需要根据具体的工况和要求进行换热器的定制设计。
例如,在高温高压的条件下,需要采用密封性好、耐高温高压的结构和材料;在对流体的温度变化要求较高的情况下,需要采用多级换热器或增加管程等方式来提高换热效果。
管壳式换热器的设计需要考虑多个方面的因素,包括换热原理、结构设计、材料选择等。
合理的设计可以提高换热效率,降低能耗,满足工业生产的需求。
同时,还需要根据具体的工况和要求进行定制设计,以提高设备的安全性和可靠性。
管壳式换热器文献综述
翅片管换热器传热特性的数值模拟研究文献综述姓名:姜晴班级:热动1班学号:20120390115引言能源是人类社会生存和发展的重要保障.近年来;我国工业化和城镇化步伐加快,能源需求量进一步增加。
据有关专家预测,若以2000年我国能源消费数据为基点,到2010和2020年,我国能源消费总量增长幅度将分别达到38%和89%,2010年能源消费总量将增长到22。
4亿吨标准煤,而2020年则为25.5亿吨一30亿吨标准煤[1].由此可见,在未来几十年里,随着我国经济的飞速发展和人口的不断增长,能源供给相对不足的矛盾将日益突出,能源供给问题将成为制约我国经济社会发展的重要因素。
为确保我国经济平稳、协调和可持续发展,寻找新能源或可再生资源,以及合理地利用现有资源将是关键所在。
对于合理利用现有资源,我国政府提出在“十一五”期间,各级政府和企业要把“节能减排”工作放在重要地位。
我国目前的能源利用效率仅为36%左右,远低于发达国家50%的能源利用率水平[2]。
而我国能源利用率低下的一个重要因素,是大量工业余热没有得到充分利用。
有统计数据表明,我国钢铁、有色、化工、建材、石化、轻纺、机械等几大能耗大户,余热利用率仅为4%一5%,工业炉窑热效率低于70%[3].不同温度水平的余热其利用价值也不同,一般可将余热资源分为高温余热、中温余热和低温余热。
由于不同物质形态的余热,可利用程度不同,所以温度划分也有差别.对于固态余热,500℃以下的为中、低温;气态余热200℃以下的算中、低温;对于液体余热80℃以下可视为中、低温[4].从现代热物理学的观点来看,同样多的热量,在不同的温度下可供利用的价值不同。
余热源的温度越低,能量的品位就愈低。
而据统计,在工业生产中,人们所利用的热能中平均有50%最终以低品位余热的形式直接排放[5]。
这部分未经利用的余热直接排放到环境中,不但造成了巨大的能源浪费,也给环境带来了严重的热污染。
据初步测算,能源利用效率每提高1个百分点,即可节省能源费用130多亿元[6]。
管壳式换热器强化传热综述
管壳式换热器强化传热综述摘要根据国内外强化侍热技术的研究现状,着重介绍了管壳式换热嚣在壳程强化待热方面开展的工作及取得的成果。
关键词管壳式换热器壳程强化传热Abstract In the light of the present statns of study of the technology for intensification of heattransfer both at home and abroad.The work on the intensification of heat transfer in the shell side of the shell and tube heat exchanger is mainly presented as well as the result obtained.Keywords shell and tube heat exchanger shell side intensification of heat transfer 中图分类号:TE965 文献标识码:A随着现代工业的快速发展,对能源的需求越来越大.而利用高效换热器可以吸收化工、石油生产过程中存在的大量余热,既节约了能源,又减少了污染。
与板式、板翅式换热器相比,管壳式换热器由于其适用性广、坚固耐用、密封性较好以及其结构简单、清洗方便是石油、化工等领域应用最普遍的一种换热器(占整个换热器设备的70%以上) [1]。
因此.如何最大限度地利用热能和回收热能,强化管壳式换热器成为人们所研究的重点之一。
(一) 强化传热的途径单位时间内的换热量Q与冷热流体的温差△t及传热面积F成正比,即:Q=k·F·△t .可见强化传热可以通过增加传热面积F、加大传热温差△t ,提高传热系数K3个途径来实现。
1.1 增加传热面积F增加传热面积不应理解为单一扩大设备体积或台数,而应是采用改变传热表面结构或材料性能合理提高设备单位体积的传热面积.使设备高效、紧凑、轻巧。
换热器文献综述(综述报告)(经典版)
板式换热器综述报告院系:机械工程学院姓名:xxxxx x学号:xxxxxxxxxx班级:过控10-3班日期:2012年12月28日前言用来使热量从热流体传递到冷流体,以满足规定工艺要求的装置统称为换热器。
随着生产和科学技术的发展,化工、动力机械、原子能工业,特别是汽车、火车、航空等工业部门迫切要求高效、轻巧而又紧凑的换热设备,这就促使新结构形式的热交换设备的出现和不断发展。
板式换热器就是在这种形式下发展起来的新产品。
国内外板式换热器的发展是欧美发达国家于20世纪80年代起开始竞相开发、研制各种型式的板式换热器。
其中具有代表性的为法国Packinox公司,该公司于20世纪80年代首次在催化重整装置中用一台大型板式换热器替代传统的管壳式换热器组。
20世纪90年代末期,Packinox公司又将大型板式换热器用于加氢装置。
该公司的产品得到UOP(美国联合油)的认证,其产品主要用于的催化重整、芳烃及加氢装置。
而板式换热器在中国的起步比较晚。
1999年兰州石油机械研究所研制成功大型板式换热器,该产品(专利号:ZL98249056.9)具有国际先进水平、首创独特结构的全焊式板式换热器,并已在炼油厂重整装置,化肥厂水解解吸装置及集中供热换热站等场合得到应用。
近年来,随着我国石化、钢铁等行业的快速发展,换热器的需求水平大幅上涨,但国内企业的供给能力有限,导致换热器行业呈现供不应求的市场状态,巨大的供给缺口需要进口来弥补。
同时,我国出口的换热器均价平均不到进口均价的一半。
可以想见,我国出口的产品多是附加值低的中、低端产品,而进口的产品多是附加值高的高端产品。
这充分说明我国对高端换热器产品需求旺盛但供给不足的市场现状。
作为一个高效紧凑式换热器,在加热、冷却、冷凝、蒸发和热回收过程中,除了高温、高压和特殊介质条件外,板式换热器均已替代管壳式换热器。
经试验证明在板式换热器适用范围内,绝大多数工况时,用不锈钢板式换热器比一般碳钢换热器投资低,而且可以预见板式换热器与管壳式换热器的竞争会更加激烈。
科技成果——高效节能节材纵向流管壳式换热器
科技成果——高效节能节材纵向流管壳式换热器所属类别重点节能设备(产品)适用范围石油、化工、机械等领域各类管壳式换热器,如加热器、冷却器等。
技术原理高效节能节材纵向流管壳式换热器采用高效三维变形管作为换热元件,消灭了传统换热器中的折流板,对管内外流体进行变空间变流场的特殊设计,使得管内外流体呈纵向螺旋流动,纯逆流换热,提高换热温差,破坏了近壁面的传热边界层,并且,依据强化传热原理,使得冷热流体的温度场、速度场、压力场达到最佳匹配,从而实现高效换热和节能减排。
技术内容(1)换热技术更先进:利用三维变形管控制冷热流场,实现换热器管/壳程流动空间可调控的纯逆流,可使壳程在中、低雷诺数下产生紊流,避免了弓形折流板和螺旋折流板的错流和死角,而且换热效率更高,流动性更好,可实现换热器的紧凑化、轻量化和小型化。
(2)壳程结构更优化:采用自支撑三维变形管和网格状化一体化的管束芯体结构,消灭了折流板,壳程支承结构简单化,使加工制造更方便,并节约了材料和设备投资。
(3)运行过程更可靠:抗振性能和抗结垢性能显著提高,壳程流体呈现纵向螺旋流动,增强了对换热壁面冲刷,污垢不易沉积,同时壳程流道处处相同,流速分布和流动均匀,彻底消除了流体诱导振动问题,使设备运行更安全,延长了检修周期,降低了维护费用。
关键技术(1)三维变形管特殊加工工艺和设备,采用强化传热三维变形管作为换热管,其表面是一个曲面与平直截面的结合体,也称之为三维隐形肋化技术,既是一种新型加工技术,又是增加单位体积表面和湍流的强化换热的技术,可以精确控制传热管由圆形加工为非圆形的变形比例,优化壳程与管程空间比例,确保三维变形管换热器适用于各工艺条件下换热器的传热过程,实现强化传热。
(2)壳程流体纵向螺旋流动,取消传统弓形折流板,依靠三维变形管之间节点形成自支撑,构成的逆流强化传热效应;提高换热温差,同时在不提高压降的前提下,使得壳程流体实现纵向顺紊流的流动形态,利用管内外产生的二次流优化速度场、温度场、压力场之间的协同角度,达到流动减阻和强化传热双重目的。
毕业设计毕业论文管壳式换热器
毕业设计毕业论文管壳式换热器管壳式换热器是一种常用的传热设备,广泛应用于化工、电力、石油、制药等行业中。
它的主要作用是通过壳程和管程之间的传热来实现不同介质之间的热量交换。
本文将介绍管壳式换热器的工作原理、优点和应用领域,并讨论其改进和发展的方向。
管壳式换热器的工作原理主要是通过流体在壳程和管程中的流动来实现热量的传递。
在管壳式换热器中,热量从热源通过内管道传递给壳程,再通过壳程传递给冷却介质,从而实现热量的交换。
管壳式换热器具有换热效率高、结构紧凑、操作灵活等优点,并且能够适应不同的工作条件。
除此之外,它还具有清洗方便、可靠性高等优点,受到广大工程技术人员的青睐。
管壳式换热器在许多领域中都有广泛的应用。
例如,在化工行业中,它被用来处理高温高压的化学介质,实现热量交换和回收;在电力行业中,它被用来冷却发电设备中的循环水;在制药行业中,它被用来进行药物生产过程中的热量交换。
除了上述行业,管壳式换热器还被广泛应用于制冷、空调、食品加工等行业中。
尽管管壳式换热器具有许多优点,但也存在一些问题需要解决。
例如,其传热效率有待进一步提高,特别是在处理高粘度介质时。
此外,由于设计和制造的复杂性,管壳式换热器的成本较高。
因此,改进和发展管壳式换热器的工艺和技术是当前的研究热点之一改进和发展管壳式换热器的方向有多个。
首先,可以采用新材料来提高传热效率。
例如,可以使用高导热性材料来制造管壳式换热器,从而提高其传热效率。
其次,可以改进管壳式换热器的结构设计,以减小流体的阻力和压降,从而提高其传热效率。
此外,还可以采用换热表面增强技术,例如使用换热增强剂来增加传热表面积,提高换热效率。
最后,可以结合智能化技术来改进管壳式换热器的操作控制系统,实现自动化运行和故障诊断,提高换热器的可靠性和安全性。
总之,管壳式换热器是一种重要的传热设备,具有广泛的应用前景。
它的工作原理简单,运行稳定可靠,并且能够适应多种工况。
然而,为了进一步提高传热效率和降低成本,需要不断改进和发展其工艺和技术。
换热器文献综述
管壳式换热器强化传热研究摘要:从管程强化和壳程强化两方面论述了管壳式换热器强化传热技术的机理,指出了管壳式换热器今后发展中的主要方向;同时对换热器的防腐措施以及改进动向作了介绍。
关键词:强化传热;管壳式换热器;防腐Abstract: shell and tube heat exchanger was discussed from two aspects of the strengthening of the tube side and the strengthening of the shell to strengthen the mechanism of heat transfer technology, pointing out that the main direction of future development of the shell and tube heat exchanger; heat exchanger anti-corrosion measures well as improved trends were introduced. Keywords: heat transfer enhancement; shell and tube heat exchanger; anti-corrosion引言管壳式换热器是当今应用最广泛的换热设备,它具有高的可靠性和简单易用性。
特别是在较高参数的工况条件下,管壳式更显示了其独有的长处“目前在提高该类换热器性能所开展的研究主要是强化传热,适应高参数和各类有腐蚀介质的耐腐材料以及为大型化的发展所作的结构改进。
一、换热器的强化传热研究换热器的强化传热就是采用一定的措施增大换热设备的传热速率,力图用较少的传热面积或体积的设备来完成传热任务。
各种强化型换热器在石油、化工、制冷、航空、车辆、动力机械等工业部门己得到广泛应用。
强化传热已被学术界称为第二代传热技术。
管壳式换热器强化传热技术概述
管壳式换热器强化传热技术概述管壳式换热器是一种广泛应用于化工、石油、能源等领域的传热设备。
在传统的管壳式换热器中,传热效率往往受到传热面积、换热系数、导热系数等因素的限制。
为了提高传热效率,强化传热技术应运而生。
本文将介绍管壳式换热器强化传热技术的基本原理和应用。
管壳式换热器是一种广泛应用于化工、石油、能源等领域的传热设备。
它主要由壳体、传热管束、管板、折流板等组成。
在管壳式换热器中,两种不同的介质通过传热管束进行热量交换。
管束中的传热介质通过热对流和热传导两种方式将热量传递给管壁,管壁再将热量传递给另一种介质,从而实现两种介质之间的热量交换。
强化传热技术的原理主要包括:增加传热面积、提高换热系数、降低导热系数和增大比热容等。
这些因素共同影响着传热效率。
增加传热面积可以通过采用具有高导热系数的材料、增加传热管的数量或改变传热管的形状等方式实现。
提高换热系数可以通过改变流体的流动状态、减小流体的层流底层厚度、增加流体的湍流度等方式实现。
降低导热系数可以通过在管壁涂覆低导热系数的涂层、采用高导热系数的材料等方式实现。
增大比热容可以通过改变流体的流动速度、增加流体的浓度差等方式实现。
强化传热技术在管壳式换热器中的应用广泛,以下举几个例子:(1)蒸发:在蒸发过程中,强化传热技术可以有效地提高加热器的传热效率,减小能耗,降低生产成本。
例如,采用高频扰动技术可以增加液体的湍流度,减小传热膜系数,从而减少蒸发时间,提高蒸发效率。
(2)冷凝:在冷凝过程中,强化传热技术可以促进水蒸气与冷却水之间的热量交换,提高冷凝效率。
例如,采用细小肋片管可以增加传热面积,同时采用螺旋肋片管可以增加流体的扰动程度,减小传热膜系数,从而提高冷凝效率。
(3)受热面积增大:通过改变管束的排列方式或增加管束数量,可以增大管壳式换热器的受热面积。
采用多程管束可以增加壳程受热面积,同时采用小直径管束可以增加程数,从而进一步提高受热面积。
强化传热技术在管壳式换热器中具有广泛的应用前景,它可以有效地提高换热效率、减小能耗、降低生产成本,同时也可以延长设备的使用寿命。
管壳式换热器强化传热技术研究综述
A Literature Review of Shell-and-tube ( heat )Exchanger Enhanced Heat Transfer Technology 作者: 杨程;李奇军;时立民;罗海玉
作者机构: 天水师范学院机电与汽车工程学院,甘肃天水741001
出版物刊名: 天水师范学院学报
页码: 60-65页
年卷期: 2015年 第2期
主题词: 管壳式换热器;强化传热;壳程;管程
摘要:在分析管壳式换热器传热强化途径的基础上,主要从管程和壳程两方面介绍了传热强化结构及其强化传热机理,综述了近年来国内外高效节能管壳式换热器的研究进展,列举了一些应用于管壳式换热器中管程和壳程强化传热的典型换热管和壳程支撑结构,为未来换热器的研究指明了方向。
换热器节能技术综述
6 3
节 能 率 、节 水 率 高 达 5 0 %左 右 。 同时 设 备 防腐 、 防垢 能 力强 ,使 用 寿命 长 。上世 纪 9 0年代 初 开 始
化 。该技 术 已经 申请 中国发 明专 利 5项 .美 国发 明
中图分类 号
S u m ma r y o f En e r g y — s a V i n g Te c h n o l o g y f o r He a t Ex c h a n g e r
O i a n B o z h a n g
Ab s t r a c t : Re v i e w e d t h e p r o g r e s s o f e n e r g y- s a v i n g t e c h n o l o y g f o r h e a t e x c h a n g e r s i n t h e r e c e n t y e a r s i n C h i n a S p e t r o l e u m a n d c h e mi c a l i n d u s t i r e s ,e s p e c i a l l y i n t r o d u c e d t h e n e w h e a t e x c h a n g e r s a n d t h e n e w e n e r g y — s a v i n g t e c h n o l o g i e s u s e d i n l a r g e s c a l e c h e mi c a l u n i t s , b e s i d e s , i n t r o d u c e d t h e a c h i e v e me n t s o f ma n u f a c t u i r n g o f n e w h e a t e x c h a n g e r s a n d n a t i o n a l i z a t i o n o f i mp o r t e d e q u i p me n t . Ke y wo r d s : He a t e x c h a n g e r ;E n e r y — g s a v i n g t e c h n o l o y;F g l u i d i z e d b e d ;S p i r a l h e a t e x c h a n g e r ; Ba f f l e ; Ul t r a s o n i c d e s c a l i n g ; Gr a p h i t e e v a p o r a t o r
换热器综述
换热器的综述前言随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。
在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。
换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。
换热器组内的传热过程目的一般可以分为两类: 一类是为了热功转换, 另一类是为了加热或者冷却物体. 相应地, 传热过程也包含熵产最小以及火积耗散极大这两种不同的优化原理.通过分析换热器组内的传热过程, 并在一定约束条件下利用不同的原理对换热器组的面积分配进行优化, 得出熵产最小原理适用于包含在热力循环中的换热器优化问题, 而火积耗散极大原理则更适合分析仅涉及传热过程的换热器优化问题. 并且, 在使用熵产最小原理优化热力循环中的换热器时, 除了需要考虑冷、热端换热器产生的熵产外, 也应考虑乏汽排放到外部环境引起的熵产.在换热器的设计中,很多因素都将影响到换热器的设计是否优化合理、安全可靠,是否能正常运转、高效耐用。
本文通过对管壳式换热器设计的综述,增强对换热器设计环节的重视与考虑,使设计更加准确、完善。
一、换热器1.1换热器的介绍换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
换热器被应用于超过80%的能源利用系统, 它是热能和化工等工程领域中最重要的设备之一. 因此, 提高换热器的换热性能通常被认为是提高能源利用效率的关键因素之一. 经过长期的不懈努力,科研人员已经提出了多种不同的主动/被动式强化换热技术来提高换热性能。
在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。
这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。
随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。
管壳式换热器强化传热技术概述
根据强化传热 理论… , 在管 的两侧范 围内,
需要 增 大传 热系数 较小 的一 侧才 能有效 改进 总传 热 系数 。 由于无 法 确定 所 有 工 况 下 , 要增 大管 需
主, 而且传统弓形折流板换热器 占到总量 的 7 % 0
管壳式 换热 器强化传热技术概述
V 1 . o 0 2 o 9 N 72 1 2
~
8 % 。弓形 折 流板 换 热 器 固然有 其 优 点 , 在 0 并
0 引言
产 业 节能 方面 做 出 了巨大 贡献 , 在 新 的节 能减 但 排 形 势下 , 缺 点 ( 降 大 、 在 大 量 流 动 死 区 、 其 压 存 振 动 大 、 热 效 率 低 等 ) 重 限制 了 自身 的生 存 传 严 和 发展 空 间 , 同时 也 推进 了强 化 传 热 理 论 和换 热
sr cur l mp o e n nd h a r n fr e ha c me f t e h a x h ng r r i to uc d h o g tu t a i r v me t a e t ta se n n e nto h e t e c a e s we e nr d e t r u h t e s c s, . tbe p s s e lp s nd t hr e a pe t e g.u a s,h l a s a he whoe t b bu d e e e Co a e t he ta i o a e - l u n l t . mp r d wih t r dt n ls g i
Ab t a t T e r s a c r ge s o h l a d t b e t e c a g r w r u sr c : h e e r h p o r s f s el n u e h a x h n e e e s mma ie . h e e o me t r d T e d v lp n , z
管式换热器文献综述
管壳式换热器广泛应用于化工、石油、电力、轻工、冶金、原子能、造船、航空、供热等工业部门。
特别是在石油炼制和化学加工装置中,占有极其重要的地位[1]。
由于它结构坚固,且能选用多种材料制造,适应性极强,尤其在高温、高压和大型装置中得到普遍应用。
据统计,在石油化工生产中,换热器的总投资约占总设备的30%~45%[2]。
管壳式换热器因其利用和回收热能的优点,在上世纪70年代的全球化能源危机之后,促使世界各国对强化传热技术进行研究、开发和应用。
迄今为止,国内外对管壳式换热器的强化传热技术的研究取得了丰硕的成果。
1.管壳式换热器强化传热技术进展一直以来,管壳式换热器的强化传热技术研究都是以实验为主。
随着计算流体力学(CFD)和计算机的飞速发展,数值模拟方法以其成本低、周期短等优点成为换热器研究的一种重要手段。
大量的CFD商业软件的出现,使得传热和流体问题的数值计算取得了突破性进展。
强化传热主要分为有源强化传热和无源强化传热。
有源强化传热技术因其受到外在能量的制约,因此工程实际中主要采用无源强化传热技术,即通过增加单位体积内的传热面积或者提高传热系数增加传热量。
迄今为止,国内外的管壳式换热器强化传热技术主要从两个方面进行:管程强化传热技术和壳程强化传热技术。
1.1管程强化传热管壳式换热器管程的强化传热主要为改变换热管的外形和管内加内插件。
其中改变换热管的外形是通过对管子进行各种加工,以期在管子的壁面上形成有规律或无规律的凸起物,这些凸起物既可以对流体进行扰动,又能断续地阻断边界层的发展。
这些强化传热管主要有波纹管、螺旋槽纹管、螺旋扭曲扁管等。
管内内插件作为一种扰流子,以固定的形状安装在换热管内,与管壁相对固定或者随流体振动,对流体产生扰动或破坏管壁表面的液体边界层以达到强化传热的目的,而且具有防垢和除垢的效果。
1.1.1波纹管波纹换热管是由沈阳广厦热力设备开发制造公司在上世纪90年代研制并成功投入使用,它由波纹管和两端的接头组成。
管壳式换热器的换热管强化传热技术浅述
管壳式换热器的换热管强化传热技术浅述本文主要介绍了管壳式换热器换热管强化传热技术,分析了各自的原理、优缺点及推荐的使用场合。
采用节能技术的换热器不仅提高了能源的利用率,而且减少了金属材料的消耗,对化工行业提高经济效益具有重要意义。
一、换热器强化传热技术的概述近20年来,石油、化工等过程工业得到了迅猛发展。
各工业部门都在大力发展大容量、高节能设备,因此要求提供尺寸小、重量轻、换热能力大的换热设备。
特别是始于20世纪60年代的世界能源危机,加速了当代先进换热技术和节能技术的发展。
强化传热已发展成为第二代传热技术,并已成为现代热科学中一个十分引人注目图1:管壳式换热器结构图的、蓬勃发展的研究领域。
换热器作为一种实现物料之间热量传递的节能设备,在化工、石油、石油化工、冶金、轻工、食品等行业中就得到了普遍应用。
换热设备传热过程的强化主要是使换热设备能在单位时间内、单位面积上传递的热量达到最大化从而实现下述目的:⑴.减小设计传热面积,以减小换热器的体积和质量⑵.提高现有换热器的换热能力⑶.使换热器能在较低温差下工作⑷.减小换热器的阻力,以减少换热器的动力消耗二、强化传热的原理从传热学中我们知道换热器中的传热量可用下式计算,即Q=kFΔT (1)式中:k-传热系数[W/(m2K)]F-传热面积[m2]ΔT-冷热液体的平均温差[K]从上式可以看出,欲增加传热量Q,可用增加k、F或ΔT来实现。
下面我们对此分别加以讨论。
2.1.增加冷热液体的平均温差ΔT在换热器中冷热液体的流动方式有四种,即顺流、逆流、交叉流、混合流。
在冷热流体进出口温度相同时,逆流的平均温差ΔT最大,顺流时ΔT最小,因此为增加传热量应尽可能采用逆流或接近于逆流的布Z。
当然可以用增加冷热流体进出口温度的差别来增加ΔT。
比如某一设备采用水冷却时传热量达不到要求,则可采用氟里昂来进行冷却,这时平均温差ΔT就会显著增加。
但是在一般的工业设备中,冷热流体的种类和温度的选择常常受到生产工艺过程的限制,不能随意变动;而且这里还存在一个经济性的问题,如许多工业部门经常采用饱和水蒸气作加热工质,当压力为15.86×105Pa时,相应的饱和温度为437K,若为了增加ΔT,采用更高温度的饱和水蒸气,则其饱和压力亦相应提高,此时饱和温度每增高2.5K,相应压力就要上升105Pa。
换热器综述5篇
换热器综述5篇第一篇:换热器综述换热器的综述前言随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。
在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。
换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。
换热器组内的传热过程目的一般可以分为两类: 一类是为了热功转换, 另一类是为了加热或者冷却物体.相应地, 传热过程也包含熵产最小以及火积耗散极大这两种不同的优化原理.通过分析换热器组内的传热过程, 并在一定约束条件下利用不同的原理对换热器组的面积分配进行优化, 得出熵产最小原理适用于包含在热力循环中的换热器优化问题, 而火积耗散极大原理则更适合分析仅涉及传热过程的换热器优化问题.并且, 在使用熵产最小原理优化热力循环中的换热器时, 除了需要考虑冷、热端换热器产生的熵产外, 也应考虑乏汽排放到外部环境引起的熵产.在换热器的设计中,很多因素都将影响到换热器的设计是否优化合理、安全可靠,是否能正常运转、高效耐用。
本文通过对管壳式换热器设计的综述,增强对换热器设计环节的重视与考虑,使设计更加准确、完善。
一、换热器 1.1换热器的介绍换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
换热器被应用于超过 80%的能源利用系统, 它是热能和化工等工程领域中最重要的设备之一.因此, 提高换热器的换热性能通常被认为是提高能源利用效率的关键因素之一.经过长期的不懈努力,科研人员已经提出了多种不同的主动/被动式强化换热技术来提高换热性能。
在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。
这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。
随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。
管壳式换热器节能减排技术的应用研究
管壳式换热器节能减排技术的应用研究作者:项祥勇来源:《中小企业管理与科技·上中下旬刊》 2016年第7期项祥勇(大冶斯瑞尔换热器有限公司,湖北大冶435100)摘要:在石油化工行业中,管壳式换热器的应用越来越广泛。
高效换热器的使用能够使金属材料的消耗得到降低,从而使能源的利用率得到进一步的提升,达到节能减排的目的。
管壳式换热器节能减排技术的研究和应用主要集中在两个方面:管程强化传热和壳程强化传热,本文对此进行了简要的介绍,旨在进一步推进管壳式换热器的节能减排技术应用和研究。
关键词:节能减排;换热器;管壳式中图分类号:TH21.5 文献标识码:A 文章编号:1673-1069(2016)20-162-20 引言在一些高能耗的产业部门中都要应用到换热器,例如动力、石油、化工等。
由于化石能源的紧缺,我国在各行各业积极倡导节能减排,这也进一步推进了换热器节能技术的发展。
换热器中应用最广泛的一种就是管壳式换热器,管壳式换热器的节能减排技术主要针对增大传热面积和提高传热系数两个方面,通过强化传热技术来实现节能减排的目的。
1 管壳式换热器的管程节能技术应用在管壳式换热器中,强化传热,指的是通过对光管进行加工,将其加工成为各种形状的异形管,或者在管内插入其他物体来进行传热强化,这样可以对传热面积进行扩展,使流体的湍流速度增加[1]。
1.1 管内插入件为了对管内的单向流体传热进行强化,可以使用管内插入件的方法。
常用的管内插入件主要有静态混合器、螺旋片、螺旋线圈、纽带等。
与光管相比,将麻花片纽带加入到管内,能够增加55%-95%的管的换热系数,70%-400%的摩擦系数。
这是由于管内液体从层流到湍流时的临界雷诺数会因为管内的插入物而降低,使其具有更好的强化传热效果。
1.2 针翅管针翅管不仅能够节省支撑板材料,而且能够使传热面得到有效的扩大,并使流体产生强烈的扰动,有着良好的强化传热效果。
针翅管可以作为油品换热器中的换热管,以代替传统的螺纹管和钢管,其具有含尘高温烟气、高粘度介质、低传热膜系数,在余热回收以及纵向流管束换热中都可以得到有效的应用[2]。
管壳式换热器设计要点综述
管壳式换热器设计要点综述黄伟昌;王玉【摘要】管壳式换热器属于多腔容器,且因含管板计算,因此设计复杂.文中通过对管壳式换热器设计要点分类分析,对一些不容易把握的设计问题,提出了建议.文中提出的问题,均来自多年的设计案例.文中还简要介绍了引进设备设计改造的注意事项.文中示例有助于对设计所涉及问题的处置.【期刊名称】《管道技术与设备》【年(卷),期】2009(000)006【总页数】4页(P32-34,42)【关键词】管壳式;换热器;钢管【作者】黄伟昌;王玉【作者单位】沈阳汇博热能设备有限公司,辽宁沈阳,110043;沈阳汇博热能设备有限公司,辽宁沈阳,110043【正文语种】中文【中图分类】TE974.4GB150-1998规定:当钢材的厚度负偏差不大于0.25 mm,且不超过名义厚度的6%时,钢材厚度负偏差可忽略不计。
负偏差的问题,在设计上错误出现频率较高,可使壳体壁厚小一档,还可能引起开孔补强不足,应务必引起注意。
新版GB713-2008规定的负偏差是0.30 mm,钢材厚度负偏差就不能忽略不计了。
钢管负偏差问题,主要涉及到两项内容:管束的级别问题(采用普通级的碳素钢、低合金钢冷拔钢管做换热管为Ⅱ级,其余均为Ⅰ级),会影响到管板和折流板管孔的公差精度,还应注意不同材质的换热管所对应的管孔公差是不同的;影响到开孔补强效果,钢管的负偏差均按壁厚的一定比例给出。
对于常用的强度计算软件,SW6由程序自带负偏差数据,LANSYS需设计者根据所选板、管标准,输入相应数据。
2.1 壳体按GB151-1999表8、表9,一般在较低的设计压力下,在耐压能力方面,壳体是偏厚的。
这主要是为了保证壳体刚度,浮头式和U形管式还要考虑一定的磨损量,所以,比固定管板式还厚。
如果厚度附加量C2大于1,最小厚度还应相应增加。
2.2 管板设计管板时应注意两点:管板的布管数要足够;延长部分兼作法兰的管板,其许用应力的选取,一定要注意GB150-1998第4章表4-1注4、表4-5注2,即不得选用该行数据,否则,设计将出现重大错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管壳式换热器节能技术综述摘要:采用节能技术的高效换热器不仅提高了能源利用率,且减少了金属材料的消耗,对推进石油化工行业的节能减排工作有着积极意义。
简要介绍了管壳式换热器换热管强化传热技术和壳程强化传热技术,分析了各自的原理、优缺点及推荐使用场合。
关键词:换热器; 节能减排; 强化传热中图分类号:TQ051. 5文献标识码:A文章号:1009-3281(2008)05-0016-05 目前在我国石油化工行业中,换热设备投资占设备投资的30%以上,在换热设备中,使用量最大的是管壳式换热器,其中80%以上的管壳式换热器仍采用弓形折流板光管结构,这种结构决定了换热器传热效果差,壳程压降大,与我国正在推行的节能减排政策不相适应。
因此提高换热器的效能对化工行业节能减排、提高效益非常重要。
换热设备传热过程的强化就是力求使换热设备在单位时间内、单位传热面积传递的热量尽可能增多。
应用强化传热技术的目的是为了进一步提高换热设备的效率,减少能量传递过程中的损失,更合理更有效地利用能源。
提高传热系数、扩大单位传热面积、增大传热温差是强化传热的三种途径,其中提高传热系数是当今强化传热的重点。
一、换热管强化传热技术管程的强化传热通常是对光管进行加工得到各种结构的异形管,如螺旋槽纹管、横槽纹管、波纹管、低螺纹翅片管(螺纹管)、螺旋扁管、多孔表面管、针翅管等,通过这些异形管进行传热强化。
1.螺旋槽纹管螺旋槽纹管管壁是由光管挤压而成,如图1所示,有单头和多头之分,其管内强化传热主要由两种流动方式决定:一是螺旋槽近壁处流动的限制作用,使管内流体做整体螺旋运动产生的局部二次流动;二是螺旋槽所导致的形体阻力,产生逆向压力梯度使边界层分离。
螺旋槽纹管具有双面强化传热的作用,适用于对流、沸腾和冷凝等工况,抗污垢性能高于光管,传热性能较光管提高2~4倍。
2、横槽纹管横槽纹管如图2所示,其强化机理为:当管内流体流经横向环肋时,管壁附近形成轴向漩涡,增加了边界层的扰动,使边界层分离,有利于热量的传递。
当漩涡将要消失时流体又经过下一个横向环肋,因此不断产生涡流,保持了稳定的强化传热作用。
研究和实际应用证明:横槽纹管与单头螺旋槽纹管比较,在相同流速下,流体阻力要大一些,传热性能好些,其应用场合与螺旋槽纹管相同。
3、波纹管对波纹管按流体力学观点分析:在波峰处流体速度降低,静压增加,在波谷处流速增加,静压降低。
流体的流动在反复改变轴向压力梯度下进行,产生了剧烈的漩涡,冲刷流体的边界层,使边界层减薄。
因此用波纹管做换热管从理论上讲:由于波节的存在,增加了对管内流体流动的扰动,使波纹管具有较好的传热效果,但流动特性不如光管的好。
在低雷诺数下,波纹管的换热与阻力性能比明显好于光管;在高雷诺数下,波纹管与光管的换热与阻力性能比非常接近。
波纹管的波形大致可分为以下几类:波鼓形、梯形、缩放形和波节形,详细结构分别见图3~6。
4、翅片管翅片管是一种外壁带肋的管子,肋的截面形状有矩形、锯齿形、三角形、T 型、E型、花瓣型等等,这种管子有助于扩大传热面积,促进流体的湍流,一般用于以壳程热阻为主的情况。
当壳程热阻为管程2倍以上时,使用翅片管是合适的。
但不能用来处理容易结焦的介质,其中低螺纹翅片管(图7)和变形翅片管(图8)的翅化率一般小于3,用于管内介质给热系数比管外介质给热系数大于2倍以上的情况时可以提高传热系数30%左右。
5、螺旋扁管螺旋扁管(图9)的独特结构使流体在管内处于螺旋流动,促进湍流程度。
实验研究表明:螺旋扁管管内膜传热系数通常比普通圆管大幅度提高,在低雷诺数时最为明显,达2~3倍;随着雷诺数的增大,通常也可提高传热系数50%以上。
6、表面多孔管在普通金属管表面敷上一层多孔性金属层,形成表面多孔管。
表面多孔管能显著地强化沸腾给热过程,但其表面的多孔状局限了其只能应用于无垢或轻垢的场合。
制造表面多孔层的方法主要有:烧结法、火焰喷涂法、电镀法及机械加工法等。
目前已投入规模生产的为烧结法和机械加工法。
7、针翅管针翅管(图10)既扩大了传热面,又可造成流体的强烈扰动,极大地强化传热,而且压降不大,并可籍针翅互相支撑而取消折流支撑板(杆),大大节省支撑板材料,可代替光管和螺纹管作为油品换热器的换热管,也是低传热膜系数、高粘度介质和含尘高温烟气的理想传热管,可用于油品等纵向流管束换热和烟气锅炉或余热回收中。
8、管内插入件管内插入件是强化管内单相流体传热的行之有效的方法之一。
目前管内插入件的种类很多,有纽带、螺旋线圈、螺旋片、静态混合器等。
管内加麻花片纽带使管内换热系数比光管增加了56% ~95% ,摩擦系数增加了70% ~400%。
因内插物是为了降低管内流体由层流转变到湍流时的临界雷诺数,一般说,它们在低雷诺数下强化传热的效果比湍流区更佳。
目前强化传热管已广泛地应用于石油、化工、制冷、航空、车辆、动力机械等工业部门,在利用地热、海洋热能、太阳能以及余热等低温差能源中,强化传热管将更有应用价值。
强化传热管提高了换热器的传热性能,并减小了换热器所需的传热温差和压降损失,有巨大的经济效益。
二、壳程强化传热技术在管壳式换热器中,管束支撑结构的主要作用是:支撑管束,使壳程流体产生期望的流型和流速,阻止管子因流体诱导振动而发生失效。
因此,管束支撑结构是壳程内的关键部件,直接影响着换热器壳程的流体流动和传热性能。
管束支撑结构经过多年的研究、应用和发展,概括起来有3种类型:(1)横流式支撑,如传统的弓形折流板,使壳程流体呈横向流动;(2)纵流式支撑,如折流杆式等新型支撑,使壳程流体呈纵向流动;(3)螺旋流式支撑,如螺旋折流板,使壳程流体呈螺旋流动,分别见图11~13。
1、折流杆换热器传统的管壳式换热器壳程流体横向冲刷管束,传热效率较低,流动阻力大,常发生流体诱导振动而导致破坏。
为解决换热管束的振动问题,美国菲利浦石油公司在20世纪70年代开发了折流杆式换热器(图14),该换热器不仅解决了振动问题,而且由于壳侧流体的纵向流动使折流杆换热器比传统的弓形折流板换热器传热系数提高30%左右,壳程压降减少50%。
2、整圆形折流板换热器由于流体在壳程中作纵向流动是管壳式换热器中最理想的流动形式,因此近年来又开发出了一些新型纵流式换热器,图15中列举了几种常见的整圆形折流板,如矩形孔折流板,梅花孔折流板等。
这种异型折流板性能特点是:(1)能有效地支撑管束,从而避免管束发生流体诱导振动(“大管孔”式除外);(2)孔板截面积小于壳程流通面积,因而可以调节壳程流体速度;(3)各种形式的孔对流体具有“射流作用”,射流流体速度高且直接冲刷管外壁,因而能增加流体湍流度,减薄管壁液体的边界层,因而有效强化了壳程传热,适用于中、低粘度流体且雷诺数不太大的场合。
3、螺旋折流板换热器螺旋折流板换热器可分为单螺旋折流板换热器和双螺旋折流板换热器。
螺旋折流板换热器与常规折流板相互平行布置方式不同,它的折流板相互形成一种螺旋形结构,每个折流板与壳程流体的流动方向成一定的角度,使壳程流体做螺旋运动,能减少管板与壳体之间易结垢的死角,从而提高了换热效率。
螺旋流换热器的强化传热机理为螺旋通道内的流型减弱了边界层的形成,从而使传热系数有较大增加。
相对于弓形折流板,螺旋折流板消除了弓形折流板的返混现象,从而提高有效传热温差,防止流动诱导振动;在相同流速时,壳程流动压降小;基本不存在流动与传热死区,不易结垢,适宜于处理含固体颗粒、粉尘、泥沙等流体。
对于低雷诺数下(Re<1 000)的传热,螺旋折流板效果更为突出。
在螺旋折流板换热器中,螺旋角β(即壳侧介质流动方向与管束横截面之间的夹角)将直接影响壳侧流体的流动及传热性能。
4、空心环管壳式换热器空心环管壳式换热器(图16)用空心环管作支撑结构,该支撑方式轴向流道空隙率可高达80%,故对轴向冲刷的流体形体阻力非常小,可使绝大部分壳程流体的压降作用在强化传热管的粗糙传热界面上,用以促进界面上的对流传热,充分发挥管外的传热强化作用,在低流阻条件下获得高的传热性能。
5、刺孔膜片管换热器刺孔膜片管换热器的特点为刺孔膜片既是支撑元件,又是管壁的延伸,增大了单位体积内的有效传热面积;膜片上的毛刺和小孔增大了流体湍流度,各区间的流体经小孔实现一定程度的混合;刺和孔使换热表面的边界层不断更新,减薄了层流底层厚度,从而提高了换热系数;壳程流体纵向流动,压力降很小。
6、螺旋椭圆扁管换热器螺旋椭圆扁管是一种双面强化管,由圆管轧制或由椭圆管扭曲而成,靠相邻管突出处的点接触支撑管子。
流体在管螺旋面的作用下呈螺旋运动,流速和流向发生周期性变化,加强了流体的轴向混合和湍动程度,同时强化管内、外传热;壳程流体流经相邻管子的螺旋线接触点后形成脱离管壁的尾流,增大了流体自身的湍流度,破坏了管壁上的流体边界层,从而使壳程传热得到增强。
螺旋椭圆扁管主要用于强化高粘度流体的层流换热,管内流体旋转导致的二次流是使换热得以强化的主要原因。
7、变截面管换热器变截面管是将普通圆管用机械方法相隔一定节距并互成一定角度轧制出扁管形状的管子。
变截面管靠变径部分的点接触互相支撑,同时又组成壳程的扰流元件。
其结构比较简单,且是双面强化管,但最大弱点是管内阻力太大。
三、结束语强化传热对石油化工行业节能有着重大意义。
采用各种节能技术的高效换热器不仅能够提高能源效率,而且结构紧凑,可减少金属材料消耗。
高效换热器作为一种节能设备得到政府的高度重视,应将换热器的节能技术与企业的应用紧密结合起来,使各种形式的高效换热器得到大面积的推广,把石油化工行业的节能减排工作落到实处。
参考文献[ 1 ] 程俊国,冯骏,靳明聪,等.螺旋管的传热及流阻性能[J].重庆大学学报, 1980, 8 (3): 81-94.[ 2 ] 李向明,叶国兴,邓颂九.高效换热元件—螺旋槽管的研究及应用[J].化工学报, 1982, 33 (4): 359-367.[ 3 ] 邓先和,谭盈科,邓颂九.多头与单头螺旋槽管传热准数方程关联法[J].化工学报, 1989(1): 18-27.[ 4 ] 帅志明,冯海仙,李学泰.螺旋槽管结垢实验研究[J].中国电机工程学报, 1993, 14(2): 7-12.[ 5 ] 刘湘秋.横纹管与新型支承型式在换热器中的应用[J].化工设备与管道, 1996, 33(4): 57-59.[ 6 ]刘吉普.横纹槽换热管力学性能试验研究[J].化工机械,1998, 25 (3): 702-721.[ 7 ] 张亚君,李军,邓先和,等.几种强化传热管的流阻和传热性能[J].石油化工设备, 2004, 33(5): 5-7.[ 8 ] 徐志明,杨善让,甘云华.横纹管污垢性能的实验研究[J].中国电机工程学报, 2005(5).[ 9 ]郎逵.波节型换热元件的实验研究[J].东北大学学报(自然科学版), 1995, 16(4): 438-441.[10] 高阳.波节管换热器的强化换热分析[J].北京节能, 2000(3): 18-19.[11] 张登庆,李忠堂,王宗明,等.波节管管内换热与阻力特性的实验研究[J].石油机械, 2002(4). 4-7.[12]齐世明,齐世清.波节管换热器的自支撑结构[J].压力容器, 2004, 21(3): 50-51.[13] 王玉,于斐.翅片管及其在管壳式换热器的使用[J].管道技术与设备, 2000(3): 22-24.[14]思勤,夏清,梁龙虎.螺旋扁管换热器传热与阻力性能[J].化工学报, 1995, 46 (5): 601-606.[15]梁龙虎.螺旋扁管换热器的性能及工业应用研究[J].炼油设计, 2001, 31(8): 28-33.[16]刘建新,金海波.多孔表面管沸腾传热试验研究[J].动力工程, 1999, 19(1): 30-33.[17]刘阿龙,徐宏.换热器烧结型表面多孔管综述[J].石油化工设备, 2005, 34(1): 47-49.[18] 钱颂文,马小明,方江敏,等.三维整体针翅强化传热管的传热和压降性能研究与比较[ J].化工学报, 2002, 53(7):700-704.[19]杨丽明,钱颂文.针翅管的强化传热试验研究[J].流体机械. 2002, 30(9): 10-12.[20] 秦勇,张雪冲,孙鸿久.针翅管强化传热机理及其在管壳式换热器中的应用[J].机电设备, 2001(5): 36-39.[21] 姚寿广,屠传经,朱德书.管内强化换热元件综合热力性能分析及评价[J].动力工程, 2002, 22(3): 1798-1803.[22] 胡明辅,朱孝钦,吴新民等.折流杆换热器抗振性能的分析[J].化工机械, 2000, 27(2): 80-83.[23] 陆应生.整圆槽孔折流栅板和缩放管在中氮肥氮氢气压缩机级间冷却器中的应用[J].化肥工业, 2001, 28(1): 29-30.[24] 曾舟华,钱颂文.低传热“死区”异形孔板纵向流管壳式换热器传热研究[J].化工设备设计, 1997, 34 (2) : 15-17.[25] 王树立,彭杰,赵志勇.螺旋折流板换热器流动特性研究[C] //中国工程热物理学会传热传质学术论文集,济南,2000.[26] 杨军,陈保东,孙成家.螺旋与弓形折流板换热器性能对比及螺旋角优化[J].辽宁石油化工大学学报, 2005, 25(2).11。