八年级最短路径问题

合集下载

八年级数学最短路径题型归纳

八年级数学最短路径题型归纳

八年级数学中的最短路径问题,通常涉及到几何图形中的点、线、面等元素,需要利用一些基本的几何知识和数学原理来求解。

以下是一些常见的最短路径题型及其解题方法:1.两点之间的最短距离:题型描述:在平面上给定两点A和B,求A到B的最短距离。

解题方法:直接连接A和B,线段AB的长度即为最短距离。

2.点到直线的最短距离:题型描述:在平面上给定一点P和一条直线l,求P到l的最短距离。

解题方法:作点P到直线l的垂线,垂足为Q,则PQ的长度即为最短距离。

3.直线到直线的最短距离:题型描述:在平面上给定两条直线l1和l2,求l1到l2的最短距离。

解题方法:如果l1和l2平行,则它们之间的距离即为最短距离;如果l1和l2不平行,则作l1到l2的垂线,垂足所在的线段即为最短4.点到圆的最短距离:题型描述:在平面上给定一点P和一个圆O,求P到圆O的最短距离。

解题方法:如果点P在圆O内,则最短距离为P到圆心的距离减去圆的半径;如果点P在圆O外,则最短距离为P到圆心的距离;如果点P在圆O上,则最短距离为0。

5.圆到圆的最短距离:题型描述:在平面上给定两个圆O1和O2,求O1到O2的最短距离。

解题方法:如果两圆外离,则它们之间的最短距离为两圆的半径之和;如果两圆外切,则它们之间的最短距离为两圆的半径之差;如果两圆相交或内切,则它们之间的最短距离为0;如果两圆内含,则它们之间的最短距离为两圆的半径之差减去两圆半径之和的绝对值。

6.多边形内的最短路径:题型描述:在一个多边形内给定两个点A和B,求A到B的最短解题方法:通常需要将多边形划分为多个三角形,然后利用三角形内的最短路径(即连接两点的线段)来求解。

7.立体几何中的最短路径:题型描述:在立体图形中给定两点A和B,求A到B的最短路径。

解题方法:通常需要将立体图形展开为平面图形,然后利用平面几何中的最短路径原理来求解。

在解决最短路径问题时,需要注意以下几点:准确理解题目要求,确定需要求的是哪两点之间的最短距离。

人教八年级数学上册最短路径问题

人教八年级数学上册最短路径问题

如图,点A,B是直线l同侧不重合的两点,在直线l上求作一点C,使得
AC+BC的长度最短.作法:①作点B关于直线l的对称点B′;②连接AB′,与直
线l相交于点C,则点C为所求作的点.在解决这个问题时没有用到的知识或方
法是( )
A.转化思想 B.三角形两边之和大于第三边
∙B A∙
C.两点之间,线段最短
l
∙B
题转化为“两点之间,线段最短”来解决,该
A∙
过程用到了“转化思想”,“两点之间,线段
l
C
最短”,验证是否为最短距离时利用了三角形
两边之和大于第三边.
B′
随堂练习 2
两棵树的位置如图所示,树的底部分别为点A,B,有一只昆虫沿着A至B的路径在 地面爬行,小树的树顶D处有一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C 处,问小虫在AB之间何处被小鸟抓住时,小鸟飞行路程最短,在图中画出该点的 位置.
1、直线异侧的两点到直线上一点距离和最短的问题.
如图,点A,B分别是直线l异侧的两个点,在直线l上找一点C使得AC+BC的值最 小,此时点C就是线段AB与直线l的交点.
A∙
C l
∙B
新知探究
知识点2
2、直线同侧的两点到直线上一点距离和最短的问题.
如图,点A,B分别是直线l同侧的两个点,在直线l上找一点C使得AC+BC的值 最小,这时先作点B关于直线l的对称点的B′,连接AB′交直线l于点C(也可以作 点A关于直线l的对称点A′,连接A′B交直线l于点C),此时点C就是所求作的点.
C
∵A′C=AC=BD,
在△A′CE和△BDE中, ∠A′CE=∠B′C=BD,
则△A′CE≌△BDE(AAS),CE=DE,A′E=BE.

人教版八年级数学上册《最短路径问题》课件(共15张PPT)

人教版八年级数学上册《最短路径问题》课件(共15张PPT)

联想:
如果点A、B在直线l的异侧时
A
C
l
B
分析:
B
A
A
C
l
l
C
B
思考:
能把A、B两点从直线 l 的同侧转化为异侧吗?
作法及思路分析
1.作点B关于直线 l 的对称点B′ ,连接
CB′。
B
A C
l
B′
2.由上步可知AC+CB=AC +CB′,
思考:当C在直线 l 的什么位置时AC +CB′最短?
根据前面的分析,我们认为的
人民教育出版社义务教育教科书八年级数学(上册)
第十三章 轴对称
13.4 课题学习 最短路径问题
饮马问题
如图,牧马人从马棚A牵马到河边 l 饮水,然后再到帐蓬B.问:在河边 的什么地方饮水,可使所走的路径最 短?
B B
AA l
l
分析:
B
B
A
A
l
CC
l
转化为数学问题 当点C在直线 l 的什么位置时,AC+CB的和最小?
谢谢观赏
You made my day!
我们,还在路上……
A
B
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。

八年级最短路径问题归纳小结

八年级最短路径问题归纳小结

八年级数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小.∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P即为所求.CD .【精品练习】1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23 B .26 C .3 D .62.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2B .32C .32+D .43.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .120°B .130°C .110°D .140°4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合),且ED =AE ,则线段AE 的取值范围是 .6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)D E AB C ADEPB CD CM A B M N7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______.8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,此时 C 、D 两点的坐标分别为 .9.已知A (1,1)、B (4,2).(1)P 为x 轴上一动点,求PA +PB 的最小值和此时P 点的坐标;(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;10.点C 为∠AOB 内一点.(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形; (2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.yxBOA CDyxBO A yx BO ACOBA yxBAO图①12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?。

八年级数学上培优专题七最短路径问题

八年级数学上培优专题七最短路径问题

精品文档专题七最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.ABllCCA,使如图所示,点异侧的两个点,在,上找一个点分别是直线CBClAB的交点.与是直线+最短,这时点(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.ABllCCA,使,同侧的两个点,在如图所示,点分别是直线上找一个点CBBlBClAB′的关于直线是直线的对称点+与最短,这时先作点′,则点交点.CC′,连接为了证明点的位置即为所求,我们不妨在直线上另外任取一点ACBCBCACCBACCB.如下:′,′,<′′′,证明′++BBl对称,证明:由作图可知,点′关于直线和lBB′的垂直平分线.是线段所以直线CCl上,因为点′在直线与BCBCBCBC′所以.=′=′′,ABCABACBC′,′+′中,′<′在△′ACBCACBC′,<′所以′++′ACBCACCB.<′所以′++lMAB两点的距离和最小.,使它到 1】在图中直线上找到一点,【例l然后连接对称点和另一个点,先确定其中一个点关于直线的对称点,分析:Ml与直线为所求的点.的交点即BlB(1)作点关于直线′;的对称点如图所示:解:MABl.(2)连接′交直线于点精品文档.精品文档M即为所求的点.则点 (3)点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.ABAB村与如图,小河边有两个村庄,要在河边建一自来水厂向,【例2】村供水.AB村的距离相等,则应选择在哪建厂?,(1)若要使厂部到AB两村的水管最短,应建在什么地方?,(2)若要使厂部到AB两点距离相等,可联想到“线段垂直平分线上的点到线段,分析:(1)到ABEF 的交点即为的垂直平分线,与两端点的距离相等”,又要在河边,所以作符合条件的点.AB村的距离之和最短,可联想到“两点之间线段最短”(2)要使厂部到,村、ABEFBEF的交点即为所求. )点关于点,与作的对称点,连接对称点与(或ABGGABEFP,画如图解:(1)1,取线段于的中点的垂线,交,过中点1PABABAB为半径画弧,两到、,为圆心,以大于的距离相等.也可分别以则2EFP即为所求.的交点弧交于两点,过这两点作直线,与AEFAABEFP,则′,连接′于交,画出点如图(2)2关于河岸的对称点PAB的距离和最短.到,精品文档.精品文档BA,今欲在河上建一)如图,从(地到河岸平行地经过一条小河【例3】BA地到座与两岸垂直的桥,应如何选择桥的位置才能使从地的路程最短?MNNBAABM是定值,思路导引:从→到→要走的路线是→,如图所示,而BNAM 最短即可.此时两线段应在同一平行方向上,于是要使路程最短,只要+BCCBMNAC 的线段即为最短的,此时不到平移到应是余下的路程,连接,从MNN难说明点即为所建的桥.即为建桥位置,ACACA垂直于河岸,且使(1)如图2,过点等于河宽.作解:NBC.连接与河岸的一边交于点(2)MN. 作河岸的垂线交另一条河岸于点(3)过点MN 则为所建的桥的位置..生活中的距离最短问题4求距离之和最小)可知,由两点之间线段最短(或三角形两边之和大于第三边从就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,问题,能将两条线段通过类似于镜面反射的方式转而解决这个问题,运用轴对称性质,ACBOAO的长.所以作已知点关于某直线的对称点是+化成一条线段,如图,=解决这类问题的基本方法.班举行文艺晚会,桌子摆成如图(2) (】实际应用题)茅坪民族中学八【例4OBAOBOAO桌面上摆满了糖果,,)图中的,桌面上摆满了橘子,(a所示两直排DC请你帮助他设计一处座位上,然后到站在处的学生小明先拿橘子再拿糖果,条行走路线,使其所走的总路程最短?精品文档.精品文档b图图ab.解:如图DDCOBCOACD,点关于,的对称点(2),作连接点关于(1)作的对称点1111DPQOBPQCOA 的路线行走,所走的总路程最于→,,→,那么小明沿分别交→短. 5.运用轴对称解决距离之差最大问题先做出利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.所得直线与对称轴其中一点关于对称轴的对称点,然后连接对称点和另一个点,根据垂直平分线的性质和三角形中两边之差小于第三边易证的交点,即为所求.明这就是最大值.运用轴对称变换及三角形三边关系解决距离的最值问题的关键破疑点是解决一些距离的最值问题的有效方法.CClABl,使点,两点在直线如图所示,上找一点的两侧,在【例5】BA、的距离之差最大.到点BAABl作直,′的对称点(分析:此题的突破点是作点′(或或)关于直线)ClBABA边把问题转化为三角形任意两边之差小于第三′)线与直线′,(交于点来解决.BAAllA′′,解:如图所示,以直线关于直线为对称轴,作点的对称点CCllC异于点即为所求.理由:在直线的连线交′于点上任找一点,则点(llBAACCCACACA 为线.),连接,因为点′′关于直线,,′′,对称,所以′BACACBCAAACACACB 又因为段′的垂直平分线,则有′-=′′,所以=-=.BACCAAACABCCCBClC′=′.′在△′′′中,=′-′-′点′在上,所以′CBBCCAABAC′<.-<′,所以′′-通过比较来说明最值问根据轴对称的性质、利用三角形的三边关系,点拨:题是常用的一种方法.精品文档.精品文档精品文档.。

(完整版)八年级最短路径问题归纳小结.doc

(完整版)八年级最短路径问题归纳小结.doc

八年级数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题-即已知起始结点,求最短路径的问题.②确定终点的最短路径问题-与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题-即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址” ,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短” ,“三角形三边关系”,“轴对称” ,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【十二个基本问题】【问题1】作法图形原理A Al连 AB,与 l 交点即为 P.Pl两点之间线段最短.B PA+PB 最小值为 AB.B在直线 l 上求一点P,使PA+PB 值最小.【问题 2】“将军饮马”作法图形原理A AB 作 B 关于 l 的对称点 B' B 两点之间线段最短.l连 A B ',与 l 交点即为 P.l PA+PB 最小值为 A B'.P在直线 l 上求一点P,使B'PA+PB 值最小.【问题3】作法图形原理l 1 P' l1P分别作点 P 关于两直线的M两点之间线段最短.对称点 P'和 P',连 P'P',PM +MN +PN 的最小值为l2 P在直线 l1、 l 2上分别求点与两直线交点即为 M, N.N l2线段 P'P''的长.M 、 N,使△ PMN 的周长P''最小.【问题4】作法图形原理l 1lQ' 1Q分别作点 Q 、P 关于直线P MQ 两点之间线段最短.l 1、 l 2的对称点Q'和P'l2 P 四边形 PQMN 周长的最小连 Q'P',与两直线交点即l 2 值为线段 P'P''的长.在直线 l1、 l 2上分别求点为 M , N.NM 、 N ,使四边形PQMN P'的周长最小.【问题 5】“造桥选址”作法图形原理- 1 -AM Nmn将点 A 向下平移MN 的长度单位得A',连 A'B,交 nAA' M 两点之间线段最短.mB直线 m ∥ n ,在 m 、 n ,上分别求点 M 、N,使 MN ⊥m ,且 AM+ MN+ BN 的值最小.【问题 6】ABlM a N在直线 l 上求两点M、N(M 在左),使 MN a ,并使AM + MN+ NB 的值最小.【问题 7】l1Pl 2在l 1上求点A,在 l 2上求点 B,使 PA+ AB 值最小.于点 N,过 N 作 NM ⊥ m 于M.作法将点 A 向右平移 a 个长度单位得 A',作 A'关于l的对称点 A',连 A'B,交直线l 于点N,将N点向左平移a 个单位得 M.作法作点 P 关于l1的对称点P ',作 P'B⊥l2于 B,交l2于A.AM +MN +BN 的最小值为NnA'B+MN .B图形原理A A'B两点之间线段最短.lM N AM +MN +BN 的最小值为A'B+ MN.A''图形原理l1P'P 点到直线,垂线段最短.APA+ AB 的最小值为线段P'l 2 B的长.B【问题 8】作法l 1NAMl2 作点 A 关于l2的对称点BA ',作点B 关于l1的对称A 为l1上一定点,B 为l2上点 B',连 A'B'交l2于 M,一定点,在 l 2上求点M,交 l 1 于 N.在 l 1 上求点N ,使AM + MN+ NB 的值最小.【问题 9】作法图形原理B'l 1N两点之间线段最短.AAM +MN +NB 的最小值为M B l 2线段 A'B'的长.A'图形原理ABl在直线l 上求一点 P,使 PA PB 的值最小.连AB ,作 AB 的中垂线与直线 l 的交点即为 P.A垂直平分上的点到线段两B端点的距离相等.lP PA PB = 0.【问题 10】作法图形原理- 2 -A三角形任意两边之差小于A Bl作直线 AB ,与直线 l 的交第三边. PA PB ≤AB .B点即为 P .l在直线 l 上求一点 P ,使PPA PB 的最大值 = AB .PA PB 的值 最大 .【问题 11】作法 图形原理AAl 作 B 关于 l 的对称点 B ' B'B作直线 A B ',与 l 交点即lP为 P .B在直线 l 上求一点 P ,使PA PB 的值 最大 .三角形任意两边之差小于第三边. PA PB ≤ AB '.PA PB 最大值 = AB '.【问题 12】“费马点”作法图形原理ABC所求点为“费马点” ,即满足∠ APB =∠ BPC =∠APC = 120 °.以 AB 、 ACDAE两点之间线段最短.为边向外作等边△ ABD 、PPA+ PB+ PC 最小值 = CD .△ ABC 中每一内角都小于120°,在△ ABC 内求一点P ,使 PA+PB+PC 值最小.△ ACE ,连 CD 、 BE 相交于 P ,点 P 即为所求.BC【精品练习 】 1.如图所示,正方形ABCD 的面积为 12,△ ABE 是等边三角形,点一点 P ,使 PD +PE 的和最小,则这个最小值为( )A . 23 B . 2 6C . 3D . 62.如图,在边长为 2 的菱形 ABCD 中,∠ ABC = 60 °,若将 △ ACD交于点 E 、 F ,则 △ CEF 的周长的最小值为( )E 在正方形 ABCD 内,在对角线 AC 上有ADPEB C绕点 A 旋转,当 AC ′、 AD ′分别与 BC 、 CDA . 2B . 2 3C . 2 3D . 4- 3 -3.四边形 ABCD 中,∠ B=∠ D = 90 °,∠ C= 70 °,在 BC 、 CD 上分别找一点M、 N,使△ AMN 的周长最小时,∠ AMN + ∠ ANM 的度数为()A DA . 120°B. 130°C.110 °D. 140 °NBMC 4.如图,在锐角△ ABC 中, AB = 4 2 ,∠ BAC = 45 °,∠ BAC 的平分线交 BC 于点D , M、 N 分别是 AD 和 AB上的动点,则 BM +MN 的最小值是C.DMAN B5.如图, Rt△ ABC 中,∠ C= 90 °,∠ B= 30 °,AB= 6,点 E 在 AB 边上,点 D 在 BC 边上(不与点B、C 重合),且 ED = AE,则线段AE 的取值范围是.AEC D B 6.如图,∠AOB = 30 °,点 M、 N 分别在边OA、 OB 上,且OM = 1, ON= 3,点 P 、 Q 分别在边OB、 OA 上,则 MP + PQ+ QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即 Rt△ABC 中,∠ C= 90°,则有AC 2BC 2AB2)7.如图,三角形△ ABC中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B( 6 3 , 0).OC 平分∠ AOB ,点 M 在 OC 的延长线上,点N 为边 OA 上的点,则MA + MN 的最小值是 ______.- 4 -8.已知 A( 2, 4)、 B (4, 2). C 在y轴上, D 在 x 轴上,则四边形ABCD 的周长最小值为,此时 C、 D 两点的坐标分别为.yABO x 9.已知A( 1, 1)、 B (4, 2).y( 1) P 为 x 轴上一动点,求PA+PB 的最小值和此时P 点的坐标;BAO x( 2) P 为 x 轴上一动点,求PA PB 的值最大时P 点的坐标;yBAO x( 3) CD 为 x 轴上一条动线段, D 在 C 点右边且CD = 1,求当AC+ CD+ DB 的最小值和此时 C 点的坐标;yBAO C D x10 .点 C 为∠ AOB 内一点.( 1)在 OA 求作点 D , OB 上求作点 E ,使△ CDE 的周长最小,请画出图形;( 2)在( 1)的条件下,若∠AOB = 30°, OC= 10,求△ CDE 周长的最小值和此时∠DCE 的度数.ACO B- 5 -11.( 1)如图①,△ ABD 和△ ACE 均为等边三角形,BE、 CE 交于 F,连 AF,求证: AF +BF +CF = CD ;( 2)在△ ABC 中,∠ ABC = 30°, AB= 6, BC= 8,∠ A ,∠ C 均小于 120°,求作一点 P,使 PA+PB+PC 的值最小,试求出最小值并说明理由.DAAEFB C图①B C图②12 .荆州护城河在CC'处直角转弯,河宽相等,从 A 处到达 B 处,需经过两座桥DD '、 EE ',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使 A 到 B 点路径最短?- 6 -。

初中八年级数学最短路径问题

初中八年级数学最短路径问题

八年级数学最短路径问题一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

练习、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A 到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。

三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小.练习1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA.求∠MON的度数。

练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?提高训练一、题中出现一个动点。

1.当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和小于第三边求出最值.例:如图,在正方形ABCD中,点E为AB上一定点,且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。

二、题中出现两个动点。

当题中出现两个定点和两个动点时,应作两次定点关于动点所在直线的对称点.利用两点之间线段最短求出最值。

例:如图,在直角坐标系中有四个点, A(-8,3),B(-4,5)C(0,n),D(m,0),当四边形ABCD周长最短时,求C、D的坐标。

练习1如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是.三、题中出现三个动点时。

八年级数学上册人教版课件:1最短路径问题

八年级数学上册人教版课件:1最短路径问题

将点B“移”到l 的另一侧B′
处,满足直线l 上的任意一点
A
·
C,都保持CB 与CB′的长度
相等?
B
·
l
探究 活动 1
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
B
追问2 你能利用轴对称的 A
·
有关知识,找到上问中符合条
·
件的点B′吗?
l
探究 活动 1
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
作法:
(1)作点B 关于直线l 的对称
A
·
点B′;
(2)连接AB′,与直线l 相交
C
于点C.
则点C 即为所求.
B
·
l B′
探究 活动 1
问题3 你能用所学的知识证明AC +BC最短吗?
即 AC +BC 最短.
B′
探究 活动 1
证明AC +BC 最短时,为什么要在直线l 上任取一 点C′(与点C 不重合),证明AC +BC <AC′
+BC′?这里的“C′”的作用是什么?
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
N
A/
P
Q
B/
A
M
B
l
探究 活动 3
(造桥选址问题)如图,A和B两地在一条河的 两岸,现要在河上造一座桥MN,桥造在何处可使 从A到B的路径AMNB最短?(假定河的两岸是平 行的直线,桥要与河垂直。)

数学八年级_轴对称_最短路径问题

数学八年级_轴对称_最短路径问题

三角形第3节多边形及其内角和【知识梳理】路径最短问题:运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解。

所以最短路径问题,需要考虑轴对称。

典故:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l 饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.这个问题提炼出数学问题为:设C 为直线l上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小(如图)作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 交于点C.则点C 即为所求.证明:如图,在直线l上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC ′=B′C′.∴ AC +BC = AC +B′C = AB′,AC ′+BC′= AC′+B′C′.在△AB′C′中,AB ′<AC′+B′C′,∴ AC +BC <AC′+BC′.即 AC +BC 最短.预备知识:在直角三角形中,三边具有的关系如下:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+【诊断自测】1、如图,直线l 是一条河,A 、B 两地相距5km ,A 、B 两地到l 的距离分别为3km 、6km ,欲在l 上的某点M 处修建一个水泵站,向A 、B 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )A .B .C .D .2、如图所示,四边形OABC 为正方形,边长为3,点A ,C 分别在x 轴,y 轴的正半轴上,点D 在OA 上,且D 的坐标为(1,0),P 是OB 上的一动点,则“求PD+PA 和的最小值”要用到的数理依据是( )A .“两点之间,线段最短”B.“轴对称的性质”C.“两点之间,线段最短”以及“轴对称的性质”D.以上答案都不正确3.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.【考点突破】例1、如图,在矩形ABCD中,点E为BC的中点,点F在CD上,要使△AEF的周长最小时,确定点F的位置的方法为.答案:作点E关于DC的对称点E′,连接AE′交CD于点F.解析:根据题意可知AE的长度不变,△AEF的周长最小也就是AF+EF有最小值.作点E关于DC的对称点E′,连接AE′交CD于点F.故答案为:作点E关于DC的对称点E′,连接AE′交CD于点F.例2、如图所示,点P在∠AOB的内部,点M,N分别是点P关于直线OA,OB的对称点,线段MN交OA,OB于点E,F.(1)若MN=20 cm,求△PEF的周长;(2)若∠AOB=35°,求∠EPF的度数.答案:见解析解析:(1)∵M与P关于OA对称∴OA垂直平分MP.∴EM=EP.又∵N与P关于OB对称∴OB垂直平分PN.∴FP=FN.∴△PEF的周长=PE+PF+EF=ME+EF+FN=MN=20(cm).(2)连接OM,ON,OP,∵OA垂直平分MP,∴OM=OP.又∵OB垂直平分PN,∴ON=OP.∴△MOE≌△POE(SSS),△POF≌△NOF(SSS).∴∠MOE=∠POE,∠OME=∠OPE,∠POF=∠NOF,∠OPF=∠ONF.∴∠MON=2∠AOB=70°∴∠EPF=∠OPE+∠OPF=∠OME+∠ONF=180°-∠MON=110°.例3、如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=2,ON=6,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是()A.2B. C.20 D.2答案:A解析:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==2.故选:A.例4、如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°答案:D解析:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.例5、如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2 C.4 D.4答案:B解析:由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选B.例6、如图,荆州古城河在CC′处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD′,EE′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADD′E′EB的路程最短,这个最短路程是多少米?答案:见解析。

人教版初中数学八年级上册第十三章 课题学习 最短路径问题

人教版初中数学八年级上册第十三章 课题学习 最短路径问题

l
都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
探究新知
13.4 课题学习 最短路径问题/
作法:
B
(1)作点B 关于直线l 的对称点B′; A
C
(2)连接AB′,与直线l 相交于点C.
l
则点C 即为所求.
B′
探究新知
13.4 课题学习 最短路径问题/
问题3:你能用所学的知识证明AC +BC最短吗?
接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥. C
DF
理由:由作图法可知,AF//DD′,AF=DD′, 则四边形AFD′D为平行四边形,
C′ D ′
于是AD=FD′, 同理,BE=GE′,
E E′
由两点之间线段最短可知,GF最小.
BG
课堂检测
13.4 课题学习 最短路径问题/
拓广探索题
巩固练习
13.4 课题学习 最短路径问题/
如图,已知牧马营地在P处,每天牧马人要赶着马群先到河 边饮水,再带到草地吃草,然后回到营地,请你替牧马人 设计出最短的放牧路线.
解:如图AP+AB即为最 短的放牧路线.
探究新知
13.4 课题学习 最短路径问题/
知识点 2 利用平移知识解决造桥选址问题 如图,A和B两地在一条河的两岸,现要在河上造一座桥 MN.桥造在何处可使从A到B的路径AMNB最短(假定河的两岸 是平行的直线,桥要与河垂直)?
解:连接AB,与直线l相交于一点C.
A
C
根据“两点之间,线段最
l
短”,可知这个交点即为所求.
B
探究新知
13.4 课题学习 最短路径问题/

人教版数学八年级上册《课题学习——最短路径问题》课件

人教版数学八年级上册《课题学习——最短路径问题》课件
方法点拨:解决“两线两点”型最短路径问题 的方法以两线为对称轴,分别作靠近线的点的 对称点,连接两个对称点,将最短路径转化为 连接两个对称点的线段.
感悟新知
解:如图13 .4 -4,(1)作点A 关于直 线l1 的对称点A′; (2)作点B 关于直线l2 的对称点B′; (3)连接A′B′,分别与直线l1,l2相交 于C,D 两点,连接AC,BD,则沿 路线A → C → D → B 走才能使总路 程最短.
第十三章 轴对称
13.4 课题学习 最短路径问题
感悟新知
知识点 1 最短路径问题
知1-讲
类型
问题
作法
最小值
一 线 两
点 型
两点 在直 线异

在直线l 上找 一点P,使PA
+PB 最小
连接AB,与直 线l 的交点即为
点P
PA+PB 的最小值 为AB的

感悟新知
类型
问题
作法
知1-讲
最小值
两点
一 线 两
知1-练
ቤተ መጻሕፍቲ ባይዱ
感悟新知
知1-练
3-1.如图,AB 是∠ MON内部的一条线段,在∠ MON 的两 边OM,ON 上分别取点C,D组成四边形ABDC,如何 取点才能使该四边形的周长最小?
感悟新知
知1-练
(1)如果居民小区A,B 在主干线l 的两侧,如图13.4-1,那么 分支点M 在什么地方时总线路最短?
解:如图13 .4 -1,
连接AB,与l 的 交点即为所求的
分支点M.
感悟新知
知1-练
(2)如果居民小区A,B 在主干线l 的同侧,如图13.4-2,那么 分支点M 在什么地方时总线路最短?

人教版八年级上册 13.4 最短路径问题 课件(共56张ppt)

人教版八年级上册   13.4    最短路径问题   课件(共56张ppt)

求解原理 两点之间,线段最短
将军饮马问题的应用 将军饮马问题有什么特点? 如何发现并解决将军饮马问题?
美术字与轴对称
利用轴对称设计图案
利用轴对称设计图案
等腰三角形中相等的线段
复习巩固 下列图形是轴对称图形吗?如果是,找出它们的对称轴 .
复习巩固 画出下列轴对称图形的对称轴
复习巩固
如图,D,E 分别是AB,AC 的中点,CD⊥AB,垂足为 D,BE⊥AC,垂足为E .求证AC =AB .
一开始的时候我们就讨论过点A,B在直线异侧的情况, 你还记得是怎么做的吗? 连接两点,交点就是所求 同侧的情况也能直连接两点吗?不行
探究
如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点 ,当点C 在l 的什么位置时,AC 与CB 的和最小?
能不能把点在同侧的问题转化 为点在异侧的问题呢? 提示:将点B“移”到l 的另一侧 B′处,得满足直线l 上的任意一 点C,都保持CB 与CB′的长度相 等 你.想到怎么做了吗?
如图,A、B两地在一条河 的两岸,现要在河上建一座 桥MN,桥造在何处才能使 从A到B的路径AMNB最短 ?(假设河的两岸是平行的 直线,桥要与河垂直)
你能把这个问题抽象成一 个数学问题吗?
抽象
可以把河的两岸看成两条平行线a和b, N为直线b上的一个动点,MN 垂直于直线b,交直线a于点M, 当点N在直线b的什么位置时,AM+MN+NB最小?
,同时向 A,B 两个居民小区送电 .
(2) 如果居民小区 A,B 在主干线 l 的同旁,如图(2) 所示
,那么分支点 M 在什么地方时总线路最短?在图上标注位置,
并说明理由 .
作A的对称
点可以吗

八年级路径最短问题

八年级路径最短问题

最短路径问题
1、在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是
米.
2、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只从P点开始经过4个侧面爬行一圈到达Q点,则爬行的最短长为()
3、一只从圆柱体的下底面A点沿着侧面爬到上底面B点,已知圆柱的底面半径为1.5cm,高为6cm(π取3),则所走过的最短是

变式如图,是一个没有上盖的圆柱形食品盒,一只蚂蚁在盒外表面的A处,它想吃到盒内表面对侧中点B处的食物,已知盒高10cm,底面圆周长为32cm,A距下底面3cm.
4、如图,已知长方体的长为AC=2cm,宽BC=1cm,高AA′=4.一只蚂蚁如果
沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?
5、将一根长24cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,如图所示,设筷子露出在杯子外面长为hcm,你能求出h的取值范围吗?
6、。

八年级物理最短路径问题

八年级物理最短路径问题

八年级物理最短路径问题
最短路径问题是物理中的一个重要概念,也是许多实际应用中常遇到的问题。

在八年级物理课程中,我们将探讨最短路径问题以及与之相关的概念和算法。

什么是最短路径问题?
最短路径问题指的是在一个图中寻找两个节点之间的最短路径的问题。

在物理中,这个概念很常见,在实际生活中我们常常需要寻找最短路径,比如寻找最短路线去学校或商店。

如何解决最短路径问题?
解决最短路径问题有多种算法,其中最常用且简单的算法是迪杰斯特拉算法(Dijkstra's algorithm)。

该算法通过逐步扩展当前已找到的最短路径集合,最终找到两个节点之间的最短路径。

迪杰斯特拉算法的基本思想是从起始节点开始,逐步扩展已找到的最短路径集合。

每次选择一个距离起始节点最近的节点,并计
算从起始节点到该节点的距离。

然后再从这个节点出发,继续选择距离最近的节点,并计算新的最短路径。

重复执行这个过程直到找到目标节点或无法再找到新的最短路径为止。

实际应用
最短路径问题在实际应用中有许多应用场景。

例如,交通规划中的最短路径问题可以帮助我们找到最短的路线从一个地点到另一个地点。

另外,最短路径问题也可以应用于网络路由、物流运输等领域,帮助优化资源利用和减少成本。

总结
最短路径问题是物理中的一个重要概念,通过算法可以找到两个节点之间的最短路径。

在实际应用中,最短路径问题有广泛的应用场景,为我们的生活提供了方便和效率。

如果您对八年级物理最短路径问题还有其他问题或者需要进一步了解,请随时与我联系。

八年级上册体育最短路径问题(田径赛跑)专项练习(含解析)

八年级上册体育最短路径问题(田径赛跑)专项练习(含解析)

八年级上册体育最短路径问题(田径赛跑)
专项练习(含解析)
问题描述
在田径赛跑比赛中,有一条操场跑道,跑道由若干个直线段组成,每个直线段长度不相同。

现在需要选定一个起点和一个终点,选手在跑道上跑步。

假设选手只能走直线,且只能走上方向或右方向,即只能往右或往上走。

那么,选手从起点到终点可能的最短路径长度是多少?
解析
这道问题可以用最短路径算法解决。

我们可以使用动态规划的思想来找到最短路径。

1. 定义一个二维数组dp,dp[i][j]表示从起点到坐标(i, j)的最短路径长度。

2. 假设操场跑道的起点坐标为(0, 0),终点坐标为(m, n),其中m和n分别表示操场的行数和列数。

3. 初始化第一行和第一列的最短路径长度。

因为在这两行或两列上,选手只能一直往右或往上走,所以最短路径长度为前一个点的最短路径长度加上当前直线段的长度。

4. 从(1, 1)开始遍历操场的每个点,计算到达该点的最短路径长度。

对于每个点,最短路径长度等于上方点和左方点中较小的路径长度加上当前直线段的长度。

5. 最后,dp[m][n]即为起点到终点的最短路径长度。

示例
假设操场的跑道如下所示,其中数字表示直线段的长度:
1 3 5
2 1 4
3 2 1
根据上述解析过程,我们可以得到一个dp数组如下所示:
1 4 9
3 4 8
6 6 9
所以,选手从起点到终点的最短路径长度为9。

以上是关于八年级上册体育最短路径问题(田径赛跑)的专项练习的文档。

希望对你有帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最短路径问题
1、如图,在△ABC 中,DE 是AC 的垂直平分线,AE=5cm ,△ABD 的周长为15cm ,则△ABC 的周长是
(第1题) (第2题)
2、如图,△ABC 中,AB=BC ,D 是BC 边上一点,点A 在线段CD 的垂直平分线上,连接AD ,若∠B=50°,则∠BAD= 度。

3、如图,设△ABC 和△CDE 都是正三角形,且∠EBD = 62°,则∠AEB 的度数是为_________。

知识点一、最短路径
【知识梳理】
1、两定一动
(1)如图,点A 、B 在直线l 的两侧,在l 上求一点P ,使得PA +PB 最小。

(2)如图,点A 、B 在直线l 的同侧,在l 上求一点P ,使得PA +PB 最小。

第9题图D
A
B E
C
2、三定一动
平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是。

3、一定两动型
如上图,点A是∠MON内部一点,在∠MON的两边OM、ON上各取一点B、C,与点A组成三角形,使△ABC的周长最小。

【例题精讲】
1、在平面直角坐标系中,点A(1,-2)与点B关于x轴对称,则点B的坐标是___________。

2、如图,∠AOB=30°,点P为∠AOB内一点,OP=8。

点M、N分别在OA、OB上,则△PMN周长的最小值为__________。

(第2题)(第3题)
3、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且
A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是。

4、平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使PA-PB最大,则P点坐标_____。

5、已知,点A(1,3)、B(2,6)、C(4,3),平行于x轴的直线l过(0,m)。

(1) 将△ABC向左平移5个单位,再向下平移2个单位得△A1B1C1,请画出图形
(2) 如图,若m=1,请画出△ABC关于直线l的轴对称图形△A2B2C2
(3) 若P(a,b)与P′(c,d)关于直线l对称,则a与c的数量关系为__________,b与d的数量关系为
__________。

(第5题)(第6题)
6、已知△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC关于y轴对称的△AB1C1,并写出B1的坐标;
(2)在x轴上找一点到B和C的距离之和最小,保留作图痕迹;
(3)在y轴上找一点到B和C的距离之差最大,保留作图痕迹.
【课堂练习】
1、如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠MPN=80°,则∠AOB=.
(第1题)(第2题)
2、如图,在四边形ABCD中,∠B=∠D=90°,∠C=65°,M、N分别是边BC,CD上的动点,当△AMN的周长最小时,∠MAN= .
3、△ABC在平面直角坐标系中的位置如图所示,先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称,
(1)画出△A1B1C1和△A2B2C2;
(2)在x轴上确定一点P,使BP+A1P的值最小,直接写出P的坐标为________;
(3)点Q 在坐标轴上且满足△ACQ 为等腰三角形,则这样的Q 点有 。

(第3题)(第4题)
4、在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC (顶点是网格线交点的三角形)的顶点A ,B ,C 的坐标分别是(﹣4,6),(﹣2,2),(﹣1,4),
(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1,其中A ,B ,C 的对称点分别为A 1,B 1,C 1;
(2)请在y 轴上求作一点P ,使△PB 1C 的周长最小,并直接写出点P 的坐标。

1、等腰三角形腰上的高与另一腰的夹角为30°,则底角度数是 。

2、等腰三角形的一个外角度数为150°,则顶角度数为___________。

3、如图,在正五边形ABCDE 中,DF ⊥AB.(1)求∠CDF 的度数 (2)求证:AF=BF
x
y
B
C
A
O A C E B
D F
4、如图,△ABC是等边三角形,点D是线段AC上的一动点,E在BC的延长线上,且BD=DE。

(1)如图,若点D为线段AC的中点,求证:AD=CE;(2)如图,若点D为线段AC上任意一点,求证:AD=CE;
5、如图,已知A(-2,3),B(-5,0),C(-1,0),△ABC和△A1B1C1关于x轴对称,(1)作△ABC关于x轴对称的△A1B1C1,直接写出点A1坐标;(2)在y轴上有一点P使AP+A1P最小,直接写出点P的坐标;(3)请直接写出点A关于直线x=m(直线上各点的横坐标都为m)对称的点的坐标.。

相关文档
最新文档