概率及其性质概论
03第五章_概论及概论分布
自数据分布中相对位置的高低。
计算不同质的观测值的总和或平均值,以
表示在团体中的相对位置。
当研究需要合成不同质的数据时,如果已知这 些不同质的观测值的次数分布为正态,这时可采用 Z分数来计算不同质的观测值的总和或平均值。
表示标准测验分数
经过标准化的心理和教育测验,常常
种数学模型计算出的概率分布。
3、基本随机变量分布与抽样分布
依所描述的数据的样本特性,可将概率分
布分为基本随机变量分布与抽样分布 (sampling distribution)。
基本随机变量分布是随机变量各种不同取
值情况的概率分布,抽样分布是从同一总体 内抽取的不同样本的统计量的概率分布。
二、二项分布
抽到第一题或第二题的概率应为抽到第一题的概率和抽到第二题的概率之和即四个学生都抽到第一题即四个学生同时抽到第一题其概率应为抽到第一题的概率的乘积即20个黑球共50个球中随机抽取两次放回抽样问抽出一个黑球和一个白球的概率是多少
第五章
概率及概论分布
一、概率的一般概念
1.概论的定义
后验概率(或统计概率)
率之和,即
0 0 6 1 5 2 2 4 P P P C p q C p q C p q ( 0) 1 2 6 6 6
3 2 3 2 6 15 5 5 5 5
6
m n
(5.2)
2.概率的公理系统
(1)任何随机事件A的概率都是在0与1之间 的正数,即 0 ≤ P(A)≤1 (2)不可能事件的概率等于零,即 P(A)= 0 (3)必然事件的概率等于1,即 P (A )= 1
概率论基础基础(复旦版)李贤平概论
符号 Ω Φ ω∈Ω {ω} A⊂ Ω A ⊂B A=B A∪B A∩B Ā A-B A∩B=φ
测度论含义 全集 空集 集合的元素 单点集 一个集合 A A的元素在B中 B 集合A与B相等 A与B的所有元素 A与B的共同元素 A的补集 在A中而不在B中的元素 A与B无公共元素
概率论含义 样本空间,必然事件 不可能事件 样本点 基本事件 一个事件 A A发生导致B发生 B 事件A与B相等 A与B至少有一个发生 A与B同时发生 A的对立事件 A发生而B不发生 A与B互斥
显然 φ ⊂A⊂Ω ⊂Ω ⊂ 且 ⊂ 相等 A=B : A⊂B且B⊂A
2. 和事件 事件A和 至少有一个发生 A∪B :事件 和B至少有一个发生 ∪ 事件 A 显然, ∪ 显然 A∪φ =A A∪Ω=Ω ∪ Ω B
3. 积事件 事件 与 同时发生 A∩B : 事件A与B同时发生 简写AB 简写 A 显然, 显然 A∩φ=φ A∩Ω=A Ω B
例 抛硬币 试验者 Buffon Pearson Kerrich 掷的次数 4040 24000 10000 正面次数 2048 12012 5067 正面频率 0.5069 0.5005 0.5067
例,高尔顿钉板试验 在相同的条件下,大量重复某一试验时,各可能结果出现的 频率稳定在某各确定值附近,即 随机试验中频率的稳定性 频率稳定性的存在标志着随机现象也由数量规律 概率论是研究随机现象中数量规律的数学学科
四、随机事件的关系及运算
对应集合的关系和运算来定义事 件的关系及运算,并根据 事件发生” 并根据“ 件的关系及运算 并根据“事件发生”的 含义,来理解它们在概率论中的含义 含义 来理解它们在概率论中的含义
1. 子事件 包含 A⊂ B : 事件 发生必有事件B发 事件A发生必有事件 发 发生必有事件 ⊂ 包含A 生, 称B包含 包含 B A
概率定义与性质
第二步
收集证据。收集与目标 事件或参数相关的证据 或数据。
第三步
计算后验概率。根据贝 叶斯定理,利用先验概 率和证据,计算出目标 事件或参数的后验概率。
第四步
做出决策。根据后验概 率的大小,做出相应的 决策或推断。
独立性的数学表达
如果两个事件A和B满足$P(A cap B) = P(A) times P(B)$,则称事件A和B是独立的。
3
独立性的性质
独立性具有传递性,即如果A与B独立,B与C独 立,那么A与C也独立。
独立事件的概率
独立事件的概率计算
条件概率与独立性
对于两个独立事件A和B,其同时发生 的概率是各自概率的乘积,即$P(A cap B) = P(A) times P(B)$。
如果两个事件A和B在给定第三个事件 C的条件下是独立的,那么A和B本身 也是独立的。
独立事件的性质
如果两个事件是独立的,那么其中一 个事件的发生不会影响到另一个事件 的概率。
独立试验与大数定律
01
独立试验
在相同的条件下进行多次试验, 每次试验的结果之间相互独立, 这样的试验称为独立试验。
大数定律
02
全概率公式如下:P(A) = Σ P(Bi) * P(A | Bi),其中Bi是所有可能的基本事件,P(Bi)是基本事件Bi发生的概率,P(A | Bi)是在基本事 件Bi发生的条件下事件A发生的概率。
04
独立性
独立性的定义
1 2
独立性定义
如果一个事件的结果不会影响到另一个事件的结 果,那么这两个事件就是独立的。
学习、决策理论等。
§1.4 概率的公理化定义及概率的性质
§1.4 概率的公理化定义及概率的性质一、几何概率一个随机试验,如果数学模型是古典概型,那么描述这个实验的样本空间Ω,文件域 F 和概率P 已在前面得到解决。
在古典概型中,试验的结果是有限的,受到了很大的限制。
在实际问题中经常遇到试验结果是无限的情况的。
例如,若我们在一个面积为ΩS 的区域Ω中,等可能的任意投点,这里等可能的确切意义是这样的:在区域Ω中有任意一个小区域A ,若它的面积为A S , 则点A 落在A 中的可能性大小与A S 成正比,而与A 的位置及形状无关。
如果点A 落在区域A 这个随机事件仍记为A ,则由P(Ω)=1可得Ω=S S A P A)(, 这一类概率称为几何概率。
同样,如果在一条线段上投点,那么只需要将面积改为长度,如果在一个立方体内投点,则只需将面积改为体积。
例1:(会面问题)甲乙两人约定在6时到7时之间某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率。
解:以x 和y 分别表示甲乙约会的时间,则600,600≤≤≤≤y x 。
两人能会面的充要条件是15≤-y x 在平面上建立直角坐标系(如教材图)则(x,y )的所有可能结果是边长为60米的正方形,而可能会面的时间由图中阴影部分表示。
这是一个几何概率问题,由等可能性 167604560)(222=-==ΩS S A P A例2 蒲丰(Buffon )投针问题。
平面上画有等距离的平行线,平行线间的距离为a(a>0),向平面任意投掷一枚长为l(l<a)的针,试求针与平行线相交的概率。
解:假设x 表示针的中点与最近一条平行线的距离,又以ϕ表示针与此直线间的交角,有20ax ≤≤,πϕ≤≤0 由这两式可以确定ϕ,x 平面上的一个矩形 }0,20),({πϕϕ≤≤≤≤=Ωax x , 这时为了针与平行线相交,其条件为ϕsin 2lx ≤,由这个不等式表示的区域A 是图中的阴影部分 }sin 2,20),({ϕϕlx a x x A ≤≤≤=由等可能性可知 a la d lS S A P A ππϕϕπ22sin 2)(0===⎰Ω 若l,a 为已知,则以π值代入上式,即可计算得P (A )的值。
概率的基本概念与性质总结
概率的基本概念与性质总结概率是数学中一个重要的分支,用于描述随机事件发生的可能性。
通过对概率的研究,我们可以预测和解释各种自然和人为现象。
本文将总结概率的基本概念与性质,并探讨其在实际应用中的作用。
一、概率的基本概念1. 随机试验:指具有以下特点的试验,它的结果不确定,并且在相同条件下可以重复进行。
2. 样本空间:随机试验所有可能结果的集合,用S表示。
样本空间是随机试验的基本范围。
3. 事件:样本空间的子集称为事件,用A、B、C等表示。
事件是我们关注的实际结果。
4. 几何概率:指试验中一件事件发生的概率,用P(A)表示,其中P 代表概率,A为事件。
二、概率的性质1. 非负性:对于任意事件A,有P(A)≥0。
2. 规范性:对于样本空间S,有P(S)=1。
3. 可列可加性:对于任意两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B)。
4. 对立性:事件A的对立事件(即A不发生)为A',有P(A)+P(A')=1。
三、概率的计算方法1. 古典概型:指样本空间有限且所有结果发生的可能性相等的情况。
例如,掷硬币的结果只有正面和反面,概率为1/2。
2. 几何概型:指试验结果具有一定几何形状的情况。
例如,从半径为1的圆盘中等概率随机选择一点落在圆内的概率为π/4。
3. 统计概型:指通过统计方法估计概率的情况。
根据大数定律,当试验次数足够多时,试验结果逼近真实概率。
四、概率的应用1. 风险管理:概率的研究可以帮助我们评估和管理风险。
例如,在保险业中,根据历史数据和概率模型,可以预测保险事故的发生概率,从而制定相应的保险费率和赔偿政策。
2. 统计推断:概率在统计学中起到重要的作用。
通过对样本数据的统计分析,可以推断出总体的特征和参数,进而做出科学的决策和预测。
3. 金融市场:概率的研究对于金融市场的投资决策具有重要意义。
通过对市场行情的分析和模拟,可以评估不同投资策略的预期收益和风险,并制定相应的交易策略。
概率论与数理统计考点
《概率论与数理统计》 第一章 随机事件与概率事件之间的关系: 事件之间的运算: 运算法则:交换律A ∪B=B ∪A A ∩B=B ∩A结合律(A ∪B)∪C=A ∪(B ∪C) (A ∩B)∩C=A ∩(B ∩C) 分配律(A ∪B)∩C=(AC)∪(BC) (A ∩B)∪C=(A ∪C)∩(B ∪C) 对偶律 A ∪B ‾‾ =A ‾∩B ‾ A ∩B ‾‾ =A ‾∪B ‾ 古典概型: 概率公式:求逆公式 P(A ‾)=1- P(A)加法公式 P(A ∪B)=P(A)+P(B)-P(AB)P(A ∪B ∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) 求差公式:P(A-B)=P(A)-P(AB); 当A ⊃B 时,有P(A-B)=P(A)-P(B)注意: A-B = A B ‾ = A-AB = (A ∪B)-B条件概率公式:P(A|B)=P(AB)P(B); (P(B)>0)P(A|B)表示事件B 发生的条件下,事件A 发生的概率。
乘法公式:P(AB)=P(A)P(B|A)= P(B)P(A|B) (其中P(A)>0, P(B)>0) 一般有P(ABC)=P(A)P(B|A)P(C|AB) (其中P(AB)>0)全概率公式:P(A)= ∑i=1nP(A|B i )P(B i ) 其中B 1,B 2,…,B n 构成Ω的一个分斥。
贝叶斯公式:P(A k |B)= P(B|A k )P(A k )P(B) = P(B|A k )P(A k )∑i=1nP(B|A i )P(A i )(由果溯因)概论的性质:事件的独立性:如果事件A 与事件B 满足P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。
结论:1. 如果P(A)>0,则事件A 与B 独立⇔2. 事件A 与事件B 独立⇔事件A 与事件B ‾独立⇔事件A ‾与事件B 独立⇔事件A ‾与事件B ‾独立贝努里概型:指在相同条件下进行n 次试验;每次试验的结果有且仅有两种A 与A ‾;各次试验是相互独立;每次试验的结果发生的概率相同P(A)=p, P(A‾)=1-p 。
伊藤清概率论第一章
例如,由 R 的全体区间构成的族所生成的完全加法族为 Borel
集合族.再如,端点为有理数的全体区间构成的族也生成同一
个 Borel 集合族.R 上的完全加法族有很多种,但是 Borel 集合
族是最有用的一个.
将空间 Ω 与其子集构成的一个完全加法族 F 结合来考虑
时,所产生的序偶 (Ω, F ) 称为可测空间. 然而,当 Ω = R 时,通
4 第 1 章 概率论的基本概念
的测度 P ,称为 (Ω, F ) 上的概率测度. 对于 E ∈ F ,称 P (E) 为 E 的概率或 E 的P -测度.
将 Ω, F , P 一起考虑时,所产生的序偶 (Ω, F , P ) 称为概 率空间.
§2 概率空间的实际意义
针对想理解后面出现的定理含义的读者,这里有必要对前 一节定义的抽象概率空间在实际随机现象研究中的应用加以说 明,仅对推理感兴趣的读者另当别论.
k=1
3◦ 属于 F 的集合的余集也属于 F ,即若 E ∈ F ,则
2 第 1 章 概率论的基本概念
Ω−E ∈ F.
利用这三个条件,我们可以推出下列结论.
4◦ 空集 (今后用 ∅ 表示) 也属于 F .事实上,在 3◦ 中取
E = Ω 即可.
∞
5◦ 如果 E1, E2, E3, · · · ∈ F , 则 Ek ∈ F .
这个等式称为有限可加性. 以此类推,仅依靠形式的推理是不能导出完全可加性的. 将
概率的完全可加性作为基础来假设,是数学上的理想化模式. 你 渐渐地便能理解这种理想化不是与实际相悖的,反而是与其一 致的.
综合以上三个步骤的分析便获得概率空间 (Ω, F , P ).
§3 概率测度的简单性质
概率论的基本概论
第一章概率论的基本概论确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等随机现象:称某一现象是“随机的”,如果该现象(事件或实验)的结果是不能确切地预测的。
由此产生的概念有:随机现象,随机事件,随机实验。
例:有一位科学家,他通晓现有的所有学科,如果对一项实验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。
例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。
随机现象的结果(随机事件)的随机度如何解释或如何量化呢?这就要引入”概率”的概念。
概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。
§1.1 随机实验以上实验的共同特点是:1.实验可以在相同的条件下重复进行;2.实验的全部可能结果不止一个,并且在实验之前能明确知道所有的可能结果;3.每次实验必发生全部可能结果中的一个且仅发生一个,但某一次实验究竟发生哪一个可能结果在实验之前不能预言。
我们把对随机现象进行一次观察和实验统称为随机实验,它一定满足以上三个条件。
我们把满足上述三个条件的实验叫随机实验,简称实验,记E。
§1.2样本空间与随机事件(一) 样本空间与基本事件E的一个可能结果称为E的一个基本事件,记为ω,e等。
E的基本事件全体构成的集,称为E的样本空间,记为S或Ω, 即:S={ω|ω为E的基本事件},Ω={e}.注意:ω的完备性,互斥性特点。
例:§1.1中实验E 1--- E 7 E 1:S 1={H,T}E 2:S 2={ HHH,HHT,HTH,THH,HTT,THT,TTH,TTT }E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t0≥t }E 7:S 7={()y x ,10T y x T ≤≤≤}(二) 随机事件我们把实验 E 的全部可能结果中某一确定的部分称为随机事件。
概率论的基础知识
概论论的基础知识
6σ
目录
6s
第一部分 概率基础知识 第二部分 随机变量及其分布
概率基础知识
6s
事件
(一)随机现象
1、定义:在一定条件下,并不总是出现相同结果的现象称为随机现象。
随机现象的特点:
⑴随机现象的结果至少有两个;
⑵至于哪一个出现,事先人们并不知道。
2、样本点(抽样单元):随机现象中的每一个可能结果,称为一个样本点,又称为抽 样单元。
正态分布有两个参数和常记为n读作miu为分布的标准差随机变量及其分布常用连续分布正态分布09357随机变量及其分布常用连续分布正态分布2标准正态分布的一些运算公式随机变量及其分布常用连续分布正态分布随机变量及其分布常用连续分布正态分布2标准正态分布的分位数一般说来对任意介于0与1之间的实数标准正态分布n01的分位数是这样一个数它的左侧面积恰好为它的右侧面积恰好为1用概率的语言来说u的分位数u随机变量及其分布常用连续分布正态分布随机变量及其分布常用连续分布正态分布2正态分布的标准转化某产品的质量特性2008则最大值应为随机变量及其分布常用连续分布正态分布2正态分布的标准转化产品质量特性的不合格品率的计算1质量特性的分布在受控的情况下常为正态分布
3、样本空间:随机现象一切可能样本点的全体称为这个随机现象的样本空间,常记为 Ω (读Omega )。
一切可能发生 认识一个随机现象首要就是能罗列出它的
的基本结果。
概率基础知识
事件
[例]
⑴一天内进某超市的顾客数: Ω ={0,1,2,······}
⑵一顾客在超市购买的商品数: Ω ={0,1,2,······}
性质8:假如两个事件A与B相互独立,则在事件B发生的条件下,事件A发生的条件概 率P(A|B)等于事件A的(无条件)概率P(A)。
概论课知识点总结
概论课知识点总结概论课是大学阶段的一门基础必修课程,通过该课程的学习,可以为学生提供一些基础的学科知识和方法论,帮助学生建立全面系统的知识结构和思维方式,有利于提高学生的学科素养和分析问题的能力。
本文将对概论课知识点进行总结,包括但不限于自然科学、社会科学、人文科学等方面的基础知识。
一、自然科学1. 数学数学作为自然科学的一门重要基础学科,对于各种学科的研究都有重要的作用。
概论课程中,通常会涉及基本代数、几何、微积分、概率统计等数学知识,学生需要掌握这些基本数学概念和方法,为后续学科学习打下基础。
2. 物理学物理学是自然科学中一门基础学科,主要研究自然界的物理现象和规律。
概论课程中,通常会介绍一些基本的力学、热学、电磁学等物理概念,学生需要掌握这些基本物理知识,了解物质运动、能量转化、电磁波等基本规律。
3. 化学化学是自然科学中的一门基础学科,主要研究物质的结构、性质、变化规律。
概论课程中,通常会介绍一些基本的化学概念,如元素周期表、化学键、化学反应等,学生需要掌握这些基本化学知识,了解物质的基本组成和性质。
4. 生物学生物学是自然科学中的一门基础学科,主要研究生物的结构、功能、演化等现象和规律。
概论课程中,通常会介绍一些基本的生物学知识,如细胞结构、生物进化、生物分类等,学生需要掌握这些基本生物学知识,了解生命的基本组成和规律。
二、社会科学1. 经济学经济学是社会科学中的一门基础学科,主要研究资源的配置和利用、经济增长和分配等问题。
概论课程中,通常会介绍一些基本的经济学知识,如供求关系、市场结构、宏观经济政策等,学生需要掌握这些基本经济学知识,了解经济运行的基本规律。
2. 政治学政治学是社会科学中的一门基础学科,主要研究政治组织、行为和理论等问题。
概论课程中,通常会介绍一些基本的政治学知识,如政府组织、权力分立、民主制度等,学生需要掌握这些基本政治学知识,了解政治运行的基本规律。
3. 社会学社会学是社会科学中的一门基础学科,主要研究社会的结构、功能、变迁等问题。
《概率统计》PPT课件
后抽比先抽的确实吃亏吗?
“大家不必争先恐后,你们一个一个 按次序来,谁抽到‘入场券’的机会都 一样大.”
到底谁说的对呢?让我们用概率 论的知识来计算一下,每个人抽到“ 入场券”的概率到底有多大?
“先抽的人当然要比后抽的人抽到的机会大。”
我们用Ai表示“第i个人抽到入场券” i=1,2,3,4,5. 则 A 表示“第 i个人未抽到入场券” i 显然,P(A1)=1/5,P( A1)=4/5
P(A2)=0.4×0.5×(1-0.7)+0.5×0.7×(1-0.4)+ 0.4×0.7×(1-0.5)=0.41, P(A3)=0.4×0.5×0.7=0.14 P(B|A0)=0, P(B|A1)=0.2, P(B|A2)=0.6, P(B|A3)=1, 根据全概率公式有
P( B) P( B | Ai )P( Ai ) 0.458
P(Ai|B),表示症状B由Ai引起的概率 若P(Ai|B), i=1,2,…,n中,最大的一个是P(A1|B),
我们便认为A1是生病的主要原因,下面的关键是:
计算 P(Ai|B), i=1,2,…,n
P( Ai B) P( B | Ai ) P( Ai ) P( Ai | B) n Bayes公式 P( B) P( B | Ai ) P( Ai )
也就是说,
第1个人抽到入场券的概率是1/5.
由于 由乘法公式
A2 A1 A2
因为若第2个人抽到 了入场券,第1个人 肯定没抽到.
P ( A2 ) P ( A1 ) P ( A2 | A1 )
也就是要想第2个人抽到入场券,必须第1个人未 抽到, 计算得:
P(A2)= (4/5)(1/4)= 1/5
概率1.2
五、概率的几何定义
如果试验的所有可能结果为无限多个,每个试验 结果出现的可能性相等,古典定义就不适用,这时 可借助于几何上的度量 (比如面积,长度) 来合理地 规定的概率,称为概率的几何概型.
几何概型的特点: 有限区域、无限样本点; 等可能性.
定义1.2.4 概率的几何定义(几何概率)
在几何概型试验中,设样本空间为 ,事件 则事件A发生的概率为
0.0021
0.0016 0.0005 0.0002
维 尼
2. 概率的统计定义
定义1.2.2 事件A发生的频率 f n ( A) 在某常数 p 附近摆动,且 n越 大,摆动幅度越小,称常数 p为事件A的概率,记作
P A,
即
P A p.
因此,在实际应用中,当重复试验的次数较大时,可用 事件的频率作为概率的近似值.
则称P(A)为事件A的概率.
2. 概率的性质 性质 1 不可能事件的概率为0,即
P 0.
反之是否成立呢?即概率为0的事件一定不可能发生 吗?
概率为1的事件一定发生吗?
性质 2 (有限可加性)
若事件
A1 , A2 ,, An 两两互不相容,则
n n P Ai P Ai . i 1 i 1
60 x
六、 概率的公理化定义
1. 定义1.2.5 设随机试验E的样本空间为
, 对试验
E的任一随机事件A,定义实值函数P(A),若它满足以下三 个公理:
非负性:
规范性: 可列可加性:
P A 0; P 1;
对两两互不相容的事件
A1 , A2 ,,
有
P Ai P Ai , i 1 i 1
概率与统计的概念与性质总结
概率与统计的概念与性质总结概率与统计是现代科学中十分重要的学科。
概率论是一种数学分支,研究随机事件的可能性;而统计学则是一种应用概率论的工具,通过收集、分析和解释数据来揭示事物之间的关系。
本文旨在总结概率与统计的基本概念与性质,帮助读者更好地理解这两个学科。
一、概率的概念与性质1. 概率的定义概率是指某一事件发生的可能性。
用数值表示的概率介于0和1之间,其中0表示不可能事件,1表示必然事件。
概率的计算可以通过数学模型中的公式和方法,如频率概率、几何概率和主观概率。
2. 概率的性质概率具有以下几个基本性质:(1)互斥性:两个事件互斥时指它们不能同时发生,概率为0;(2)独立性:两个事件互相独立时,它们的发生不相互影响,概率可以通过乘法规则计算;(3)完备性:一组互斥事件的概率总和为1,即必然事件的概率。
二、统计的概念与性质1. 统计的定义统计指的是通过数据收集、整理、分析和解释来得出结论的过程。
统计学采用概率论的方法来研究随机事件的规律性,通过总体和样本的分析,得到关于总体特征的推断与判断。
2. 统计的性质统计具有以下几个基本性质:(1)抽样性:在统计过程中,通过对样本的抽取来推断总体特征,样本的选择要具有代表性;(2)可变性:统计结果会受到样本误差和随机性的影响,同样的样本可能得到不同的统计结论;(3)推断性:通过对样本数据的分析,在统计学上可以得出总体特征的推断和判断。
三、概率与统计的关系1. 概率与统计的联系概率和统计有着密切的联系,两者相辅相成:(1)概率为统计提供了基础:统计学中的随机事件发生概率的计算和概率分布函数的应用基于概率论;(2)统计为概率提供了应用:通过统计方法可以估计概率和参数,并根据数据进行概率模型的拟合和推断。
2. 概率与统计的应用概率与统计在许多领域有广泛的应用,包括但不限于以下几个方面:(1)风险管理与金融:通过概率统计的方法可以评估风险,分析金融市场的波动和预测;(2)医学与流行病学:通过统计学方法可以分析疾病的发生与传播规律,并为医疗决策提供依据;(3)工商管理与市场营销:通过统计学方法可以对市场需求进行预测与分析,进行市场调查和决策。
概论论与数理统计讲义 (5)
解: 根据假设 X~N(10.05,0.062),记 a=10.05-0.12,
b=10.05+0.12,则
P{螺栓为合格品} = P{a X b} (b ) (a )
=Φ(2)-Φ(-2) =2Φ(2)-1
=2×0.9772-1=0.9544
概率密度的性质
特征性质:
1 o f (x) 0
2 o f (x)dx 1
【注】这两条性质是判定一个 函数 f(x)是否为某随机变量X 的
概率密度的充要条件
几何意义:
f(x)
面积为1
x
0
其他性质:
1) 对于任意区间(a, b], 有
b
P{a X b} a f ( x)dx
几何意义:
可计算X落在(a, b] 内的概率
3) 对连续型随机变量X , 有
P(a X b) P(a X b)
b
P(a X b) P(a X b) f (x)dx a
几何意义:
f(x)
b
f (x)dx S
a
x
0a
b
例1:设随机变量 X 的概率密度为
f
(
x)
a
cos
x
0
x
2 其它
求 P(0 X )
4
x
x
(3)
F(x)
右连续,即
lim
x x0
F
(
x)
F
(
x0
)
以上三条随机变量的分布函数的特征性质.
离散型随机变量的分布函数
设离散型随机变量 X 的分布律是
P{ X=xk } = pk , k =1,2,3,…
概率论数数理统计论文1
2.1.1 随机事件内涵 随机事件是指在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种 规律性的事件叫做随机事件(简称事件)。随机事件通常用大写英文字母 A、B、C 等表示。 在概率论中,把具有以下三个特征的试验称为随机试验: (1) 可以在相同的条件下重复地进行 (2) 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果; (3) 进行一次试验之前不能确定哪一个结果 会出现. 2.1.2 随机现象 自然界所观察到的现象叫做随机现象, 随机现象可分为确定性现象和随机现象。 其中确 定性现象是指在一定条件下必然发生的现象,比如太阳不会从西边升起,人一定会死等。显 著特征是出现的结果取决于条件; 随机现象是指在一定条件下可能出现也可能不出现的现象, 比如在相同条件下掷一枚均匀的硬币,观察正反两面出现的情况:P(A)=正面或者 P(A) =反面 2.2 古典概型 17世纪,随着赌博在西欧的盛行,的正是源自赌博的问题。 研究这些赌博问题的意义, 并不在于解决了这些问题 本身,而在于人们借助对这些问题的研究,开始逐步深入理解概率的某些性质,并最终导致 概率论的诞生。 最著名的是帕斯卡与费马的通信, 他们之间的通信开创了用数学方法研究和 思考 概率问题的先河,他们被认为是概率论的启幕者。尤其是帕斯卡的工作蕴涵了概 率论“数学期望”的重要思想。这种思想成为后来惠更斯概率论工作中的一个基本思想,并 在以后相当长的时间里在古典概率论的研究中起着重要的作用。 因此读概率论发展历史的研 究既有着重要意义, 也充满了乐趣, 于是笔者对概率论几个重要时期的发展进行了简要总结 归纳。 2.2.1 古典概型内涵 古典概型是指(1)试验的样本空间只包含有限个样本点;(2)试验中每个基本事件发生 的可能性相同;同时具备以上条件的试验叫做古典概型。其样本空间可以表示为: Ω ={a1,a2,a3,a4„„an},他的每一个基本事件发生的概率都相同,为 1/n。 2.2.2 几种典型的古典概型
概论公式
第一章随机事件和概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
第二章随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验单正态总体均值和方差的假设检验。
《概率的基本性质》课件
组合公式
C(n, r) = n! / (r! x (n - r)!)
结论
概率的基本性质包括非负性、规范性、单调性,以及加法公式和积法公式。 独立事件、条件概率、排列与组合等是概率理论的重要内容。
此外,概率理论还有许多其他实际应用,如风险评估、投资分析、模型预测 等。
排列与组合
• 排列是指从n个元素中选取r个元素,考虑元素顺序的不同排列方式。 • 组合是指从n个元素中选取r个元素,不考虑元素顺序的不同组合方式。
排列定义
从n个元素中选取r个 元素,考虑元素顺序 的不同排列方式。
组合定义
从n个元素中选取r个 元素,不考虑元素顺 序的不同组合方式。
排列公式
P(n, r) = n! / (n - r)!
独立事件
独立事件是指两个或多个事件之间相互不影响的事件。 • 独立事件的概率等于各事件概率的乘积。
独立事件举例
抛两个骰子,第一个骰子得到6的概率是1/6,第二个骰子得到4的概率也是1/6,两个事件 同时发生的概率为1/36。
独立事件公式
P(A and B) = P(A) x P(B)
条件概率
条件概率是在已知事件B发生的条件下,事件A发生的概率。 • 条件概率公式:P(A|B) = P(A and B) / P(B) • 全概率公式:P(A) = P(A and B1) + P(A and B2) + ... + P(A and Bn) • 贝叶斯公式:P(Bi|A) = [P(A|Bi) x P(Bi)] / [P(A|B1) x P(B1) + P(A|B2) x P(B2) + ... + P(A|Bn) x P(Bn)]
几何概率
概率论
1第一章 随机事件及其概率第一节 随机事件一. 必然现象与随机现象在自然界里,在生产实践和科学实验中,人们观察到的现象大体可归结为两种类型。
一类是可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或是根据它过去的状态,在相同条件下完全可以预言将来的发展。
我们把这一类型现象称之为确定性现象或必然现象。
如在一个大气压下,水在100度时会沸腾等。
一类是事前不可预言的,即在相同条件下重复进行试验,每次结果未必相同;或是知道它过去状况,在相同条件下,未来的发展事前却不能完全肯定。
这一类型的现象我们称之为偶然性现象或随机现象。
如掷一个质地均匀的硬币,结果可能是正面向上,或是背面向上。
二. 样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为ω;它们的全体称为样本空间, 记为Ω.事件 是指某一可观察特征的随机试验的结果。
基本事件是相对观察目的而言不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.如掷一枚骰子,向上的一面会出现1点,2点,3点,4点,5点,6点。
则样本点有6个。
若记,16i i i ω=≤≤,i ω即为样本点。
样本空间为123456{,,,,,}ωωωωωωΩ=。
记{}i i A ω=,i A 为一个基本事件,把“出现偶数点”这样一个事件记为B ,则246{,,}B ωωω=。
B 为一个复合事件。
三. 事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,第二节 随机事件的概率一. 概率的定义定义1 设E 是随机试验, Ω是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件:1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:()1P Ω=;3. 可列可加性:设 ,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i AP A P2则称)(A P 为事件A 的概率.二. 概率的性质性质1:()0P ∅=。
概率论.pdf
考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@参考教材概率论与数理统计第四版(浙江大学主编)重要定理、性质、公式、结论经典例题、重要例题及不需要做的题目第一章概率论的基本概念(考小题)第一节随机试验(了解)第二节样本空间,随机事件(了解)第三节频率与概率(频率可以不用看,了解)第四节等可能概率(古典概论)(难点非重点,做一些基本题即可)第五节条件概率(重要,考小题为主,考大题有时会用到)第六节独立性(重要,考小题为主,大题经常会用到)第二章随机变量及其分布(至少考小题,考大题一定会用到)第一节随机变量(了解)第二节离散型随机变量及其分布律(重要,经常考)第三节随机变量的分布函数(重要,每年必考)第四节连续型随机变量及其概率密度(重要,每年必考)第五节随机变量的函数分布(重要,大题的命题点)第三章多维随机变量及其分布(考大题可能性极大)第一节二维随机变量(了解)第二节边缘分布(理解)第三节条件分布(理解)第四节概率独立的随机变量(重要,基本每年必考)第五节两个随机变量函数的分布(重要,大题的经典命题点)第四章随机变量的数字特征(重要)第一节数学期望(重要,每年必考)第二节方差(重要,每年必考)第三节协方差与相关系数(重要,经常考)第四节矩,协方差矩阵(矩,了解,协方差矩阵不用看).第五章大数定律及中心极限定理(了解)第一节大数定律(了解,关注定律的前提条件与结论)第二节中心极限定理(了解,关注定理的前提条件与结论)考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@第六章样本及抽样分布(考小题为主)第一随机样本(了解,其中有重要概念,简单随机样本)第二直方图和箱线图(重要,考小题)第三抽样分布(重要,考小题)第七章参数估计(重要,考大题经典章节)第一节点估计(极其重要,矩估计:重点非难点,最大似然估计(重点且难点))第二节基于截尾样本的最大似然估计(不用看)第三节估计量的评选标准(数一重要,数三不用看)第四区间估计(数一理解,考的比较少)第五正态总体均值与方差的区间估计(数一理解,考的比较少)第六(0-1)分布参数的区间估计(不用看)第七单侧置信区间(理解,一般不考)(第四-第七,只有数一考,数三均不用看)第八章假设检验(理解,一般不考,只有数一有要求,数三不考)第一假设检验(理解)第二正态总体均值的假设检验(理解)第三正态总体方差的假设检验(理解)第四,第五,第六,第七,第八(均不用看).考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@考研数学概率统计的重点难点必考点及重要例题和习题不用做的例题和习题第一章概率论的基本概念P3最后4行的小写字体不用看P5例3不用做(一)频率不用看P6-7 例 1 与例 2 均不用做,P7 概率重点看P9 等可能概率一般都不单独考,考大题经常会用到,P13 例 6 不用做,P14 例 8 不用做 P14 条件概率重点看,P15 例 2 不用做,P16 例 3 不用做,P17 例 4 重点做P17(三)全概率公式和贝叶斯公式为难点P19例5不用做,P20独立性为考研数学的绝对重点,P22例2与例3均不用做P23例4重点做P24-29 不用做的习题是 1、5、6、10、12、15、16、18、19、20、21、23、25、26、29、32、34、35、38、39、40第二章随机变量及其分布P30 例 1 不用看P37 泊松定理只需要记住结论,证明可以不用看P38 随机变量的分布函数为考研必考概念P42 连续性随机变量概率密度为考研必考点P50 随机变量的函数的分布是考大题的重要命题点P53 例 5 不用做P55-59 不用做的习题 1、5、6、7、9、10、11、13、15、16、19、22、27、28、30、31、38、39第三章多位随机变量及其分布P63 性质 4 的解释不用看P65 例 1 不用做,P66 例 3 重点做一下(提升计算能力)P68 例 1 不用做,P72 相互独立的随机变量为重点章节P76 两个随机变量的函数的分布为考大题的重要备考章节P78 例 3 不用做,P81 例 5 不用做P84-89 不用做的习题是 3、6、7、10、11、12、13、28、31第四章随机变量的数字特征P91 例 1 不用做,P92 例 3 与例 4 不用做,P93 例 5 不用做P95 中间的证明不用看,P96 例 8 与例 10 不用做P97 例 11 不用做,P100 例 13 不用做,P105 不用做P107 XY的两条重要性质的推导及含义不用看考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@P108 只需要看前四行即只需要记住定理 4 证明可以不用看P109 例 2 重点做(提升计算能力)P110 矩为一般考点,协方差矩阵不用看P113-118 不用做的习题是 1.4.5.12.13.15.16.18.19.22.23.24.35.36.37.38第五章大数定律及中心极限定理(难点非重点)P124 例 1 不用做P126-127 不用做的习题是 2、4、5、10、11、13第六章样本及抽样分布(一般考点考小题)P130 第四行简单随机样本为重要概念P130 第二节直方图和箱线图不用看P135 第三节抽样分布(考小题),P136 统计量定义及几个常见统计量要重点看而且要牢记其表达式P137 经验分布函数只有数三同学稍微了解P138-141 数理统计所有的三大分布的典型模式要牢记但三种分布的概率密度表达式可以不用记P145-147 定理 2 的证明与推广均不用看P147-148 不用做的习题是 1、5、6、10、11第七章参数估计(数一数三的绝对的重点和难点)P149 点估计数一数三的绝对重点矩估计重点非难点,最大似然估计重点且难点P163-155 例 4 例 5 例 6 重点做P156-158 第二节基于截尾样本的最大似然估计不用看P158 估计量的评选标准数一重点看,数三大纲上虽然没有但建议数三看一下最好P161-168 区间估计,正态总体均值与方差的区间估计,只有数一看,为一般考点P168 0-1 分布参数的区间估计数一数三均不用看P169 单侧置信区间,只有数一看,为一般考点P193-177 数三不用做的习题为 4(3)、6、7、8、9、10、11-27 均不用做数一不用做的习题为4(3)、6、7、8、9、15、17、20、21、22、23、26、27第八章假设检验(数一特有的考点,难点非重点)数一只需要看前四节P178-193从第五节以后均不需要看P218-223 习题只需要做 1、2、3、4 其余的题目可以不用做考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P( A) m n
A包含的基本事件总数 样本空间的基本事件总数
称之为古典概型公式
例4:一位常饮奶茶的女士称:她能从一杯冲好的 奶茶中辨别出该奶茶是先放牛奶还是先放茶 冲制而成. 做了10次测试,结果是她都正确 地辨别出来了。问该女士的说法是否可信?
此题运用了小概率原理: 概率很小的事件在一次试验 中是几乎不可能发生的.
i 1
i 1
1i jn
P( Ai Aj Ak ) (1)n1 P( A1 A2 An )
1i jk n
性质4:若事件 A 与事件 B 互不相容,则
P( A B) P( A) P(B)—加法公式的特殊情形 推广:若 A1, A2,, An 两两互不相容,则:
P(A1 A2 An ) P(A1) P(A2 ) P(An )
一、频率
定义:设在相同条件下,重复进行了 n 次试验,若随
机事件
A 这
n
次试验中发生了
n
次,则比值
A
fn ( A) nA / n
称为事件 A在 n 次试验中发生的频率,其中nA
称为事件 A 发生的频数.
如:做投掷一枚质地均匀硬币试验,以下结果是历史 上科学家观察出现正面情况.
实验者
德摩根 蒲丰 皮尔逊 皮尔逊 维尼
有关小概率问题一资料:
练习
1:将所有的两位数逐一的写在卡片上,从中任 意抽取一张卡片,求这张卡片上的数字能被 2或能被3整除的概率?
2:设有同类产品6件,其中4件是合格品,2件 是不合格品,从中任意抽取2件,求抽得合 格品与不合格品各一件的概率?
3:10把钥匙中有3把钥匙能打开门锁,任取2把 钥匙,求能打开门锁的概率.
掷硬币次 数 2048 4040 12000 24000 30000
出现正面 次数 1061 2048 6019 12012 14994
频率
0.518 0.5069 0.5016 0.5005 0.4998
结论:⑴直观方面:当投掷次数n很大时,出现正 面的频率总在0.5附近摆动,且随着投掷 次数的增加这种摆动的幅度是很微小的;
①非负性:对任意 A , P( A) 0
②规范性: P() 1
③可列可加性:有对任P意( 可 列Ai个) 两两 互P斥( A的i )事件A1,, An ,
i 1
i 1
三、概率的性质
性质1:P() 0, P() 1
性质2:对任意事件 A ,0 P( A) 1 性质3:对任意两个事件 A与 B ,有
四、古典概型
定义:具有下列两个特征的概率称为古典概型 (或等可能概型)
⑴有限性:试验的样本空间中的元素只有有 限个,即基本事件的数目有限;
⑵等可能性:试验中各个基本事件(样本点) 发生的可能性相同.
古典概型的计算
若随机试验 E的样本空间中基本事件的总数为 n,而事件 A 所包含的基本事件数为 m,则事件 A
二、概率的定义
1、概率的统计定义:
在相同的条件下做 n 次试验,将事件 A的频率 fn ( A) 随 n 增大将稳定的围绕某个常数 p 波动,且 波动的幅度越来越小,我们定义这个常数 p 为事件 A 发生的概率,记为 P(A) p
注:频率与概率的区别 ⑴频率具有随机波动性, 是一个变数,而概率是一 个常数,事件A发生的概率完全取决于事件本身, 是客观存在的;
⑵概率的统计定义只是一种描述,它指出了事件的概 率是客观存在的,随着试验次数的增加,频率在概 率附近摆动. 因此,在实际问题中,当试验的次数 n很大时,频率通常作为概率的近似值.
2、概率的公理化定义:设试验 E 的样本空间为Ω, 对于E的每一事件A,都赋予一个实数P(A),若集 合函数P满足下列条件,则称P(A)为事件A的概率
P(A B) P(A) P(B) P(AB)
称该性质为概率的加法公式.
推广:若对任意三个事件 A, B,C ,有 P(A B C) P(A) P(B) P(C)
P(AB) P(BC) P(AC) P(ABC)
一般地:
n
n
P( Ai ) P( Ai )
P( Ai Aj )
第一章 随机事件与概率
1.3 概率及其性质
研究随机现象,不仅需要关心试验中会出 现哪些事件,更需要知道这些事件出现的 可能性.
如何刻画事件的可能性?
概率是随机事件 发生可能性大小 的度量
事件发生的可能性 越大,概率就 越大!
1.3节需要弄清楚下述问题:
1、频率的定义、计算方法、性质是什么? 2、概率的统计定义与公理化定义各是什么? 3、概率的性质有哪些?运用时需注意哪些条件? 4、古典概率的定义及计算方法?
注:A B AB
例2:设事件 A, B 发生的概率分别为 1 , 1 ,试依据
下述情况求 P( AB)
43
⑴ A, B 互斥 ⑵ A B ⑶ P( AB) 1 8
例3:根据天气预报,明天甲城市下雨的概率为0.7, 乙城市下雨的概率为0.2,甲、乙两城市同时 下雨的概率为0.1,求下列事件的概率: ⑴明天甲城市下雨而乙城市不下雨; ⑵明天至少有一城市下雨; ⑶明天甲、乙两城市都不下雨; ⑷明天至少有一城市不下雨.
此性质称为概率的有限可加性
性质5:对事件 A 与其对立事件 A,有
P( A) 1 P( A)
性质6:对任意两个事件 A, B ,有: P(A B) P(A) P(AB)
且若 A B ,则有: P(A B) P(A) P(B)
称该性质为概率的减法公式.
例1:设 P(A) p, P(B) q, P(A B) r 求:P( AB), P( AB), P( A B)
⑵频率具有稳定性:条件不变重复进行n次试验,
事件 A的频率 fn ( A),当n增大时一般地将
稳定在某个常数附近.
频率的性质
⑴非负性,即:对任何事件 A ,均有
0 fn (A) 1 ⑵归一性,即: fn () 1 ⑶可加性,任意 m个互不相容事件 A1, A2,, An
满足 fn (A1 A2 An ) fn (A1) fn (An )