概率论基础PPT
合集下载
应用统计学第4章概率论基础
4
市场调查和预测分析估计,产品上市后销售量将达到生产 能力的 80% 以上(畅销)、 50% ~ 80% (销售一般)、不足 50%(滞销)的可能性分别为40%、30%、30%。 另经财务部门所作的财务预测分析,在产品出现”滞销”、” 一般”和”畅销”三种销售状况下,该项目投产后的年净现 金流量将分别为100万元、600万元和1000万元。 考虑到筹资成本和资金的机会成本,贴现率应取6%。
8
以上案例属于“有追加信息的风险型决策”问题,案 例的分析需要用到一些概率知识,包括条件概率、全概率 公式、贝叶斯公式和数学期望等,以及项目净现值等知识。 在本章的最后一节,我们将运用所学的概率知识对该例进 行分析,并且还将讨论信息的价值问题。
9
§4.1 随机试验与随机事件
一.随机试验
人们在研究经济管理以及其他社会问题中,通常总是通过 调查或对社会现象的观察来获取所研究问题的有关数据;在 自然科学领域中,人们也是通过科学实验或对自然现象的观 察来获取所需要的资料。 对社会现象的观察和对自然现象的科学实验在概率论和统 计学中都统称为试验。如果试验可在相同的条件下重复进行, 而且试验的结果不止一个,每次试验前不能确定将会出现哪 一结果,这样的试验就称为随机试验,简称试验。 例如,在一批产品中任意抽取一件进行检验;企业市场调 查人员就本企业的产品和服务进行的用户满意度调查;对某 产品进行的寿命试验等等都是随机试验。
6
销售部经理认为,为减少决策风险,应根据对用户试用 反馈情况进行分析后再作是否投资生产该洗衣机的决定。 销售部经理还提供了过去许多企业在产品正式投产之前采 用类似试用或试销方法的用户反馈结果与产品正式生产上 市后销售状况之间的统计数据,见表1 表1 销售状况与试用结果间的统计资料
市场调查和预测分析估计,产品上市后销售量将达到生产 能力的 80% 以上(畅销)、 50% ~ 80% (销售一般)、不足 50%(滞销)的可能性分别为40%、30%、30%。 另经财务部门所作的财务预测分析,在产品出现”滞销”、” 一般”和”畅销”三种销售状况下,该项目投产后的年净现 金流量将分别为100万元、600万元和1000万元。 考虑到筹资成本和资金的机会成本,贴现率应取6%。
8
以上案例属于“有追加信息的风险型决策”问题,案 例的分析需要用到一些概率知识,包括条件概率、全概率 公式、贝叶斯公式和数学期望等,以及项目净现值等知识。 在本章的最后一节,我们将运用所学的概率知识对该例进 行分析,并且还将讨论信息的价值问题。
9
§4.1 随机试验与随机事件
一.随机试验
人们在研究经济管理以及其他社会问题中,通常总是通过 调查或对社会现象的观察来获取所研究问题的有关数据;在 自然科学领域中,人们也是通过科学实验或对自然现象的观 察来获取所需要的资料。 对社会现象的观察和对自然现象的科学实验在概率论和统 计学中都统称为试验。如果试验可在相同的条件下重复进行, 而且试验的结果不止一个,每次试验前不能确定将会出现哪 一结果,这样的试验就称为随机试验,简称试验。 例如,在一批产品中任意抽取一件进行检验;企业市场调 查人员就本企业的产品和服务进行的用户满意度调查;对某 产品进行的寿命试验等等都是随机试验。
6
销售部经理认为,为减少决策风险,应根据对用户试用 反馈情况进行分析后再作是否投资生产该洗衣机的决定。 销售部经理还提供了过去许多企业在产品正式投产之前采 用类似试用或试销方法的用户反馈结果与产品正式生产上 市后销售状况之间的统计数据,见表1 表1 销售状况与试用结果间的统计资料
概率论基础
新的信息
应用 贝叶斯定理
修正后概率
21
贝叶斯定理公式 Bayes’ Theorem Formula
P(Bi | A)
=
P(A | Bi) P(Bi) P(A | B1) P(B1) + ... + P(A | Bk )P(Bk )
相同事件
P(Bi A) P(A)
所有的 Bi 都代 表同一个事件 ( 例如, B2)!
颜色
红色 黑色
2
2
24 24
26 26
总计 4 48 52
P(A牌 且 黑色) = P(A牌) P(黑色| A牌) = (4/52) (2/4) = 2/52 = 1/26
20
贝叶斯定理 Bayes’ Theorem
1. 可以根据新的信 息 修正旧的概率
2. 条件概率的应用 3. 互斥事件
先前的概率
情景:
3间车库,其中有一间有车。门关着,但 主持人知道哪一间车库有车。
1、主持人请你挑选一间有车的车库。 2、当你选定后,主持人打开一间空车库。
然后,问你是否要改变你的选择。
3、此时改变你的选择是否会增大选中有车 的车库的机率?
26
选1号库 p =1/3
改变 不变
P(改变/选1)= 0 P(不变/选1)=1
事件
Bi B1 B2
先前 条件 概率 概率
联合 概率
P(Bi) P(A|Bi) P(Bi A)
修正后 概率
P(Bi |A)
.5 X .4 = .20 .20/.25 = .8
.5
.1
.05 .05/.25 = .2
1.0
P(A) = 0.25 1.0
偿还
应用 贝叶斯定理
修正后概率
21
贝叶斯定理公式 Bayes’ Theorem Formula
P(Bi | A)
=
P(A | Bi) P(Bi) P(A | B1) P(B1) + ... + P(A | Bk )P(Bk )
相同事件
P(Bi A) P(A)
所有的 Bi 都代 表同一个事件 ( 例如, B2)!
颜色
红色 黑色
2
2
24 24
26 26
总计 4 48 52
P(A牌 且 黑色) = P(A牌) P(黑色| A牌) = (4/52) (2/4) = 2/52 = 1/26
20
贝叶斯定理 Bayes’ Theorem
1. 可以根据新的信 息 修正旧的概率
2. 条件概率的应用 3. 互斥事件
先前的概率
情景:
3间车库,其中有一间有车。门关着,但 主持人知道哪一间车库有车。
1、主持人请你挑选一间有车的车库。 2、当你选定后,主持人打开一间空车库。
然后,问你是否要改变你的选择。
3、此时改变你的选择是否会增大选中有车 的车库的机率?
26
选1号库 p =1/3
改变 不变
P(改变/选1)= 0 P(不变/选1)=1
事件
Bi B1 B2
先前 条件 概率 概率
联合 概率
P(Bi) P(A|Bi) P(Bi A)
修正后 概率
P(Bi |A)
.5 X .4 = .20 .20/.25 = .8
.5
.1
.05 .05/.25 = .2
1.0
P(A) = 0.25 1.0
偿还
概率论基础知识
§4 条件概率与乘法公式
一、条件概率: 事件B发生的条件下事件A发生的概率,定义为
P( AB ) P( B ) P( A | B ) 0, P( A | B )
(当 P( B ) 0 时). (当 P( B ) 0 时).
注: (1) 条件概率 P( A | B ) 实际上是在缩小的样本空间 B 上 求 A 发生的概率 : K P( A | B ) AB ; NB 而无条件概率P( A) 是在原样本空间 内求 A 发生的概率 : K P( A) A N
§5 事件的独立性
若一个事件发生的概率不受另一事件发生的影响,
则称这两个事件是相互独立的。或者说,若 P(B|A)=P(B), 则称 A 与 B 相互独立。 注:事件A与 B 相互独立当且仅当 P(AB)=P(A) P(B).
例9 某厂生产的100个零件中有5个次品,采用有放回抽样,求 抽出的第 1 件为正品且第 2 件是次品的概率,及第二次抽到次 品的概率。 解:设 A为第一次抽到的是正品;B为第二次抽到的是次品。
(6) 互不相容事件(互斥事件): 若A ∩ B= ,则称事件A与事件B 是互不相容的。互不相容事件不可能同时发生。 (7) 事件的差:属于事件A 但不属于事件B 的样本点构成的集 合, 称为事件A与事件B 的差,记为 A-B。事件A-B 发生当且 仅当事件A 发生但事件B不发生。 注:A B AB;
概率论基础知识
§1. 概率论中的基本概念
一、随机试验、样本空间和事件
1.随机试验:具有两个或两个以上可能的结果,但事先无法确定会出 现哪个结果的观察或试验。如投掷一枚硬币可能出现正面或反面;明 天的天气可能是阴、晴或雨;每天到达某一商店的顾客数;某商场的 月销售额;某时段到达一个电话交换机的呼叫次数,等等,观察或统 计这些现象的结果,就是在进行随机试验。 2. 样本与样本空间:随机试验可能产生的各个不同结果都称为样本, 由所有样本组成的集合称为该随机试验的样本空间,通常记为。 3. 随机事件(简称事件):样本空间的任一个子集合都称为这个样本 空间上的一个随机事件。当随机事件中所含的任何一个样本出现时, 便称该事件发生了。 注: (1) 整个样本空间作为一个事件,称为必然事件。
概率论高等院校概率论课件
应用场景
强大数定律在统计学中用于 估计极端事件发生的概率和 风险,在决策理论中用于评 估最优策略和期望收益,在 可靠性工程中用于分析系统 的可靠性和寿命。
注意事项
强大数定律的应用有一定的 限制条件,例如随机序列必 须是独立同分布的。此外, 强大数定律并不能保证每个 随机事件的绝对正确性,而 只是给出了最大值分布的稳 定性。
连续随机过程
如布朗运动,每一步都是连续 的,每一步的状态都是连续的
。
随机游走与布朗运动
随机游走
一个随机过程,其中每一步都是随机的,通 常用来描述粒子的无规则运动。
布朗运动
一种连续随机过程,由大量微小粒子在流体 中无规则运动产生,通常用来描述微观粒子 的运动。
马尔科夫链与马尔科夫过程
马尔科夫链
一个随机过程,其中下一个状态只依赖于当前状态,与过去状态 无关。
注意事项
大数定律的前提是试验次数必须足够多,并且随 机事件之间必须是独立的。此外,大数定律并不 能保证每个随机事件的绝对正确性,而只是给出 了频率趋于概率的稳定性。
强大数定律
总结词
强大数定律是概率论中的重 要定理之一,它描述了随机 序列中最大值的分布性质。
详细描述
强大数定律指出,对于任意 给定的正整数序列$a_n$和 $b_n$,有$lim_{n to infty} frac{a_n}{b_n} = 1$的概率 为1。这个定理说明了随机 序列中最大值的分布具有很 强的稳定性。
随机变量的性质
随机变量具有可测性、可加性和有限 可加性。
离散型随机变量及其分布
离散型随机变量的定义
离散型随机变量是在样本空间中取有 限个或可数个值的随机变量。
离散型随机变量的分布
《概率论基础》课件
《概率论基础》PPT课件
本课程将为您介绍概率论的基础知识,包括概率的基本概念、性质,常见的 概率模型,概率计算方法以及在实际问题中的应用。
课程介绍
欢迎参加《概率论基础》课程!它将帮助您理解概率论的重要性以及其在实 际生活中的应用。
在本课程中,您将学习概率的基本概念、概率的性质,以及如何使用概率模 型解决实际问题。
天气预报
探索概率在天气预报中的应 用。
医学研究
学习如何使用概率在医学研 究中进行数据分析。
总结和回顾
感谢您参加《概率论基础》课程!在本课程中,我们深入学习了概率的基本概念、性质,常见的 概率模型,概率计算方法以及概率在实际问题中的应用。 希望您通过本课程的学习,加深对概率论的理解,并能将其应用于实际生活和工作中。
连续概率分布
了解连续概率分布,如 正态分布和指数分布。
混合概率模型
探索混合概率模型和它 们的应用。
概率计算方法
1
排列组合
学习如何使用排列和组合计算概率。
条件概率树
2
掌握使用条件概率树解决复杂问题
的方法。
3
贝叶斯定理
了解贝叶斯定理在概率计算中的重 要性。
概率在实际问题中的应用
股票市场
了解如何使用概率计算股票 行情和投资决策。
概率的基本概念
1 随机事件
了解随机事件的定义和特征。
3 事件的概率
学习如何计算事件的概率。
2 样本空间
掌握样本空间的概念和表示方法。Βιβλιοθήκη 概率的性质互斥事件
研究互斥事件的特性和计算 方法。
独立事件
条件概率
探讨独立事件的概念和性质。
学习如何计算条件概率和应 用。
常见的概率模型
本课程将为您介绍概率论的基础知识,包括概率的基本概念、性质,常见的 概率模型,概率计算方法以及在实际问题中的应用。
课程介绍
欢迎参加《概率论基础》课程!它将帮助您理解概率论的重要性以及其在实 际生活中的应用。
在本课程中,您将学习概率的基本概念、概率的性质,以及如何使用概率模 型解决实际问题。
天气预报
探索概率在天气预报中的应 用。
医学研究
学习如何使用概率在医学研 究中进行数据分析。
总结和回顾
感谢您参加《概率论基础》课程!在本课程中,我们深入学习了概率的基本概念、性质,常见的 概率模型,概率计算方法以及概率在实际问题中的应用。 希望您通过本课程的学习,加深对概率论的理解,并能将其应用于实际生活和工作中。
连续概率分布
了解连续概率分布,如 正态分布和指数分布。
混合概率模型
探索混合概率模型和它 们的应用。
概率计算方法
1
排列组合
学习如何使用排列和组合计算概率。
条件概率树
2
掌握使用条件概率树解决复杂问题
的方法。
3
贝叶斯定理
了解贝叶斯定理在概率计算中的重 要性。
概率在实际问题中的应用
股票市场
了解如何使用概率计算股票 行情和投资决策。
概率的基本概念
1 随机事件
了解随机事件的定义和特征。
3 事件的概率
学习如何计算事件的概率。
2 样本空间
掌握样本空间的概念和表示方法。Βιβλιοθήκη 概率的性质互斥事件
研究互斥事件的特性和计算 方法。
独立事件
条件概率
探讨独立事件的概念和性质。
学习如何计算条件概率和应 用。
常见的概率模型
1 概率论(基础)
2014-2-26 教育统计与质量评价 微信:wxkzzaw 7
概率论与数理统计是研究和揭示随机现象统
计规律性的一门学科,是重要的一个数学分支。 它在经济、科技、教育、管理和军事等方面已 得到广泛应用。
2014-2-26
教育统计与质量评价
微信:wxkzzaw 8
随机实验例子
E1 抛一枚硬币,分别用“H” 和“T” 表示出
A
B
C
2014-2-26
教育统计与质量评价
微信:wxkzzaw 10
1.2 频率的定义与性质
1.2.1 定义 在相同的条件下,进行了n次试验, 在这n次
试验中,事件A发生的次数nA称为事件A发生 的次数或频数。 比值nA/n称为事件A发生的频率,并记成 fn(A) 。
2014-2-26
教育统计与质量评价
概率论起源于16世纪;17世纪中期,惠更斯
(Huyghens)发表的《论赌博中的计算》标 志着概率论的诞生;19世纪,拉普拉斯 (Laplace)所著的《概率的分析理论》实现 了从组合技巧向分析技巧的过渡,开辟了概率 论发展的新时期;1933年,柯尔莫哥洛夫 (Kolmogorov)提出了概率的公理化定义, 概率论成为一门严密的演绎科学;现代概率论 应用于几乎所有的科学领域。
微信:wxkzzaw 13
教育统计与质量评价
历史上一些著名的掷硬币实验
实验者 德•摩根 n 2048 nH 1061 fn(H) 0.5181
蒲 丰
K •皮尔逊 K •皮尔逊
2014-2-26
4040
12000 24000
2048
6019 12012
0.50Hale Waihona Puke 90.5016 0.5005
概率论与数理统计是研究和揭示随机现象统
计规律性的一门学科,是重要的一个数学分支。 它在经济、科技、教育、管理和军事等方面已 得到广泛应用。
2014-2-26
教育统计与质量评价
微信:wxkzzaw 8
随机实验例子
E1 抛一枚硬币,分别用“H” 和“T” 表示出
A
B
C
2014-2-26
教育统计与质量评价
微信:wxkzzaw 10
1.2 频率的定义与性质
1.2.1 定义 在相同的条件下,进行了n次试验, 在这n次
试验中,事件A发生的次数nA称为事件A发生 的次数或频数。 比值nA/n称为事件A发生的频率,并记成 fn(A) 。
2014-2-26
教育统计与质量评价
概率论起源于16世纪;17世纪中期,惠更斯
(Huyghens)发表的《论赌博中的计算》标 志着概率论的诞生;19世纪,拉普拉斯 (Laplace)所著的《概率的分析理论》实现 了从组合技巧向分析技巧的过渡,开辟了概率 论发展的新时期;1933年,柯尔莫哥洛夫 (Kolmogorov)提出了概率的公理化定义, 概率论成为一门严密的演绎科学;现代概率论 应用于几乎所有的科学领域。
微信:wxkzzaw 13
教育统计与质量评价
历史上一些著名的掷硬币实验
实验者 德•摩根 n 2048 nH 1061 fn(H) 0.5181
蒲 丰
K •皮尔逊 K •皮尔逊
2014-2-26
4040
12000 24000
2048
6019 12012
0.50Hale Waihona Puke 90.5016 0.5005
《概率论》课件
物理学
描述粒子在气体或液体中的运动状态。
金融学
用于股票价格和收益率的分析。
隐马尔科夫模型
定义
隐马尔科夫模型是一种特殊的马尔科夫模型 ,其中观测状态与隐藏状态有关,而隐藏状 态之间相互独立。
应用
语音识别、手写识别、生物信息学等领域。
05
大数定律与中心极限定理
大数定律及其应用
大数定律
在独立重复试验中,当试验次数趋于无穷时,事件发 生的频率趋于该事件发生的概率。
《概率论》ppt课 件
目录
• 概率论简介 • 概率的基本性质 • 随机变量及其分布 • 随机过程与马尔科夫链 • 大数定律与中心极限定理 • 贝叶斯统计推断
01
概率论简介
概率论的定义
概率论
研究随机现象的数学学科,通过数学模型和公式 来描述随机事件、随机变量和随机过程。
随机变量
表示随机现象的数值变量,其取值具有随机性。
THANKS
感谢观看
计算机科学
概率论在计算机科学中用于算法设计和数据 挖掘等领域。
02
概率的基本性质
概率的公理化定义
概率的公理化定义是概率论的基础,它规定了概率的几个基本性质,包括非负性 、规范性、可加性和有限可加性。
非负性指的是任何事件的概率都不小于0;规范性指的是必然事件的概率为1;可 加性指的是两个独立事件的概率等于它们各自概率的和;有限可加性指的是任意 有限个两两独立的事件的概率等于这些事件概率的和。
应用
在统计学中,大数定律用于估计样本的统计量和参数 ,如平均值、方差等。
中心极限定理及其应用
中心极限定理
无论随机变量的分布是什么,当样本量足够大时,样 本均值的分布近似正态分布。
概率论基础
则称 X 服从区间 [ a, b] 上的均匀分布,记为 X ~ U [a, b] .
均匀分布
对任意实数 x [a, b] ,若 a x x x b ,那么随机变量 X 位于区 间 [ x, x x] 内的概率为
P ( x X x x ) x x 1 x . dx x ba ba
例 盒中有 2 个白球 3 个黑球,从中随机取 3 个球, 求取得白球数的概 率分布.
二点分布
定义 若随机变量 X 的分布为
P( X 1) p , P( X 0) 1 p ,
则称 X 服从以 p 为参数的二点分布,或 0-1 分布.
二项分布
定义 若随机变量 X 的概率分布为
全概率公式
定义 对于集合 S , 集合 S 的一列非空子集 A1 , A2 ,, An 称为
S 的划分,如果这一列子集满足
(1) Ai Aj , i j , i, j 1, 2,, n ; (2) A 1 A2 An S .
定理(全概率公式) 设样本空间为 , A1 , A2 ,, An 是 的 一个划分,且 P( Ai ) 0 , i 1, 2,, n ,则事件 B 发生的概 率为
概率密度
定义 概率为 若存在非负函数 f ( x ) ,随机变量 X 在任意区间上的 ( a, b)
P(a X b) f ( x)dx ,
a
b
则称随机变量 X 为连续型随机变量, f ( x ) 称为 X 的概率密度函 数,简称密度函数或概率密度.
概率密度
例 设连续型随机变量 X 的概率密度为
2. 相互对立的事件概率之和为 1.即对任意的事件 A ,
P( A) P( A) 1 .
均匀分布
对任意实数 x [a, b] ,若 a x x x b ,那么随机变量 X 位于区 间 [ x, x x] 内的概率为
P ( x X x x ) x x 1 x . dx x ba ba
例 盒中有 2 个白球 3 个黑球,从中随机取 3 个球, 求取得白球数的概 率分布.
二点分布
定义 若随机变量 X 的分布为
P( X 1) p , P( X 0) 1 p ,
则称 X 服从以 p 为参数的二点分布,或 0-1 分布.
二项分布
定义 若随机变量 X 的概率分布为
全概率公式
定义 对于集合 S , 集合 S 的一列非空子集 A1 , A2 ,, An 称为
S 的划分,如果这一列子集满足
(1) Ai Aj , i j , i, j 1, 2,, n ; (2) A 1 A2 An S .
定理(全概率公式) 设样本空间为 , A1 , A2 ,, An 是 的 一个划分,且 P( Ai ) 0 , i 1, 2,, n ,则事件 B 发生的概 率为
概率密度
定义 概率为 若存在非负函数 f ( x ) ,随机变量 X 在任意区间上的 ( a, b)
P(a X b) f ( x)dx ,
a
b
则称随机变量 X 为连续型随机变量, f ( x ) 称为 X 的概率密度函 数,简称密度函数或概率密度.
概率密度
例 设连续型随机变量 X 的概率密度为
2. 相互对立的事件概率之和为 1.即对任意的事件 A ,
P( A) P( A) 1 .
概率论初步知识介绍
肯塔基电力公司(KP&P)进度树形图 (2,6)
(2,7)
(2,8) (3,6)
(3,7)
(3,8) (4,6)
(4,7)
(4,8)
2.组合计数法则
▪阶乘
n!=n(n-1)(n-1)…3·2·1
▪排列
从n个不同对象中抽取r个(r<n)进行有序放置称为排列。
若n=r叫全排列。
P
r n
=n(n-1)···(n-r+1)
完成结果 投资成功 投资失败 合计
咨询意见 可以投资 不宜投资
154次 38次
2次
156次
6次
44次
合计
192次
8次
7、事件逆
样本空间S与事件A之差,即S-A这一事件称为A的逆事件、
对立事件或互补事件。记作 A。
8、互斥事件
如果两个事件A与B不可能同时发生,则称A与B互不相容 事件,或称为互斥事件,记作AB=Φ。
在我们的生活中会面临许多不确定性的决策问题
❖ 1、如果提高产品价格,则销售下降的“机会”有多少? ❖ 2、某种新的装配方法会有多大的“可能性”提高生产率? ❖ 3、某项工程按期完成的“可能”有多大? ❖ 4、新投资赢利的机率有多大?
工期超过十个月的概率是多少?
一、概率的加法定理
2、相容事件的加法定理
如果事件A、B同时出现,则事件A和事件B称为联合事件,记 为AB。两个相容事件A与B之和的概率为: P(A∪B)=P(A)+P(B)—P(AB) [例] 投资房地产赚钱的概率是0.7,投资电脑软件业的成功率 是0.8,同时投资的成功率是0.6,问投资二者中至少一种赚 钱的概率为多少? 解:P(A∪B)=P(A)+P(B)—P(AB)=0.7+0.8-0.6=0.9
(2,7)
(2,8) (3,6)
(3,7)
(3,8) (4,6)
(4,7)
(4,8)
2.组合计数法则
▪阶乘
n!=n(n-1)(n-1)…3·2·1
▪排列
从n个不同对象中抽取r个(r<n)进行有序放置称为排列。
若n=r叫全排列。
P
r n
=n(n-1)···(n-r+1)
完成结果 投资成功 投资失败 合计
咨询意见 可以投资 不宜投资
154次 38次
2次
156次
6次
44次
合计
192次
8次
7、事件逆
样本空间S与事件A之差,即S-A这一事件称为A的逆事件、
对立事件或互补事件。记作 A。
8、互斥事件
如果两个事件A与B不可能同时发生,则称A与B互不相容 事件,或称为互斥事件,记作AB=Φ。
在我们的生活中会面临许多不确定性的决策问题
❖ 1、如果提高产品价格,则销售下降的“机会”有多少? ❖ 2、某种新的装配方法会有多大的“可能性”提高生产率? ❖ 3、某项工程按期完成的“可能”有多大? ❖ 4、新投资赢利的机率有多大?
工期超过十个月的概率是多少?
一、概率的加法定理
2、相容事件的加法定理
如果事件A、B同时出现,则事件A和事件B称为联合事件,记 为AB。两个相容事件A与B之和的概率为: P(A∪B)=P(A)+P(B)—P(AB) [例] 投资房地产赚钱的概率是0.7,投资电脑软件业的成功率 是0.8,同时投资的成功率是0.6,问投资二者中至少一种赚 钱的概率为多少? 解:P(A∪B)=P(A)+P(B)—P(AB)=0.7+0.8-0.6=0.9
第七章概率论基础
ABC ABC BAC CAB 5、 A、B 、 C不都发生可表示为
ABC 或 ABC ABC BAC 或 AB BC AC CAB ABC ACB BCA
7.1.3
随机事件的概率
一、频率和概率的统计定义 定义2:大量重复试验(观察) N次,A出现m次,事件A的频率为: m 频率W(A)= N
实例 “抛掷一枚硬币,观察字面,花面出 现的情况”.
分析:
(2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能确定哪一个结 果会出现. 故为随机试验.
(1) 试验可以在相同的条件下重复地进行;
同理可知下列试验都为随机试验
1.“抛掷一枚骰子,观察出 现的点数”. 2.“从一批产品中,依次任 选三件,记录出现正品 与次品的件数”. 3.考察某地区 10 月份的 平均气温.
表7-1
掷币试验
投掷次数N 正面数m
2048 4040 1061 2048
频率
0.5181 0.5069
Pearson
Pearson
12000
24000
6019
12012
0.5016
0.5005
结论:大量重复试验,出现正面频率接近50%。 思考:少量的试验(如7次)能否出现同样结果?
例4
字母
表7-2
证: 按概率的古典定义来证明 设试验的可能结果是由N个基本事件总数构 成,其中事件A包含M1个,事件B包含M2个, 由于事件A与B互不相容,所以A包含的基本事件 与B包含的基本事件一定是完全不相同的, M 1M 2 M 1 M 2 P( A包含的基本事件共有 B ) M P( A ) P( B) 则 A+B + M 个,于是得 N N 1 N2
ABC 或 ABC ABC BAC 或 AB BC AC CAB ABC ACB BCA
7.1.3
随机事件的概率
一、频率和概率的统计定义 定义2:大量重复试验(观察) N次,A出现m次,事件A的频率为: m 频率W(A)= N
实例 “抛掷一枚硬币,观察字面,花面出 现的情况”.
分析:
(2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能确定哪一个结 果会出现. 故为随机试验.
(1) 试验可以在相同的条件下重复地进行;
同理可知下列试验都为随机试验
1.“抛掷一枚骰子,观察出 现的点数”. 2.“从一批产品中,依次任 选三件,记录出现正品 与次品的件数”. 3.考察某地区 10 月份的 平均气温.
表7-1
掷币试验
投掷次数N 正面数m
2048 4040 1061 2048
频率
0.5181 0.5069
Pearson
Pearson
12000
24000
6019
12012
0.5016
0.5005
结论:大量重复试验,出现正面频率接近50%。 思考:少量的试验(如7次)能否出现同样结果?
例4
字母
表7-2
证: 按概率的古典定义来证明 设试验的可能结果是由N个基本事件总数构 成,其中事件A包含M1个,事件B包含M2个, 由于事件A与B互不相容,所以A包含的基本事件 与B包含的基本事件一定是完全不相同的, M 1M 2 M 1 M 2 P( A包含的基本事件共有 B ) M P( A ) P( B) 则 A+B + M 个,于是得 N N 1 N2
东华大学《概率论与数理统计》课件-第3章概率论基础
重复排列:从n个不同元素中取r个(可重复),考 虑先后顺序共有nr=n n …. n种不同结果。
3.5 等可能样本空间
例7 琼斯先生有10本书要放在书架上,其中有 4本数学书,3本化学书,2本历史书,还有1本 语言书。琼斯想把同一种类的书放在一起,共 有几种不同的可能结果?如果是随意放置,恰 好同一种类的书放在一起的概率多大?
分步乘法计数原理:完成一件事,需要分成几 个步骤,每一步的完成有多种不同的方法,则 完成这件事的不同方法总数是各步骤不同方法 数的乘积。
例:网上预订行程,从郑州到上海共有12种不 同选择,从上海到香港共有4种不同的选择,那 么从郑州经上海到香港共有4×12=48种不同的 选择。
3.5 等可能样本空间
解法一:宿舍是无编号的,
解法二:宿舍是有编号的,
3.5 等可能样本空间
例11 如果一个房间里有n个人,没有两个人的 生日是同一天的概率是多大?如果希望概率小 于0.5,需要多少人?
习题
P53 ex18, ex20
引例: (1)假设某人投掷一对骰子,两个骰子点数之
和为8概率多大?
(2)如果已知第一个骰子最终朝上的数字为3, 那么两个骰子点数之和为8的概率为多少?
3.3文图和事件的代数表示
3.3文图和事件的代数表示
德·摩根律
例2
掷骰子一次,A=“掷出奇数点”,B=“点数不超 过3”,C=“点数大于2”,D=“掷出5点”。求
A B, B C, AB, BD, Ac , AcC
3.4 概率论公理
集函数P(E)称为事件E的概率,如果它满足下 列三条公理
3.5 等可能样本空间
例8 概率论课程上有6个男生,4个女生。对学 生进行考试,按照成绩排名。假定没有两个学 生的成绩是一样的,
3.5 等可能样本空间
例7 琼斯先生有10本书要放在书架上,其中有 4本数学书,3本化学书,2本历史书,还有1本 语言书。琼斯想把同一种类的书放在一起,共 有几种不同的可能结果?如果是随意放置,恰 好同一种类的书放在一起的概率多大?
分步乘法计数原理:完成一件事,需要分成几 个步骤,每一步的完成有多种不同的方法,则 完成这件事的不同方法总数是各步骤不同方法 数的乘积。
例:网上预订行程,从郑州到上海共有12种不 同选择,从上海到香港共有4种不同的选择,那 么从郑州经上海到香港共有4×12=48种不同的 选择。
3.5 等可能样本空间
解法一:宿舍是无编号的,
解法二:宿舍是有编号的,
3.5 等可能样本空间
例11 如果一个房间里有n个人,没有两个人的 生日是同一天的概率是多大?如果希望概率小 于0.5,需要多少人?
习题
P53 ex18, ex20
引例: (1)假设某人投掷一对骰子,两个骰子点数之
和为8概率多大?
(2)如果已知第一个骰子最终朝上的数字为3, 那么两个骰子点数之和为8的概率为多少?
3.3文图和事件的代数表示
3.3文图和事件的代数表示
德·摩根律
例2
掷骰子一次,A=“掷出奇数点”,B=“点数不超 过3”,C=“点数大于2”,D=“掷出5点”。求
A B, B C, AB, BD, Ac , AcC
3.4 概率论公理
集函数P(E)称为事件E的概率,如果它满足下 列三条公理
3.5 等可能样本空间
例8 概率论课程上有6个男生,4个女生。对学 生进行考试,按照成绩排名。假定没有两个学 生的成绩是一样的,
《概率论总复习》课件
常见问题解答二:条件概率与独立性的关系?
总结词
条件概率与独立性是概率论中的重要概念,它们之间 存在密切的联系。
详细描述
条件概率是指在某个已知事件发生的条件下,另一个 事件发生的概率。而独立性则是指两个事件之间没有 相互影响,一个事件的发生不影响另一个事件的发生 。在条件概率中,如果两个事件在给定条件下是独立 的,那么它们同时发生的概率等于各自发生的概率的 乘积。因此,条件概率和独立性之间存在密切的联系 ,理解它们的概念和关系有助于更好地掌握概率论中 的相关内容。
04
概率论的应用
统计学中的概率论应用
统计推断
概率论为统计学提供了理论基 础,用于估计未知参数、检验 假设和进行预测。
随机抽样
概率论确保了随机抽样的公正 性和代表性,使得样本数据能 够反映总体特征。
统计决策
基于概率论的决策分析方法, 如贝叶斯决策和风险分析,帮 助决策者做出最优选择。
计算机科学中的概率论应用
100%
离散型随机变量的分布
离散型随机变量的分布通常由概 率质量函数或概率分布函数描述 。
80%
连续型随机变量的分布
连续型随机变量的分布由概率密 度函数描述,其总概率为1,即 ∫−∞∞f(x)dxF(x)=∫−∞∞f(x)dxF (x)=∫−∞∞f(x)dxF(x)=1。
02
概率论中的重要定理
贝叶斯定理
01
02
03
04
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
第一章 概率论基础(1)
频率 fi
m1 m2 n1 n2
ms
ns
稳定在某个值 附近
概率的统计定义
在相同条件下对试验E重复进行n次,其中事 件A出现m次。当试验次数n充分大时,事件
A出现的频率fn(A)=m/n的稳定值,称为事件
A的概率,记为P(A).
P=P (A) ≈fn(A)=m/n
频率和概率 有什么关系?
1.频率取决于试验,而概率是先于试验而客观 存在的。
第一章 概率论基础
§1.1
随机试验
为了研究随机现象内部的规律性,就 要对研究对象进行观察试验,即随机试验, 简称试验。常用字母E表示。
试 1. 试验可以在相同条件下重复进行
验 的 特 点
2. 每次试验的可能结果不只一个,且 试验之前不能肯定会出现哪一个结果 3. 试验可能出现的结果可以预知
寿命试验 测试在同一工艺条件下生产 出的灯泡的寿命.
n
n
P( i 1
Ai
)
i 1
P( Ai )
P( Ai Aj )
1i jn
P( Ai Aj Ak ) ... (1)n1P( A1A2...An )
1i jk n
条件概率
定义: 设A、B是随机试验E的两个随机事件, 且P(A)>0,则称
P(B | A) P( AB) P( A)
为已知事件A发生条件下,事件B发生的条件 概率。
统计一天中进入某商店的顾客 人数.
随机事件
在随机试验中可能发生也可能不发生的事 情称为随机事件,简称事件.
事 基本事件 (试验中不可再分解的事件)
件
分
(两个或多个基本事件就 构
类 复合事件 成一个复合事件)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子科技大学通信学院
44/108
1.3 随机变量的函数
电子科技大学通信学院
45/108
1.3 随机变量的函数
电子科技大学通信学院
46/108
1.3 随机变量的函数
电子科技大学通信学院
47/108
1.3 随机变量的函数
电子科技大学通信学院
48/108
1.3 随机变量的函数
电子科技大学通信学院
1.6典型分布
我们常常用到与正态分布函数有关的几种函数:
电子科技大学通信学院
100/108
1.6典型分布
容易证明:
电子科技大学通信学院
101/108
1.6典型分布
8.瑞利与莱斯分布(Rayleigh and Rician): 瑞利与莱斯分布是正态分布随机变量的 变换结果。它们取值为非负实数,在通信 与电子工程的应用中经常出现,比如,窄 带高斯信号的包络服从瑞利或莱斯分布。
电子科技大学通信学院
104/108
1.7 随机变量的仿真与实验
电子科技大学通信学院
105/108
1.7 随机变量的仿真与实验
电子科技大学通信学院
106/108
1.7 随机变量的仿真与实验
解: Xi_array=exprnd(0.5, 1,10000); mean(Xi_array) ; % ans =2.0019 var(Xi_array) ; % ans =4. 0939 hist(Xi_array)
60/108
1.4 数字特征与条件数学期望
电子科技大学通信学院
61/108
1.4 数字特征与条件数学期望
电子科技大学通信学院
62/108
1.4 数字特征与条件数学期望
电子科技大学通信学院
63/108
1.4 数字特征与条件数学期望
电子科技大学通信学院
64/108
1.4 数字特征与条件数学期望
电子科技大学通信学院
39/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
40/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
41/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
42/108
1.3 随机变量的函数
电子科技大学通信学院
43/108
1.3 随机变量的函数
10/108
1.1 概率公理与随机变量
电子科技大学通信学院
11/108
1.1 概率公理与随机变量
电子科技大学通信学院
12/108
1.1 概率公理与随机变量
电子科技大学通信学院
13/108
1.1 概率公理与随机变量
电子科技大学通信学院
14/108
1.1 概率公理与随机变量
电子科技大学通信学院
离散变量,常采用分布律;
电子科技大学通信学院
26/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
27/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
28/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
29/108
1.2 多维随机变量与条件随机变量
第1章 概率论基础
1.1 1.2 1.3 1.4 1.5 1.6 1.7 概率公理与随机变量 多维随机变量与条件随机变量 随机变量的函数 数字特征与条件数学期望 特征函数 典型分布 随机变量的仿真与实验
电子科技大学通信学院
3/108
1.1 概率公理与随机变量
电子科技大学通信学院
4/108
1.1 概率公理与随机变量
变量可以有多个取值,并且永远不能预知它 到底会取哪个值; (2) 变量取值是有规律的,这种规律用概率特性 来明确表述;
(1)
电子科技大学通信学院
25/108
1.1 概率公理与随机变量
因此,凡是讨论随机变量就必然要联系到 它的取值范围与概率特性。 在描述随机变量的概率特性时:
分布函数指明直到x处的累积概率; 密度函数适用于连续取值部分。
电子科技大学通信学院
75/108
1.4 数字特征与条件数学期望
电子科技大学通信学院
76/108
1.5 特征函数
电子科技大学通信学院
77/108
1.5 特征函数
电子科技大学通信学院
78/108
1.5 特征函数
电子科技大学通信学院
79/108
1.5 特征函数
电子科技大学通信学院
80/108
1.5 特征函数
电子科技大学通信学院
94/108
1.6典型分布
3.泊松分布(Poisson): 泊松分布的结果为非负整数。大量的 实际物理现象近似地符合这种分布,比如: 顾客服务问题中,顾客的数目;误码发生 问题中,误码的数目;网络服务器应用中, 服务请求的次数,故障部件更换中,更换 的次数。
电子科技大学通信学院 95/108
电子科技大学通信学院
55/108
1.3 随机变量的函数
电子科技大学通信学院
56/108
1.3 随机变量的函数
电子科技大学通信学院
Байду номын сангаас57/108
1.3 随机变量的函数
电子科技大学通信学院
58/108
1.4 数字特征与条件数学期望
电子科技大学通信学院
59/108
1.4 数字特征与条件数学期望
电子科技大学通信学院
1. (0-1)分布、两点分布 (0-1)或两点分布是最简单与离散的,代表 了许多实际的物理现象,比如:掷币试验、 击中与否、有无检验、二元数据等等。
电子科技大学通信学院
93/108
1.6典型分布
2.二项分布(Binomial):
二项分布的结果共n+1种:整数0~n。它代 表的实例如:连续n次掷币试验后正面的总 数目,n次独立二元检验中总的吻合次数,n 长独立二进制数据串中1的总数,等等。
电子科技大学通信学院
5/108
1.1 概率公理与随机变量
电子科技大学通信学院
6/108
1.1 概率公理与随机变量
电子科技大学通信学院
7/108
1.1 概率公理与随机变量
电子科技大学通信学院
8/108
1.1 概率公理与随机变量
电子科技大学通信学院
9/108
1.1 概率公理与随机变量
电子科技大学通信学院
随机信号分析
第1章 概率论基础
电子科技大学通信学院
1/108
第1章 概率论基础
本章将复习与总结概率论的基本知识 也扩充一些新知识点,比如:
1) 利用冲激函数表示离散与混合型随机变量的 概率密度函数, 2) 随机变量的条件数学期望 3) 特征函数 4) 瑞利与莱斯分布 5) 随机变量的基本实验方法
电子科技大学通信学院 2/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
35/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
36/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
37/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
38/108
1.2 多维随机变量与条件随机变量
电子科技大学通信学院
107/108
1.7 随机变量的仿真与实验
电子科技大学通信学院
108/108
1.7 随机变量的仿真与实验
利用Matlab还可以进行符号的与数值的积分运算, 使我们很容易进行统计分析。
电子科技大学通信学院
109/108
1.7 随机变量的仿真与实验
电子科技大学通信学院
110/108
电子科技大学通信学院 98/108
1.6典型分布
7.正态分布(Normal/Gaussian): 许多随机变量由大量相互独立的随机因素 综合影响所形成,而每一单个因素在总的影 响中的作用是微小的,这类随机变量近似地 服从正态分布。中心极限定理给出了这种现 象的数学解释。
电子科技大学通信学院
99/108
电子科技大学通信学院
81/108
1.5 特征函数
电子科技大学通信学院
82/108
1.5 特征函数
电子科技大学通信学院
83/108
1.5 特征函数
电子科技大学通信学院
84/108
1.5 特征函数
电子科技大学通信学院
85/108
1.5 特征函数
电子科技大学通信学院
86/108
1.5 特征函数
1.6典型分布
4. (离散)均匀分布(Uniform): 离散均匀分布是N元等概的。常常用到的 古典概型就是离散均匀分布。
电子科技大学通信学院
96/108
~ U (0, 2 )
1.6典型分布
5. 均匀分布(Uniform ): 实际应用中,均匀的或没有明确偏向性的 物理特性导致均匀分布特性,比如:量化 与截尾噪声一般认为具有均匀分布。此外, 工程中的正弦信号通常具有均匀的相位特 性
20/108
1.1 概率公理与随机变量
电子科技大学通信学院
21/108
1.1 概率公理与随机变量
电子科技大学通信学院
22/108
1.1 概率公理与随机变量
电子科技大学通信学院
23/108
1.1 概率公理与随机变量
电子科技大学通信学院
24/108