空间几何体外接球和内切球

合集下载

高中数学 专题08 外接球与内切球

高中数学 专题08 外接球与内切球

以三棱锥P-ABC为例
VPABC
1 3
S
底面h
1 3
RS
PAB
1 3
RS
PAC
1 3
RS
PBC
1 3
RS
ABC
=
1 3
R(S
PAB
S
PAC
S
PBC
S
) ABC
=
1 3
RS
表面积
R= 3V几何体 S表面积
2. 秒杀公式: R= 3V几何体 S表面积
3. 图示过程
特别说明:下面例题或练习都是常规方法解题,大家可以利用模型的秒杀公式
取 BC 的中点为 M,连接 FM、MN、OF、ON
第二步: Q
ONMF为矩形由勾股可得 OA
2
AN 2 ON 2
AN
2
MF
2 R
2
r
2 1
r
2 2
l2 4
(3)秒杀公式: R2
r12
r22
l2 4
(4)图示过程
3
6.麻花模型
(1)使用范围:对棱相等的三棱锥
(2)推导过程:设 3 组对棱的长度分别为 x、y、z,长方体的长宽高分别为 a、b、c
x2 a2 b2
y
2
b2
c2
R2
x2
y2
z2
8
z2 a2 c2
(3)秒杀公式: R2 x2 y2 z2 8
(4)图示过程
7.矩形模型 (1)使用范围:棱锥有两个平面为直角三角形且斜边为同一边 (2)推导过程:根据球的定义可知一个点到各个顶点的距离相等该点为球心可得,斜边为球的直径
O1E cos

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型本文介绍了空间几何体的外接球与内切球的经典类型,其中第一种类型为墙角模型,即三条棱两两垂直,不需要找球心的位置即可求出球半径。

具体方法是找到三条两两垂直的线段,然后使用公式2R=a+b+c或2R=a^2+b^2+c^2来求出R。

例如,在已知各顶点都在同一球面上的正四棱柱的高为4,体积为16的情况下,可以求出该球的表面积为32π。

第二种类型为对棱相等模型,补形为长方体。

在这种情况下,需要找到对棱相等的空间几何体,并补成长方体。

例如,如果三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积为36π。

除此之外,文章还给出了一些具体的例子,如正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。

同时,文章还提到了一些需要注意的引理,如正三棱锥的对棱互相垂直等。

需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要进行删除或修改。

题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD)首先,我们可以画出一个长方体,标出三组互为异面直线的对棱,如图2-1所示。

设出长方体的长宽高分别为a,b,c,AD=BC=x,AB=CD=y,AC=BD=z,列方程组:a^2+b^2=x^2b+c=yc^2+a^2=z^2根据墙角模型,我们可以得到2R=a+b+c=2(x^2+y^2+z^2)/(x^2+y^2+z^2),化简得到R=sqrt(2)/2*(x^2+y^2+z^2)/(x^2+y^2+z^2),求出R即可。

例2(1)如下图所示三棱锥A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为。

2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为。

3)正四面体的各条棱长都为2,则该正面体外接球的体积为。

空间几何外接球和内切球含详解

空间几何外接球和内切球含详解

A.
B.
C.
D. ⺁
2.已知如图所示的三棱锥 D ABC 的四个顶点均在球 O 的球面上, ABC 和 DBC 所在平面相互垂直, AB 3 , AC 3 , BC CD BD 2 3 ,则球 O 的表面积为 ( )
A . 4
B .12
C .16
D . 36
3.三棱锥 P ABC 的底面是等腰三角形,C 120 ,侧面是等边三角形且与底面 ABC 垂直,AC 2 ,
ᒺ ,若三棱柱的所有顶点都在同一
考向三 棱锥的外接球
类型一:正棱锥型
【例 3-1】已知正四棱锥 P ABCD 的各顶点都在同一球面上,底面正方形的边长为 2 ,若该正四棱锥的
体积为 2,则此球的体积为 ( )
A. 124 3
B. 625 81
C. 500 81
D. 256 9
【套路总结】
【举一反三】
【举一反三】 1. 设直三棱柱 ABC-A1B1C1 的所有顶点都在一个球面上,且球的表面积是 40π,AB=AC=AA1,∠BAC=120°, 则此直三棱柱的高是________.
2.直三棱柱 홨᫏ 홨 ᫏ 中,已知 홨 홨᫏, 홨 ᒺ ,홨᫏ ᒺ ⺁, 球面上,则该球的表面积为__________.
B. 20
C. 12
D. 20 3
【套路总结】 侧棱垂直与底面---垂面型
【举一反三】 1.已知几何体的三视图如图所示,则该几何体的外接球的表面积为( )
A. ⺁π
B. ᒺπ
C. π
D. ⺁π
2.已知三棱锥 S-ABC 中, SA 平面 ABC ,且 ACB 30 , AC 2AB 2 3.SA 1 .则该三棱锥
【举一反三】

立体几何中球的内切和外接问题完美版

立体几何中球的内切和外接问题完美版

性质
内切球的球心位于旋转体 的轴线上,且球的半径等 于旋转体半径。
应用
在几何和工程领域中,内 切球常用于研究旋转体的 体积和表面积。
旋转体的外接球
定义
旋转体的外接球是指与旋 转体外侧相切的球。
性质
外接球的球心位于旋转体 外侧,且球的半径等于旋 转体轴线到旋转体外侧的 垂直距离。
应用
在几何ቤተ መጻሕፍቲ ባይዱ工程领域中,外 接球常用于研究旋转体的 空间位置和关系。
立体几何中球的内 切和外接问题完美 版
目 录
• 球与多面体的内切和外接问题 • 球与旋转体的内切和外接问题 • 球与几何体的内切和外接问题实例 • 总结与展望
01
CATALOGUE
球与多面体的内切和外接问题
多面体的内切球
01
02
03
04
多面体的内切球是指与多面 体的所有顶点和面都相切的
球。
内切球半径的求法:设多面体的 每个面为$S_i$,内切球的半径
03
CATALOGUE
球与几何体的内切和外接问题实例
多面体内切球实例
总结词
多面体内切球是指一个球完全内切于一个多面体,且与多面体的每个面都相切 。
详细描述
多面体内切球的问题可以通过几何定理和公式来解决,例如欧拉公式和球内切 定理。例如,一个正方体的内切球就是其中心,半径等于正方体边长的一半。
旋转体外接球实例
外接球的性质:外接球与 多面体的每个顶点都相切 ,且外接球的直径等于多 面体的对角线长度。
外接球的应用:在几何、 物理和工程领域中,外接 球的概念被广泛应用于研 究多面体的性质和计算。
02
CATALOGUE
球与旋转体的内切和外接问题

空间圆柱体的外接球和内切球问题

空间圆柱体的外接球和内切球问题

空间圆柱体的外接球和内切球问题简介在三维几何中,圆柱体(cylinder)是一个具有圆底和圆顶的几何体。

本文讨论了圆柱体的外接球和内切球问题。

外接球圆柱体的外接球是一个能够完全包围圆柱体的球体。

具体来说,外接球的球心与圆柱体的底面圆心以及顶面圆心都在同一直线上,并且外接球的半径等于这个直线与圆柱体底面、顶面中任意一个圆的半径之和。

对于一个给定的圆柱体,外接球的半径可以通过以下公式计算:$$R = \sqrt{h^2 + r^2}$$其中,$R$ 是外接球的半径,$h$ 是圆柱体的高度,$r$ 是圆柱体底面圆的半径。

内切球圆柱体的内切球是一个与圆柱体的底面和顶面相切的球体。

具体来说,内切球的球心与圆柱体的底面圆心以及顶面圆心都在同一直线上,并且内切球的半径等于这个直线与圆柱体底面、顶面中任意一个圆的半径之差。

对于一个给定的圆柱体,内切球的半径可以通过以下公式计算:$$r_{\text{in}} = \sqrt{h^2 + (R - r)^2}$$其中,$r_{\text{in}}$ 是内切球的半径,$h$ 是圆柱体的高度,$R$ 是外接球的半径,$r$ 是圆柱体底面圆的半径。

结论本文讨论了圆柱体的外接球和内切球问题。

外接球是一个能够完全包围圆柱体的球体,其半径可以通过一个简单的公式计算得到。

内切球是一个与圆柱体的底面和顶面相切的球体,其半径也可以通过一个公式计算得到。

这些问题在几何学和工程学中具有重要的应用价值。

> 注意:以上内容为解答圆柱体的外接球和内切球问题的基本原理和公式,具体计算应考虑实际情况和应用环境。

空间几何体的外接球与内切球。专题汇编

空间几何体的外接球与内切球。专题汇编

空间几何体的外接球与内切球。

专题汇编本文介绍了空间几何体的外接球与内切球的定义、性质、结论和求解方法。

首先,球的定义是空间中到定点的距离等于定长的点的集合,简称球。

在此基础上,定义了外接球和内切球。

外接球是指一个多面体的各个顶点都在一个球的球面上,这个球是这个多面体的外接球;内切球是指一个多面体的各面都与一个球的球面相切,这个球是这个多面体的内切球。

其次,文章介绍了外接球的性质和结论。

其中,外接球的性质包括过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;过球心与小圆圆心的直线垂直于小圆所在的平面;球心在大圆面和小圆面上的射影是相应圆的圆心;在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心。

文章还列举了各种空间几何体的外接球的结论,如长方体的外接球的球心在体对角线的交点处,圆柱体的外接球球心在上下两底面圆的圆心连一段中点处等。

最后,文章介绍了内切球的一个重要结论,即若球与平面相切,则切点与球心连线与切面垂直。

同时,文章还提到了勾股定理、正定理及余弦定理等求解三角形线段长度的方法。

经过剔除格式错误和删除有问题的段落,本文更加清晰明了地介绍了空间几何体的外接球与内切球的相关知识和方法。

2.内切球与多面体各面的距离相等,外接球与多面体各顶点的距离相等,类比于多边形的内切圆。

3.正多面体的内切球和外接球的球心重合。

4.正棱锥的内切球和外接球的球心都在高线上,但不一定重合。

5.求解内切球半径的基本方法有两种:一是构造三角形利用相似比和勾股定理,二是体积分割法,即等体积法。

6.与台体相关的内容在此略过。

7.八大模型之一是墙角模型,其中三条棱两两垂直,可以直接使用公式(2R)2=a2+b2+c2求出内切球半径R。

8.举例说明:(1)已知同一球面上正四棱柱的高为4,体积为16,则其内切球表面积为24π;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球表面积为9π;(3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM垂直MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。

八个无敌模型__全搞定空间几何的外接球和内切球问题

八个无敌模型__全搞定空间几何的外接球和内切球问题

八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)图1图2图3方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:(1)162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C ; (2)933342=++=R ,ππ942==R S(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =则正三棱锥ABC S -外接球的表面积是 。

π36 解:引理:正三棱锥的对棱互垂直。

证明如下:如图(3)-1,取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD ,∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,(3)题-1AA∴正三棱锥ABC S -外接球的表面积是π36(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( D )π11.A π7.B π310.C π340.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为 解析:(4)在ABC ∆中,7120cos 2222=⋅⋅-+=BC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r , ∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)三条侧棱两两生直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S , (6)3)2(2222=++=c b a R ,432=R ,23=Rπππ2383334343=⋅==R V ,类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r CcB b A a 2sin sin sin ===),PA OO 211=;图5P第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=2.题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点图6图7-1图7-2图8图8-1图8-2图8-3解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆。

2023届高三数学一轮复习专题 空间几何体的外接球与内切球问题 讲义 (解析版)

2023届高三数学一轮复习专题  空间几何体的外接球与内切球问题  讲义 (解析版)

空间几何体的外接球与内切球问题高考分析: 球与几何体的切接问题是近几年高考的高频考点,常以选择题和填空题的形式出现,以中档题和偏难题为主. 一、几种常见几何体的外接与内切球 1.长方体的外接球 (1)球心:体对角线的交点;(2)半径:R =a 2+b 2+c 22(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球 (1)外接球:球心是正方体的中心;半径R =32a(a 为正方体的棱长); (2)内切球:球心是正方体的中心;半径r =2a(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体的中心;半径=2r a (a 为正方体的棱长). 3.正四面体的外接球与内切球(1)外接球:球心是正四面体的中心;半径R (a 为正四面体的棱长);(2)内切球:球心是正四面体的中心;半径r (a 为正四面体的棱长).求外接球问题常用方法:1.补体法。

将几何体补形成长方体正方体等常见模型去求解2.外接球的球心都在过底面外接圆圆心的垂线上(注意球体可以滚动所以可以选择较为方便计算的那一面作为底面)3.利用外接球球心到几何体各顶点距离都等于半径4.球心与截面圆圆心的连线垂直于截面圆求外接球的关键是确定球心位置,进而计算出外接球半径。

题型一:柱体的外接球1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_________.2.已知三棱柱111ABC A B C -的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12 ,则该三棱柱的体积为_________.3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π4.已知圆柱的底面半径为12,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4题型二:锥体的外接球5.求棱长为1的正四面体外接球的体积为_________.6.已知正四棱锥P -ABCD 内接于一个半径为R 的球,则正四棱锥P -ABCD 体积的最大值是( )A.16R 381B.32R 381C.64R 381 D .R 3 7.如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,PB ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若PB =1,∠APB =∠BAD =π3,则三棱锥P -AOB 的外接球的体积是_________.8.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.B.C. 1D.9.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π10.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱切开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均是直角三角形的四面体).在如图所示的堑堵ABC -A 1B 1C 1中,AA 1=AC =5,AB =3,BC =4,则阳马C 1-ABB 1A 1的外接球的表面积是( )A .25πB .50πC .100πD .200π11.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π12.已知正三棱锥的所有顶点都在球O 的球面上,其底面边长为3,E,F ,G 分别为为侧棱AB,AC,AD 的中点.若O 在三棱锥A -BCD 内,且三棱锥A -BCD 的体积是三棱锥O -BCD 体积的3倍,则平面EFG 截球O 所得截面的面积为微专题 球与几何体的切接问题——内切球1.半径为R 的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为_________,体积为_________.2.若正四面体的棱长为a ,则其内切球的半径为_________.3.已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( ) A .18 B .12 C .6 3 D .434.将半径为3,圆心角为2π3的扇形围成一个圆锥(接缝处忽略不计),则该圆锥的内切球的体积为( )A.2π3 B.3π3 C.4π3D .2π 5.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6 D.33π题型三 最值问题6.已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为_________.7.四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于( )A.32π3B.322π3 C .16π D.162π38.已知SAB 是边上为2的等边三角形,045ACB ∠=,则三棱锥体积最大时,CA = ;其外接球的表面积为。

空间几何体的外接球内切球问题

空间几何体的外接球内切球问题

空间几何体的外接球内切球问题空间几何体的外接球、内切球问题自己总结供参考红岩外接球问题一.棱锥的外接球三棱锥都有外接球;底面有外接圆的任意棱锥都有外接球。

1.确定棱锥外接球球心的通法先找到棱锥底面的外接圆的圆心D ,过D 作底面的垂线DP交一侧棱的中垂面于O ,点O 即为外接球的球心。

练习:1.三棱锥S-ABC 的各顶点都在同一球面上,若SB ⊥平面ABC ,SB=6,AB=AC=2120BAC ∠=?,则此球的表面积等于。

2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为。

3.四面体ABCD 的四个顶点在同一球面上,AB=BC=CD=DA=3,32=AC ,6=BD ,则该球的表面积为()A .π14 B.π15 C.π16 D.π182.补成长方体或正方体,再利用体对角线是外接球直径这一结论求解。

练习:1.三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为()A .26a π B .29a π C .212a π D .224a π2.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于(A )4π (B )3π (C )2π (D )π3.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π4.3.公共边所对的两个角为直角确定球心法练习1.在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512π B.1259π C.1256π D.1253π2.空间四边形ABCD中,1,AB BC AD DC ====ABCD 的外接球的表面积为4.利用轴截面截球为大圆确定球半径正四、六、八棱锥的外接球的一个轴截面为大圆,该圆的半径等于外接球的半径. 练习:1.正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .2.正六棱锥EF S ABCD -的底面边长为1S A B C D 、、、、、E 、F 都在同一球面上,则此球的表面积为 .3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为_ C_ A_ O_ D _ BA B.13π C.23π D二.棱柱的外接球底面有外接圆的直棱柱才有外接球。

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题

高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型墙角模型是指三条线段两两垂直的几何体,通过公式(2R) = a + b + c,即2R = a^2 + b^2 + c^2,可以求出其外接球半径R。

例1:1)已知顶点都在同一球面上的正四棱柱的高为4,体积为16,求该球的表面积。

解:由V = ah = 16,得a = 2,4R = a + a + h = 4 + 4 + 16 = 24,S = 24π,答案为C。

2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,求其外接球的表面积。

解:由2R = a + b + c = 3 + 3 + 3 = 9,得R = 9/4,S =4πR^2 = 9π。

3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA = 23,求正三棱锥S-ABC外接球的表面积。

解:由墙角模型的特点可知,正三棱锥的对棱互垂直。

连接AB、BC的中点D、E,连接AE、CD,交于H,则H是底面正三角形ABC的中心。

由AM⊥MN,SB//MN,可得AM⊥SB,AC⊥SB,故SB⊥平面SAC,SB⊥SA,SB⊥SC,即SB⊥SA,BC⊥SA,故SA⊥平面SBC,SA⊥SC。

因此,三棱锥S-ABC的三棱条侧棱两两互相垂直,由2R^2 = 23^2 + 23^2 + 23^2 = 36,得R^2 = 9,S = 36π。

类型二、棱台模型棱台模型是指上底面和下底面都是正多边形,且两底面中心连线与侧棱垂直的几何体。

通过勾股定理和相似三角形,可以求出其外接球半径R和内切球半径r。

例2:1)已知棱台的上底面和下底面都是正三角形,上底边长为3,下底边长为6,侧棱长为5,求其外接球半径R和内切球半径r。

解:由勾股定理可得棱台的高为4√3.设外接球半径为R,内切球半径为r,则有R/r = (a + b + c)/(a + b - c) = (3 + 6 +5)/(3 + 6 - 5) = 7,解得R = 7r。

【高中数学】空间几何体外接球与内切球问题

【高中数学】空间几何体外接球与内切球问题

8.16作业 空间几何体外接球与内切球问题
1. 已知正四面体棱长为2,分别求该正四面体的外接球与内切球的半径.
2. 已知圆柱的内切球(圆柱的上、下底面及侧面都与球相切)的体积为43
π,求该圆柱的体积.
3. O 内切于该圆锥. (1)求该圆锥的高;
(2)求内切球O 的体积.
4.
5. 在长方体1111ABCD A B C D −中,AB =6,BC =8,16AA =.
(1)求三棱锥1D ABC −的体积;
(2)在三棱柱111ABC A B C −内放一个体积为V 的球,求V 的最大值.
6. 半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体
现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长2,
(1)求其体积;
(2)若其各个顶点都在同一个球面上,求该球的表面积.。

高中数学 立体几何 3.(第二次修订版)八个有趣模型——搞定空间几何体的外接球与内切球(学生版)

高中数学 立体几何  3.(第二次修订版)八个有趣模型——搞定空间几何体的外接球与内切球(学生版)

八个有趣模型——搞定空间几何体的外接球与内切球当讲到付雨楼老师于2018年1月14日总第539期微文章,我如获至宝.为有了教学的实施,我以付老师的文章主基石、框架,增加了我个人的理解及例题,形成此文,仍用文原名,与各位同行分享.不当之处,敬请大家批评指正.一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法). 四、与台体相关的,此略. 五、八大模型第一讲 柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)图1-1图1-2图1-3图1-4方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 .解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1, 取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH , 则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,ΘBC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, ΘMN AM ⊥,MN SB //,∴SB AM ⊥,ΘSB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥,ΘSA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(3)题-1(引理)AC(3)题-2(解答图)AC(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( )π11.A π7.B π310.C π340.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为类型二、对棱相等模型(补形为长方体) 题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱; 第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, 补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-. 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .(6)题图图2-1(1)题图B(2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为 . (3)正四面体的各条棱长都为2,则该正面体外接球的体积为(4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是 .(4)题类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1图3-2图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R .例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为(2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 . (4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为 .第二讲 锥体背景的模型类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)图4-1图4-2图4-31.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点. 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R . 例4 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 .(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为 (3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C .43 D .123(4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为ο60,则该三棱锥外接球的体积为( )A .π B.3π C. 4π D.43π (5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A.6 B.6 C.3 D.2类型五、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直图5径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的 三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的 顶点.图5-1图5-2图5-3图5-4图5-6图5-7图5-8解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径. 例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为( ) A .π3 B .π2 C .316πD.以上都不对侧视图正视图第三讲 二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)图6第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+ 注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 . (2)在直角梯形ABCD 中,CD AB //,ο90=∠A ,ο45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为(4)在边长为32的菱形ABCD 中,ο60=∠BAD ,沿对角线BD 折成二面角C BD A --为ο120的四面体ABCD ,则此四面体的外接球表面积为(5)在四棱锥ABCD 中,ο120=∠BDA ,ο150=∠BDC ,2==BD AD ,3=CD ,二面角C BD A --的平面角的大小为ο120,则此四面体的外接球的体积为类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型图7题设:如图7,ο90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )A .π12125 B .π9125 C .π6125 D .π3125(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCD A -的外接球的表面积为 .第四讲 多面体的内切球问题模型类型八、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径. 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高; 第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;图8-1A第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高; 第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒r S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABC O ABCP S S S S V r -----+++=3例8 (1)棱长为a 的正四面体的内切球表面积是(2)正四棱锥ABCD S -的底面边长为2,侧棱长为3,则其内切球的半径为(3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则该三棱锥的内切球半径为习题: 1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 2. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于 . 3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 . 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .。

2020年高考数学一轮复习专题9.3空间几何体外接球和内切球练习(含解析)

2020年高考数学一轮复习专题9.3空间几何体外接球和内切球练习(含解析)

9.3 空间几何外接球和内切球一.公式1.球的表面积:S =4πR 22.球的体积:V =43πR 3二.概念1.2.考向一 长(正)方体外接球【例1】若一个长、宽、高分别为4,3,2的长方体的每个顶点都在球O 的表面上,则此球的表面积为__________. 【答案】29π【解析】因为长方体的顶点都在球上,所以长方体为球的内接长方体,其体对角线l ==为球的直径,所以球的表面积为24292l S ππ⎛⎫== ⎪⎝⎭,故填29π.【举一反三】1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 【答案】92π【解析】设正方体棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32.故球的体积V =43πR 3=43π×⎝ ⎛⎭⎪⎫323=92π.2.如图是一个空间几何体的三视图,则该几何体的外接球的表面积是________.【答案】48π【解析】由几何体的三视图可得该几何体是直三棱柱ABC A B C '-'',如图所示:其中,三角形ABC 是腰长为4的直角三角形,侧面ACC A ''是边长为4的正方形,则该几何体的外接球的半径为2=∴该几何体的外接球的表面积为(2448ππ⨯=.故答案为48π.考向二 棱柱的外接球【例2】直三棱柱AAA −A ′A ′A ′的所有棱长均为2√3,则此三棱柱的外接球的表面积为( ) A .12π B .16π C .28π D .36π【答案】C【解析】由直三棱柱的底面边长为2√3,得底面所在平面截其外接球所成的圆O 的半径r =2, 又由直三棱柱的侧棱长为2√3,则球心到圆O 的球心距d =√3,根据球心距,截面圆半径,球半径构成直角三角形,满足勾股定理,我们易得球半径R 满足:R 2=r 2+d 2=7,∴外接球的表面积S =4πR 2=28π.故选:C .【举一反三】1. 设直三棱柱ABC-A 1B 1C 1的所有顶点都在一个球面上,且球的表面积是40π,AB=AC=AA 1,∠BAC=120°,则此直三棱柱的高是________.【答案】【解析】设三角形BAC 边长为a ,则三角形BAC外接圆半径为122sin 3a π⋅=,因为2244010R R ππ=∴=所以22210,2a R a a ⎛⎫=+== ⎪⎝⎭即直三棱柱的高是.2.直三棱柱AAA −A 1A 1A 1中,已知AA ⊥AA ,AA =3,AA =4,AA 1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为__________. 【答案】50π【解析】AAA −A 1A 1A 1是直三棱柱,∴A 1A ⊥AA ,又三棱柱的所有顶点都在同一球面上,A 1A 是球的直径,∴A =A 1A2;∵AA ⊥AA ,∴AA =√32+42=5 ,∴A 1A 2=52+52=50 ;故该球的表面积为A =4AA 2=4A (A 1A 2)2=AA 1A 2=50A考向三 棱锥的外接球类型一:正棱锥型【例3-1】已知正四棱锥P ABCD -的各顶点都在同一球面上,体积为2,则此球的体积为 ( )A.1243π B. 62581π C. 50081π D. 2569π【答案】C【解析】如图所示,设底面正方形ABCD 的中心为O ',正四棱锥P ABCD -的外接球的球心为O1O D ∴'=正四棱锥的体积为22123P ABCDV PO -⨯⨯'∴==,解得3PO '=3OO PO PO R ∴-'=='-在 Rt OO D '中,由勾股定理可得: 222OO O D OD '+='即()22231R R -+=,解得53R =2344550033381V R πππ⎛⎫∴==⨯= ⎪⎝⎭球故选C【举一反三】1.已知正四棱锥P ABCD -的各条棱长均为2,则其外接球的表面积为( ) A. 4π B. 6π C. 8π D. 16π 【答案】C【解析】设点P 在底面ABCD 的投影点为O ',则12,2AO AC PA PO ==''=⊥平面ABCD,故PO =='而底面ABCD 所在截面圆的半径AO '=故该截面圆即为过球心的圆,则球的半径,故外接球的表面积为248,S R ππ==故选C.2.如图,正三棱锥D ABC -的四个顶点均在球O 的球面上,底面正三角形的边长为3,侧棱长为则球O 的表面积是( )A .4πB .323πC .16πD .36π【答案】C【解析】如图,设OM x =,OB OD r ==,3AB =,BM ∴=DB =3DM ∴=,在Rt OMB ∆中,22(3)3x x -=+,得:1x =,2r ∴=,16O S π∴=球,故选:C .类型二:侧棱垂直底面型【例3-2】在三棱锥P ABC -中, 2AP =, AB = PA ⊥面ABC ,且在三角形ABC 中,有()cos 2cos c B a b C=-(其中,,a b c 为ABC ∆的内角,,A B C 所对的边),则该三棱锥外接球的表面积为( ) A. 40π B. 20π C. 12π D.203π【答案】A【解析】设该三棱锥外接球的半径为R .在三角形ABC 中, ()cos 2cos c B a b C =-(其中,,a b c 为ABC ∆的内角,,A B C 所对的边). ∴cos cos 2cos c B b C a C +=∴根据正弦定理可得sin cos sin cos 2sin cos C B B C A C +=,即()sin 2sin cos B C A C +=.∵sin 0A ≠∴1cos 2C =∵()0,C π∈∴3C π= ∴由正弦定理,332sin3r π=,得三角形ABC 的外接圆的半径为3r =.∵PA ⊥面ABC∴()()()22222PA r R +=∴210R =∴该三棱锥外接球的表面积为2440S R ππ==故选A.【举一反三】1.已知几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.214π3 B. 127π3 C. 115π3 D. 124π3【答案】D【解析】根据几何体的三视图可知,该几何体为三棱锥A −AAA 其中AA =AA =2,AA =4且AA ⊥底面AAA ,∠AAA =120° 根据余弦定理可知:AA 2−AA 2+AA 2−2AA ∙AA ∙AAA 120°=42+22−2×4×2×(−12)=28可知AA =2√7根据正弦定理可知∆AAA 外接圆直径2A =AAAAA ∠AAA=2√7AAA 120°=4√7√3∴A =2√213,如图,设三棱锥外接球的半径为A ,球心为A ,过球心A 向AA 作垂线,则垂足A 为AA 的中点AA =1,在AA ∆AAA 中,A 2=AA 2=(2√213)2+1=313∴外接球的表面积A =4AA 3=4A ×313=124A3故选A2.已知三棱锥S ABC -中, SA ⊥平面ABC ,且30ACB ∠=︒, 21AC AB SA ===.则该三棱锥的外接球的体积为( )B. 13π 【答案】D【解析】∵30ACB ∠=︒, 2AC AB ==ABC 是以AC 为斜边的直角三角形其外接圆半径2ACr ==,则三棱锥外接球即为以ABC C 为底面,以SA 为高的三棱柱的外接球∴三棱锥外接球的半径R 满足R ==故三棱锥外接球的体积34.3V R π== 故选D. 类型三:侧面垂直与底面型【例3】已知四棱锥A −AAAA 的三视图如图所示,则四棱锥A −AAAA 外接球的表面积是( )A. 20AB. 101A5C. 25AD. 22A【答案】B【解析】由三视图得,几何体是一个四棱锥A-BCDE,底面ABCD是矩形,侧面ABE⊥底面BCDE.如图所示,矩形ABCD的中心为M,球心为O,F为BE中点,OG⊥AF.设OM=x,由题得AA=√5,在直角△OME中,A2+5=A2(1),又MF=OG=1,AF=√32−22=√5,AA=√A2−1,AA=A,∴√A2−1+A=√5(2),解(1)(2)得A2=10120,∴A=4AA2=1015A.故选B.【举一反三】1.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如下图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是()A. 81AB. 33AC. 56AD. 41A 【答案】D【解析】由三视图可得,该几何体是一个如图所示的四棱锥A −AAAA ,其中AAAA 是边长为4的正方形,平面AAA ⊥平面AAAA .设A 为AA 的中点,A 为正方形AAAA 的中心,A 为四棱锥外接球的球心,A 1为AAAA 外接圆的圆心,则球心A 为过点A 且与平面AAAA 垂直的直线与过A 1且与平面AAA 垂直的直线的交点. 由于AAAA 为钝角三角形,故A 1在AAAA 的外部,从而球心A 与点P 在平面AAAA 的两侧. 由题意得AA =1,AA =A 1A ,AA 1=AA , 设球半径为A ,则A 2=AA 2+AA 2=AA 2+A 1A 2, 即AA 2+(2√2)2=22+(1+AA )2,解得AA =32, ∴A 2=(32)2+(2√2)2=414, ∴A 球表=4AA 2=41A .选D .2.已知如图所示的三棱锥D ABC -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在平面相互垂直,3AB =,AC =BC CD BD ===O 的表面积为( )A .4πB .12πC .16πD .36π【答案】C【解析】3AB =,AC =BC =222AB AC BC ∴+=,AC AB ∴⊥,ABC ∴∆ ABC ∆和DBC ∆所在平面相互垂直,∴球心在BC 边的高上,设球心到平面ABC 的距离为h ,则2223()2h R h +==, 1h ∴=,2R =,∴球O 的表面积为2416R ππ=.故选:C .3.三棱锥P ABC -的底面是等腰三角形,120C ∠=︒,侧面是等边三角形且与底面ABC 垂直,2AC =,则该三棱锥的外接球表面积为( ) A .12π B .20πC .32πD .100π【答案】B【解析】 如图, 在等腰三角形ABC 中, 由120C ∠=︒,得30ABC ∠=︒, 又2AC =,设G 为三角形ABC 外接圆的圆心, 则22sin sin 30AC CG ABC ==∠︒,2CG ∴=.再设CG 交AB 于D ,可得1CD =,AB =1DG =. 在等边三角形PAB 中, 设其外心为H , 则223BH PH PD ===. 过G 作平面ABC 的垂线, 过H 作平面PAB 的垂线, 两垂线相交于O ,则O 为该三棱锥的外接球的球心, 则半径R OB ===∴该三棱锥的外接球的表面积为2420ππ⨯=.故选:B .类型四:棱长即为直径【例3-4】已知底面边长为√2,各侧面均为直角三角形的正三棱锥A −AAA 的四个顶点都在同一球面上,则此球的表面积为( )A. 3AB. 2AC. 43A D. 4A 【答案】A【解析】由题意得正三棱锥侧棱长为1,将三棱锥补成一个正方体(棱长为1),则正方体外接球为正三棱锥外接球,所以球的直径为√1+1+1=√3,故其表面积为A =4×A ×(√32)2=3A .选A .【举一反三】1.已知三棱锥P ABC -的所有顶点都在球O 的球面上,PC 是球O 的直径.若平面PCA ⊥平面PCB ,PA AC =,PB BC =,三棱锥P ABC -的体积为a ,则球O 的体积为( )A .2a πB .4a πC .23a πD .43a π【答案】B【解析】如下图所示,设球O 的半径为R ,由于PC 是球O 的直径,则PAC ∠和PBC ∠都是直角,由于PA AC =,PB BC =,所以,PAC ∆和PBC ∆是两个公共斜边PC 的等腰直角三角形,且PBC ∆的面积为212PBC S PC OB R ∆==, PA AC =,O 为PC 的中点,则OA PC ⊥,平面PAC ⊥平面PBC ,平面PAC ⋂平面PBC PC =,OA ⊂平面PAC ,所以,OA ⊥平面PBC , 所以,三棱锥P ABC -的体积为23111333PBC OA S R R R a ∆⨯⨯=⨯==,因此,球O 的体积为33414433R R a πππ=⨯=,故选:B .考向四 墙角型【例4】某几何体的三视图如图所示,则该几何体的外接球的体积是( )A B .2 C .3π D .【答案】B【解析】根据几何体的三视图,该几何体是由一个正方体切去一个正方体的一角得到的.故:该几何体的外接球为正方体的外接球,所以:球的半径2r ==则:343V π=⋅⋅=⎝⎭.故选:B .【举一反三】1.已知四面体AAAA 的四个面都为直角三角形,且AA ⊥平面AAA ,AA =AA =AA =2,若该四面体的四个顶点都在球A 的表面上,则球A 的表面积为( ) A .3AB .2√3AC .4√3AD .12A【答案】D【解析】∵AA =AA =2且AAAA 为直角三角形 ∴AA ⊥AA 又AA ⊥平面AAA ,AA ⊂平面AAA ∴AA ⊥AA ∴AA ⊥平面AAA 由此可将四面体AAAA 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球A正方体外接球半径为体对角线的一半,即A =12⋅√22+22+22=√3 ∴球A 的表面积:A =4AA 2=12A 本题正确选项:A2.已知一个棱长为2的正方体被两个平面所截得的几何体的三视图如图所示,则该几何体外接球的表面积是( )A .24πB .20πC .16πD .12π【答案】D【解析】该几何体是把正方体1AC 截去两个四面体111AA B D 与111CC B D , 其外接球即为正方体1AC 的外接球,由1AC ==∴外接球的半径R =∴该几何体外接球的表面积是2412ππ⨯=.故选:D .3.在三棱锥P 一ABC 中,1PA PB PC ===,PA 、PB 、PC 两两垂直,则三棱锥P ABC -的外接球的表面积为( ) A .12π B .6πC .4πD .3π【答案】A 【解析】在三棱锥P 一ABC 中,1PA PB PC ===,PA 、PB 、PC 两两垂直,∴以PA 、PB 、PC 为棱构造棱长为1的正方体,则这个正方体的外接球就是三棱锥P ABC -的外接球,∴三棱锥P ABC -的外接球的半径2r ==∴三棱锥P ABC -的外接球的表面积为:2412S r ππ==.故选:A .考向五 内切球【例5】正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.【答案】πππ)625(8)26(4422-=-==R S 球,33)26(3434-==ππR V 球.∴R R ⨯⨯+⨯⨯⨯=⨯⨯36313233113631得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球.∴33)26(3434-==ππR V 球. 【举一反三】1.球内切于圆柱, 则此圆柱的全面积与球表面积之比是( ) A .1:1 B .2:1C .3:2D .4:3【答案】C【解析】设球的半径为R ,则圆柱的底面半径为R ,高为2R ,222226S R R R R πππ∴=⨯+⨯=圆柱,24S R π=球.∴此圆柱的全面积与球表面积之比是:226342S R S R ππ==圆柱球.故选:C .2.若三棱锥A BCD -中,6AB CD ==,其余各棱长均为 5 ,则三棱锥内切球的表面积为 .【答案】6316π【解析】由题意可知三棱锥的四个面全等, 且每一个面的面积均为164122⨯⨯=. 设三棱锥的内切球的半径为r ,则三棱锥的体积14163ABC V S r r ∆==, 取CD 的中点O ,连接AO ,BO ,则CD ⊥平面AOB ,4AO BO ∴==,162AOB S ∆=⨯=12233A BCD C AOB V V --∴==⨯⨯=,16r ∴=,解得r =. ∴内切球的表面积为263416S r ππ==. 故答案为:6316π.3.一个几何体的三视图如图所示, 三视图都为腰长为 2 的等腰直角三角形, 则该几何体的外接球半径与内切球半径之比为( )A BC D 【答案】A【解析】 由题意可知几何体是三棱锥, 是正方体的一部分, 如图: 正方体的棱长为 2 ,内切球的半径为r ,可得:21111222(322)3232r ⨯⨯⨯⨯=⨯⨯⨯⨯,解得r ==故选:A .考向六 最值问题【例6】已知球O 的内接长方体ABCD A B C D -''''中,2AB =,若四棱锥O ABCD -的体积为2,则当球O 的表面积最小时,球的半径为( )A.B .2 CD .1【答案】B【解析】由题意,球O 的内接长方体ABCD A B C D -''''中,球心O 在T 对角线交点上, 可得:四棱锥O ABCD -的高为1(2h h 是长方体的高), 长方体的边长2AB =,设BC a =,高为h , 可得:112223a h ⨯⨯⨯⨯=,即6ah =,6h a∴=那么:23614222R ==+=,(当且仅当a =故选:B . 【举一反三】1.已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯⨯==,故6R =,则球O 的表面积为24144R ππ=, 故选:C .1.已知正三棱柱111ABC A B C -的底面边长为3,外接球表面积为16π,则正三棱柱111ABC A B C -的体积为( )A .4B .2C D .2【答案】D【解析】正三棱柱111ABC A B C -的底面边长为3,故底面的外接圆的半径为:03,2sin 60r r r =⇒=外接球表面积为16π242R R π=⇒=外接球的球心在上下两个底面的外心MN 的连线的中点上,记为O 点,如图所示在三角形1OMB 中,22211112MB r OB R MB OM OB ===+=解得1,2OM MN h ===故棱柱的体积为:133222V Sh ==⨯⨯⨯= 故答案为:D. 2.已知P ,A ,B ,C ,D 是球O 的球面上的五个点,四边形ABCD 为梯形,//AD BC ,2AB DC AD ===,4BC PA ==,PA ⊥面ABCD ,则球O 的体积为( )A .3B C .D .16π【答案】A【解析】取BC 中点E ,连接,,AE DE BD//AD BC 且12AD BC EC ==∴四边形ADCE 为平行四边形AE DC ∴=,又12DC BC =12DE BC ∴=AE DE BE EC ∴===E ∴为四边形ABCD 的外接圆圆心设O 为外接球的球心,由球的性质可知OE ⊥平面ABCD 作OF PA ⊥,垂足为F ∴四边形AEOF 为矩形,2OF AE == 设AF x =,OP OA R ==则()22444x x +-=+,解得:2x =R ∴==∴球O 的体积:3433V R π==本题正确选项:A3.已知三棱锥S ABC -的各顶点都在一个球面上,球心O 在AB 上,SO ⊥底面ABC ,球的体积与三棱锥体积之比是4π,AC = ( )A .πB .2πC .3πD .4π【答案】D 【解析】由于OA OB OC OS ===,且SO ⊥平面ABC ,所以π2ACB ∠=,设球的半径为R ,根据题目所给体积比有34π114π332R R =⋅⋅,解得1R =,故球的表面积为4π.4.某三棱锥的三视图如图所示,则此三棱锥的外接球表面积是( )A .163π B .283πC .11πD .323π【答案】B【解析】根据几何体得三视图转换为几何体为:该几何体为:下底面为边长为2的等边三角形,有一长为2的侧棱垂直于下底面的三棱锥体,故:下底面的中心到底面顶点的长为:3,所以:外接球的半径为:R =故:外接球的表面积为:27284433S R πππ==⋅=.故选:B . 5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,已知其俯视图是正三角形,则该几何体的外接球的体积是( )A B C .193πD .223π【答案】A的四棱锥,且侧面PAB 垂直底面ABCD ,如图所示:还原长方体的长是2,宽为1设四棱锥的外接球的球心为O ,则过O 作OM 垂直平面PAB ,M 为三角形PAB 的外心,作ON 垂直平面ABCD ,则N 为矩形ABCD 的对角线交点,11,233OM ON ===所以外接球的半径222221912R ON AN R =+=+=∴=所以外接球的体积343V R π== 故选A 6.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的表面积为( )A .√6AB .6AC .9AD .24A【答案】B【解析】如图所示,该几何体为四棱锥A −AAAA .底面AAAA 为矩形,其中AA ⊥底面AAAA .AA =1,AA =2,AA =1.则该阳马的外接球的直径为AA =√1+1+4=√6.∴该阳马的外接球的表面积为:4A ×(√62)2=6A .故选:A .7.如图,边长为2的正方形AAAA 中,点A、A 分别是AA、AA 的中点,将AAAA ,AAAA ,AAAA分别沿AA ,AA ,AA 折起,使得A 、A 、A 三点重合于点A ′,若四面体A ′AAA 的四个顶点在同一个球面上,则该球的表面积为( )A .5AB .6AC .8AD .11A【答案】B【解析】由题意可知△A′AA 是等腰直角三角形,且A′A ⊥平面A′AA . 三棱锥的底面A′AA 扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球, 正四棱柱的对角线的长度就是外接球的直径,直径为:√1+1+4=√6. ∴球的半径为√62,∴球的表面积为4A ·(√62)2=6A .故选:A .8.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球A 的球面上,则球A 的表面积是:( )A .8AB .12√3AC .12AD .48A【答案】C【解析】由三视图还原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2. 把该三棱柱补形为正方体,则正方体对角线长为√22+22+22.∴该三棱柱外接球的半径为:√3.则球O 的表面积是:4A ×(√3)2=12π.故选:C .9.已知三棱锥A −AAA 的底面AAAA 的顶点都在球A 的表面上,且AA =6,AA =2√3,AA =4√3,且三棱锥A −AAA 的体积为4√3,则球A 的体积为( ) A .32A3B .64A3C .128A3D .256A3【答案】D【解析】由O 为球心,OA =OB =OC =R ,可得O 在底面ABC 的射影为△ABC 的外心,AB =6,AA =2√3,AA =4√3,可得△ABC 为AC 斜边的直角三角形,O 在底面ABC 的射影为斜边AC 的中点M ,可得13•OM •12AB •BC =16OM •12√3=4√3,解得OM =2, R 2=OM 2+AM 2=4+12=16,即R =4,球O 的体积为43πR 3=43π•64=2563π.故选:D .10.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.现有一如图所示的堑堵,AC BC ⊥,若12A A AB ==,则堑堵111ABC A B C -的外接球的体积为( )AB .8πCD .43π 【答案】C【解析】由题意,在直三棱柱111ABC A B C -中,因为AC BC ⊥,所以ABC ∆为直角三角形,且该三角形的外接圆的直径22r AB ==, 又由12AA =,所以直三棱柱111ABC A B C -的外接球的直径2R ==所以R =,所以外接球的体积为334433V R ππ==⨯=C. 11.在三棱锥P ABC -中.2PA PB PC ===.1AB AC ==,BC =则该三棱锥的外接球的表面积为( )A .8πB .163π C .43π D【答案】B【解析】因为1,AB AC BC ===,由余弦定理可求得23BAC π∠=, 再由正弦定理可求得ABC ∆的外接圆的半径122sin3BCr π==, 因为2PA PB PC ===,所以P 在底面上的射影为ABC ∆的外心D,且PD =,设其外接球的半径为R,则有2221)R R =+,解得R =24164433S R πππ==⨯=,故选B.12.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( ) A .6π B .12πC .32πD .48π【答案】B【解析】由题得几何体原图如图所示,其中SA ⊥平面ABC,BC ⊥平面SAB,SA=AB=BC=2,所以SC =设SC 中点为O,则在直角三角形SAC 中,在直角三角形SBC 中,OB=12SC =所以,所以点O所以四面体外接球的表面积为4=12ππ.故选:B13.已知在三棱锥P ABC -中,1PA PB BC ===,AB =,AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为( )A .2B C .2π D .3π【答案】D【解析】根据题意, AC 为截面圆的直径, AC =设球心到平面ABC 的距离为d ,球的半径为R 。

高中数学外接球与内切球的定心方法

高中数学外接球与内切球的定心方法

高中数学外接球与内切球的定心方法数学中,外接球和内切球是重要的概念,在几何学、三角学和代数学等领域都有广泛的应用。

外接球是指将一个空间几何体的球完全包裹住的最小球,而内切球是指一个球完全被一个空间几何体的内切。

本文将从几何学角度介绍外接球和内切球的定义、性质和求解方法,并附上一些实际问题的例子,帮助读者更好地理解和应用这些概念。

一、外接球1.定义:对于一个几何体(如正方体、圆锥、圆柱等),外接球是完全包容该几何体的一个球。

外接球的半径等于几何体的边长、高或半径的一半。

以正方体为例,假设正方体的边长为a,那么该正方体的外接球的半径R等于a的一半,即R=a/22.性质:外接球的球心与几何体的重心重合,在三维空间中位于几何体的中心位置。

以正方体为例,该正方体的外接球的球心与正方体的重心重合,位于正方体的中心位置。

3.求解方法:求解外接球的定心位置可以使用数学模型和几何关系。

以正方体为例,可以使用重心定理来求解外接球的球心位置。

重心定理:对于任意一个几何体,其重心位于几何体的所有顶点连线的交点上,即几何体的所有顶点到这一点的距离之和最短。

对于正方体而言,由于正方体的顶点都在几何体的边上,因此可以通过连接正方体的两个对角线,其交点即为正方体的重心,也就是外接球的球心位置。

二、内切球1.定义:对于一个几何体(如正方体、圆锥、圆柱等),内切球是完全被该几何体内切的一个球。

内切球的半径等于几何体的边长、高或半径的一半。

以正方体为例,假设正方体的边长为a,那么该正方体的内切球的半径r等于a的一半,即r=a/22.性质:内切球的球心位于几何体的重心,且与几何体的所有顶点连线相交于几何体的中点。

以正方体为例,该正方体的内切球的球心位于正方体的重心,且与正方体的所有顶点连线相交于正方体的中点。

3.求解方法:求解内切球的定心位置可以使用数学模型和几何关系。

以正方体为例,可以使用重心定理来求解内切球的球心位置。

由于内切球的球心位于几何体的重心,因此可以通过连接正方体的两个对角线,其交点即为正方体的重心,也就是内切球的球心位置。

空间圆锥体的外接球和内切球问题

空间圆锥体的外接球和内切球问题

空间圆锥体的外接球和内切球问题
介绍
空间圆锥体是一个三维几何体,由一个圆锥和一个直径位于圆锥顶点的球构成。

在研究空间圆锥体时,外接球和内切球问题是经常涉及的一个重要问题。

外接球
外接球是指完全包围空间圆锥体的最小球。

它的圆心位于圆锥体的顶点,并且恰好接触圆锥体的底面。

外接球的半径可以通过以下公式计算:
R = √(h^2 + r^2)
其中,R代表外接球的半径,h代表圆锥体的高度,r代表圆锥体底面的半径。

内切球
内切球是指位于空间圆锥体内部,并且与圆锥体的底面和侧面相切的最大球。

内切球的半径可以通过以下公式计算:
r' = √(h^2 + r'^2)
其中,r'代表内切球的半径,h代表圆锥体的高度,r'代表内切球底面的半径。

应用
外接球和内切球的性质在几何学和工程学中有广泛应用。

它们可以用于计算空间圆锥体的几何特征,如体积、表面积等。

此外,外接球和内切球还可以用于优化设计和模拟分析等领域。

结论
空间圆锥体的外接球和内切球问题是一个重要的几何学问题。

通过计算它们的半径,可以获得圆锥体的几何特征,并在实际应用中发挥重要作用。

空间几何体外接球与内切球问题解决方法

空间几何体外接球与内切球问题解决方法

空间几何体的外接球与内切球问题一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).2.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法).四、八大模型类型一柱体背景的模型题型1、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1(1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是(C)A.π16B.π20C.π24D.π32解:162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是π9解:933342=++=R ,ππ942==R S ;(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是.π36解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1,取BC AB ,中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD ,∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为(D )π11.A π7.B π310.C π340.D 解:在ABC ∆中,7120cos 2222=⋅⋅-+= BC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r ,∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是解:由已知得三条侧棱两两垂直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S ,(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为解:3)2(2222=++=c b a R ,432=R ,23=R πππ2383334343=⋅==R V 球,题型2、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =)第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222za c y cb x b a ⇒2)2(2222222z y xc b a R ++=++=,补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-.第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为.解:对棱相等,补形为长方体,如图2-1,设长宽高分别为c b a ,,,110493625)(2222=++=++c b a ,55222=++c b a ,5542=R ,π55=S (2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为.π229解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S(3)正四面体的各条棱长都为2,则该正面体外接球的体积为解:正四面体对棱相等的模式,放入正方体中,32=R ,23=R ,ππ2383334=⋅=V (4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是.解:如解答图,将正四面体放入正方体中,截面为1PCO ∆,面积是2.题型3、汉堡模型(直棱柱的外接球、圆柱的外接球)题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ;第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高);第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(h r R +=,解出R 例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为解:设正六边形边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则21=a ,正六棱柱的底面积为833)21(4362=⋅⋅=S ,89833===h Sh V 柱,∴3=h ,4)3(14222=+=R 也可121()23(222=+=R ),1=R ,球的体积为34π=球V ;(2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于.解:32=BC ,4120sin 322==r ,2=r ,5=R ,π20=S ;(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为.π16解:折叠型,法一:EAB ∆的外接圆半径为31=r ,11=OO ,231=+=R ;法二:231=M O ,21322==D O r ,4413432=+=R ,2=R ,π16=表S ;法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱的轴截面的对角线长来求球的直径:162)32()2(222=+=R ,π16=表S ;(4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为.π3160解:法一:282164236162=⋅⋅⋅-+=BC ,72=BC ,37423722==r ,372=r ,3404328)2(2122=+=+=AA r R ,π3160=表S ;法二:求圆柱的轴截面的对角线长得球直径,此略.类型二锥体背景的模型题型4、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)1.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=;第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R .例4(1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为.解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,72=R ,ππ4942==R S ;(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为解:方法一:找球心的位置,易知1=r ,1=h ,r h =,故球心在正方形的中心ABCD 处,1=R ,34π=V 方法二:大圆是轴截面所的外接圆,即大圆是SAC ∆的外接圆,此处特殊,SAC Rt ∆的斜边是球半径,22=R ,1=R ,34π=V .(3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.433B.33C.43D.123解:高1==R h ,底面外接圆的半径为1=R ,直径为22=R ,设底面边长为a ,则260sin 2==a R ,3=a ,433432==a S ,三棱锥的体积为4331==Sh V ;(4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为 60,则该三棱锥外接球的体积为()A.πB.3π C.4πD.43π解:选D,由线面角的知识,得ABC ∆的顶点C B A ,,在以23=r 为半径的圆上,在圆锥中求解,1=R ;(5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为()AA.6B.6C.3D.2解:36)33(12221=-=-=r R OO ,362=h ,62362433131=⋅⋅==Sh V 球题型5、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=;第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径.例5一个几何体的三视图如图所示,则该几何体外接球的表面积为()A.π3B.π2C.316πD.以上都不对解:选C,法一:(勾股定理)利用球心的位置求球半径,球心在圆锥的高线上,221)3(R R =+-,32=R ,ππ31642==R S ;法二:(大圆法求外接球直径)如图,球心在圆锥的高线上,故圆锥的轴截面三角形PMN 的外接圆是大圆,于是3460sin 22==R ,下略;类型三二面角背景的模型题型6、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ;第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,;第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为.解:如图,3460sin 22221=== r r ,3221==r r ,312=H O ,35343121222=+=+=r H O R ,315=R ;法二:312=H O ,311=H O ,1=AH ,352121222=++==O O H O AH AO R ,315=R ;(2)在直角梯形ABCD 中,CD AB //, 90=∠A ,45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为π4解:如图,易知球心在BC 的中点处,π4=表S ;(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为π6解:如图,法一:33)2cos(cos 211-=+∠=∠πO OO B SO ,33sin 21=∠O OO ,36cos 21=∠O OO ,22cos 21211=∠=O OO O O OO ,232112=+=R ,ππ642==R S ;法二:延长1BO 到D 使111r BO DO ==,由余弦定理得6=SB ,2=SD ,大圆直径为62==SB R ;(4)在边长为32的菱形ABCD 中,60=∠BAD ,沿对角线BD 折成二面角C BD A --为120的四面体ABCD ,则此四面体的外接球表面积为π28解:如图,取BD 的中点M ,ABD ∆和CBD ∆的外接圆半径为221==r r ,ABD ∆和CBD ∆的外心21,O O 到弦BD 的距离(弦心距)为121==d d ,法一:四边形21MO OO 的外接圆直径2=OM ,7=R ,π28=S ;法二:31=OO ,7=R ;法三:作出CBD ∆的外接圆直径CE ,则3==CM AM ,4=CE ,1=ME ,7=AE ,33=AC ,72147227167cos -=⋅⋅-+=∠AEC ,7233sin =∠AEC ,72723333sin 2==∠=AEC AC R ,7=R ;(5)在四棱锥ABCD 中,120=∠BDA ,150=∠BDC ,2==BD AD ,3=CD ,二面角C BD A --的平面角的大小为120,则此四面体的外接球的体积为解:如图,过两小圆圆心作相应小圆所在平面的垂线确定球心,32=AB ,22=r ,弦心距32=M O ,13=BC ,131=r ,弦心距321=M O ,∴2121=O O ,72120sin 21==O O OM ,法一:∴292222=+==OM MD OD R ,29=R ,∴329116π=球V ;法二:2522222=-=M O OM OO ,∴29222222=+==OO r OD R ,29=R ,∴329116π=球V .题型7、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型题设:如图7,90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为()A.π12125B.π9125C.π6125D.π3125解:(1)52==AC R ,25=R ,6125812534343πππ=⋅==R V ,选C(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCD A -的外接球的表面积为.解:BD 的中点是球心O ,132==BD R ,ππ1342==R S .类型四多面体的内切球问题模型题型8、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径.第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高;第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高;第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒rS S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABCO ABCP S S S S V r -----+++=3例8(1)棱长为a 的正四面体的内切球表面积是62a π,解:设正四面体内切球的半径为r ,将正四面体放入棱长为2a的正方体中(即补形为正方体),如图,则2622313133a a V V ABCP =⋅==-正方体,又 r a r a Sr V ABC P 223343314314=⋅⋅⋅=⋅=-,∴263332a r a =,62a r =,∴内切球的表面积为6422a r S ππ==表(注:还有别的方法,此略)(2)正四棱锥ABCD S -的底面边长为2,侧棱长为3,则其内切球的半径为2217+解:如图,正四棱锥ABCD S -的高7=h ,正四棱锥ABCD S -的体积为374=-ABCD S V 侧面斜高221=h ,正四棱锥ABCD S -的表面积为284+=表S ,正四棱锥ABCD S -的体积为r r S V ABCD S ⋅+==-328431表,∴3743284=⋅+r ,771427)122(7221728474-=-=+=+=r (3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则该三棱锥的内切球半径为47332++解:如图,3=∆ABC S ,2==∆∆ACP ABP S S ,7=∆BCP S ,743++=表S ,三棱锥ABC P -的体积为332=-ABC P V ,另一表达体积的方式是r r S V ABC P ⋅++==-347331表,∴3323473=⋅++r ,∴47332++=r巩固练习:1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为()A.3B.6C.36D.9解:【A】616164)2(2=++=R ,3=R 【三棱锥有一侧棱垂直于底面,且底面是直角三角形】【共两种】2.三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于.332π解:260sin 32== r ,16124)2(2=+=R ,42=R ,2=R ,外接球体积332834ππ=⋅【外心法(加中垂线)找球心;正弦定理求球小圆半径】3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于.解:ABC ∆外接圆的半径为,三棱锥ABC S -的直径为3460sin 22== R ,外接球半径32=R ,或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V ,4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为.解:PAC ∆的外接圆是大圆,3460sin 22== R ,32=R ,5.三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为.解:973324992cos 222=⋅⋅-+=⋅-+=∠PC PA AC PC PA P ,8121697(1sin 22⋅=-=∠P ,924sin =∠P ,42922992422===R ,829=R 6.三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABCP -外接球的半径为.解:AC 是公共的斜边,AC 的中点是球心O ,球半径为1=R。

专题讲解 立体几何中的外接球与内切球问题(学生版)

专题讲解 立体几何中的外接球与内切球问题(学生版)

专题讲解立体几何中的外接球与内切球问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点。

考查学生的空间想象能力以及化归能力。

研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。

球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作。

当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径。

球与多面体的关系是高考考查的重点,但同学们又因为缺乏较强的空间想象能力,较难找到解题的切入点和突破口。

解决这类题目是要认真分析图形,明确切点和接点的位置及球心的位置是关键。

常见题型有求对应外接球或内切球半径、表面积、体积或球内接几何体最值等问题。

本章节将对常见的关于内切球和外接球的模型作一总结,并附有针对性训练题,供教师和学生参考使用。

一.常见模型归纳1. 墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决。

外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a 2+b2+c2。

),秒杀公式:R2=a2+b2+c24.可求出球的半径从而解决问题.有以下四种类型:【例1】已知二面角α-l-β的大小为π3,点P∈α,点P在β内的正投影为点A,过点A作AB⊥l,垂足为点B,点C∈l,BC=22,P A=23,点D∈β,且四边形ABCD满足∠BCD+∠DAB=π.若四面体P ACD的四个顶点都在同一球面上,则该球的体积为________.A BCDA1B1C1D1类型ⅠA BCDA1B1C1D1类型ⅡA BCDA1B1C1D1类型ⅢA BCDA1B1C1D1例外型【例2】已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A .68πB .64πC .62πD .6π【变式练习1】在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π【变式练习2】在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为32的正方形,AA 1=3,E 是线段A 1B 1上一点, 若二面角A -BD -E 的正切值为3,则三棱锥A -A 1D 1E 外接球的表面积为________.2. 对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决。

空间几何体的外接球与内切球

空间几何体的外接球与内切球

空间几何体的外接球与内切球1正方体的内切球:设正方体的棱长为a ,求(1)内切球半径;(2)外接球半径;(3)与棱相切的球半径。

(1)截面图为正方形EFGH 的内切圆,得2a R =; (2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 22=。

(3)正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 231==。

类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)c abCP A Babc 图2PCBAabc 图3CBPAa bc 图4PCO 2BA方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R (1)在四面体中,共顶点的三条棱两两垂直,其长度分别为,若该四面体的四个顶点在一个球面上,求这个球的表面积。

图3图4图5(2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是(3)在正三棱锥S ABC-中,M N、分别是棱SC BC、的中点,且MNAM⊥,若侧棱23SA=,则正三棱锥ABCS-外接球的表面积是(4)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是(5)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为类型二、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA平面ABC解题步骤:第一步:将ABC∆画在小圆面上,A为小圆直径的一个端点,作小圆的直径AD,连接PD,则PD必过球心O;第二步:1O为ABC∆的外心,所以⊥1OO平面ABC,算出小圆1O的半径rDO=1(三角形的外接圆直径算法:利用正弦定理,得图5A DPO1OCBr C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=2.题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点图6PADO 1OCB图7-1PAO 1O CB图7-2PAO 1O CB图8PAO 1OCB图8-1DPOO 2ABC图8-2POO 2ABC图8-3DPOO 2AB解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R1. 一个几何体的三视图如右图所示,则该几何体外接球的表面积为( ) A .π3 B .π2 C .316πD .以上都不对2. 在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( )π11.A π7.B π310.C π340.D3.已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积等于 为( ) .4.已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面ABCD ,AB ⊥BC ,SA =AB =1,BC =2,则球O 的表面积等于( )A .4πB .3πC .2πD .Π5.正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一个球面上,则此球的体积为6.在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为60,则该三棱锥外接球的体积为( ) A .π B.3π C. 4π D.43π7.已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A A .2 B.3 C .2 D .28.点A ,B ,C ,D 均在同一球面上,其中△ABC 是正三角形,AD ⊥平面ABC ,AD =2AB =6,则该球的体积为( ) A .323π B .48π C .643π D .163π 9.10.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .6πD 6π类型三、切瓜模型(两个平面互相垂直)图9-1ACBP图9-2AO 1OCBP图9-3PAO 1OCB图9-4AO 1OCBP1.题设:如图9-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R2.如图9-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=3.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R4.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=1三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 .2.已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3D.32 3 π方法技巧专题 3 空间几何体外接球和内切球【一】高过外心空间几何体(以P -ABCD 为例)的高过底面的外心(即顶点的投影在底面外心上):(1)先求底面ABCD 的外接圆半径r ,确定底面ABCD 外接圆圆心位置O';(2)把O'垂直上移到点O ,使得点O 到顶点P 的距离等于到A、B、C、D 的距离相等,此时点O 是几何体外接球球心;(3)连接OA ,那么R =OA , 由勾股定理得:R2 =r 2 +OO'2 .1、已知正四棱锥P -ABCD 的所有顶点都在球O 的球面上,PA =AB = 2,则球O 的表面积为()A.2πB.4πC.8πD.16π2、在三棱锥P -ABC 中. PA =PB =PC = 2. AB =AC =1,BC =,则该三棱锥的外接球的表面积为()A.8πB.16πC.4π 3【二】高不过外心3 27 高不过心—顶点的投影不在底面外心上,以侧棱垂直于底面为例:题设:已知四棱锥P -ABCD ,PA ⊥底面ABCD(1)先求底面ABCD 的外接圆半径r ,确定底面ABCD 外接圆圆心位置O';(2)把O'垂直上移到点O ,使得OO'=1PA ,此时点O 是几何体外接球球心;2(3)连接OA,那么R=OA,由勾股定理得:R2=r2+OO'2=r2+(PA)2.21、长方体 A ꆸ䎑ꮘ ΐ A 1ꆸ1䎑1ꮘ1的 8 个顶点在同一个球面上,且 A ꆸ = ⺁,A ꮘ = 3,A A 1= 1,则球的表面积为 .2、已知正三棱柱 ABC - A 1B 1C 1 的底面边长为 3,外接球表面积为16π,则正三棱柱 ABC - A 1B 1C 1 的体积为()A.3 34B.3 3 2D.9 3 423、已知 P , A , B ,C , D 是球O 的球面上的五个点,四边形 ABCD 为梯形, AD / /BC , AB = DC = AD = 2 ,BC = PA = 4 , PA ⊥ 面ABCD ,则球O 的体积为( )A .64 2π B .16 2πC .16 2πD .16π3 34、已知三棱柱 ABC - A B C 的侧棱与底面垂直, AA = BC = 2, ∠BAC = π,则三棱柱 ABC - A B C 外接球的体积为()1 1 1141 1 1A .12 3πB . 8 3πC . 6 3πD . 4 3π5、四棱锥 P - ABCD 的底面为正方形 ABCD , PA ⊥ 底面 ABCD , AB = 2 ,若该四棱锥的所有顶点都在体积为9π 2的同一球面上,则 PA 的长为( )1 A .3B .2C .1D .26、四棱锥 A - BCDE 的各顶点都在同一球面上, AB ⊥ 底面 BCDE ,底面 BCDE 为梯形, ∠BCD = 60 ,且AB =CB =BE =ED =2,则此球的表面积等于()A . 25πB .24π C . 20πD .16π【三】长(正)方体外接球1、长方体或正方体的外接球的球心:体对角线的中点;2、正方体的外接球半径: R = 3 a (a 为正方体棱长); 23、长方体的同一顶点的三条棱长分别为a , b , c ,外接球的半径: R =21、若一个长、宽、高分别为 4,3,2 的长方体的每个顶点都在球O 的表面上,则此球的表面积为2、已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18,则这个球的体积为3、如图是一个空间几何体的三视图,则该几何体的外接球的表面积是 .C. 9 3a 2 +b 2 +c 2r 2+ ( h )2 2 PA 2 - AH 2 OH 2+ AH2(h - R )2 + ( 2 r )234、棱长为 1 的正方体 ABCD - A 1B 1C 1D 1 的 8 个顶点都在球O 的表面上, E ,F 分别是棱 AA 1 , D D 1 的中点,则直线EF 被球O 截得的线段长为() 2A . 2【四】棱柱的外接球直棱柱外接球的求法—汉堡模型B .1C .1+2 D . 21. 补型:补成长方体,若各个顶点在长方体的顶点上,则外接球与长方体相同2. 作图:构造直角三角形,利用勾股定理1 a1)第一步:求底面外接圆的半径: r =( a 为角 A 的对边);2 sin A2)第二步:由勾股定理得外接球半径: R = ( h 为直棱柱侧棱高度)1、直三棱柱 ABC - A 1B 1C 1 中,已知 A ꆸ T ꆸ䎑,A ꆸ = 3,ꆸ䎑 = 4,AA 1 = 5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为.2、直三棱柱 ABC - A 1B 1C 1 的所有棱长均为 ⺁ 3,则此三棱柱的外接球的表面积为()A .12πB .16πC . 28πD . 36π3 、设直三棱柱 ABC - A 1B 1C 1 的所有顶点都在一个球面上, 且球的表面积是 40π , AB = AC = AA 1 ,∠BAC = 120o ,则此直三棱柱的高是.【五】棱锥的外接球类型一:正棱锥型 (如下图 1,以正三棱锥为例,顶点 P 的投影落在∆ABC 的外心上)1) 求底面外接圆半径:r = 1 a( a 为角 A 的对边);2) 求出 AH 2 sin A= 2 r ,求出棱锥高度h = PH = ;33) 由勾股定理得外接球半径: R = =.2r 2+(h )2 2类型二:侧棱垂直底面型(如上图2)1)求底面外接圆半径:r =HD =1 a(a 为角A 的对边);2)棱锥高度h =PA ;2 sin A3)由勾股定理得外接球半径: R =. 类型三:侧面垂直于底面---切瓜模型2类型四:棱长即为直径(两个直角三角形的斜边为同一边,则该边为球的直径)题设: ∠APB = ∠AQB = π,且面ABP ⊥ 面ABQ则外接球半径: R = 2类型五:折叠模型1、已知正四棱锥 P - ABCD 的各顶点都在同一球面上,底面正方形的边长为球的体积为 (),若该正四棱锥的体积为 2,则此124π A.3625π B.81 500π C.81256π D.92 、 在 三 棱 锥 P - ABC 中 ,AP = 2 ,AB = 3 , PA ⊥ 面 ABC , 且 在 三 角 形 ABC 中 , 有c cos B = (2a - b )cos C ,则该三棱锥外接球的表面积为( )A. 40πB. 20πC. 12πD.20π3AB 2 33 3 3、已知如图所示的三棱锥 D - ABC 的四个顶点均在球O 的球面上,∆ABC 和∆DBC 所在平面相互垂直,AB = 3,AC = , BC = CD = BD = 2 ,则球O 的表面积为()A . 4πB .12πC .16πD . 36π4、三棱锥 P - ABC 的底面是等腰三角形, ∠C = 120︒ ,侧面 PAB 是等边三角形且与底面 ABC 垂直, AC = 2 , 则该三棱锥的外接球表面积为( )A .12πB . 20πC . 32πD .100π5、已知三棱锥 P - ABC 的所有顶点都在球O 的球面上, PC 是球O 的直径.若平面 PCA ⊥ 平面 PCB , PA = AC ,PB = BC ,三棱锥 P - ABC 的体积为 a ,则球O 的体积为()A . 2πaB . 4πaC . 2π a3D . 4πa36、在三棱锥 A ﹣B C D 中,△A B D 与△C B D 均为边长为 2 的等边三角形,且二面角 A - BD - C 的平面角为 120°,则该三棱锥的外接球的表面积为()A .7πB .8πC .16π 328π D .37、已知正四棱锥 P - ABCD 的各条棱长均为 2,则其外接球的表面积为()A. 4πB. 6πC. 8πD. 16π8、如图,正三棱锥 D - ABC 的四个顶点均在球O 的球面上,底面正三角形的边长为 3,侧棱长为2 表面积是(),则球O 的A .4π B .32π C .16π D . 36π3313 13 9、已知几何体的三视图如图所示,则该几何体的外接球的表面积为( )214 A.3127 B.3115 C.3124 D.310、已知三棱锥 S -ABC 中, SA ⊥ 平面 ABC ,且∠ACB = 30︒, 接球的体积为()AC = 2AB = 2 3.SA = 1 .则该三棱锥的外A. 13 13πB. 13πC. 8πD. π6 611、已知四棱锥 P ΐ A ꆸ䎑ꮘ 的三视图如图所示,则四棱锥 P ΐ A ꆸ䎑ꮘ 外接球的表面积是( )A. 20π101 B.5C. 25πD. 22π12、《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,其中有很多对几何体外接球的研究,如下图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积是( )A. 81nB. 33nC. 56nD. 41n13 πππππ6 7 3a 2 +b 2 +c 213、已知底面边长为 ⺁,各侧面均为直角三角形的正三棱锥 P ΐ A ꆸ䎑 的四个顶点都在同一球面上,则此球的表面积为( )A. 3nB. ⺁nC. 4nD. 4n32π 14、如图所示,三棱锥 S 一 A B C 中,△A B C 与△S B C 都是边长为 1 的正三角形,二面角 A ﹣B C ﹣S 的大小为,若3S ,A ,B ,C 四点都在球 O 的表面上,则球 O 的表面积为()713 A . πB . 334 πC . 3πD .3π15、四面体 SABC 中, AC ⊥ BC , SA ⊥ 平面 ABC , SA =,AC = , BC = ,则该四面体外接球的表面积为( )32πA .3【六】墙角型16π B .3C .16πD . 32π题设:墙角型(三条线两两垂直)方法:找到 3 条两两互相垂直的线段途径 1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体. 途径 2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体. 途径 3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体. 途径 4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.墙角型外接球半径: R = ( a , b , c 分别是长方体同一顶点出发的三条棱的长度)2A . 2π B . 3π1、某几何体的三视图如图所示,则该几何体的外接球的体积是( )C . 3πD . 4 3π322、已知四面体 A ꆸ䎑ꮘ 的四个面都为直角三角形,且 A ꆸ T 平面 ꆸ䎑ꮘ,A ꆸ = ꆸꆸ = 䎑ꮘ = ⺁,若该四面体的四个顶点都在球 0 的表面上,则球 0 的表面积为( ) A .3nB .⺁ 3nC .4 3nD .1⺁n3、已知一个棱长为 2 的正方体被两个平面所截得的几何体的三视图如图所示,则该几何体外接球的表面积是 ()A . 24πB . 20πC .16πD .12π4、在三棱锥 P 一 ABC 中, PA = PB = PC = 1, PA 、 PB 、 PC 两两垂直,则三棱锥 P - ABC 的外接球的表面积为( )A .12πB . 6πC . 4πD . 3π【七】空间几何体内切球6 33 2 1、正三棱锥的高为 1,底面边长为 2 ,正三棱锥内有一个球与其四个面相切.求球的表面积与体积. 2、若三棱锥 A - BCD 中, AB = CD = 6,其余各棱长均为 5 ,则三棱锥内切球的表面积为.3、一个几何体的三视图如图所示, 三视图都为腰长为 2 的等腰直角三角形, 则该几何体的外接球半径与内切球半径之比为()3 + 3 3 A .23 3 B . C .21+ 3 D .24、球内切于圆柱, 则此圆柱的全面积与球表面积之比是( )A .1:1B . 2 :1C . 3: 2D . 4 : 3【八】球与几何体各棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直 角三角形进行转换和求解1、已知一个全面积为 24 的正方体,有一个与每条棱都相切的球,此球的半径为2、把一个皮球放入如图 所示的由 8 根长均为 20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与 8 根铁丝都有接触点,则皮球的半径为( )A.10 cmB. 10cmC. 10 cmD. 30 cm。

相关文档
最新文档