【数学】第二章《章节总体设计》教案(新人教A版必修5)

合集下载

人教A版高中数学必修5《二章 数列 2.1 数列的概念与简单表示法 阅读与思考 斐波那契数列》优质课教案_0

人教A版高中数学必修5《二章 数列  2.1 数列的概念与简单表示法  阅读与思考 斐波那契数列》优质课教案_0

随风潜人夜,润物细无声《神奇的斐波那契数列》教学设计《普通高中数学课程标准(实验)》在前言中指出:数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。

数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。

数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。

数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。

数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。

数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。

在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。

数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。

《普通高中数学课程标准(实验)》将“体现数学的文化价值”作为课程的基本理念之一并在教学建议中明确指出:“数学是人类文化的重要组成部分,是人类社会进步的产物,也是推动社会发展的动力.教学中应引导学生初步了解数学科学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值、人文价值、开阔视野。

长期以来,在高考这根指挥棒下,学习逐渐服从于知识,服从于做题,服从于高考。

在数学教学上,老师教的许多内容既枯燥又抽象.大多数教师以做题为主要教学方法,以解题为主要目的,不关注数学问题的文化性; 学生在单一的数字、定义、定理、公理、公式的围攻下,对单纯的数学问题感到枯燥,厌倦,对数学的兴趣逐渐淡薄,认为数学毫无用处,数学问题被当成了获取分数的工具.因此如何将数学文化的内容有机地结合到日常的教学中,使学生在潜移默化中体会到数学的文化价值?这需要我们每位教师认真思考这个问题一、教材分析:本节课选自人教版《数学5》(必修)第二章《数列》第2.1节后的《阅读与思考》部分。

【优化方案】2012高中数学 第2章本章优化总结课件 新人教A版必修5

【优化方案】2012高中数学 第2章本章优化总结课件 新人教A版必修5

例1 根据以下数列的前 4 项写出数列的一个通
项公式. 项公式. 1 1 1 1 (1) , , , ; 2×4 3×5 4×6 5×7 × × × × (2)-3,7,- ,-15,31; - ,- ; (3)2,6,2,6.
【解】 (1)均是分式且分子均为 1,分母均是两 均是分式且分子均为 , 因数的积, 因数的积,第一个因数是项数加上 1,第二个因 , 数比第一个因数大 , 数比第一个因数大 2, 1 . ∴an= )(n+ ) (n+1)( +3) + )(
2,n是奇数 , 是奇数 . an=4+(-1) ·2 或 an= +- , 是偶数 6,n是偶数
n
n
2.公式法 . 等差数列与等比数列是两种常见且重要的数列, 等差数列与等比数列是两种常见且重要的数列, 所谓公式法就是先分析后项与前项的差或比是否 符合等差、等比数列的定义,然后用等差、 符合等差、等比数列的定义,然后用等差、等比 数列的通项公式表示它. 数列的通项公式表示它.
知识方法:在解题时,根据题目所给条件的不同, 知识方法:在解题时,根据题目所给条件的不同, 可以采用不同的方法求数列的通项公式, 可以采用不同的方法求数列的通项公式,常见方 法有如下几种: 法有如下几种: 1.观察归纳法 . 观察归纳法就是观察数列特征, 观察归纳法就是观察数列特征,找出各项共同的 构成规律,横向看各项之间的关系, 构成规律,横向看各项之间的关系,纵向看各项 与项数n的内在联系, 与项数 的内在联系,从而归纳出数列的通项公 的内在联系 式.
例8
设数列{a 为等比数列 为等比数列, 设数列 n}为等比数列,Tn=na1+(n- -
1)a2+…+2an-1+an,且T1=1,T2=4. + , - (1)求数列 n}的首项和公比; 求数列{a 的首项和公比 的首项和公比; 求数列 (2)求数列 n}的通项公式. 求数列{T 的通项公式 的通项公式. 求数列

【优化方案】2012高中数学 第2章2.2.1等差数列的概念及通项公式课件 新人教A版必修5

【优化方案】2012高中数学 第2章2.2.1等差数列的概念及通项公式课件 新人教A版必修5

(3)通项法:an=kn+b(k、b为常数 ⇔{an}是等差 通项法: 为常数)⇔ 通项法 + 、 为常数 是等差 数列. 数列. 警示: + 为常数, ∈ 对任意n∈ 警示:an+1-an=d(d为常数,n∈N+)对任意 ∈N 为常数 对任意 都要恒成立,不能几项成立便说{a 为等差数 +都要恒成立,不能几项成立便说 n}为等差数 列.
3.等差中项 等差中项 在由三个数a,A,b组成的等差数列中,A叫做 在由三个数 , , 组成的等差数列中, 叫做a 组成的等差数列中 叫做 的等差中项. 与b的等差中项.这三个数满足关系式 +b= 的等差中项 这三个数满足关系式a+ = ____ 2A.
思考感悟 2.任何两个实数都有等差中项吗? .任何两个实数都有等差中项吗? 提示:都有等差中项. 提示:都有等差中项.
【名师点评】 判断一个数列是否为等差数列的 名师点评】 方法有以下几种: 方法有以下几种: (1)定义法:an+1-an=d(d为常数,n∈N+)⇔{an} 定义法: + 为常数, ∈ 定义法 为常数 ⇔ 为等差数列. 为等差数列. (2)等差中项法:2an+1=an+an+2⇔{an}是等差数 等差中项法: + 等差中项法 是等差数 + 列.
2.2 等差数列 . 2. 2.2.1 等差数列的概念及通项公式
学习目标 1.理解等差数列的概念. 理解等差数列的概念. 理解等差数列的概念 2.掌握等差数列的通项公式和等差中项的概念, .掌握等差数列的通项公式和等差中项的概念, 深化认识并能运用. 深化认识并能运用.
2. 2.1 等 差 数 列 的 概 念 及 通 项 公 式
例2
之间顺次插入三个数a, , 使这 在-1与7之间顺次插入三个数 ,b,c使这 与 之间顺次插入三个数

高中数学 第二章 数列 24 等比数列学案(无答案)新人教A版必修5 学案

高中数学 第二章 数列 24 等比数列学案(无答案)新人教A版必修5 学案

2.4等比数列【学习目标】理解等比数列、等比中项的概念,能推导并掌握通项公式,能熟练运用通项公式和一些常用性质解决有关问题. 【重点难点】重点:等比数列的定义和通项公式及其应用.难点:等比数列的通项公式的应用.【学法指导】学习本节一定要认真阅读教材,运用从特殊到一般和类比等差数列的定义、通项公式的方法归纳等比数列的定义、通项公式. 一.课前预习阅读课本4852P P 页,弄清下列问题:1.等比数列的概念: .2.用数学式子表示等比数列的定义: {}n a 是等比数列,则*1()n na q n N a +=∈. 强调:(1)“从第二项起,每一项与它的前一项的比都等于同一个常数”,要防止在求公比 时,把相邻两项比的次序颠倒.(3)当公比q = 时,等比数列是常数列,该数列也是等差数列.(4)等比数列的每一项都不为 .3.等比数列的通项公式: . 4.等比中项的定义: . 5.快乐体验:(1)若等比数列155,45a a ==,求公比q ; (2)若等比数列12,33a q ==,求4a .(3)若等比数列3312,2a q ==,求1a ; (4)若等比数列的12,54,3,n a a q ===求n .(5)若4,9a b ==,求,a b 的等比中项.二.课堂学习与研讨例1.某种放射性物质不断变化为其他物质,每经过一年剩留量是原来的84%.这种物质的半衰期为多长?(精确到1年)(参考数据:lg 20.3010,lg0.840.0757,0.30100.0757 3.98==-÷≈)练习1.(教材53P 练习5)某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度折旧. (1)用一个式子表示*()n n N ∈年后这辆车的价值;(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?例2.等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.练习2. 在等比数列{}n a 中,473,81,n a a a ==求.小结:3.等比中项:若,,a G b 成等比数列,则2G ab =. 三.课堂检测1.若a ,22a +,33a +成等比数列,则实数a 的为 .2.在等比数列中,(1)若已知2514,2a a ==-求n a . (2)若253618,9,1n a a a a a +=+==,求n .四.作业 1. P53A1 2. 在83和272之间插入3个数,使这五个数成等比数列,求这三数?3. 在等比数列{}n a 中,已知1910185,100,a a a a =⋅=求.2.5等比数列的前n 项和公式【学习目标】1.掌握等比数列的前n 项和公式11,1(1),11n n na q S a q q q =⎧⎪=-⎨⎪≠-⎩2.在等比数列{}n a 中,n n s n d a a 、、、、1五个量中“知三求二”.3.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想和等价转化的思想. 【重点难点】重点:等比数列前n 项和公式的推导和运用.难点:等比数列前n 项和公式的推导. 【学法指导】学习本节时好好体会错位相减法求和的思路,分析等比数列的通项公式和前n 项和公式的特点,体会知三求二的方程思想. 一.课前预习 预习课本5557P P 页,回答下列问题:1.传说,很早以前,印度的一位宰相发明了国际象棋,当时的国王非常高兴,决定奖赏他,国王允许宰相提出任何要求,于是这位聪明的宰相便请国王在国际象棋棋盘的第一个格子里放入一颗麦粒,第二个格子里放入两颗麦粒,第三个……,就这样,依此类推,要求从第二个格子起,每个格子里的麦粒数是前一个格子里麦粒数的两倍,他请求国王给予他这些麦粒的总和。

高中数学第二章第1节《数列的概念》课件新人教A版必修5

高中数学第二章第1节《数列的概念》课件新人教A版必修5
3.写出下列数列的一个通项公式. (1)2,4 ,6 ,8 ,...
3 15 35 63 (2) 1, 3, 5,7 , 9 ,...
2 4 8 16 (3)9,99,999,9999,...
(4) 3, 3, 1, 52, 1 33, ...
(5)0,1,0,1,0,1,…
本节课学习的主要内容有: 1、数列的有关概念 2、数列的通项公式;
2.项数无限的数列叫做无穷数列。
1 , 例如,数列
1 , 1,1 ,1 , 2 345
思考:
思考1:数列 4,5,6,7,8,9,10; 数列 10,9,8,7,6,5,4;是否相同?
思考2:数列中的数是否可以重复? 如:数列-1,1,-1,1,···。
例1、 写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
本节课的能力要求是: 会用观察法由数列的前几项求数 列的通项公式
P38 1,3,5
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,,有ຫໍສະໝຸດ 选的择孩在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
3.形如a,aa,aaa,aaaa, …,(a∈N*)等数列的通项
可统一写成
an
a(10n 9
1)
;
4.形如a,b,a,b,a,b,…的摆动数列可归
纳为一公式: ab( 1 )n `1(ab )

【优化方案】2012高中数学 第2章2.4.1等比数列的概念及通项公式课件 新人教A版必修5

【优化方案】2012高中数学 第2章2.4.1等比数列的概念及通项公式课件 新人教A版必修5

2.用函数的观点看等比数列的通项公式 . - 等比数列{a 的通项公式 等比数列 n}的通项公式 an=a1qn 1, 还可以改写 a1 n 当 > , ≠ = 为 an= q q .当 q>0,且 q≠1 时,y=qx 是一个指 a1 n 数函数, 数函数,而 y= q ·q 是一个不为 0 的常数与指数 = 函数的积.因此等比数列{a 的图象是函数 = 函数的积.因此等比数列 n}的图象是函数 y= a1 x ·q 图象上的一些孤立的点. 图象上的一些孤立的点. q
例3
已知数列{a 满足 满足a 已知数列 n}满足 1=1,an+1=2an+1. , +
(1)求证:数列{an+1}是等比数列; 求证:数列 是等比数列; 求证 是等比数列 (2)求数列 n}的通项公式. 求数列{a 的通项公式 的通项公式. 求数列 【思路点拨】 思路点拨】 将递推公式变形, 将递推公式变形,然后利用等比 数列的定义判定. 数列的定义判定. 证明: 【解】 (1)证明:因为 an+1=2an+1, 证明 , 所以 an+1+1=2(an+1). = . , ≠ , ≠ 由 a1=1,知 a1+1≠0,可得 an+1≠0. an+1+1 * 所以 =2(n∈N ). ∈ . an+1 所以数列{a 是等比数列. 所以数列 n+1}是等比数列. 是等比数列
2. 4.1 等 比 数 列 的 概 念 及 通 项 公 式
课前自主学案
课堂互动讲练
知能优化训练
课前自主学案
温故夯基 1.如果一个数列从__________起,每一项与它 .如果一个数列从 第二项 起 的前一项的差都等于__________, 的前一项的差都等于 同一常数 ,那么这个数列 叫做等差数列. 叫做等差数列. a1+(n-1)d 是关 - 2.等差数列的通项公式:an=___________是关 .等差数列的通项公式: 的一次函数式(或常函数 于n的一次函数式 或常函数 . 的一次函数式 或常函数).

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5
根据等比数列的性质 a5a6=a1a10=a2a9=a3a8=a4a7=9, ∴a1a2…a9a10=(a5a6)5=95, ∴log3a1+log3a2+…+log10.
名师点评
抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地 解决问题.
1234
4.an=2n+3n,判断数列{an}是不是等比数列? 不是等比数列. ∵a1=21+31=5,a2=22+32=13,a3=23+33=35, ∴a1a3≠a22, ∴数列{an}不是等比数列.
1234
课堂小结
1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法. 2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中 项等列出方程(组),求出根本量. 3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.
探究点2 等比数列的性质
命题角度1 序号的数字特征 例2 {an}为等比数列. (1)假设an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
a2a4+2a3a5+a4a6=a23+2a3a5+a25 =(a3+a5)2=25, ∵an>0, ∴a3+a5>0, ∴a3+a5=5.
(2)假设an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.
方法二 设这四个数依次为2qa-a,aq,a,aq(q≠0),
2qa-a+aq=16, 由条件得aq+a=12,
解得aq==82,
a=3, 或q=13.
当a=8,q=2时,所求的四个数为0,4,8,16;
当 a=3,q=13时,所求的四个数为 15,9,3,1. 故所求的四个数为0,4,8,16或15,9,3,1.
2.等比数列项的运算性质 在等比数列{an}中,若 m+n=p+q(m,n,p,q∈N*),则 am·an= ap·aq . ①特别地,当 m+n=2k(m,n,k∈N*)时,am·an= a2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的 积 ,

【教材分析与导入设计】2014年高中数学必修5(人教A版)第二章 【素材】等差数列前n项和(说课课件)

【教材分析与导入设计】2014年高中数学必修5(人教A版)第二章 【素材】等差数列前n项和(说课课件)
设计意图:展示探究成果,让学生体会收获的喜悦 同时引导学生思考前n项和能否用首项、公差及项 数来表示呢?这样就顺其自然的得到了另一个公式。
公式应用
1.根据下列各题中的条件,求相应的等差数列 的前n项和
(1)
(2)
a1 5, an 95, n 10
a1 100, d 2, n 50
等差数列的前n项和 知识准备
学生已经学习了等差数列的通项公式 和性质,数列的和等有关内容。
背 景 分 析
能力储备 教 学 学 生 目 学 标 情 学生情况
学生经过初高中的数学学习,已具 有一定的自主探究能力,从特殊到一 般的类比推理能力,但学生对于倒序 教 教 求和的思想还初次见到,要着重引导。
方 学 学 法 我所在的学校是省示范性高中,学生 程 评 手 基础还不错,经过近几年的课改,已 序 价 段 经形成了较浓的自主探究氛围与合作
(3)
a1 7, d 3, an 52
设计意图:巩固与熟悉等差数列前n项和公式及简单 变形,使学生对公式形成较深的印象。
第三阶段:新知探究 n(n 1) n(a1 a n ) s n na1 d sn 2 2
接下来, 进一步引导学生观察两个公式的结构特点, 让 学生形成更深刻印象。 特别地, 第二个公式可让学生探 究S n与n是怎样的函数关系?学生能够较快的看出是一个 关于n的二次函数。 接着, 我将提出另一个问题: 等差数 列的前n项和公式与关于n的二次函数到底有没有一个必然 的联系呢?从而引发学生思考!从而引出探究2。
交流意识。这些都为本节课突破难点 提供了有利条件。
等差数列的前n项和 知识与技能
(1)利用从特殊到一般的认识过 程,通过类比探究,得到并掌握等差 数列前n项和公式及推导过程。(2) 能利用求和公式解决实际问题。

高中数学第二章数列2.2.1等差数列的概念与通项公式教材分析新人教A版必修5

高中数学第二章数列2.2.1等差数列的概念与通项公式教材分析新人教A版必修5

高中数学第二章数列2.2.1等差数列的概念与通项公式教材分析新人教A版必修5
等差数列的观点及通项公式教材剖析
本节课主要研究等差数列的观点、通项公式及其应用,是本章的要点内容之一。

而所处章节《数列》又是高中数学的重要内容,而且在实质生活中有着宽泛的应用,它起着承上启下的
作用。

一方面 , 数列与前方学习的函数等知识有亲密的联系 ; 另一方面 , 学习数列又为进一步学习数列的极限等内容作好了准备。

同时也是培育学生数学能力的优秀题材。

学习数列要常常察看、剖析、概括、猜想,还要综合运用前方的知识解决数列中的一些问题。

等差数列是学生研究特别数列的开始,它对后续内容的学习,不论在知识上,仍是在方法上都拥有踊跃的意义。

课后反省
1.从生活中的数列模型导入,有助于发挥学生学习的主动性,加强学生学习数列的兴趣.在研
究的过程中,学生经过剖析、察看,概括出等差数列定义,而后由定义导出通项公式,加强了由
详细到抽象,由特别到一般的思想过程,有助于提升学生剖析问题和解决问题的能力.
2.环环相扣、简短了然、要点突出,指引剖析仔细、到位、适量.如:判断某数列能否成等
差数列,这是促使观点理解的好素材;别的,用方程的思想指导等差数列基本量的运算等等.学生在经历过程中,加深了对观点的理解和稳固.。

【优化方案】2012高中数学 第2章2.1数列的概念与简单表示法课件 新人教A版必修5

【优化方案】2012高中数学 第2章2.1数列的概念与简单表示法课件 新人教A版必修5

数列的函数性质 数列是一种特殊的函数, 数列是一种特殊的函数,函数问题的解决方法同 样适用于数列问题,不过要注意n∈N*,否则易 样适用于数列问题,不过要注意 ∈ 出现错误. 出现错误.
n2 例3 已知数列 n}的通项公式为 an= 2 已知数列{a 的通项公式为 . n +1 求证:此数列为递增数列. 求证:此数列为递增数列.
2.1 数 列 的 概 念 与 简 单 表 示 法
课前自主学案
课堂互动讲练
知能优化训练
课前自主学案
温故夯基
1 1 1 1 1.前5个正整数的倒数排成一列:1,2,3,4,5. 个正整数的倒数排成一列: , . 个正整数的倒数排成一列 _____________
2.函数的基本表示方法有________、_______和 .函数的基本表示方法有 解析法 、 列表法 和 图象法 _________. 3.集合的列举法的一般形式为{a,b,c,d,…}; .集合的列举法的一般形式为 , , , , ; 集合的元素具有_________、 互异性 、 无序性 . 集合的元素具有 确定性 、_______、_______.
(2)按项的变化趋势分类 按项的变化趋势分类 类别 递增 数列 递减 数列 常数 列 摆动 数列 含义 从第2项起 每一项都____它的前一项 项起, 从第 项起,每一项都大于 它的前一项 的数列 项起, 从第2项起 每一项都____它的前一项 从第2项起,每一项都____它的前一项 小于 的数列 各项_____的数列 各项 相等 的数列 从第2项起,有些项 大于 它的前一项 它的前一项, 从第 项起,有些项_____它的前一项, 项起 有些项小于它的前一项的数列
课堂互动讲练
考点突破 用观察法求数列的通项公式 根据数列的前几项写出它的一个通项公式, 根据数列的前几项写出它的一个通项公式,关键 在于观察、分析数列的前几项的特征, 在于观察、分析数列的前几项的特征,找到数列 的构成规律.为了发现数列的构成规律, 的构成规律.为了发现数列的构成规律,可把序 标在相应的项上, 号1,2,3,…标在相应的项上,这样便于突出第 , 标在相应的项上 这样便于突出第n 与项数n的关系 即突出a 如何用n表示 的关系, 表示. 项an与项数 的关系,即突出 n如何用 表示.

人教a版数学必修5全套教案

人教a版数学必修5全套教案

数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。

通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。

本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。

在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。

”设置这些问题,都是为了加强数学思想方法的教学。

2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。

人教A版数学必修5第二章2.2等差数列课件

人教A版数学必修5第二章2.2等差数列课件

解:由题意可知
a1 4d 10 a1 11d 31
这是一个以a1和d为未知数的二元一次方程组 ,解这个方程组,得
a1 2 d 3 还有什么方法,又能得到什么 即这个等差数列的结首论项,是让-2我,们公一差起是看3看。吧!
【精讲点拨】 知识延伸:
am a1 (m 1)d a1 am (m 1)d
高斯7岁那年,父亲送他进了耶卡捷林宁国民小学,读书不久,高斯在数学上就显露出
故 了常人难以比较的天赋,最能证明这一点的是高斯十岁那年,教师彪特耐尔布置了一 事 道很纷杂的计算题,要求学生把1到 100的所有整数加起来,教师刚叙述完题目,高斯
即刻把写着答案的小石板交了上去。彪特耐尔起初并不在意这一举动,心想这个小家 伙又在捣 乱,但当他发现全班唯一正确的答案属于高斯时,才大吃一惊。而更使人吃 惊的是高斯的算法,他发现:第一个数加最后一个数是101,第二个数 加倒数第二个 数的和也是101,……共有50对这样的数,用101乘以50得到5050。这种算法是教师未 曾教过的计算等级数的方法,高斯的才华使彪特耐尔十分激动,下课后特地向校长汇 报,并声称自己已经没有什么可教高斯的了。
如果不是,请说明理由. (1)4,7, 10,13,16,…; (2)31,25,19,13,7,…;
(3)0,0,0,0,0,…; (4)a,a-b,a-2b,…;
(5)1,2,5,8,11,….
问题:上述题目中反应出公差的范围?公差 对数列的增减性有何影响?
➢课堂展示清单
【合作探究一】
公差d是每一项(第2项起)与它的前一 项的差,防止把被减数与减数弄颠倒,而且 公差可以是正数,负数,也可以为0.
最低降至5m。那么从开始放水算起,到
可以进行清算工作的那天,水库每天的水

人教A版高中数学必修5《二章 数列 2.1 数列的概念与简单表示法 阅读与思考 斐波那契数列》优质课教案_3

人教A版高中数学必修5《二章 数列  2.1 数列的概念与简单表示法  阅读与思考 斐波那契数列》优质课教案_3

人教A版必修5第二章数列2.1数列的概念与简单表示法阅读与思考:斐波那契数列一、教材分析《普通高中数学课程标准》在有关数学文化的教学要求中指出:“通过在高中阶段数学文化的学习,学生将初步了解数学科学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值、人文价值和美学价值,从而提高自身的文化素质和创新意识。

”为了贯彻这一精神,向学生传播数学文化,人民教育出版社在出版的《普通高中课程标准实验教科书数学A版》必修1-5册中,共设置了24篇“阅读与思考材料”。

《斐波那契数列》是人教A版必修5第二章《数列》中位于2.1数列的概念与简单表示法后的阅读与思考材料。

《斐波那契数列》是数列知识的延伸、拓展和应用,是教材知识结构的组成部分,与教材内容相互补充,融为一体。

在教学中如果能够深刻挖掘其内涵与外延,整体认识其所蕴含的教育因素,它必将在巩固学生知识、构建知识体系、发展学生能力、培养创新意识等方面发挥独特的作用。

二、学情分析:从知识基础的角度来看,本节课位于2.1数列的概念与简单表示法之后,位于2.2等差数列之前,学生对数列的相关概念及数列的表示法(通项公式和递推公式)有了一定的理解,此时学习《斐波那契数列》一方面可以起到巩固基础知识的作用,同时也能逐渐开阔学生的学习视野。

从能力培养的角度来看,阅读材料《斐波那契数列》中蕴含着丰富的数学思想和方法(如观察与归纳、抽象与概括、猜想与证明等),可以在教学中进行重在发展学生能力的素质教育,从而不断提升学生的数学素养。

再者,高一的学生刚从初中升上高中,对数学与自然的契合充满好奇,喜欢尝试寻找(斐波那契数列中的)规律,对于这种寓教于乐的活动课有着浓厚的参与兴趣。

三、教学目标:1.了解斐波那契数列;2.了解斐波那契数列在生活中的应用;3.通过动手操作、观察与归纳,发现斐波那契数列的一些有趣的性质;4.通过本节课的学习,在培养学生的理性思维和理性精神的同时,拓宽数学的学习视野,同时感受到数学学科的魅力,及在生活的实际应用价值,进一步激发对数学学科学习的兴趣。

高中数学第二章数列2.1数列的概念与简单表示法第二课时数列的性质和递推公式课件新人教A版必修5

高中数学第二章数列2.1数列的概念与简单表示法第二课时数列的性质和递推公式课件新人教A版必修5

当 an1 >1 时,数列{an}是递减数列. an
对于任意 n(n∈N*),若 an≠0,则当 an1 =1 时,数列{an}是常数列. an
(2)利用数列的图象直观地判断.
5.周期数列的概念 对于摆动数列-1,1,-1,1,-1,1,-1,1,…,我们视察后可以发现,数列的项1,1 重 复 出 现 , 用 公 式 表 示 为 an=an+2. 若 记 f(n)=an, 则 可 以 表 示 为 f(n)= f(n+2),即数列中的项循环出现,我们称此类数列为周期数列. 周期数列的递推公式的一般情势为an+k=an(n∈N*,k∈N*,k≥2),如数列1,2, 3,1,2,3,1,2,3,…是周期为3的周期数列,满足an+3=an(n∈N*). 6.判断周期数列的方法 要判断一个数列是否具有周期性或求解一个周期数列,主要方法是通过递推 公式求出数列的若干项,视察得到规律或由递推公式直接发现规律.
解:(1)因为 an+1-an= 1 = 1 - 1 ,所以 a2-a1= 1 =1- 1 ;
n(n 1) n n 1
1 2 2
a3-a2= 1 = 1 - 1 ;a4-a3= 1 = 1 - 1 ;
23 2 3
34 3 4

an-an-1= 1 = 1 - 1 ; (n 1)n n 1 n
以上各式累加得,an-a1=1- 1 + 1 - 1 +…+ 1 - 1 =1- 1 .所以 an+1=1- 1 ,所以 an=- 1 .
②作商法:即作商 an1 (务必要确定 an 的符号)后与 1 比较对于任意 n(n∈N*),若 an>0, an
则当 an1 >1 时,数列{an}是递增数列; an

2019-2020年人教A版高中数学必修五第二章第3节《等差数列前n项数和》(第2课时)教案

2019-2020年人教A版高中数学必修五第二章第3节《等差数列前n项数和》(第2课时)教案

2019-2020年人教A版高中数学必修五第二章第3节《等差数列前n项数和》(第2课时)教案一、教学目标:1、进一步熟练掌握等差数列的通项公式和前n项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前项和的公式研究。

2、通过等差数列前n项和的公式应用,体会数学的逻辑性3、通过有关内容在实际生活中的应用,引导学生要善于观察生活二、教学重点难点:教学重点:等差数列前n项和公式的性质.教学难点:等差数列前n项和公式的性质及函数与方程的思路.三. 教法、学法本课采用“探究——发现”教学模式.教师的教法突出活动的组织设计与方法的引导.学生的学法突出探究、发现与交流.五.教学过程教学过程设计为六个教学环节:(如下图)前,那么这个数列一探究点1. 已知数列{a n }的前n 项 和S n 求a n例1 已知数列{a n }的前n 项和为 S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它 的首项与公差分别是什么?解 根据S n =a 1+a 2+…+a n -1+a n 与S n -1=a 1+a 2+…+a n -1(n >1), 可知,当n >1时,a n =S n -S n -1=n 2+12n-[(n -1)2+12(n -1)]=2n -12①当n =1时,a 1=S 1=12+12×1=32,也满足①式.∴数列{a n }的通项公式为a n =2n -12.由此可见:数列{a n }是以32为首项,公差为2的等差数列. 探究点二 等差数列前n 项和的最值 思考1 将等差数列前n 项和 S n =na 1+n n -2d 变形为S n 关于n的函数后,该函数是怎样的函数?为什么?答 由于S n =na 1+nn -2d =d 2n 2+(a 1-d2)n ,所以当d ≠0时,S n 为关于n 的二次函数,且常数项为0. 思考2 类比二次函数的最值情况,等差数列的S n 何时有最大值?何时有最小值?答 由二次函数的性质可以得出:当d >0时,S n 有最小值;当d <0时,S n 有最大值;且n 取最接近对称轴的正整数时,S n 取到最值.另外,数列作为特殊的函数,则有(1)若a 1>0,d <0,则数列的前面若干项为正项(或0),所以将这些项相加即得{S n }的最大值.(2)若a 1<0,d >0,则数列的前面若干项为负项(或0),所以将这些项相加即得{S n }的最小值;特别地,若a 1>0,d >0,则S 1是{S n }的最小值;若a 1<0,d <0,则S 1是{S n }的最大值.例2 已知等差数列5,427,347,…的前n 项和为S n ,求使得S n 最大的序号n 的值.解 由题意知,等差数列5,427,347,…的公差为-57,所以S n =5n +n n -2(-57)=-514(n -152)2+1 12556. 于是,当n 取与152最接近的整数即7或8时,S n 取最大值.另解:a n =a 1+(n -1)d =5+(n -1)×⎝⎛⎭⎫-57=-57n +407.a n =-57n +407≤0,解得n ≥8,即a 8=0,a 9<0.所以和是从第9项开始减小,而第8项为0,所以前7项或前8项和最大.反思与感悟:在-1)2+12(n -1)+1]=2n -12.当n =1时代入a n =2n -12得a 1=23≠25. ∴a n ={)2(212)1(25≥-=n n n .2 在等差数列{a n }中,a n =2n -14,试用两种方法求该数列前n 项和S n 的最小值.解 方法一 ∵a n =2n -14,∴a 1=-12,d =2.∴a 1<a 2<…<a 6<a 7=0<a 8<a 9<….∴当n =6或n =7时, S n 取到最小值.易求S 6=S 7=-42,∴(S n )min =-42.方法二 ∵a n =2n -14,∴a 1=-12. ∴S n =na 1+a n 2=n 2-13n =⎝⎛⎭⎫n -1322-1694.∴当n =6或n =7时,S n 最小,且(S n )min =-42.列,该数列的。

高二数学人教A版必修5教学教案2-2等差数列(3)

高二数学人教A版必修5教学教案2-2等差数列(3)

普通高中课程标准实验教科书数学(人教A版)必修 5等差数列(第1课时)1、设计思想:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

2、教材分析:【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。

2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。

在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.3、学情分析我所教学的学生是我校高一(382)班的学生(实验班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(姚明罚球问题、运动鞋尺码问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.姚明刚进NBA一周训练罚球的个数6000,6500,7000,7500,8000,8500,90002.运动鞋的尺码组成一个什么数列?教师:以上二个问题中的数蕴涵着三列数.学生:1:6000,6500,7000,7500,8000,8500,9000,….2:35,36,37,38,39,40,41,42(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①6000,6500,7000,7500,8000,8500,9000,….②35,36,37,38,39,40,41,42思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,1,2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{a n}的通项公式为a n=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{a n}的首项是a1,公差是d,如何求出它的任意项a n呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{a n}中,已知a5=10,a12=31,求a1,d和a n.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.。

【优化方案】2012高中数学 第2章2.5.1等比数列的前n项和课件 新人教A版必修5

【优化方案】2012高中数学 第2章2.5.1等比数列的前n项和课件 新人教A版必修5

3.理解等比数列前 n 项和公式与函数的关系. .理解等比数列前 项和公式与函数的关系. a1(1-qn) - a1 a1 n a1 Sn = q , 设 a= = - = ,则 1-q - 1-q 1-q - - 1-q - Sn=a-aqn,Sn 为一个常数 a 减去 a 与指数函数 - 的积, 则数列为等比数列. 的积,即若 Sn=a-aqn,则数列为等比数列. - 4.等比数列 n}前 n 项和 Sn(Sn≠0),前 n 项积 .等比数列{a 前 , T2n T3n Tn, Sn, 2n-Sn, 3n-S2n, 和 Tn, , , S S 则 … … Tn T2n 都成等比数列. 都成等比数列.
∴n-1=5,即 n=6. - = , =
7 63 (2)已知 S6≠2S3,则 q≠1,又∵S3= ,S6= , 已知 ≠ , 2 2
a1(1-q3) 7 - = 2 1-q - 即 6 - a1(1-q ) 63 1-q = 2 -
① ②
②÷①得 1+q3=9,∴q=2. ① + , = 1 将 q=2 代入①,可求得 a1= , = 代入① 2 n-1 n-2 因此 an=a1q =2 .
可判断数列{b 的类型 的类型. =2an可判断数列 n}的类型.
【解 】
(1)设等差数列 n}的公差为 d, 设等差数列{a 的公差为 , 设等差数列
a1+d=9, = , 依题意得方程组 = , a1+4d=21,
解得 a1=5,d=4. , = 所以{a 的通项公式为 + 所以 n}的通项公式为 an=4n+1.
等比数列的综合应用
例3
已知等差数列{a , 已知等差数列 n},a2=9,a5=21. ,
(1)求{an}的通项公式; 求 的通项公式; 的通项公式 (2)令bn=2an,求数列 n}的前 项和 n. 令 求数列{b 的前 项和S 的前n项和 【思路点拨】 思路点拨】 首先求出a 首先求出 1和d,再计算 n,由bn ,再计算a

高中数学 第二章 2.2(一)等差数列(一)课件 新人教A版必修5

高中数学 第二章 2.2(一)等差数列(一)课件 新人教A版必修5

第十六页,共25页。
研一研·问题(wèntí)探究、课堂更高
效 例2
已知1a,1b,1c成等差数列,求证:b+a c,a+b c,a+c b也
成等差数列.
证明 ∵1a,1b,1c成等差数列,

∴2b=1a+1c,即 2ac=b(a+c).
讲 栏 目
∵b+a c+a+c b=cb+c+acaa+b=c2+a2+acba+c
开 关
(5)1,2,5,8,11,….
第七页,共25页。
研一研·问题探究(tànjiū)、课堂更 高效
解 (1)是等差数列,a1=4,d=3;
(2)是等差数列,a1=31,d=-6;
本 讲
(3)是等差数列,a1=0,d=0;
栏 目
(4)是等差数列,a1=a,d=-b;
开 关
(5)不是等差数列,a2-a1=1,a3-a2=3,∴a2-a1≠a3-a2.
高效 探究 若数列{an}满足:an+1=an+2an+2,求证:{an}是等差
数列.
证明 ∵an+1=an+2an+2

⇔2an+1=an+an+2
讲 栏
⇔an+2-an+1=an+1-an

开 关
∴an+1-an=an-an-1=…=a2-a1(常数).
∴{an}是等差数列.

第十三页,共25页。
跟踪训练 2 已知 a,b,c 成等差数列,那么 a2(b+c),b2(c
+a),c2(a+b)是否能构成等差数列?
证明 ∵a,b,c 成等差数列,∴a+c=2b.
本 ∴a2(b+c)+c2(a+b)=a2b+a2c+c2a+c2b
讲 栏
=(a2b+c2b)+(a2c+c2a)=b(a2+c2)+ac(a+c)

高中数学第二章数列2.4等比数列第2课时教案新人教A版必修5

高中数学第二章数列2.4等比数列第2课时教案新人教A版必修5

高中数学第二章数列2.4等比数列第2课时教案新人教A版必修5一、教学目标:知识与技能1. 了解等比数列更多的性质;2. 能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中;3. 能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题过程与方法1. 继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2. 对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程;3. 当好学生学习的合作者的角色.情感态度与价值观1. 通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2. 通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值.二、教学重点:1.探究等比数列更多的性质;2.解决生活实际中的等比数列的问题.教学难点;渗透重要的数学思想(类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等.).三、学情及导入分析:这节课师生将进一步探究等比数列的知识,以教材练习中提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.教学中以师生合作探究为主要形式,充分调动学生的学习积极性.教具准备多媒体课件、投影胶片、投影仪等四、教学过程:复习旧知识,引入新知归纳抽象形成概念1.温故知新师教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下•师对各组的汇报给予评价•师出示多媒体幻灯片一:第3题、第4题详细解答:猜想:在数列{a n}中每隔m(m是一个正整数)取出一项,组成一个新数列,这个数列是以a i为首项、q m%一公比的等比数列.◊本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法•第4题解答:(1) 设{a n}的公比是q , 则2, 4 2 2 8a s =( a i q ) =a i qh 2 6 2 8而a s • a7=a i q • a i q =a i q ,所以a s =a s • a7. 同理,a s =a i • a o.(2) 用上面的方法不难证明a2=a n-i • a n+i( n> i).由此得出,a n是a n-i和a n+i的等比中项,同理可证a n2=a n-k • a n+k( n>k > 0). a是a n-k和a n+k的等比中项(n> k学生回答;生由学习小组汇报探究结果.第3题解答:⑴将数列,{a n}的前k项去掉,剩余的数列为a k+i ,a k+2,….令b i =a<+i ,i=i,2,…,则数列a k+i, a k+2,…,可视为b i, b?,….因为b i i a k i i q (i >i),b i a k i所以,{b n}是等比数列,即a k+i, a k+2,…是等比数列.(2){a n}中每隔I0项取出一项组成的数列是a i, a ii ,a 2i,…, 则a ii a2i a i0k ii... ...qa i a ii a i0k 9(k >i). 所以数列a i,aii, a2i,…是以a i为首项,q i0为公比的等比数列.由复习引入,通过数学知识的内部提出问题。

人教A版高中数学必修五第二章第2节《等差数列》(第2课时)教案

人教A版高中数学必修五第二章第2节《等差数列》(第2课时)教案

2.2.2等差数列的性质
一、教学目标:
1.明确等差中项的概念;进一步熟练掌握等差数列的通项公式及推导公式,
2.能通过通项公式与图像认识等差数列的性质,能运用等差数列的性质解决某些问题。

二、教学重点难点:
教学重点:等差数列的定义及性质的理解与应用
教学难点:灵活应用等差数列的定义及性质解决一些相关问题
三、教学策略及设计
“数学教学是数学活动的教学”,“数学活动是思维的活动”,新课标也在倡导独立自主,合作交流,积极主动,勇于探索的学习方式。

基于这种理念的指导,在教法上采用探究发现式课堂教学模式,在学法上以学生独立自主和合作交流为前提,重视学生在学习过程中,能否运用等差数列的定义发现和推导等差数列的性质。

设计流程如下:
四、教学过程:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:数列复习小结
2课时
教学目的:
1.系统掌握数列的有关概念和公式。

2.了解数列的通项公式n a 与前n 项和公式n S 的关系 3.能通过前n 项和公式n S 求出数列的通项公式n a 授课类型:复习课 课时安排:2课时 教学过程:
一、本章知识结构
二、知识纲要
(1)数列的概念,通项公式,数列的分类,从函数的观点看数列. (2)等差、等比数列的定义. (3)等差、等比数列的通项公式. (4)等差中项、等比中项.
(5)等差、等比数列的前n 项和公式及其推导方法. 三、方法总结
1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.
2.等差、等比数列中,a 1、n a 、n 、d (q )、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.
3.求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.
4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.
四、知识精要:
1、数列
[数列的通项公式] ⎩⎨⎧≥-===-)2()
1(111n S S n S a a n n
n [数列的前n 项和] n n a a a a S ++++= 321
2、等差数列 [等差数列的概念]
[定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

[等差数列的判定方法]
1. 定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。

2.等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。

[等差数列的通项公式]
如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。

[说明]该公式整理后是关于n 的一次函数。

[等差数列的前n 项和] 1.2
)(1n n a a n S +=
2. d n n na S n 2)
1(1-+=
[说明]对于公式2整理后是关于n 的没有常数项的二次函数。

[等差中项]
如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。

即:2
b
a A +=
或b a A +=2 [说明]:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。

[等差数列的性质]
1.等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=
2. 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+。

也就是: =+=+=+--2
3121n n n a a a a a a ,如图所示:
n
n a a n a a n n a a a a a a ++---11
2,,,,,,12321
3.若数列{}n a 是等差数列,n S 是其前n 项的和,*
N k ∈,那么k S ,k k S S -2,k
k S S 23-成等差数列。

如下图所示:
k
k
k k
k S S S k k S S k k k a a a a a a a a 3232k
31221S 321-+-+++++++++++ 3、等比数列 [等比数列的概念]
[定义]如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0≠q )。

[等比中项]
如果在a 与b 之间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项。

也就是,如果是的等比中项,那么G
b a G =,即ab G =2。

[等比数列的判定方法] 1. 定义法:对于数列{}n a ,若
)0(1
≠=+q q a a n
n ,则数列{}n a 是等比数列。

2.等比中项:对于数列{}n a ,若2
12++=n n n a a a ,则数列{
}n a 是等比数列。

[等比数列的通项公式]
如果等比数列{}n a 的首项是1a ,公比是q ,则等比数列的通项为11-=n n q a a 。

[等比数列的前n 项和]

1)1(1)
1(1≠--=q q
q a S n n ○2)1(11≠--=q q q a a S n n ○3当1=q 时,1na S n =
[等比数列的性质]
1.等比数列任意两项间的关系:如果n a 是等比数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公比为q ,则有m n m n q a a -=
3. 对于等比数列{}n a ,若v u m n +=+,则v u m n a a a a ⋅=⋅
也就是: =⋅=⋅=⋅--23121n n n
a a a a a a 。

如图所示:
n
n a a n a a n n a a a a a a ⋅⋅---11
2,,,,,,12321
4.若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列。

如下图所示:
k
k
k k
k S S S k k S S k k k a a a a a a a a 3232k
31221S 321-+-+++++++++++ 4、数列前n 项和 (1)重要公式:
2
)
1(321+=
+++n n n ; 6
)
12)(1(3212222++=
+++n n n n ;
2333)]1(2
1
[21+=++n n n
(2)等差数列中,mnd S S S n m n m ++=+ (3)等比数列中,n m m m n n n m S q S S q S S +=+=+ (4)裂项求和:
1
1
1)1(1+-=+n n n n ;(!)!1(!n n n n -+=⋅)。

相关文档
最新文档