常用几种模糊控制器
交通信号控制中的模糊控制应用

交通信号控制中的模糊控制应用在现代城市交通管理中,交通信号控制是优化交通流量、提高道路通行效率和保障交通安全的关键手段。
传统的交通信号控制方法往往基于固定的时间间隔或简单的逻辑判断,难以适应复杂多变的交通状况。
随着控制理论和技术的不断发展,模糊控制作为一种智能控制方法,在交通信号控制领域展现出了显著的优势和潜力。
模糊控制的基本原理是基于模糊集合理论和模糊逻辑推理,它能够处理和描述那些具有不确定性、模糊性和不精确性的信息和问题。
在交通信号控制中,交通流量、车辆速度、排队长度等参数都具有一定的不确定性和模糊性,例如“交通拥堵”、“车辆较多”等概念难以用精确的数值来定义,而模糊控制正好能够有效地应对这些模糊性。
模糊控制在交通信号控制中的应用主要包括以下几个方面:首先是交通流量的模糊感知。
通过安装在道路上的传感器,获取交通流量、车速等信息。
然而,这些传感器采集到的数据往往存在噪声和误差,并且交通状况本身也是动态变化的。
利用模糊控制的方法,可以对这些不精确的数据进行模糊化处理,将其转化为模糊语言变量,如“小流量”、“中流量”、“大流量”等,从而更准确地反映交通状况的本质特征。
其次是信号配时的模糊决策。
传统的信号配时方法通常基于固定的周期和绿信比,无法根据实时交通状况进行灵活调整。
而模糊控制可以根据模糊感知到的交通流量、车辆速度等信息,通过模糊推理规则,制定出灵活的信号配时方案。
例如,当交通流量较大且车辆速度较慢时,延长绿灯时间;当交通流量较小且车辆速度较快时,适当缩短绿灯时间。
再者是多相位交通信号的模糊协调控制。
在复杂的路口,往往存在多个相位的交通信号。
模糊控制可以综合考虑各个相位的交通需求,实现相位之间的协调控制,减少冲突和延误。
例如,对于相邻的路口,可以根据上游路口的交通状况,提前调整下游路口的信号配时,实现交通流的平稳过渡。
在实际应用中,模糊控制的实现需要建立合适的模糊控制器。
模糊控制器的设计包括输入变量的选择、模糊化方法的确定、模糊规则库的建立、模糊推理算法的选择以及输出变量的解模糊化等步骤。
模糊控制简介

න
������������ (������)������������ (������) (������, ������)
������������
模糊逻辑与近似推理
➢ 近似推理过程: 前提1(事实):������是������’ 前提2(规则):������������ ������ 是 ������,������ℎ������������ ������ 是 ������ 结论:������是������’ 这里������’和������是论域������中的模糊集合,������’和������是论域������中的模
⋯ ������������ ������2, ������������
⋱
⋮
������������ ������������, ������1 ������������ ������������, ������2 ⋯ ������������ ������������, ������������
例:������ = {子,女},������ = {父,母},模糊关系������“子女与
父母长得相似”,用模糊矩阵表示则为:
父母
������
=
子 女
0.8 0.3
0.3 0.6
模糊控制的数学基础
➢ 模糊关系合成 设������、������、������是论域, ������是������到������的一个模糊关系, ������是������到������
常用的几种模糊控制器

模糊控制与PID控制结合
为什么要将模糊控制与PID控 制结合使用?
常规PID(比例、积分、微分)控制是过程控制中 应用最广泛最基本的一种控制方式,它具有简 单、稳定性好、可靠性高的特点。而PID控制 对大部分工业控制对象,特别是对于线性定常 系统的控制是非常有效的,通常都能取得较为 满意的控制效果。PID控制的控制品质取决于 PID控制器各个参数的整定,但常规PID控制器 不能在线整定参数。而且对于非线性、时变的 复杂系统和模型不清的系统,就不能很好地加 以控制。
为什么要将模糊控制与PID控 制结合使用?
简单模糊控制器由于不具有积分环节, 因而在模糊控制的系统中很难完全消除 稳态误差,而且在变量分级不够多的情 况下,常常在平衡点附近会有小的振荡 现象。但是模糊控制系统对复杂的和模 型不清的对象却能有效地加以控制,所 以把模糊控制和PID控制结合起来,就可 以组成兼有两者优点的模糊PID控制方法。
1 精度较低
这主要是由于模糊控制表的级别有限而 造成,通过增加量化等级数目虽可提高 精度,但查询表将过于庞大。须占用较 大空间.使运算时间增加。实际上如果 模糊控制器中不引入积分机制,原则上 总是存在误差的。因为它本身就是根据 误差的大小和变化来实现控制的
2 自适应能力有限
由于简单模糊控制器中查询表一旦整定 下来后,就不再改变,量化因子和比例 因子也是如此。这样当对象参数随着环 境的变迁发生漂移时,它不能对自己的 控制规则进行有效的调整,从而使其良 好性能得不到充分发挥。
3 容易产生震荡现象
如果查询表构造不合理或量化因子和比 例因子选择不当,都会导致振荡。在仿 真过程中,特别是系统进入误差的零档 级时产生高频振荡现象更为普遍。
模糊控制器汇总

实验二模糊控制实验实验目的matlab中的模糊工具箱的使用及模糊控制器的应用1)用fuzzy工具箱计算P82 2-14,要求求出控制器输出。
2)用FUZZY工具箱完成洗衣机模糊控制器设计要求求出控制器输出。
完成模糊控制决策表。
一、用fuzzy工具箱计算P82 2-14,并与手算结果对比。
实验结果如图1-1所示,图1-1题目2-14的实验结果二、用FUZZY工具箱完成洗衣机模糊控制器设计。
(1)题目分析:洗衣时间长短实际与衣物的脏污程度有关,太脏了就洗久点,不脏就可以洗快点。
人类的操作经验是由模糊的自然语言描述的,在洗衣机的调节中,人类的操作经验是:(1)“如果污泥越多,且油脂越多,洗涤时间就越长;”(2)“如果污泥适中,且油脂适中,洗涤时间就适中;”(3)“如果污泥越少,且油脂越少,洗涤时间就越短;”通过分析可以知道这实际是一个开环的控制决策过程:输入是污泥度x与油污度y,输出是洗涤时间z。
在该规则中对这些量进行衡量的是一些模糊词语,“多”、“少”、“长”、“短”。
(2)定义输入、输出模糊集将污泥x 分为3个模糊集:{SD (污泥少),MD (污泥中),LD (污泥多)} 论域:{0,50,100}将油脂分为3个模糊集:{NG (油脂少),MG (油脂中),LG (油脂多)} 论域:{0,50,100} 输出模糊集:将洗涤时间分为5个模糊集:{VS (很短),S (短),M (中等),L (长),VL (很长)}。
论域:{0,10,25,40,60} 单位s 例如:(3)建立模糊控制器求:假设当前传感器测得信息为:x0(污泥)=90,y0(油脂)=90 观察控制器的输出。
(4)建立控制决策表 x0=10,20,30,40,50,60,70,80,90,y0=10,20,30,40,50,60,70,80,90,分别取值时,控制器的输出。
(5)改变输入输出变量的模糊值、隶属度函数的曲线、解模糊的方法等,观察控制器三维图以及控制器输出, Maltlab 提供5种反模糊化方法:1.centroid :面积重心法;2.bisector :面积等分法;3.mom :最大隶属度平均法;4.som :最大隶属度取小法;5.lom :最大隶属度取大法 三、按照上述要求完成洗衣机模糊控制器设计。
请简述模糊控制器的组成及各组成部分的用途。

模糊控制器是一种基于模糊逻辑理论的控制系统,它利用模糊集合的概念来描述模糊输入和输出,通过模糊规则和模糊推理实现对系统的控制。
模糊控制器的组成主要包括模糊化、模糊推理、解模糊和规则库四个部分,每个部分都有其独特的用途。
1. 模糊化模糊化是将系统的实际输入转化为模糊集合的过程。
在模糊控制系统中,输入往往是模糊的、不确定的,因此需要将这些模糊的输入转化为模糊集合。
模糊化的主要目的是将具体的输入转化为模糊语言值,如“很冷”、“冷”、“适中”、“热”、“很热”等,以便更好地描述系统的输入状态。
2. 模糊推理模糊推理是模糊控制器的核心部分,它用于根据模糊规则和模糊输入来得出模糊输出。
模糊推理的过程是基于一系列的模糊规则,这些规则描述了系统输入和输出之间的关系。
通过模糊推理,模糊控制器能够根据输入的模糊语言值,利用模糊规则进行推理,从而得出模糊输出的模糊语言值。
3. 解模糊解模糊是将模糊输出转化为具体的控制量的过程。
在模糊控制系统中,输出往往是模糊的语言值,需要通过解模糊将其转化为具体的控制量。
解模糊的方法有很多种,常见的方法包括最大隶属度法、加权平均法和中心平均法等。
解模糊的目的是将模糊输出转化为可以直接应用于控制系统的具体输出值。
4. 规则库规则库是模糊控制器中存储的一系列模糊规则的集合。
模糊规则描述了系统输入和输出之间的关系,它通常采用“如果…那么…”的形式来表示。
在模糊控制器中,规则库起着至关重要的作用,它包含了系统的专业知识和经验,是模糊控制器能够有效进行模糊推理的基础。
总体来说,模糊控制器的组成部分分别完成了模糊输入的转化、模糊推理的实现、模糊输出的转化和存储的模糊规则,这些部分相互协作,共同实现了对模糊、不确定系统的精确控制。
模糊控制器在工业控制、汽车控制、电力系统控制等领域有着广泛的应用,其独特的优势使其成为一种不可忽视的控制方法。
模糊控制器作为一种基于模糊逻辑理论的控制系统,在实际应用中具有诸多优势。
模煳控制第四章 模糊控制器设计

4. 模糊PID控制器 PID控制器对不同的控制对象要用不同的PID参
数,而且调整不方便,抗干扰能力差,超调量 差。 模糊控制器是一种语言控制,不依赖被控对象 的数学模型,设计方法简单、易于实现。能够 直接从操作者的经验归纳、优化得到,且适应 能力强、鲁棒性好。
整理ppt
模糊控制也有其局限性和不足,就是它的 控制作用只能按档处理,是一种非线性控 制,控制精度不高,存在静态余差,一般 在语言变量偏差趋于零时有振荡。
整理ppt
2. 模糊自调整控制器 模糊控制器性能的好坏直接影响到模糊控
制系统的控制特性,而模糊控制器的性能 又取决于控制规则的完善与否。 如果在简单模糊控制器的输入输出关系中 加入修正因子,便能对控制规则进行自动 调整,从而可对不同的被控对象获得相对 满意的控制效果。
整理ppt
在简单模糊控制器中,如果将误差e、误 差变化率Δe及控制量u的关系描述为:
整理ppt
在模糊推理机中,模糊推理决策逻辑是核 心,它能模仿人的模糊概念和运用模糊蕴 涵运算以及模糊逻辑推理规则对模糊控制 作用的推理进行决策。
整理ppt
(3) 解模糊接口(Defuzzification) 通过模糊推理得出的模糊输出量不能直接
去控制执行机构,在这确定的输出范围中, 还必须要确定一个最具有代表性的值作为 真正的输出控制量,这就是所谓解模糊判 决。 完成这部分功能的模块就称作解模糊接口, 它的主要功能包括:
整理ppt
4.1 模糊控制器的基本结构及主要类 型
4.1.1 模糊控制器的基本结构
模糊控制的基础是模糊集合理论和模糊逻 辑,是用模糊逻辑来模仿人的思维对那些 非线性、时变的复杂系统以及无法建立数 学模型的系统实现控制的。
模糊控制器介绍

模糊控制器介绍例、已知()()0.525123s G e s s s -=+++,分别设计PID 控制与模糊控制,使系统达到较好性能,并比较两种方法的结果。
具体要求:1、分别采用fuzzy 工具箱和编程实现模糊控制器。
2、分析量化因子和比例因子对模糊控制器控制性能的影响。
3、分析系统在模糊控制和PID 控制作用下的抗干扰能力(加噪声干扰)、抗非线性能力(加死区和饱和特性)以及抗时滞的能力(对时滞大小加以改变)。
4、讨论系统在模糊控制和PID 控制作用下的时间参数和结构变化下的抗干扰能力。
模糊控制部分大作业旨在利用模糊控制器和PID 控制器实现对已知系统的控制,分别得到较好的控制效果。
然后改变系统的参数、结构或者加入非线性环节,以验证模糊控制器的鲁棒性能。
以下是作业过程:1、PID 控制考虑到系统中存在纯延迟环节,使得系统的稳定性大大降低。
如果系统的反馈信号没有延迟,系统的响应特性将会得到很好的改善。
因此,对于存在纯滞后环节的系统,特别是大延迟过程,一般采用Smith 预估控制,即将纯滞后补偿模型与PID 控制器并接。
本题中,延迟环节的时间常数不是很大,仅为0.2,因此基本上不会影响系统的稳定,采用常规PID 控制也基本可以达到很好的控制效果。
常规PID 控制框图如图1-1(相应文件:PID.mdl )图1-1 常规PID 控制框图PID 参数选取:38.0=p K ,285.0=i K ,1.0=d K 常规PID 控制的单位阶跃响应曲线:图1-2 常规PID 控制响应曲线2.模糊控制模糊控制规则(相应文件:zdh.fis )各变量论域输入变量:E :[-6 6];EC :[-6 6]; 输出变量:U :[0 7] 语言变量E : NB 、NM 、NS 、NZ 、PZ 、PS 、PM 、PB (8个) EC :NB 、NM 、NS 、ZE 、PS 、PM 、PB (7个) U : NB 、NM 、NS 、ZE 、PS 、PM 、PB (7个)。
模糊控制原理(PDF)

第一部分模糊控制第2讲模糊控制原理第一节模糊控制(推理)系统的基本结构1.1 模糊控制系统的组成模糊控制器1.2 模糊控制器(推理)的结构1.2 模糊控制器的结构模糊化模糊化的作用是将输入的精确量转换成模糊量。
具体过程为:1)尺度变换尺度变换,将输入变量由基本论域变换到各自的论域范围。
变量作为精确量时,其实际变化范围称为基本论域;作为模糊语言变量时,变量范围称为模糊集论域。
2)模糊处理将变换后的输入量进行模糊化,使精确的输入量变成模糊量,并用相应的模糊集来表示。
知识库1.2 模糊控制器的结构数据库规则库数据库主要包括各语言变量的隶属函数,尺度变换因子及模糊空间的分级数等。
规则库包括了用模糊语言变量表示的一系列控制规则。
它们反映了控制专家的经验和知识。
1.2 模糊控制器的结构◆模糊推理模糊推理是模糊控制器的核心,它具有模拟人的基于模糊概念的推理能力。
◆清晰化作用:将模糊推理得到的模糊控制量变换为实际用于控制的清晰量。
包括:1) 将模糊量经清晰化变换成论域范围的清晰量。
2) 将清晰量经尺度变换变化成实际的控制量。
1.3 模糊控制器的维数模糊控制器输入变量的个数称为模糊控制器的维数。
对于单输入单输出的控制系统,一般有以下三种情况:一维模糊控制器一个输入:误差;输出为控制量或控制量的变化。
二维模糊控制二个输入:误差及误差的变化。
三维模糊控制器三个输入为输入:误差、误差的变化、误差变化的速率。
第二节模糊控制系统的基本原理2.1 模糊化运算(Fuzzification)2.2 清晰化计算(Defuzzification)2.3 数据库(Data base)2.4 规则库(Rule base)2.4 模糊推理(Fuzzy Inference)2.1 模糊化运算(Fuzzification)模糊化运算是将输入空间的观测量映射为输入论域上的模糊集合。
首先需要对输入变量进行尺度变换,将其变化到相应的论域范围,然后将其模糊化,得到相应的模糊集合。
模糊控制器的基本结构和组成

们反映了控制专家的经验和知识。
1、模糊控制器的组成
(3)模糊推理 模糊推理是模糊控制的核心,它具有模拟人的
基本模糊概念的推理能力。该推理过程是基 于模糊逻辑中的蕴含关系及推理规则来进行 的。
1、模糊控制器的组成
(4)清晰化 清晰化的作用是将模糊推理得到的控制量(模糊量)变换为实
规则库
(2)基于操作人员的实际控制过程 在许多人工控制的工业系统中,很难建立控制对象的模型,因
此用常规的控制方法来对其进行设计和仿真比较困难。而熟 练的操作人员却能成功地控制这样的系统。事实上操作人员 有意或无意地使用了一组if-then的模糊规则来进行控制,但 是他们往往并不能用语言明确地将它们表达出来,因此可以 通过记录操作人员实际控制过程时的输入和输出数据总结出 模糊控制的规则。
数据库
1)输入量变换 对于输入量的尺度变换可以是线性变换的也可以是非
线性变换的,论域可以是连续的也可以是离散的。 如果要求离散的论域,则需要将连续的论域离散化 或者量化。量化可以是均匀的也可以是非均匀的。 (P56,表2.6-2.7)
பைடு நூலகம் 数据库
2)输入和输出空间的模糊分割 模糊控制规则中前提的语言变量构成模糊输入空间,
数据库
3)完备性 对于任意的输入,模糊控制器均能给出相应的输出, 这个性质称为完备性。模糊控制的完备性取决于数 据库或规则库。对于数据库方面的要求是:对于任 意的输入,若能找到一个模糊集合,使该输入对于 该模糊集合的隶属度函数不小于 ,则称该模糊控 制器满足 完备性。
数据库
4)模糊集合的隶属度函数 (1)数值描述方法 对于论域为离散,且元素个数为有限时,模糊集合 的隶属度函数可以用向量或者表格的形式来表示。 (2)函数描述方法 对于论域为连续的情况,隶属度常常用函数的形式 来描述,最常见的有铃形函数、三角形函数等。
课程设计(论文)-模糊控制器设计模板

模糊控制器设计模糊控制是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制。
从线性控制与非线性控制的角度分类,模糊控制是一种非线性控制。
从控制器的智能性看,模糊控制属于智能控制的范畴,而且它已成为目前实现智能控制的一种重要而又有效的形式。
1模糊控制的基本思想在自动控制技术产生之前,人们在生产过程中只能采用手动控制方式。
手动控制过程首先是通过观测被控对象的输出,其次是根据观测结果做出决策,然后手动调整输入量,操作工人就是这样不断地完成从观测、决策到调整,实现对生产过程的手动调整输入量,操作工人就是这样不断地完成从观测、决策到调整,实现对生产过程的手动控制。
这三个步骤分别是由人的眼-脑-手来完成的。
后来,由于科学技术的进步,人们逐渐采用各种测量装置(如传感器)代替人眼,完成对被控制量的观测任务;利用各种控制器(如PID调节器)取代人脑的作用,实现比较、综合被控制量与给定量之间的偏差,控制器所给出的输出信号相当于手动控制过程中人脑的决策;使用各种执行机构(如电动机)对被控对象施加某种控制作用,这就起到了手动控制中手的调整作用。
上述由测量装置、控制器、被控对象及执行机构组成的自动测控系统,就是人们所熟知的常规负反馈控制系统。
常规控制首先要建立精确数学模型,但是对一些复杂的工业过程,建立精确的数学模型是非常困难的,或者是根本不可能的。
于是常规控制技术在这里就遇到了不可逾越的障碍。
但是,熟练的技术操作人员,通过感官系统进行现场观察,再根据自己的经验就能很容易地实现这类控制过程,于是就产生了一个问题,能否把人的操作经验总结为若干条控制规则,并设计一个装置去执行这些规则,从而对系统进行有效的控制呢?答案是肯定的。
这种装置就是模糊控制器。
与传统的PID控制相比,模糊控制有其明显的优越性。
由于模糊控制实质上是用计算机去执行操作人员的控制策略,因而可以避开复杂的数学模型。
对于非线性,大滞后及带有随机干扰的复杂工业对象,由于数学模型难以建立,因而传统的PID控制也就失效,而对这样的系统,设计一个模糊控制器,却没有多大困难。
智能控制--模糊控制论文【范本模板】

华北电力大学科技学院智能控制论文模糊控制的概述及模糊控制的应用姓名:班级:学号:日期:模糊控制的概述及模糊控制在污水处理中的应用摘要:模糊控制技术对工业自动化的进程有着极大地推动作用,本文简要讲述了模糊控制的定义、特点、原理和应用,简介模糊控制在污水处理中的应用.并讲诉了模糊控制的发展.关键词:模糊控制;污水处理。
An overview of the fuzzy control and fuzzy control in application ofwastewater treatmentAbstract:Fuzzy control of industrial process automation has greatly promoted the role, the paper briefly describes the definition of fuzzy control,characteristics, principles and applications,Introduction to fuzzy control in wastewater treatment applications. And complaints about the development of fuzzy control.Keywords: fuzzy control;sewage treatment。
1 引言传统的自动控制控制器的综合设计都要建立在被控对象准确的数学模型(即传递函数模型或状态空间模型)的基础上,但是在实际中,很多系统的影响因素很多,油气混合过程、缸内燃烧过程等) ,很难找出精确的数学模型。
这种情况下,模糊控制的诞生就显得意义重大.因为模糊控制不用建立数学模型不需要预先知道过程精确的数学模型。
2 概述刘金琨在《智能控制》教材里提到模糊控制的定义和特点:2。
1定义:从广义上,可将模糊控制定义为:“以模糊集合理论、模糊语言变量及模糊推理为基础的一类控制方法”,或定义为:“采用模糊集合理论和模糊逻辑,并同传统的控制理论相结合,模拟人的思维方式,对难以建立数学模型的对象实施所谓一种控制方法"。
模糊PID控制器

模糊PID控制器智能控制是一门新兴的理论和技术,它是传统控制发展的高级阶段,主要用来解决那些传统方法难以解决的控制对象参数在大范围变化的问题,其思想是解决PID参数在调整问题的有效途径。
近年来,智能控制无论是理论上还是技术上均得到了长足的发展,随之不断涌现将智能控制方法和常规PID控制方法融合在一起的新方法,形成了许多形式的智能PID控制器,如模糊PID控制器、神经元PID控制、专家PID控制等。
这些方案的理论依据不同,采用的手段也不同,但它们都是针对如何选取和调整PID参数,都是保持PID控制器结构的基础上,采用新的方法确定PID参数。
这些方法在一定程度上提高了PID控制器的性能,但这些方法一般是针对某些具体的问题,缺乏通用性,附加的结构与算法也增加了控制器的复杂性,因此不能得到广泛的应用。
神经元PID控制随着神经元网络的研究与应用,人们开始采用神经元网络与PID控制相结合,以便改进传统PID控制的性能,这方面的研究已经取得了一些成果。
由具有自学习和自适应能力的单神经元构成单神经元自适应智能PID控制器,不但结构简单,而且能适应环境的变化,有较强的顽健性。
下面介绍几种典型的学习规则。
1.无监督Hebb学习规则Hebb学习是一类相关学习,其基本思想是:如果两个神经元同时被激活,则它们之间的连接强度的增强与它们激励的乘积成正比,以表示神经元的激活指,表示神经元的激活值,表示神经元和神经元的连接权值,则Hebb学习规则可表示式中,为学习速率。
2.有监督的Delta学习规则在Hebb学习规则中,引入教师信号,即将换成希望输出与实际输出之差,就构成有监督学习的Delta学习规则,即3.有监督的Hebb学习规则将无监督的Hebb学习规则和有监督的Delta学习两者结合起来就构成有监督的Hebb学习规则,即单神经元自适应PID控制结构如图所示单神经元自适应控制器是通过对加权系数%Fuzzy Tunning PID Controlclear all;clear all;a=newfis('fuzzpid');a=addvar(a,'input','e',[-3,3]); %Parameter e a=addmf(a,'input',1,'NB','zmf',[-3,-1]);a=addmf(a,'input',1,'NM','trimf',[-3,-2,0]);a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',1,'Z','trimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);a=addmf(a,'input',1,'PM','trimf',[0,2,3]);a=addmf(a,'input',1,'PB','smf',[1,3]);a=addvar(a,'input','ec',[-3,3]); %Parameter ec a=addmf(a,'input',2,'NB','zmf',[-3,-1]);a=addmf(a,'input',2,'NM','trimf',[-3,-2,0]);a=addmf(a,'input',2,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',2,'Z','trimf',[-2,0,2]);a=addmf(a,'input',2,'PS','trimf',[-1,1,3]);a=addmf(a,'input',2,'PM','trimf',[0,2,3]);a=addmf(a,'input',2,'PB','smf',[1,3]);a=addvar(a,'output','kp',[-0.3,0.3]); %Parameter kpa=addmf(a,'output',1,'NB','zmf',[-0.3,-0.1]);a=addmf(a,'output',1,'NM','trimf',[-0.3,-0.2,0]);a=addmf(a,'output',1,'NS','trimf',[-0.3,-0.1,0.1]);a=addmf(a,'output',1,'Z','trimf',[-0.2,0,0.2]);a=addmf(a,'output',1,'PS','trimf',[-0.1,0.1,0.3]);a=addmf(a,'output',1,'PM','trimf',[0,0.2,0.3]);a=addmf(a,'output',1,'PB','smf',[-0.1,0.3]);a=addvar(a,'output','ki',[-0.06,0.06]); %Parameter ki a=addmf(a,'output',2,'NB','zmf',[-0.06,-0.02]);a=addmf(a,'output',2,'NM','trimf',[-0.06,-0.04,0]);a=addmf(a,'output',2,'NS','trimf',[-0.06,-0.02,0.02]);a=addmf(a,'output',2,'Z','trimf',[-0.04,0,0.04]);a=addmf(a,'output',2,'PS','trimf',[-0.02,0.02,0.06]);a=addmf(a,'output',2,'PM','trimf',[0,0.04,0.06]);a=addmf(a,'output',2,'PB','smf',[0.02,0.06]);a=addvar(a,'output','kd',[-3,3]); %Parameter kda=addmf(a,'output',3,'NB','zmf',[-3,-1]);a=addmf(a,'output',3,'NM','trimf',[-3,-2,0]);a=addmf(a,'output',3,'NS','trimf',[-3,-1,1]);a=addmf(a,'output',3,'Z','trimf',[-2,0,2]);a=addmf(a,'output',3,'PS','trimf',[-1,1,3]);a=addmf(a,'output',3,'PM','trimf',[0,2,3]);a=addmf(a,'output',3,'PB','smf',[1,3]);rulelist=[1 1 7 1 5 1 1;1 2 7 1 3 1 1;1 3 62 1 1 1;1 4 62 1 1 1;1 5 5 3 1 1 1;1 7 4 4 5 1 1;2 1 7 1 5 1 1;2 2 7 13 1 1;2 3 6 2 1 1 1;2 4 53 2 1 1;2 5 53 2 1 1;2 6 4 43 1 1;2 734 4 1 1;3 1 6 14 1 1;3 2 6 2 3 1 1;3 3 6 3 2 1 1;3 4 5 3 2 1 1;3 54 4 3 1 1;3 6 3 5 3 1 1;3 7 3 54 1 1;4 1 6 2 4 1 1;4 2 6 2 3 1 1;4 35 3 3 1 1;4 4 4 4 3 1 1;4 5 3 5 3 1 1;4 6 2 6 3 1 1;4 7 2 6 4 1 1;5 1 5 2 4 1 1;5 2 5 3 4 1 1;5 3 4 4 4 1 1;5 4 3 5 4 1 1;5 5 3 5 4 1 1;5 6 2 6 4 1 1;5 7 2 7 4 1 1;6 1 5 47 1 1;6 2 4 4 5 1 1;6 3 3 5 5 1 1;6 5 2 6 5 1 1;6 6 27 5 1 1;6 7 1 7 7 1 1;7 1 4 4 7 1 1;7 2 4 4 6 1 1;7 3 2 5 6 1 1;7 4 2 6 6 1 1;7 5 2 6 5 1 1;7 6 1 7 5 1 1;7 7 1 7 7 1 1];a=addrule(a,rulelist);a=setfis(a,'DefuzzMethod','mom');writefis(a,'fuzzpid');a=readfis('fuzzpid');%PIDControllerts=0.001;sys=tf(5.235e005,[1,87.35,1.047e004,0]); dsys=c2d(sys,ts,'tustin');[num,den]=tfdata(dsys,'v');u_1=0.0;u_2=0.0;u_3=0.0;y_1=0;y_2=0;y_3=0;x=[0,0,0]';error_1=0;e_1=0.0;ec_1=0.0;kp0=0.40;kd0=1.0;ki0=0.0;for k=1:1:500time(k)=k*ts;rin(k)=1;%Using fuzzy inference to tunning PIDk_pid=evalfis([e_1,ec_1],a);kp(k)=kp0+k_pid(1);ki(k)=ki0+k_pid(2);kd(k)=kd0+k_pid(3);u(k)=kp(k)*x(1)+kd(k)*x(2)+ki(k)*x(3);if k==300 %Adding disturbance(1.0v at time 0.3s)u(k)=u(k)+1.0;endif u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endyout(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(1)*u(k)+num(2)*u_1+num(3)*u_2+num(4)* u_3;error(k)=rin(k)-yout(k);%%%%%%%%%%%%%%%%%%%Renturn of PID parameters%$$$$$$$$$$$$$$$u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k);x(1)=error(k); %Calculating Px(2)=error(k)-error(1); %Calculating Dx(3)=x(3)+error(k); %Calculating Ie_1=x(1);ec_1=x(2);error_2=error_1;error_1=error(k);endshowrule(a)figure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)');ylabel('rin,yout');figure(2);plot(time,error,'r');xlabel('time(s)');ylabel('error'); figure(3);plot(time,u,'r');xlabel('time(s)');ylabel('u'); figure(4);plot(time,kp,'r');xlabel('time(s)');ylabel('kp'); figure(5);plot(time,ki,'r');xlabel('time(s)');ylabel('ki'); figure(6);plot(time,kd,'r');xlabel('time(s)');ylabel('kd'); figure(7);plotmf(a,'input',1); figure(8);plotmf(a,'input',2); figure(9);plotmf(a,'output',1); figure(10);plotmf(a,'output',2); figure(11);plotmf(a,'output',3); plotfis(a);fuzzy fuzzpid.fis。
模糊控制器的结构和设计

【 摘要 】经典控 制理论是对 由差分和微 分方程描述 的动力学 系统所进行 的控 制 ,单 变量常 系数线性 系统是 它所研 究的
对 象,对于那些单输入 和单输 出的控制 系 ̄( S I S O) 比较适 用 ,被控对 象依赖 于对 象模型 ,难以对未知或不确定性 严重的 对 象进 行控 制。本 文提 出以模糊 系统理论为基础 的模糊控制 ,并详 细阐述 了模糊控制器的结构和设计 方法。
于期望值 时 ,就 要将燃气 的阀门开大 。这 样就描 述 出了
输入和输 出之 间 ( 即水温 与期望值的偏差e 和燃气 阀开度 的增量u )的关 系R ,这 种关 系是一个模糊 关系 ,形成 了 热水器 水温模糊控制 的系统结构 ,如 图1 - 2 所示:
1 ) 确 定语 言变 量 :将系 统 的误差 值e 和误 差变 化 率
ke = — ke 2n
—
3 . 3 模糊推理
模糊推理就是从不精确的前提集合 中由模糊控制规则 完成模糊推理来求解模糊推理过程,并得 出可能的不精确结 论的推理过程。在人的思维 中,推理过程常常是近似的。例
c — H- - — e c L
ec
=
岫 一 ‘
如 ,人们根据条件语句 ( 假 言) “ 若苹果是红的”,则苹果 是熟的”和前提 ( 直言) “ 苹果非常红 ”,立即可得 出结论
整 数还是 离散 的。模 糊控制 器通过 查询表 的形式可 以有 效提高控制器 的实时性 。
图1 — 2热水器水温模糊控制系统结构
从 现实 中的连续 域到有 限整数 的离散域 的转换 是如
何实现 的呢 ?可 以引入 以下三个量 ,分别 是将量 化因子 k e 、量化 因子k e c 和 比例因子k u 。
1模糊控制器的基本结构

第13章 模糊控制理论13.1模糊控制器的基本结构本章将介绍模糊控制(fuzzy control)的基本原理、结构分析、稳定性理论和设计方法。
模糊控制器的基本结构如图13.1所示。
图13.1中,t u 是SISO 被控对象的输入,t y 是被控对象的输出,t s 是参考输入,t t t y s e -=是误差。
图中虚线框内的就是模糊控制器(FC),它根据误差信号t e 产生合适的控制作用t u ,输出给被控对象。
模糊控制器主要由模糊化接口、知识库、模糊推理机、解模糊接口四部分组成,各部分的作用概述如下。
1.模糊化(Fuzzification)模糊化接口接受的输入只有误差信号t e ,由t e 再生成误差变化率t e或误差的差分t e ∆,模糊化接口主要完成以下两项功能。
⑴论域变换:t e 和t e都是非模糊的普通变量,它们的论域(即变化范围)是实数域上的一个连续闭区间,称为真实论域,分别用X 和Y 来代表。
在模糊控制器中,真实论域要变换到内部论域X '和Y '。
如果内部论域是离散的(有限个元素),模糊控制器称为“离散论域的模糊控制器”(D -FC),如果内部论域是连续的(无穷多个元素),模糊控制器称为“连续论域的模糊控制器”(C -FC)。
对于D -FC ,X ',Y '={0±整数};对于C —FC ,X ',Y '=[-l ,1]。
无论是D -FC 还是C -FC ,论域变换后t e ,t e变成*t e ,*t e ,相当乘了一个比例因子(还可能有偏移)。
⑵模糊化:论域变换后*t e 和*t e仍是非模糊的普通变量,对它们分别定义若干个模糊集合,如:“负大”(NL)、“负中”(NM)、“负小”(NS)、“零”(Z)、“正小”(PS)、“正中” (PM)、“正大”(PL),…,并在其内部论域上规定各个模糊集合的隶属函数。
在t 时刻输入信号的值t e ,t e经论域变换后得到*t e ,*t e ,再根据隶属函数的定义可以分别求出*t e ,*t e对各模糊集合的隶属度,如)(*t NL e μ、)(*t NM e μ、…,这样就把普通变量的值变成了模糊变量(即语言变量)的值,完成了模糊化的工作。
模糊控制应用实例

模糊控制应用实例模糊控制是一种部分基于逻辑的控制方法,它通过将模糊集合理论应用于控制系统中的输入和输出来模拟人类决策的过程。
与传统的精确控制方法相比,模糊控制更适合于处理模糊的、不确定的和复杂的系统。
在现实世界中,模糊控制广泛应用于各个领域,例如工业自动化、交通控制、飞行器导航等。
在本文中,我将介绍几个模糊控制的应用实例,以帮助读者更好地了解其实际应用价值。
1. 交通信号灯控制系统交通信号灯控制是一个典型的实时决策问题,涉及到多个信号灯的切换以及车辆和行人的流量控制。
传统的定时控制方法往往无法适应实际交通状况的变化,而模糊控制可以根据不同时间段和交通流量的变化,动态地调整信号灯的切换时间和优先级,以实现交通拥堵的缓解和行车效率的提高。
2. 温度控制系统在许多工业生产过程中,温度的精确控制对产品质量和产量的影响非常重要。
模糊控制可以根据温度传感器采集到的实时数据,结合事先建立的模糊规则库,调整加热或制冷设备的输出,以实现温度的稳定和精确控制。
与传统的PID控制方法相比,模糊控制对于非线性和时变的系统具有更好的适应性和鲁棒性。
3. 汽车制动系统汽车制动系统是保证驾驶安全的重要组成部分,而制动力的控制是其关键。
模糊控制可以根据制动踏板的压力以及车辆的速度和加速度等信息,动态地调整制动力的输出,以实现舒适而有效的制动。
模糊控制还可以考虑路面的湿滑情况和车辆的负荷情况等因素,自适应地调整制动力的分配,提高制动系统的性能和安全性。
4. 智能家居系统智能家居系统通过感应器、执行器和控制器等组件,实现对家庭设备和环境的智能控制。
模糊控制可以根据家庭成员的习惯和偏好,结合各种传感器采集到的数据,自动地调节室内温度、湿度、光线等参数,提高居住舒适度并节约能源。
在夏天的炎热天气中,模糊控制可以根据室内外温度、湿度和人体感觉来控制空调的开关和风速,实现智能舒适的环境控制。
总结回顾:模糊控制在各个领域都有着广泛的应用。
它通过基于模糊集合理论的推理和决策方法,实现对复杂系统的智能控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fuzzy-PID复合控制
Fuzzy—PID复合控制方法的出发点主要 是因为模糊控制器本身消除系统稳态误 差的性能比较差,难以达到较高的控制 精度和较好的跟踪性能。要提高模糊控 制器的精度和跟踪性能,就必须对语言 变量取更多的语言值,但同时增加了推 理规则的数量和增大了计算量,不能满 足实时控制的要求。
量化因子和比例因子的选择也影响着整个系统的品 质,并且当对象动态特性发生变化,或者受到随机 干扰的影响都会影响模糊控制的效果。以上问题都 将导致模糊控制器存在一些缺陷。
1 精度较低
这主要是由于模糊控制表的级别有限而 造成,通过增加量化等级数目虽可提高 精度,但查询表将过于庞大。须占用较 大空间.使运算时间增加。实际上如果 模糊控制器中不引入积分机制,原则上 总是存在误差的。因为它本身就是根据 误差的大小和变化来实现控制的
当误差中等时,应取较小的Kp,以使系统具 有较小的超调,Kd和Ki的取值要适当;
当误差较小时,应取较大的Kp和Ki,以使系 统具有较好的稳态性能,同时为避免系统在 设定值附近出现振荡,Kd的取值要适当。
带有修正因子的自寻优 模糊控制器
带有修正因子的自寻优模糊控制器
修正因子α 控制规则: U i E (1i ) CE 寻优指标函数 J t e(t) d(t) 寻优规则:优选修正因子使指标函数达到最小
自适应模糊控制
自适应模糊控制
自适应模糊控制就是它能自动地对模糊控制规则进 行修改、改进和完善,以提高控制系统的性能。已 经知道,模糊控制器控制质量的好坏主要取决于模 糊控制规则的设定,对于不太复杂而难于建立数学 模型的系统,在专家力所能及的情况下,可以利用 专家的知识和经验制定模糊控制规则。但是不同的 专家对同一个被控系统所具有的经验并不相同,通 过总结归纳操作人员和领域专家的经验来建立模糊 控制器的规则很难完美无缺,一下子就能满足控制 要求,况且如果对于那些非线性、大时滞、高阶、 时变的复杂被控对象,以及环境的不断变化或者严 重的随机干扰,根本达不到满意控制效果。在这种 情况下,自适应模糊控制器有着更好的控制性能。
Fuzzy-PID复合控制
PI调节器的积分作用从理论上可使系统的稳态 误差控制为零,有着很好的消除稳态误差的作 用。当误差在某一个阈值以外时,可采用PI控 制,以提高系统的响应速度和稳态性能;
当误差在阈值以内时,采用模糊控制可以提高 系统的阻尼性能,减小超调,获得更好的瞬态 性能。
这种模糊控制与PI控制相结合的控制方式称为 模糊-PI双模控制,其结构如下图所示。
常用的几种模糊控制器
模糊控制与PID控制结合 带有修正因子的自寻优模糊控制器 语言变量基本论域量化曲线自调整控制
器设计 自适应模糊控制
模糊控制与PID控制结合
为什么要将模糊控制与PID控
制结合使用?
常规PID(比例、积分、微分)控制是过程控制中 应用最广泛最基本的一种控制方式,它具有简 单、稳定性好、可靠性高的特点。而PID控制 对大部分工业控制对象,特别是对于线性定常 系统的控制是非常有效的,通常都能取得较为 满意的控制效果。PID控制的控制品质取决于 PID控制器各个参数的整定,但常规PID控制器 不能在线整定参数。而且对于非线性、时变的 复杂系统和模型不清的系统,就不能很好地加 以控制。
利用模糊控制规则,并根据不同的误差 情况,在线自整定(自校正、自调整) PID 控制器的参数,可组成模糊自整定参数 PID控制。
参数Kp、Ki和Kd的自整定要求
当误差较大时,应取较大的Kp和较小的Kd, 以使系统有较短的响应时间,同时为了避免 响应出现较大的超调.应对积分作用加以限 制,通常是去掉积分作用,即取Ki=0;
自寻优模糊控制器示例
控制系统单位阶跃响应
修正因子的自寻优方法可以应用于被控过程模型不 精确且控制规则不完善的系统。应用中可选择一个 初始控制规则,然后再依一定指标函数优化修正因 子,最终得到在该指标下的一组优化控制规则。
当被控过程参数发生变化时,也可通过在线自调整, 获得适应于变化参数后的优化控制规则。
为什么要将模糊控制与PID控 制结合使用?
简单模糊控制器由于不具有积分环节, 因而在模糊控制的系统中很难完全消除 稳态误差,而且在变量分级不够多的情 况下,常常在平衡点附近会有小的振荡 现象。但是模糊控制系统对复杂的和模 型不清的对象却能有效地加以控制,所 以把模糊控制和PID控制结合起来,就可 以组成兼有两者优点的模糊PID控制方法。
语言变量基本论域量化曲线 பைடு நூலகம்调整控制器设计
语言变量基本论域量化曲线 自调整控制器设计
量化曲线y=f(x)是指语言变量y在其基本 论域[—L,+L]内的数量值yi(i=1,2,…, l)和其论域元素xj(j=0,l,…,m)之间的 函数关系曲线。量化曲线y=f(x)的形状 是可以选择的,不一定是线性的。
非 线 性 量 化 曲 线
非线性的量化曲线的作用
控制器在E较大时对过程粗调,在E较小 时对过程细调,从而达到防止出现过大 的超调和要求的控制精度,表明改变量 化曲线形状具有改变控制器规则的功能。 因此非线性的量化曲线设计通常被采用。
改变量化曲线形状由于不直接改变控制 规则,故具有较好的实时性和自学习功 能。
模糊控制在工程应用中的困惑
模糊控制利用隶属度函数和模糊合成法则等思想, 巧妙地综合了人们的直觉经验。从而在其他经典控 制理论和现代控制理论不太奏效的场合,能够实现 较满意的控制。
模糊控制必须具有较完善的控制规则,但模糊控制 综合定量知识的能力较差。一张较理想的模糊控制 表必须通过反复精心整定才能投入使用。对于某些 复杂的工业过程,有时难以总结出较完整的经验。
2 自适应能力有限
由于简单模糊控制器中查询表一旦整定 下来后,就不再改变,量化因子和比例 因子也是如此。这样当对象参数随着环 境的变迁发生漂移时,它不能对自己的 控制规则进行有效的调整,从而使其良 好性能得不到充分发挥。
3 容易产生震荡现象
如果查询表构造不合理或量化因子和比 例因子选择不当,都会导致振荡。在仿 真过程中,特别是系统进入误差的零档 级时产生高频振荡现象更为普遍。
Fuzzy-PID复合控制
模糊-I复合控制
该系统的控制作用是模糊控制器的控制作用 和I调节器控制作用的和,这相当于一个具有 变参数的比例微分控制作用和不变参数的积 分控制作用的PID调节器。
对这种形式的控制方案实验研究表明,它比 单个的模糊控制器和单个的PID调节器均有更 好的控制性能。
模糊自整定参数PID控制