基于CATIA的零件的参数化设计

合集下载

CATIA参数化设计案例

CATIA参数化设计案例
• 子基础面basic surface由多个面片通过依次倒角 Shape Fillet得到 (在通常情况下较少采用 Edge Fillet和 Variable Radius Fillet 命令倒角,因其不利于参数化控制)。
2021/10/10
11
• 通过以上介绍,我们了解了基础面(#basic surface)的设计思路,下面 再看具体到一个单面片的设计方法。
参数化案例
建模思路参考附件: 5401000.CATPart
在建模过程中应尽量避免使用以下操作:
因其不利于参数化控制
2021/10/10
1
首先,此模板根据车身零件3D数据的结构特征,将历史树分成如下组成部分:
· 1.零件名称(PART NUMBER)
• 2.车身坐标系(Axis Systems)
• 3.参数(Parameters)
2021/10/10
10
• 如图所示,决定该零件形状的基础面可由如上二个子基础面组成,二 个主要子基础面相互倒角得到大的基础面,在子基础面设计过程中要 注意不同结构的命名和它们之间的相互历史层次关系。往往每个子基 础面又由许多面元素构成,这些面元素同样要求用清晰的命名和历史 层次关系体现在结构树上。
• 在结构树上的这一部分是零件设计的主体 工作,也是工作量最大,最关键的部分。 这部分#part definition的构成如图
2021/10/10
7
#part definition包括主要面(#main surfaces)、基础面(#basic surface)、压筋 结构(#depressions)、翻边结构(#flanges)、 裁剪结构(#trimmed_part)、孔(#holes)
2021/10/10

基于catia知识工程的三维装配体参数化设计

基于catia知识工程的三维装配体参数化设计

基于catia知识工程的三维装配体参数化设计
Catia知识工程是一种针对制造系统中数据建模和管理的新兴技术。

其优势在于能够有效地提高制造系统的知识建模水平、提升自动制造系统在三维装配可视性和高效性之间的折中。

Catia知识工程技术弥补了传统装配体设计中困扰三维系统管理、可视性现实效果及参数化设计的缺点,为三维装配体参数化设计提供了可能。

基于Catia知识工程的三维装配体参数化设计的分析方法主要基于三个方面:a)实物性状分析:探讨装配体部件的大小、形状、尺寸和微观结构;b)装配关系分析:探讨部件之间的相互作用和装配方式;c)装配耦合分析:以及耦合性评估来判断系统单元之间的可行性以及系统强项。

基于Catia知识工程的三维装配体参数化设计的具体设计步骤如下:
一、系统需求分析:从实际需求出发,根据客户要求,分析系统的可行性、服务条件以及相关的功能状态限制;
二、分析和设计:利用Catia知识工程技术,从零件形状和结构、装配关系、装配耦合等多个方面来分析部件之间的关系,并进行参数化设计;
三、仿真和优化:根据设计的系统模型,进行功能性仿真和性能优化,确保设计的可行性;
四、设计实现与测试:将设计方案实施到真实部件上,并进行实际测试,确保设计的准确性和可行性。

综上所述,基于Catia知识工程的三维装配体参数化设计是一项创新性的技术,其利用建模和管理知识工程技术,不仅能够有效提高制造系统的知识建模水平,而且能够提高系统的可视性和高效性,是一种非常有效的参数化设计手段。

CATIA软件参数化设计技巧

CATIA软件参数化设计技巧

CATIA软件参数化设计技巧CATIA (Computer Aided Three-Dimensional Interactive Application)是一种强大的计算机辅助设计和制造软件,被广泛应用于航空航天、汽车、工业设计等领域。

参数化设计是CATIA的一个重要特性,它可以有效地提高设计的效率和灵活性。

本文将介绍CATIA软件的参数化设计技巧,帮助读者更好地利用CATIA来完成设计任务。

一、参数化设计的基本概念参数化设计是指通过定义一组参数,以及参数之间的关系和约束来描述产品的形状和特性。

在CATIA中,参数可以是尺寸、角度、间距等物理量,通过改变这些参数的数值,可以实现对设计模型的快速修改和更新。

参数化设计使得设计师可以方便地进行多次迭代,快速生成不同尺寸和形状的产品。

二、创建参数化模型在CATIA中创建参数化模型需要先定义参数,然后再将参数应用到模型中。

下面是一个简单的示例,展示了如何创建一个参数化的矩形模型。

1. 打开CATIA软件,选择“Part Design”模块;2. 在工具栏中选择“Pad”命令,点击在图形区域中绘制一个矩形;3. 在“Specification Tree”中找到“Pad Definition”节点,右键点击该节点,选择“Add User Parameters”;4. 在弹出的对话框中添加两个参数,分别命名为“长度”和“宽度”,并分别指定数值;5. 在矩形的尺寸输入框中,使用这两个参数表示矩形的长度和宽度,例如,输入“长度”、“宽度”;6. 点击“确定”按钮,CATIA将根据参数的数值生成一个参数化的矩形模型。

通过定义参数,并将参数应用到模型中,我们可以快速修改矩形的尺寸,而无需重新绘制模型。

三、约束的应用除了定义参数,我们还可以使用约束工具在CATIA中实现模型的约束。

约束是一种关系,用于限制模型元素之间的相互作用。

通过定义约束,可以在保持模型特性的前提下,改变模型的形状和尺寸。

CATIA参数化建模设计教程

CATIA参数化建模设计教程

CATIA参数化建模设计教程首先,打开CATIA软件并创建一个新的零件文件。

在工具栏上选择“文件”,然后选择“新建”。

在弹出窗口中选择“零件”并点击“确定”。

第二步是创建一个基础特征。

在CATIA中,基础特征是构成整个模型的基础。

常用的基础特征有创建草图、拉伸、旋转、倒角等。

选择“创建”工具栏上的“草图”按钮,然后在工作平面上绘制草图。

草图可以是二维的线条、圆、矩形等,在CATIA中,草图是创建三维模型的基础。

在草图绘制完成之后,选择“拉伸”工具栏上的按钮,然后选择要拉伸的草图和拉伸的距离。

拉伸可以将二维草图转化为三维模型。

接下来,我们可以使用更高级的功能来对模型进行操作。

一种常见的操作是进行旋转。

选择“旋转”工具栏上的按钮,然后选择要旋转的模型和旋转轴。

通过旋转可以将模型进行翻转、倾斜等操作。

此外,CATIA还提供了一些高级的功能,如倒角、剪切等。

倒角是用于给模型边缘添加圆角,使其更加平滑。

选择“倒角”工具栏上的按钮,然后选择要倒角的边和倒角的半径。

剪切功能可以用来从模型中移除一部分材料。

选择“剪切”工具栏上的按钮,然后选择要剪切的模型和剪切面。

最后,我们需要对模型进行参数化。

参数化是CATIA的一个重要特性,它可以使模型的尺寸和形状具有可调性。

在CATIA中,我们可以使用变量和公式来定义模型的尺寸和形状。

选择“参数”工具栏上的按钮,然后定义变量和公式。

通过调整变量的值,模型的尺寸和形状会相应地改变。

以上就是使用CATIA进行参数化建模设计的基础教程。

通过学习这些基本的操作,您可以使用CATIA来创建复杂的三维模型,并灵活地调整其尺寸和形状。

希望本教程对您有所帮助。

CATIA软件参数化设计入门

CATIA软件参数化设计入门

CATIA软件参数化设计入门CATIA软件是一种功能强大的三维建模软件,被广泛应用于工业设计、机械制造、航空航天等领域。

参数化设计是CATIA软件的一项重要功能,它可以帮助设计师快速创建和修改模型,提高设计效率。

本文将介绍CATIA软件参数化设计的基本概念和入门步骤。

一、什么是参数化设计参数化设计是一种基于变量和公式的设计方法。

在传统的CAD设计中,设计师需要手动调整每个零件的尺寸和位置。

而在参数化设计中,设计师可以通过定义变量和公式来控制模型的尺寸和位置,从而实现自动化的设计。

参数化设计可以使设计师在任何时候都能够轻松地修改零件的尺寸和位置,提高设计的灵活性和可重用性。

二、CATIA软件参数化设计的基本步骤1. 定义参数在进行参数化设计之前,首先需要定义一些参数。

参数可以是数字、字符串或其他类型的变量,用于控制模型的尺寸和位置。

在CATIA软件中,可以通过参数编辑器来定义和管理参数。

参数编辑器提供了一个直观的界面,可以方便地添加、修改和删除参数。

2. 创建基础模型在定义参数之后,接下来可以开始创建基础模型。

基础模型是参数化设计的基础,它包含了设计中最基本的几何形状和结构。

在CATIA软件中,可以使用各种建模工具来创建基础模型,如拉伸、旋转、镜像等。

3. 添加公式在创建基础模型之后,可以为模型添加公式。

公式是参数化设计的核心,它用于计算模型的尺寸和位置。

在CATIA软件中,可以使用公式编辑器来添加和编辑公式。

公式编辑器提供了一个简单而强大的计算环境,可以实现复杂的计算和逻辑运算。

4. 验证和修改设计在添加公式之后,可以对设计进行验证和修改。

CATIA软件提供了多种验证工具,如碰撞检测、重叠分析等。

设计师可以使用这些工具来检查模型的合理性和完整性。

如果发现问题,可以通过修改参数或公式来进行调整,从而得到满足要求的设计。

5. 应用到其他模型在完成一个参数化模型的设计之后,可以将其应用到其他模型中。

CATIA软件提供了复制和关联功能,可以将一个模型的参数和公式复制到其他模型中,从而实现批量设计和自动化设计。

CATIA参数化建模实例分享

CATIA参数化建模实例分享

CATIA参数化建模实例分享CATIA是一款著名的三维计算机辅助设计软件,它具备强大的参数化建模功能。

参数化建模是一种基于参数的设计方法,通过给定参数来控制和调节模型的形状、尺寸以及其他属性,从而快速、灵活地生成不同变化的模型。

本文将分享一些CATIA参数化建模的实例,以展示其在工程设计领域中的应用。

一、齿轮模型的参数化设计齿轮是机械传动中常用的零件,其尺寸和齿数等参数直接影响着传动效果。

CATIA参数化建模可以轻松实现齿轮的可调节设计。

首先,我们可以定义齿轮的模块、齿数、齿宽等参数,然后通过公式和关系式,自动计算齿轮的齿高、齿厚、分度圆直径等尺寸。

这样,只需要修改参数数值,即可快速生成满足不同需求的齿轮模型,提高了设计效率和灵活性。

二、飞机机翼的参数化建模飞机机翼是飞行器结构中关键的组成部分,其形状和尺寸对飞行性能具有重要影响。

使用CATIA参数化建模,可以方便地调整飞机机翼的展弦比、翼根弦长、翼梢弦长等参数。

通过定义关系式和公式,改变参数数值后,CATIA会自动更新机翼的几何形状,实现快速的机翼设计。

这种参数化建模的方法,可以帮助工程师比较不同方案的飞机设计,提高设计优化的效率。

三、汽车车身的参数化设计在汽车设计中,车身的外形和尺寸常常需要多次调整和优化。

利用CATIA参数化建模的功能,可以轻松快速地设计不同类型和尺寸的汽车车身。

通过定义和调整参数,如车头长度、车轮间距、车身高度等,CATIA可以自动修改车身模型的各个部分,并保持其整体结构的一致性。

这使得汽车设计师可以快速生成满足不同需求的车身设计方案,并进行评估和比较。

四、建筑结构的参数化建模在建筑设计领域,参数化建模也有着广泛的应用。

例如,设计师可以通过定义楼板厚度、柱子间距、楼层高度等参数,使CATIA自动生成建筑结构的三维模型。

通过修改参数数值,可以快速调整和优化建筑结构的设计,满足不同的需求和规范要求。

参数化建模使得建筑设计师可以更加灵活地探索和调整设计方案,提高设计效率和质量。

基于CATIA二次开发的非标准件参数化设计

基于CATIA二次开发的非标准件参数化设计

基于CATIA二次开发的非标准件参数化设计刘薇娜;贾帅帅【期刊名称】《自动化技术与应用》【年(卷),期】2017(036)007【摘要】Parametric design is intelligent,integrated core technology CAD system.In view of non-standard parts for the enterprises how to achieve its serialization,universal,long "standard" products,as well as the existence of design throughout the design process cycle,low efficiency,large data problems,the paper describes the parametric design method,design ideas,and the use of CATIA software,the secondary development of technology to build a human-machine interface system.Taking a model as an example,to verify the non-standard pieces of parametric design compared with conventional design,it brings advantages.The results show that parametric design has the advantage of accelerating the design efficiency,improves design quality,easy to manage parts of the data.%参数化设计是智能化、集成化CAD系统的核心技术.针对企业中的非标准件如何实现其系列化、通用化、“标准化”产品,以及在整个设计过程中存在设计的周期长、效率低、数据庞大的问题,文中阐述了零件参数化设计的设计方法、设计思路,并且利用CATIA软件的二次开发技术建立了人机界面系统.论文以某卧式加工中心夹具为例子,验证了对非标准件进行参数化设计相比于传统设计所带来的优越性.结果表明,参数化设计具有加快设计效率、提高设计质量、方便零件数据的管理的优点.【总页数】4页(P43-46)【作者】刘薇娜;贾帅帅【作者单位】长春理工大学,吉林长春130022;长春理工大学,吉林长春130022【正文语种】中文【中图分类】TH12【相关文献】1.基于Pro/E二次开发夹具标准件参数化设计技术研究 [J], 张国灿;韩祖行2.基于SolidWorks二次开发的非标准件参数化设计 [J], 孙建军;黎旭;唐慧海;黄艳群3.基于CATIA V6的船舶轮机标准件参数化设计研究 [J], 宗丹;林锐;王林4.基于CATIA V6的船舶轮机标准件参数化设计研究 [J], 宗丹;林锐;王林;5.基于CATIA二次开发的标准件库的开发技术研究 [J], 郭越因版权原因,仅展示原文概要,查看原文内容请购买。

CATIA参数化设计及零件库的建立

CATIA参数化设计及零件库的建立

CATIA参数化设计及零件库的建立
一、CATIA参数化设计
CATIA参数化设计是在CATIACAD绘图系统中,根据一定形体和尺寸
参数的设定,实现图形、尺寸以及性能参数相互关联的设计技术。

它是一
种应用于现代工程设计中的数字化设计技术,它可以让CAD设计变得可控、可改变、可复用,帮助设计者以更快更灵活的方式实现创意设计。

CATIA
参数化设计的优点在于:
1、参数化设计能帮助设计人员迅速轻松地实现复杂的设计任务。


数化设计能够快速、高效地完成一般的CAD设计任务,比如说可以通过不
同的参数设置实现尺寸参数的连续变形来实现复杂的拉伸或收缩,快速而
准确地完成复杂设计的任务。

2、参数化设计能够通过参数化的方式自动实现产品设计模板的保存,进而可以成为产品设计的可重复使用物,从而加强了投入的价值,增强了
可重复使用的意识,促进了工程设计的科学性和效率性。

3、参数化设计能够有效地减少重复性的设计工作,可以以更少的时
间完成更多的工作量,减少设计过程所占用的成本,从而提高设计工作的
效率和质量。

4、参数化设计可以直接将设计图纸转换成数据信息,从而减少设计
过程中的笔墨纠缠,提高设计精度,提升了整体设计工作的质量和效率。

基于CATIA导向件的参数化设计解读

基于CATIA导向件的参数化设计解读

.xxx大学毕业论文(设计)论文题目基于CATIA下导向件的参数化设计姓名xxx 学号xxxxx院系xxxxxxx 专业xxxxxxxxx指导教师xxxxxx 职称xxx中国·合肥目录摘要: _______________________________________________________________ 3 第一章绪论 __________________________________________________________ 41.1课题来源及意义 ________________________________________________ 41.2 毕业论文的想要达到的目的______________________________________ 4 第二章导向件的概述 __________________________________________________ 52.1导向件的基本概念 ______________________________________________ 52.2导向件的组成 __________________________________________________ 52.2.1 钻套________________________________________________________ 52.2.2 镗套________________________________________________________ 52.2.3衬套 ________________________________________________________ 52.2.4钻套、镗套螺钉 ______________________________________________ 6 第三章 CATIA的概述___________________________________________________ 63.1 CATIAT简介 ___________________________________________________ 63.1.2 产品及服务__________________________________________________ 63.1.3 核心技术____________________________________________________ 63.1.4功能和模块 __________________________________________________ 7 第四章参数化设计 ____________________________________________________ 84.1参数化设计概述 ________________________________________________ 82应用 ____________________________________________________________ 9 第五章导向件的三维实体建模 __________________________________________ 95.1三维实体建模过程 ______________________________________________ 95.2零件建模 _____________________________________________________ 11 第六章零件库 _______________________________________________________ 196.1零件库的定义 _________________________________________________ 196.2零件库的意义何在 _____________________________________________ 196.3主要的零件库产品介绍 _________________________________________ 196.4零件库的建立 _________________________________________________ 21 结论 ____________________________________________________________ 25 致谢 ____________________________________________________________ 26 参考文献 ____________________________________________________________ 27 Abstract ____________________________________________________________ 28基于CATIA导向件的参数化设计作者:x x x指导老师:x x xxxxx大学11机械设计制造及其自动化合肥230036下载须知:本文档是独立自主完成的毕业设计,只可用于学习交流,不可用于商业活动。

CATIA软件零件参数化设计

CATIA软件零件参数化设计

CATIA软件零件参数化设计CATIA软件是一种强大的计算机辅助设计软件,被广泛应用于制造业中。

在CATIA软件中,参数化设计是一种非常重要的功能,它可以大大提升零件设计的效率和灵活性。

本文将探讨CATIA软件中的零件参数化设计的原理、方法以及其在实际应用中的优势。

一、零件参数化设计的原理零件的参数化设计是指在设计零件时,将其中的尺寸、角度、位置等相关参数以变量的形式定义,并通过公式和关系表达式将这些变量关联起来。

通过从外部修改变量的数值,零件的形状和结构可以随之改变,从而实现灵活的设计。

CATIA软件提供了强大的参数化设计功能,可以轻松地实现零件的参数化设计。

二、零件参数化设计的方法在CATIA软件中,进行零件的参数化设计主要有以下几个步骤:1. 定义参数:在零件设计过程中,可以通过选择菜单中的“参数”功能来定义各种参数。

如定义长度、角度、直径等尺寸参数,定义材料的物理性质参数等。

2. 创建基础特征:根据实际需要,可以选择各种基础特征进行建模。

如创建基础的几何体,如立方体、圆柱体等;也可以通过其他特征进行建模,如挖空、拉伸、旋转等。

3. 关联参数:通过选择特定的几何元素或边界条件,将参数与零件的形状和结构关联起来。

例如,可以通过选择两个点来定义两个零件之间的距离,通过选择两个面来定义零件的厚度等。

4. 编辑参数:可以随时编辑已经定义的参数,修改其数值或者关联条件。

CATIA软件还提供了方便的参数编辑界面,可以直接输入数值或者通过滑块进行调整。

5. 分析设计:在参数化设计完成后,可以通过CATIA软件提供的分析工具进行设计的分析。

例如,可以根据已定义的参数计算零件的质量、强度、刚度等。

通过分析结果,可以优化设计,满足设计要求。

三、零件参数化设计的优势零件参数化设计在CATIA软件中具有以下优势:1. 提升设计效率:通过参数化设计,可以在不改变设计思路和流程的前提下,实现零件形状和结构的快速修改。

CATIA软件参数化设计方法

CATIA软件参数化设计方法

CATIA软件参数化设计方法CATIA是一款广泛应用于机械设计和制造领域的三维建模软件,它提供了丰富的功能和工具,帮助工程师们进行产品设计与开发。

其中,参数化设计是CATIA软件的一个重要特点,它能够帮助用户灵活地调整设计参数,提高设计效率和质量。

本文将介绍CATIA软件中的参数化设计方法,旨在帮助读者更好地利用该软件进行设计工作。

1. 参数化设计的概念参数化设计是指通过设定各项设计参数,并在设计过程中动态地调整这些参数值,从而实现设计的灵活性和变化性。

在CATIA软件中,参数化设计的核心思想是将设计过程中的几何尺寸、位置、约束等信息与参数关联起来,通过修改参数的值来实现设计的变化。

2. 参数化设计的优势参数化设计在CATIA软件中具有许多优势。

首先,它可以提高设计效率。

通过设定参数,设计师可以方便地调整尺寸和约束条件,快速生成各种不同的设计方案。

其次,参数化设计可以降低设计错误的风险。

通过将关键参数与几何特征相连接,当一个参数发生改变时,相关的几何特征也会相应更新,避免了人为错误。

此外,参数化设计还能够提高产品质量和可靠性,当设计需求发生变化时,只需要修改相关参数,而不需要重新设计整个产品。

3. 设计表格的应用在CATIA软件中,设计表格是参数化设计的一种常用工具。

设计表格是将设计参数和相关的几何特征以表格形式展示,通过修改表格中的数值来改变设计参数的值。

设计表格能够极大地简化参数化设计的流程,使设计师更加方便地控制设计参数。

设计表格还可以与其他设计模块相结合,如装配模块、仿真模块等,实现全面的参数化设计。

4. 规则建模的应用除了设计表格,CATIA软件还提供了规则建模功能,用于实现更复杂的参数化设计。

规则建模是指通过建立一组规则和条件,自动地生成和更新几何模型。

在规则建模中,设计师可以定义不同的参数和约束,并基于这些参数和约束建立模型。

当参数发生改变时,模型会自动更新,从而实现设计的变化。

规则建模可以高效地进行复杂的设计任务,提高设计效率和质量。

基于CATIA的齿轮参数化设计建模及运动仿真

基于CATIA的齿轮参数化设计建模及运动仿真

基于CATIA的齿轮参数化设计建模及运动仿真齿轮是机械传动中常用的元件,用于传递动力和转动运动。

其设计和制造过程需要精确的参数化建模和运动仿真,以确保其稳定性和性能。

CATIA是一款功能强大的三维建模软件,可用于实现齿轮的参数化设计和运动仿真。

以下是基于CATIA的齿轮参数化设计建模及运动仿真的步骤:1.齿轮参数化设计:首先,需要确定齿轮的几何参数,如齿数、模数、压力角等。

在CATIA中,可以根据这些参数创建一个齿轮模型,并将其参数化,使得可以根据不同的参数值自动生成不同的齿轮模型。

参数化设计可以有效地提高设计效率和灵活性。

2.齿轮建模:基于确定的齿轮参数,使用CATIA中的齿轮建模工具创建齿轮的几何模型。

可以选择不同的齿轮类型,如圆柱齿轮、圆锥齿轮等,并根据需要进行形状调整和修饰。

3.齿轮装配:如果需要进行多个齿轮的装配设计,可以使用CATIA的装配设计工具来构建整个齿轮传动机构。

通过将不同的齿轮模型组装在一起,可以实现齿轮传动机构的建模和设计。

4.齿轮运动仿真:基于建立的齿轮模型和装配设计,在CATIA中进行运动仿真,以验证齿轮传动的性能和稳定性。

可以通过设置不同的运动参数和加载条件,模拟齿轮传动过程中的动态行为。

同时,可以进行动力学分析,评估齿轮传动的负载和力学特性。

5.优化和修改:根据仿真结果,可以对齿轮模型和装配设计进行优化和修改。

通过调整参数和改进设计,可以提高齿轮传动的效率和可靠性。

在CATIA中,可以直接修改参数,并自动更新齿轮模型和装配。

利用仿真结果的反馈信息进行优化设计,从而提高齿轮传动的性能。

总结:基于CATIA的齿轮参数化设计建模及运动仿真,可以有效地提高齿轮传动的设计效率和品质。

通过参数化设计和运动仿真,可以快速生成并优化齿轮模型,验证齿轮传动的性能,提高传动效率和可靠性。

同时,CATIA提供了丰富的工具和功能,可帮助工程师进行齿轮传动的设计和优化,提高产品的竞争力和市场价值。

CATIA参数化设计教程

CATIA参数化设计教程

CATIA参数化设计教程CATIA是一种常用的工程设计软件,它具备强大的参数化设计功能。

参数化设计是指使用具有变量和公式定义的参数来描述产品的尺寸、位置、形状等特征,通过改变参数的数值就能自动更新整个模型。

下面是一篇介绍CATIA参数化设计的教程,帮助读者更好地了解和应用这一功能。

第一步,打开CATIA软件并创建一个新的零件文档。

在CATIA的开始界面中选择“新建空白文档”,然后选择“零件”。

第二步,选择合适的坐标系和单位。

在CATIA的“设计空间管理器”中,选择合适的坐标系,例如:直角坐标系、极坐标系或柱坐标系。

然后,在菜单栏中选择“格式”->“选项”,在弹出的对话框中选择合适的单位,例如:毫米、英寸等。

第三步,创建参数。

在CATIA的工具栏中选择“参数”->“创建参数”,在弹出的对话框中输入参数的名称、符号、单位和初始数值。

例如,可以创建一个名为“长度”的参数,符号为“L”,单位为“mm”,初始数值为“100”。

第四步,应用参数。

在模型中选择需要应用参数的尺寸、位置或形状,然后在CATIA的属性栏中选择“参数”->“添加”,选择之前创建的参数。

例如,可以选择一条线段,然后在属性栏中选择“长度”参数,这样这条线段的长度就与参数关联了。

第五步,建立参数之间的关系。

在CATIA的工具栏中选择“参数”->“建立关系”,在弹出的对话框中选择需要建立关系的参数和公式。

例如,可以选择之前创建的“长度”参数和一个新的参数“宽度”,并建立一个公式“2*长度=宽度”。

这样,当改变长度的数值时,宽度的数值就会自动更新。

第六步,调整参数的数值。

在模型中选择一个参数,然后在CATIA的属性栏中修改其数值。

例如,可以选择之前创建的“长度”参数,将其数值改为“200”,然后点击其他地方,模型就会自动更新。

第七步,验证参数化设计。

在调整参数的数值之后,需要验证参数化设计的正确性。

可以通过创建截面、剖视图或3D视图来查看模型的变化。

CATIA参数化零件建模思路

CATIA参数化零件建模思路

CATIA参数化零件建模思路CATIA是一款功能强大的参数化建模软件,可以用于创建各种复杂的零部件模型。

参数化建模允许用户通过调整参数值来改变模型的形状和尺寸,从而提高设计效率和准确性。

以下是关于如何在CATIA中进行参数化零部件建模的思路:1.确定零部件的设计要求和约束:首先,需要明确零部件的设计要求,包括尺寸、形状、材料等方面的要求。

同时还需要考虑零部件在装配中的约束条件,例如与其他零部件的配合关系、运动关系等。

2.创建基础几何体:在开始建模之前,可以根据设计要求创建一些基础几何体,如圆柱体、球体、锥体等。

这些基础几何体可以通过简单的参数进行调整,用作后续操作的基础。

3.使用特征工具进行建模:CATIA提供了丰富的特征工具,可以用于创建各种常见的零部件特征,如孔、窗口、槽、倒角等。

通过使用这些特征工具,可以在模型中添加必要的特征,并进行参数化设置。

4.定义参数和公式:在进行参数化建模时,可以定义一些参数和公式,用于控制模型的形状和尺寸。

这些参数可以直接控制模型的几何属性,也可以用于定义约束条件。

通过定义参数和公式,可以实现较高程度的灵活性和复用性。

5.创建参数化特征:除了基本的几何特征之外,CATIA还提供了一些高级的参数化特征工具,如镜像、阵列、螺旋线等。

通过使用这些特征工具,可以更加便捷地创建一些复杂的零部件特征,并进行参数化设置。

6.进行装配和运动模拟:如果需要将参数化零部件应用于装配任务中,可以使用CATIA的装配模块进行装配设计。

在装配模块中,可以通过定义零部件之间的约束关系和运动关系,实现零部件的装配和运动模拟。

7.进行参数化分析:在完成参数化建模之后,可以进行一些参数化分析,如尺寸优化、装配分析等。

CATIA提供了一些分析工具和插件,可以帮助用户对参数化零部件进行分析和优化。

总结起来,CATIA参数化零部件建模的思路包括确定设计要求和约束、创建基础几何体、使用特征工具进行建模、定义参数和公式、创建参数化特征、进行装配和运动模拟、进行参数化分析等步骤。

基于CATIA的三维参数化建模方法及其应用

基于CATIA的三维参数化建模方法及其应用

基于CATIA的三维参数化建模方法及其应用王晓友【摘要】参数化设计是现代CAD软件的核心技术.利用参数化设计手段可使设计人员从大量繁琐的设计、计算、绘图工作中解脱出来,提高了设计效率,可以在实际制造物理样机之前通过虚拟来方便地修改设计,缩短产品开发周期,降低成本,增强市场竞争力.对基于CATIA的三维参数化建模方法及其技术进行了研究,详细地阐述了三维参数化建模的基本方法和一般步骤.并介绍了在CATIA V5中进行铰链四秆机构参数化、可视化和虚拟装配设计的方法,并对该四杆机构进行了干涉分析和运动仿真分析.详细介绍了针对设计要求通过实时修改构件参数实现铰链四杆机构“一模多型”的虚拟装配设计方法.以可视化的形式实现设计意图,提高了设计速度和质量.【期刊名称】《汽车零部件》【年(卷),期】2012(000)003【总页数】4页(P55-58)【关键词】三维参数化建模;铰链四杆机构;虚拟装配;运动仿真;CATIA V5【作者】王晓友【作者单位】武汉理工大学汽车工程学院,湖北武汉430070【正文语种】中文0 引言CATIA 系统是法国达索(Dassault)飞机公司Dassault Systems 工程部开发的产品[1]。

该系统是在CADAM 系统(原由美国洛克希德公司开发,后并入美国IBM 公司)基础上扩充的,经过几年努力,形成了商品化的系统,是一个高档CAD/CAM/CAE 系统,广泛用于航空、汽车等领域。

CATIA 具有统一的用户界面、数据管理以及兼容的数据库和应用程序接口。

采用特征造型和参数化造型技术,允许自动指定或由用户指定参数化设计、几何或功能化约束的变量化设计。

它具有卓越的知识智能、机械产品设计、有限元分析、NC 编程、数字化虚拟样机等强大的功能模块,为许多用户所青睐。

CATIA V5 的知识智能模块较好地解决了长期困扰各行业的知识重用和保留的重要问题。

它通过可视化的特征树及各种可视工具,使得三维参数化建模更加简单易学。

CATIA软件零件参数化建模

CATIA软件零件参数化建模

CATIA软件零件参数化建模CATIA软件是一款广泛应用于工业设计和机械工程的三维建模软件。

它提供了强大的功能和灵活性,使得用户可以根据自身需求进行零件参数化建模。

本文将介绍CATIA软件中的零件参数化建模方法,以及其在实际应用中的优势。

一、CATIA软件概述CATIA软件是由法国达索系统公司开发的一款计算机辅助设计软件。

它提供了完整的产品设计解决方案,包括产品概念设计、虚拟样机制造、协作设计和产品生命周期管理等功能。

CATIA软件被广泛应用于航空航天、汽车制造、工业设备等领域,具有强大的设计和分析能力。

二、参数化建模概念参数化建模是一种基于参数的零件设计方法,通过调整参数的数值来控制零件的形状和尺寸。

在CATIA软件中,用户可以定义零件的参数,并且根据这些参数进行建模。

参数化建模的优势在于,当设计需求发生变化时,只需要修改参数的数值,而不需要重新设计整个零件,大大提高了设计效率和灵活性。

三、CATIA软件中的参数化建模方法1. 定义参数:在CATIA软件中,用户可以通过参数定义工作台中的零件参数。

具体来说,可以定义线段的长度、角度、曲线的半径等参数。

参数定义完成后,用户可以在后续的建模过程中直接使用这些参数。

2. 建立基础特征:CATIA软件提供了多种基础特征库,包括直线、圆、矩形等。

用户可以通过在工作平面上绘制这些基础特征来快速创建零件的草图,然后可以使用参数进行尺寸调整。

3. 特征操作:CATIA软件中的特征操作包括拉伸、旋转、倒角、挤压等。

用户可以将基础特征进行组合,并应用特征操作进行细化。

通过参数的调整,可以实现对特征尺寸的动态控制,快速生成符合要求的零件。

4. 关系和公式:在CATIA软件中,用户还可以通过关系和公式进行零件参数之间的关联。

例如,可以设置两个参数之间的等于、大于或小于关系,或者使用公式计算一个参数的值。

这种关系和公式的设置可以实现更高级的参数化建模。

四、参数化建模的优势1. 提高设计效率:参数化建模可以大大提高设计效率。

CATIA参数化建模技巧

CATIA参数化建模技巧

CATIA参数化建模技巧CATIA是一款功能强大的三维设计软件,被广泛应用于航空航天、汽车、机械等领域。

在使用CATIA进行建模设计时,掌握一些参数化建模技巧可以提高工作效率和设计质量。

本文将介绍一些常用的CATIA参数化建模技巧,并给出相应的操作步骤和注意事项。

一、利用关键参数进行建模在CATIA中,可以通过定义关键参数来实现建模的参数化。

关键参数可以是长度、宽度、高度等数值,也可以是角度、半径等。

通过定义关键参数,可以在后续设计中灵活地修改这些参数,而无需重新绘制模型。

操作步骤:1. 打开CATIA软件并新建一个零件文件。

2. 在"参数"工作台中,点击"创建参数"按钮,定义需要的参数。

3. 在建模过程中,使用这些参数来确定各个特征的尺寸。

4. 在需要修改尺寸的时候,只需要修改参数的数值,模型会自动按照新的数值进行更新。

注意事项:- 定义参数时,应注意给予有意义的名称,以便在后续修改时更容易理解。

- 尽量使用相对尺寸而非绝对尺寸,这样在需要调整模型大小时更加方便。

二、使用公式进行参数计算CATIA还支持使用公式来进行参数计算,在建模过程中,可以根据不同的需求灵活地定义公式,并将其应用到模型的设计中。

这样可以避免繁琐的手工计算,并大大提高设计效率。

操作步骤:1. 在"参数"工作台中,选择需要进行计算的参数。

2. 在参数的属性中,点击"关系"选项。

3. 在"关系编辑器"中,输入需要的公式,并确认。

4. 公式的计算结果将自动应用到模型中。

注意事项:- 在定义公式时,应根据实际需求合理计算,避免出现不合理的计算结果。

- 对于复杂的公式计算,建议使用CATIA提供的数学函数库以及逻辑判断语句,以实现更加灵活的设计。

三、使用关系约束进行设计除了参数化建模外,CATIA还支持使用关系约束对模型进行设计。

通过定义各个几何元素之间的关系,可以保证模型在不同状态下的一致性和稳定性。

CATIA软件参数化设计教程

CATIA软件参数化设计教程

CATIA软件参数化设计教程CATIA是一款广泛应用于工业设计领域的三维建模软件,其功能强大且操作简便。

本篇文章将为大家介绍如何在CATIA软件中进行参数化设计,以实现快速设计和修改的目的。

1. 参数化设计的概念参数化设计是指在产品设计过程中,通过设定各种参数和约束条件,使得设计模型具备可变性和灵活性。

通过改变参数的数值,可以实现对设计模型的快速修改,提高设计效率和准确性。

2. CATIA软件的参数化设计功能CATIA软件提供了丰富的参数化设计功能,可通过以下几种方式进行参数设置:a) 公式驱动参数:可以使用数学公式来计算参数的数值,实现参数之间的关联。

例如,可以通过公式将两个参数的数值设为相等,从而保持模型的平衡和对称性。

b) 尺寸约束参数:可以通过设置模型的几何尺寸,如长度、宽度、高度等参数,并通过设置约束条件来限制其数值范围。

例如,可以设置一个零件的长度在50mm到100mm之间变化。

c) 变量参数:可以设置一些可变参数,通过改变其数值来调整模型的形状和尺寸。

例如,可以设置一个管道的直径参数,以便在设计过程中随时对其进行调整。

d) 约束参数:可以设定一些约束条件,如距离、角度、对称性等,对模型进行约束,保持设计的准确性。

例如,可以设置两个相互平行的线的距离参数。

3. 参数化设计的步骤在CATIA软件中进行参数化设计的步骤如下:a) 创建基础模型:首先,根据设计要求,利用CATIA软件的建模功能,创建基础模型。

b) 设置参数:在模型创建完成后,使用CATIA软件提供的参数化设计工具,设置各种参数,如尺寸、角度、位置等。

c) 设置约束条件:根据设计要求,设置适当的约束条件,以保持模型的稳定性和准确性。

d) 进行参数调整:根据实际需求,修改参数数值,观察模型的变化情况,并进行必要的调整。

e) 进行模型分析和优化:通过CATIA软件提供的模型分析功能,对参数化设计的模型进行分析和优化,确保其符合设计要求。

CATIA软件参数化建模方法

CATIA软件参数化建模方法

CATIA软件参数化建模方法CATIA是一款流行的计算机辅助设计(CAD)软件,被广泛应用于工程和制造领域。

参数化建模是CATIA中一个重要的功能,它可以帮助工程师快速创建和修改模型,并提高设计的精确性和效率。

本文将介绍CATIA软件参数化建模的基本原理和常用方法。

一、什么是参数化建模参数化建模是一种基于控制变量的设计方法。

通过对模型的参数或尺寸进行定义和编程,使得模型的形状和尺寸可以根据参数的变化而自动调整。

这样,在设计过程中只需要修改参数的数值,不需要手动修改各个零件的尺寸,就能够实现模型的快速变形和灵活调整。

二、CATIA软件中的参数化建模功能CATIA软件提供了多种参数化建模工具,可以根据用户需求选择适合的方法。

下面介绍其中几种常用的方法:1.关系约束关系约束是一种常见的参数化建模方法,它通过定义各个零件之间的关系来实现模型的自动调整。

用户可以选择平行、垂直、共线、相等等不同类型的关系,然后将其应用到零件的特定边或面上。

当模型中的一部分发生变化时,其他相关的零件会自动调整以保持符合设定的关系约束。

2.表格驱动CATIA的表格驱动功能可以通过建立参数表格来实现模型的参数化。

用户可以在表格中定义各个参数及其对应的数值范围,然后将这些参数应用到模型中。

通过修改表格中的数值,模型的尺寸和形状会相应地发生变化。

这种方法适用于需要频繁修改参数的情况,可以提高设计的灵活性和效率。

3.公式驱动公式驱动是一种更加灵活和复杂的参数化建模方法。

用户可以在CATIA软件中使用数学公式来定义模型的各个参数之间的关系。

通过合理地设置公式,可以实现更加复杂的模型变形和控制。

这种方法适合于需要高度自定义化的设计需求,但同时也需要用户具备一定的数学和编程知识。

三、CATIA软件参数化建模的优势CATIA软件的参数化建模功能具有以下几个优势:1.提高设计效率参数化建模可以大大减少模型的重复工作。

通过定义和修改模型的参数,可以快速创建和调整不同尺寸和形状的模型。

CATIA参数化设计及零件库的建立

CATIA参数化设计及零件库的建立
Catia的参数化设计工具还支持多种数据类型,如整数、实数、字符串等,以满 足不同设计需求。
参数化设计的基本步骤
定义参数
设计师根据设计需求定 义一组参数,并为其赋 予合适的数值范围和单
位。
建立参数关系
通过数学公式和逻辑关 系将参数关联起来,以 实现参数之间的相互影
响和制约。
生成几何模型
根据参数关系和初始条 件,使用Catia的几何建 模功能生成相应的几何
模型。
验证和优化
对生成的几何模型进行 验证和优化,以确保其 符合设计要求和性能指
标。
03
Catia参数化设计实例
实例一:轴类零件的参数化设计
总结词
轴类零件是机械系统中常见的传动件,参数化设计可以提高设计效率,减少重 复劳动。
详细描述
轴类零件的参数化设计主要涉及直径、长度、键槽等参数的设定,通过Catia软 件的参数和公式功能,可以快速生成不同规格的轴类零件,实现批量设计和优 化。
高效、灵活、可重复使用,能够 快速响应设计变更,提高设计质 量和效率。
Catia软件介绍
Catia
是一款功能强大的CAD/CAE/CAM 软件,广泛应用于汽车、航空、船舶 、机械等领域。
Catia的优势
提供了丰富的设计工具和模块,支持 参数化设计,具有强大的数据管理功 能和集成开发环境。
02
Catia参数化设计基础
参数化设计的基本原理
参数化设计是通过定义一组参数来控 制几何形状的尺寸和形状,从而实现 产品设计的自动化和标准化。
参数化设计的基本原理是通过建立参 数之间的数学关系,使得修改参数值 可以自动更新几何形状,从而快速生 成和修改设计方案。
Catia参数化设计工具介绍
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于CATIA的零件的参数化设计作者:ee(ee)指导老师:ee【摘要】:介绍了在CATIA环境下渐开线圆柱齿轮的参数化设计、运动仿真以及常见滚动轴承零件库的建立方法。

着重描述了渐开线圆柱齿轮齿廓的绘制、深沟球轴承、圆锥滚子轴承的建模过程。

设计人员通过改变有关参数或从库中直接调用零件,就可达到设计要求,缩短设计周期、减少重复工作、提高设计效率。

【关键词】:CATIA; 参数化设计;渐开线;圆柱齿轮;轴承;零件库Parametric design of parts based on CATIAAuthor: ee(ee)Tutor: ee[Abstract]:In this paper, a method to complete the parametric design, simulation of involute cylindrical gear and establish the common rolling bearing parts library by CATIA is introduced. The drawing of tooth profile of involute cylindrical gear and the process of modeling of deep groove ball bearings, tapered roller bearing is emphatically described. By changing related parameters or call directly from the parts library, it can achieve the requirements of design, shorten the design cycle, reduce duplication of work and improve the efficiency of design.[Key word]: CATIA; parametric design; involute; cylindrical gear; bearing; parts library目录引言 (1)1.CATIA软件简介 (2)2.齿轮参数化设计 (3)2.1齿轮建模综述 (3)2.1.1齿轮建模分析 (3)2.1.2渐开线方程的推导 (3)2.2齿轮参数化建模 (5)2.2.1建立齿轮基本参数 (5)2.2.2 渐开线方程的生成 (6)2.2.3 直齿轮实体建模 (7)2.2.4 斜齿轮实体建模 (11)2.3齿轮装配和运动仿真 (13)2.3.1 齿轮装配 (13)2.3.2 运动仿真 (14)3. 滚动轴承建库 (16)3.1滚动轴承概述 (16)3.1.1滚动轴承组成 (16)3.1.2滚动轴承分类 (16)3.1.3滚动轴承的代号 (17)3.1.4滚动轴承类型的选择 (18)3.2轴承参数化建模 (19)3.2.1深沟球轴承 (19)3.2.2 圆锥滚子轴承 (21)3.3轴承库的建立 (24)4. 总结 (27)致谢 (28)参考文献 (29)引言渐开线圆柱齿轮是现代机械中最常见的一种传动机构, 广泛应用于机床传动装置、各种减速器以及车辆的变速箱等, 是最具代表性的一种齿轮。

圆柱直齿轮用于平行轴传动,齿轮啮合与退出时沿着齿宽同时进行,容易产生冲击,振动和噪音。

圆柱斜齿轮除可用于平行中传动,还可用于交叉轴传动(螺旋齿轮机构),其特点是重合系数大,传动平稳,齿轮强度高,适于重负载。

齿轮设计的基本参数有:齿数,模数,压力角,齿顶高系数,顶隙系数,螺旋角。

轴承是机械工业和民用器具使用广泛、要求严格的配套基础件。

品种多样复杂,性能要求严格,是一种精密标准机械部件。

而其中滚动轴承是标准化、系列化程度最高的一种。

一般来讲,滚动轴承由内圈,外圈,滚动体,保持架四部分组成。

由于齿轮和轴承的标准化、系列化,我们就可以通过参数化建模,零件建库来提高设计效率,缩短设计周期。

CATIA软件不仅提供了大量常用的参数化特征体,而且用户可以根据产品特点和开发需要,建立自己的参数化特征库。

本文以渐开线圆柱齿轮,深沟球轴承,圆锥滚子轴承为例,探讨利用CATIA的知识顾问模块,建立产品的参数化知识库,实现产品参数造型设计、建库的方法[1]。

1.CATIA软件简介CATIA( Computer Aided Tri-Dimensional Interface Application)是法国达索公司的产品开发旗舰解决方案。

作为PLM协同解决方案的一个重要组成部分,它可以帮助制造厂商设计他们未来的产品,并支持从项目前阶段、具体的设计、分析、模拟、组装到维护在内的全部工业设计流程。

它是世界上一种主流的CAD/CAE/CAM 一体化软件。

模块化的CATIA系列产品旨在满足客户在产品开发活动中的需要,包括风格和外型设计、机械设计、设备与系统工程、管理数字样机、机械加工、分析和模拟。

广泛应用于汽车、航空航天、船舶制造、厂房设计、电力与电子、消费品和通用机械制造业中。

CATIA 核心技术:CATIA先进的混合建模技术,CATIA所有模块具有全相关性,并行工程的设计环境使得设计周期大大缩短,CATIA覆盖了产品开发的整个过程。

CATIA独特的曲面设计模块:1.Generic Shape Design, GSD,创成式造型。

2.Free Style Surface, FSS, 自由风格造型。

3.Automotive Class A,汽车A级曲面。

4.FreeStyle Sketch Tracer,FST,自由风格草图绘制。

5.Digitized Shape Editor,DSE,数字曲面编辑器。

6.Quick Surface Reconstruction, 快速曲面重构。

7.Shape Sculpter, 小三角片体外形编辑。

8.Automotive BIW Fastening,汽车白车身紧固。

9.Image & Shape。

10.Healing Assistant,曲面缝补工具。

CATIA V5版本是IBM和达索系统公司长期以来在为数字化企业服务过程中不断探索的结晶。

围绕数字化产品和电子商务集成概念进行系统结构设计的CATIA V5版本,可为数字化企业建立一个针对产品整个开发过程的工作环境。

在这个环境中,可以对产品开发过程的各个方面进行仿真,并能够实现工程人员和非工程人员之间的电子通信。

CATIA V5版本具有特点: 1.重新构造的新一代体系结构。

2.支持不同应用层次的可扩充性。

3.与NT和UNIX硬件平台的独立性。

4.专用知识的捕捉和重复使用。

5.给现存客户平稳升级[2]。

目前常用的参数化设计CAD软件中,主流的应用软件有Pro/Engineer、UGNX、CATIA 和Solidworks四大软件,四大软件各有特点并在不同的领域分别占据一定的市场份额。

Pro/Engineer是参数化设计的鼻祖,参数化设计的实现最先就是由Pro/Engineer实现,目前主要应用于消费电子、小家电和日用品、发动机设计等行业;UG和CATIA在传统的制造行业比如汽车、航空航天等行业上两个软件占据绝对的市场份额[3]。

2.齿轮参数化设计齿轮机构是在各种机构中应用最为广泛的一种传动机构。

它依靠轮齿齿廓直接接触来传递任意两轴之间的运动和动力,并具有传递功率范围大、传动效率高、传动比准确、使用寿命长、工作可靠等优点。

但同时制造安装精度要求高,成本较高。

对于定传动比传动的齿轮来说,目前最常用的齿廓曲线是渐开线,其次是摆线和变态摆线。

本文主要阐述说明渐开线圆柱直齿轮和渐开线圆柱斜齿轮的参数化建模方法[4]。

2.1齿轮建模综述2.1.1齿轮建模分析首先,对于压力角a=20°,齿顶高系数ha*=1的标准渐开线直齿圆柱齿轮来说,具有最小齿数的限制,齿轮齿数z的最小取值为17。

又由于标准渐开线直齿圆柱齿轮是斜齿轮的特例,当斜齿轮螺旋角β为零即是直齿轮。

其次,对于齿根圆半径大于基圆半径和齿根圆半径小于基圆半径的两种情况(齿根圆半径等于基圆半径实际是不可能发生的),齿廓的曲线是不同的。

当齿根圆半径rf<基圆半径rb,齿根圆与齿廓渐开线有一段过渡曲线,而当齿根圆半径rf >基圆半径rb 时,齿廓曲线完全是渐开线,所以实现参数化齿轮建模时要考虑这两种情况。

对于标准渐开线直齿圆柱齿轮,计算可得当z<42时(即是rf<rb的情况),齿根圆与齿廓渐开线有一段过渡线;而z>=42,齿廓曲线完全是渐开线。

为了提高渐开线圆柱齿轮零件的建模效率,这里采用统一的建模方法,即一个零件包罗上述的两种情况。

当齿根圆半径rf<基圆半径rb时(齿根圆半径rf>基圆半径rb时,延伸与不延伸都一样,),在CATIA V5软件创成式外形设计中通过曲线外插延伸的指令功能,将渐开线向齿根圆方向延伸(延伸长度为0.2*m),然后与齿根圆进行圆角操作(圆角半径为0.38*m),再通过中值面镜像,就可得到一个齿廓的形状。

最后,圆周阵列出整个齿轮齿廓,进入零部件设计界面,使用填充器命令完成建模[5]。

2.1.2渐开线方程的推导由机械原理可知,渐开线的形状仅取决于基圆(即齿轮的渐开线形状仅取决于模数m、齿数z以及压力角a),基圆内无渐开线,发生线沿基圆滚过的长度,等于基圆上被滚过的圆弧长度,渐开线上任一点的法线恒与基圆相切等性质。

如图2.1所示,其中XOY构成标准直角坐标系,O为坐标原点,半径为rb的圆为基圆,即渐开线的发生圆,直线KN为渐开线的发生线,圆弧AKB即是渐开线。

OK为渐开线K点的矢径,垂直于矢径OK的直线KV为速度矢量,连接KO。

渐开线过K点的法线KN 交基圆于N点,由渐开线的性质可知,KN相切于基圆。

过N点向X轴作垂线交X轴于Q 点,过K点向直线NQ作垂线,垂足为P。

∠KOA称为展角,记为θ(即角b),∠NOA称为滚动角,记为Φ(即角c),KV与KN的夹角称为压力角,记为a。

由几何关系可以看出∠NOK=a[6]。

图2.1 渐开线形成结构示意图在极坐标系中,渐开线方程可写为:rk=rb/cos(a),θ=Φ-a=tan(a)-a。

x y),则得在直角坐标系下,∠KNP=∠NOA=Φ(弧度)。

记点K的坐标为( ,k kx=OQ+PK=ON*cos(Φ)+NK*sin(Φ)k= ON*cos(Φ)+AN*sin(Φ) //( AN表示圆弧AN的长)=rb*cos(Φ)+rb*Φ*sin(Φ),y=NQ-NP=ON*sin(Φ)-NK*cos(Φ)k= ON*sin(Φ)-AN*cos(Φ)=rb*sin(Φ)-rb*Φ*cos(Φ)。

相关文档
最新文档