习题课-气体动理论、热力学基础(大学物理A)

合集下载

分子物理学及热力学习题课

分子物理学及热力学习题课

利用C→A的绝热过程方程,有:
TAVA 1TCVC 1

TC
VA VC
1
TA
(2)
再由泊松方程 PAVA PBVC
和等温过程方程
PB
VA VB
PA
两式联立
1

VC
VB VA
VA
代入〔2〕式
1
得:
TC
VA VB
TA
利用等温过程
TB
TA,及
PAVA
M
RTA,将其
与 (2)式一起代入(1)式,且 7 ,则有
p A (P1,V1)
等温线
(1) 由热一定律 A→B:
经等温 ΔE=0
绝热线
经绝热 ΔE=-AAB≠ 0
o
矛盾,所以不能有两个交点,证毕。
(P2,V2)
B
V
(2) 由热二定律 正循环A→B→A :
Q净=QT 从单一热源吸热, A净=S循环>0, 违反热力学第二定律。 得证。
[题3] 试证在 p-V 图上两条绝热线不能相交。
方程,即
p1V1
V2
m1
1
RT,
由此得
p1
1 V1+V2
m1
1
RT

p2V1
V2
m2
2
RT
p2
V1+ 1V2
m2
2
RT
两者相加即得混合气体的压强
1 pV1+V2
m 11+m 22
RT
[题8] M克刚性双原子分子理想气体,经等温压缩 A→B,再经等压膨胀B→C,最后经绝热膨胀C→A,已 知PA ,VA , VB ,求(1)P-V 图;(2)每一过程所吸

《大学物理》第8章气体动理论练习题及答案

《大学物理》第8章气体动理论练习题及答案

《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。

A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。

3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。

二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。

2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。

练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。

2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。

3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。

大学物理第十一章 气体动理论习题

大学物理第十一章 气体动理论习题

第十一章气体动理论一、基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。

2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。

3.理解自由度和内能的概念,掌握能量按自由度均分定理。

掌握理想气体的内能公式并能熟练应用。

4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。

5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。

二、基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。

2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。

4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。

5 内能理想气体的内能就是气体内所有分子的动能之和,即6 最概然速率速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。

7 平均速率各个分子速率的统计平均值,用表示,8 方均根速率各个分子速率的平方平均值的算术平方根,用表示,9 平均碰撞频率和平均自由程平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或三、基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M= pV NkT =或p nkT =2 理想气体的压强公式3 理想气体的温度公式4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律(1)速率分布函数 ()dN f Nd υυ= 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。

大学物理第十一章 气体动理论习题详细答案

大学物理第十一章 气体动理论习题详细答案

第十一章气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v的统计意义即可得出。

()f v表示速率以v为中心的单位速率区间内的气体分子数占总分子数的比例,而dvvNf)(表示速率以v为中心的dv速率区间内的气体分子数,故本题答案为B。

2、答案:A解:根据()f v的统计意义和pv的定义知,后面三个选项的说法都是对的,而只有A不正确,气体分子可能具有的最大速率不是pv,而可能是趋于无穷大,所以答案A正确。

3、答案:Armsv=据题意得222222221,16H O H HH O O OT T T MM M T M===,所以答案A正确。

4、由理想气体分子的压强公式23kp nε=可得压强之比为:Ap∶Bp∶Cp=n A kAε∶n B kBε∶n C kCε=1∶1∶15、氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RTν=代入内能公式2iE RTν=可得2iE pV=,所以氧气和氦气的内能之比为5 : 6,故答案选C。

6、解:理想气体状态方程PV RTν=,内能2iU RTν=(0mMν=)。

由两式得2U iPV=,A、B两种容积两种气体的压强相同,A中,3i=;B中,5i=,所以答案A正确。

7、由理想气体物态方程'mpV RTM=可知正确答案选D。

8、由理想气体物态方程pV NkT=可得气体的分子总数可以表示为PVNkT=,故答案选C。

9、理想气体温度公式21322k m kTευ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。

温度越高,分子的平均平动动能越大,分子热运动越剧烈。

因此,温度反映的是气体分子无规则热运动的剧烈程度。

由于k ε是统计平均值,因而温度具有统计意义,是大量分子无规则热运动的集体表现,对个别分子或少数分子是没有意义的。

故答案选B 。

10、因摩尔数相同的氢气和氦气自由度数不同,所以由理想气体的内能公式2i E RT ν=可知内能不相等;又由理想气体温度公式21322k m kT ευ==可知分子的平均平动动能必然相同,故答案选C 。

大学物理热学习题课

大学物理热学习题课

dN m 32 4 ( ) e Ndv 2kT
v2
对于刚性分子自由度 单原子 双原子 多原子
i tr
(1)最概然速率
2kT 2 RT RT vp 1.41 m
(2)平均速率
i=t=3 i = t+r = 3+2 = 5 i = t+r = 3+3 =6
6、能均分定理
8kT 8 RT RT v 1.60 m
M V RT ln 2 M mol V1
QA
绝热过程
PV 常量
M E CV T M mol
(2)由两条等温线和两条绝热线 组成的循环叫做 卡诺循环。 •卡诺热机的效率
Q0
Q2 T2 卡诺 1 1 Q1 T1
M P1V1 P2V2 A CV T M mol 1
E 0
•热机效率
A Q1 Q2
M E CV T M mol M Q C P T M mol
A Q1 Q2 Q2 1 Q1 Q1 Q1
A=P(V2-V1) 等温过程
A
E 0
Q1 Q2 •致冷系数 e W Q1 Q2
热机效率总是小于1的, 而致冷系数e可以大于1。
定压摩尔热容
比热容比
CP ( dQ )P dT i2 i
8、平均碰撞次数 平均自由程
z
2d v n
2
CV •对于理想气体:

Cp
v z
1.热力学第一定律
1 2 2d n
二、热 力 学 基 础
Q ( E2 E1 ) A dQ dE dA
准静态过程的情况下
4. 摩尔数相同的两种理想气体 一种是氦气,一种是氢气,都从 相同的初态开始经等压膨胀为原 来体积的2倍,则两种气体( A ) (A) 对外做功相同,吸收的热量 不同. (B) 对外做功不同,吸收的热量 相同. (C) 对外做功和吸收的热量都不 同. (D) 对外做功和吸收的热量都相 同. A=P(V2-V1)

大学物理A 练习题 第10章《气体分子运动论》

大学物理A 练习题 第10章《气体分子运动论》

《第10章 气体分子运动论》一 选择题1. 关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2)、(4). (B) (1)、(2)、(3). (C) (2)、(3)、(4). (D) (1)、(3)、(4).[ ]2. 温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系: (A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等.[ ]3. 若f (v )表示分子速率的分布函数,则对下列四式叙述:(1) f (v )d v 表示在v →v +d v 区间内的分子数. (2) ⎰21d )(v v v v f 表示在v 1→v 2速率区间内的分子数.(3)⎰∞0d )(v v v f 表示在整个速率范围内分子速率的总和.(4) ⎰∞d )(v v v v f 表示在v 0→∞速率区间内分子的平均速率.上述对四式物理意义的叙述(A) 正确的是(1). (B) 正确的是(2).(C) 正确的是(3). (D) 正确的是(4). (E) 都不正确.[ ]4. 设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O pv 和()2Hp v 分别表示氧气和氢气的最概然速率,则(A) 图中a表示氧气分子的速率分布曲线;.4)/()(22H O =p p v v (B) 图中a表示氧气分子的速率分布曲线;.4/1)/()(22H O =p p v v (C) 图中b表示氧气分子的速率分布曲线;.4/1)/()(22H O =p p v v (D) 图中b表示氧气分子的速率分布曲线;.4)/()(22H O =p p v v [ ](v )5. 气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大一倍. (B) Z 和λ都减为原来的一半. (C) Z 增大一倍而λ减为原来的一半. (D) Z 减为原来的一半而λ增大一倍.[ ]二 填空题1. 有一瓶质量为M 的氢气(视作刚性双原子分子的理想气体),温度为T ,则氢分子的平均平动动能为____________,氢分子的平均动能为______________,该瓶氢气的内能为_________________.2. 一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密度为0.24 kg/m 3,则可确定此种气体是________气;并可求出此气体分子热运动的最概然速率为_____________m/s .(普适气体常量R = 8.31 J ·mol -1·K -1)3. 设气体分子服从麦克斯韦速率分布律,v 代表平均速率,v p 代表最概然速率,那么,速率在v p 到v 范围内的分子数占分子总数的百分率随气体的温度升高而__________(增加、降低或保持不变).4. 分子的平均动能公式ikT 21=ε (i 是分子的自由度)的适用条件是___________________ ______________________.室温下1 mol 双原子分子理想气体的压强为p ,体积为V ,则此气体分子的平均动能为_________________.5. 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则(1) 速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为_________; (2) 速率v > 100 m ·s -1的分子数的表达式为__________.三计算题1. 一超声波源发射超声波的功率为10 W.假设它工作10 s,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R=8.31 J·mol-1·K-1 )2. 质量m=6.2 ×10-17 g的微粒悬浮在27℃的液体中,观察到悬浮粒子的方均根速率为1.4 cm·s-1.假设粒子速率服从麦克斯韦速率分布,求阿伏伽德罗常数.(普适气体常量R=8.31 J·mol-1·K-1 )3. 许多星球的温度达到108 K.在这温度下原子已经不存在了,而氢核(质子)是存在的.若把氢核视为理想气体,求:(1) 氢核的方均根速率是多少?(2) 氢核的平均平动动能是多少电子伏特?(普适气体常量R=8.31 J·mol-1·K-1,1 eV=1.6×10-19J,玻尔兹曼常量k=1.38×10-23 J·K-1 )4. 由N 个分子组成的气体,其分子速率分布如图所示. (1) 试用N 与0v 表示a 的值.(2) 试求速率在1.50v ~2.00v 之间的分子数目. (3) 试求分子的平均速率.5. 一显像管内的空气压强约为1.0×10-5 mmHg ,设空气分子的有效直径d = 3.0×10-10 m ,试求27℃时显像管中单位体积的空气分子的数目、平均自由程和平均碰撞频率. (空气的摩尔质量28.9×10-3 kg/mol, 玻尔兹曼常量k = 1.38×10-23 J ·K -1 760 mmHg = 1.013×105 Pa )00四研讨题1. 比较在推导理想气体压强公式、内能公式、平均碰撞频率公式时所使用的理想气体分子模型有何不同?2. 速率分布分布函数假设气体分子速率分布在0~∞范围内,也就是说存在大于光速c的分子。

《大学物理》热力学基础练习题及答案解析

《大学物理》热力学基础练习题及答案解析

《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。

2、从增加内能来说,做功和热传递是等效的。

但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。

3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。

比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。

4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。

”此说法对吗? 为什么?答:不对。

对外做功,则内能减少,温度降低。

5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。

V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。

答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。

不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。

摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。

两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。

8、简述热力学第二定律的两种表述。

答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。

克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。

9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。

大学物理(气体动理论)习题答案

大学物理(气体动理论)习题答案

大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。

(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。

(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。

[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。

大学物理习题课件气体动理论7-1

大学物理习题课件气体动理论7-1
利用扫描隧道显 微镜技术把一个个原 子排列成 IBM 字母 的照片。
对于由大量分子组成的系统从微观上加以研究 时,必须用统计的方法。
二,统计假设: 气体分子的特点: 数量多、间距大、速度快、碰撞频繁。 单个分子 ——无序、具有偶然性、遵循力学规律。 整体(大量分子)—— 服从统计规律。
例 : 常温和常压下的氧分子
涨落
上页 下页
作界无物质交换,但有能量交换; • 开放系统:系统与外界既有物质交换,又有能量交换。
• 平衡态
在不受外界影响的条件下,系统(孤立系统)的宏观性质不随
时间改变的状态,称为平衡态。
平衡态的说明:
说明:
气缸中的气体?
1)不受外界影响是指系统与外界不通过作功或传热
的方式交换能量,但可以处于均匀的外力场中。
2、理想气体压强公式推导
设 边长分别为 x、y 及 z 的长方体中有 N 个全
同的质量为 m 的气体分子,计算 A1壁面所受压强。
y
A2
o
z
- mmvvvxx
x
v y A1 y
o
z x vz
vv x
单个分子遵循力学规律
y
x方向动量变化
pix 2mvix
A2 o
z
- mmvvvxx
x
A1 y
zx
气体动理论是统计物理最简单最基本的内容。
第七章 气体动理论 (§7.1-§7.3)
本课时教学基本要求
1、理解热力学系统、平衡态、状态参量、平均平动动 能、方均根速率等基本概念。 2、理解气体动理论的基本假设。理解理想气体的微观 模型。理解压强和温度两个宏观量的微观本质。
本章重点: 理想气体处于平衡态下的性质,主要包括:

大学物理气体的动理论习题答案

大学物理气体的动理论习题答案

6.1mol 刚性双原子分子理想气体,当温度为 T 时,其内能为
[C ]
(A) 3 RT 2
(B) 3 kT 2
(C) 5 RT 2
(D) 5 kT 2
7.在一容积不变的封闭容器内,理想气体分子的平均速率若提高为原来的 2 倍,则[ D ]
(A)温度和压强都提高为原来的 2 倍。 (B)温度为原来的 2 倍,压强为原来的 4 倍。
,各为单位质量的氢气与氦气的内能之比为 10:3 。
6.在相同温度下,氢分子与氧分子的平均平动动能的比值为 1
,方均根速率的比
值为 4

7.图示曲线为处于同一温度 T 时氦(原子量 4)、氖(原子量 20)和氩(原子量 40)三种
气体分子的速率分布曲线。其中:曲线(a)是 氩 气分 子的速率分布曲线;曲线(c)是 氦 气分子的速率 分布曲线。
解:(1)氢气的的氧气的温度 T 和自由度 i 均相同
氧气分子的平均平动动能=氢气分子的平均平动动能 w 6.211021 J
v 2 3kT 2w mm
(2) T
2w 3k
300
K
2w 483m s 1 M /NA
RT
5 RT 2
6.23103 J
EO2
iO2 2
RT
5 RT 2
6.23103 J
1g 的各种气体的内能为:
E He
1 (iHe 42
RT )
9.35 102 J
EH2
1 (iHe 22
RT ) 3.12 103 J
EO2
1 (iHe 32 2
RT ) 1.95 102 J
2.在一个具有活塞的容器中贮有一定量的气体,如果压缩气体并对它加热,使其温度从 27

气体动理论习题课

气体动理论习题课

1.0 10 2 atm 情况 7.某理想气体在温度为27℃和压强为 3 下,密度为 11.3g / m ,则这气体的摩尔质量 M mol ____________.(普适气体常量 R 8.31Jmol 1K 1 ) 27.8 g/mol
m RT pV RT M m 1 p RT V M
性分子,分子自由度数为i,则当温度为T时,
i kT 一个分子的平均动能为________. 2
一摩尔氧气分子的转动动能总和为________
RTLeabharlann 5 E氧 RT 2 转动
2 RT 2
13.在温度为127 ℃时,1 mol氧气(其分子可视为刚性分子)的
8.3110 3 3.32 103 内能为________J,其中分子转动的总动能为____________J
20
p nkT
1.6 10 5 kg / m3 (2) 容器中的氮气的密度为_________________;
2J (3) 1m3 中氮分子的总平动动能为___________.
R 8.31J mol K
m RT pV RT M
1
1
k 1.38 10 23 J K 1
.当其压
2 1 1 2 2 p n k nmv v 3 3 3
kg / m3 3 p / v 1.90
2
2 p n k 3
1 2 k mv 2
16.有 2 10 3 m3刚性双原子分子理想气体,其内能 为 6.75 10 2 J . (1) 试求气体的压强; (2) 设分子总数 为 5.4 10 22 个,求分子的平均平动动能及气体的温度.
8. 1 mol氧气(视为刚性双原子分子的理想气体)贮于一氧气 瓶中,温度为27℃。 6.23 103 这瓶氧气的内能为_______________J; 分子的平均平动动能为____________J; 6.21 10 21 分子的平均总动能为_____________________J. 1.035 10 21

大学物理-气体动理论-热力学基础-复习题及答案详解

大学物理-气体动理论-热力学基础-复习题及答案详解

第12章 气体动理论一、填空题:1、一打足气的自行车内胎,假设在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的压强是 。

〔设内胎容积不变〕2、在湖面下深处〔温度为℃〕,有一个体积为531.010m -⨯的空气泡升到水面上来,假设湖面的温度为℃,则气泡到达湖面的体积是 。

〔取大气压强为50 1.01310p pa =⨯〕3、一容器内储有氧气,其压强为50 1.0110p pa =⨯,温度为℃,则气体分子的数密度为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均距离为 。

〔设分子均匀等距排列〕4、星际空间温度可达2.7k ,则氢分子的平均速率为 ,方均根速率为 ,最概然速率为 。

5、在压强为51.0110pa ⨯下,氮气分子的平均自由程为66.010cm -⨯,当温度不变时,压强为 ,则其平均自由程为。

6、假设氖气分子的有效直径为82.5910cm -⨯,则在温度为600k ,压强为21.3310pa ⨯时,氖分子1s 内的平均碰撞次数为 。

7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .假设图中两条曲线定性的表示相同温度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的是 .8、试说明以下各量的物理物理意义: 〔1〕12kT , 〔2〕32kT , 〔3〕2i kT , 〔4〕2i RT , 〔5〕32RT , 〔6〕2M i RT Mmol 。

参考答案:1、54.4310pa ⨯2、536.1110m -⨯ 图12-13、25332192.4410 1.30 6.2110 3.4510m kg m J m ----⨯⋅⨯⨯ 4、2121121.6910 1.8310 1.5010m s m s m s ---⨯⋅⨯⋅⨯⋅ 5、6.06pa 6、613.8110s -⨯ 7、〔2〕 ,〔2〕8、略二、选择题:教材习题12-1,12-2,12-3,12-4. 〔见课本p207~208〕参考答案:12-1~12-4 C, C, B, B.第十三章热力学基础一、选择题1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气〔均可看成刚性分子〕它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是 〔 〕〔A 〕 6 J 〔B 〕 5 J 〔C 〕 3 J 〔D 〕 2 J2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定:〔1〕该理想气体系统在此过程中作了功;〔2〕在此过程中外界对该理想气体系统作了正功;〔3〕该理想气体系统的内能增加了;〔4〕在此过程中理想气体系统既从外界吸了热,又对外作了正功。

《大学物理》气体动理论练习题及答案解析

《大学物理》气体动理论练习题及答案解析

《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。

对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。

当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。

由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。

换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。

2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。

3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。

答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。

(2)微观量:描述个别分子运动状态的物理量。

(3)宏观量:表示大量分子集体特征的物理量。

4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。

其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。

可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。

《大学物理学》热力学基础练习题

《大学物理学》热力学基础练习题

《大学物理学》热力学基础练习题《大学物理学》热力学基础一、选择题13-1.如图所示,bcab 1a 和b 2a 功与吸收热量的情况是( )(A )b 1a 过程放热、作负功,b 2a 过程放热、作负功;(B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功;(C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功;(D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。

【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+∆知b 2a 过程放热,b 1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B 状态A 和状态B 过程,气体必然 ( )(A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。

【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。

【提示:等体过程不做功,有Q E =∆,而2mol M iE R T M ∆=∆,所以需传5J 】13-4.有人想象了如图所示的四个理想气体的循)A ()B ()【提示:(A) 绝热线应该比等温线陡,(B )和(C )两条绝热线不能相交】13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功( ) (A )2000J ; (B )1000J ; (C )4000J ; (D )500J。

《大学物理学》气体的动理论自学练习题

《大学物理学》气体的动理论自学练习题

《大学物理学》气体动理论可能用到的数据:8.31/R J mol =; 231.3810/k J K -=⨯; 236.0210/A N mol =⨯。

一、选择题12-1.处于平衡状态的一瓶氮气和一瓶氦气的分子数密度相同,分子的平均平动动能也相同,则它们( C )(A )温度,压强均不相同; (B )温度相同,但氦气的压强大于氮气的压强; (C )温度,压强都相同; (D )温度相同,但氦气的压强小于氮气的压强。

【分子的平均平动动能3/2ktkT ε=,仅与气体的温度有关,所以两瓶气体温度相同;又由公式P nkT =,n 为气体的分子数密度,知两瓶气体的压强也相同】2.容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为:(根据理想气体分子模型和统计假设讨论)( D )(A )x υB )x υC )x υ=m kT 23;(D )x υ=0。

【大量分子在做无规则的热运动,某一的分子的速度有任一可能的大小和方向,但对于大量分子在某一方向的平均值应为0】3.若理想气体的体积为V ,压强为P ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( B )(A )m PV /; (B ))/(kT PV ; (C ))/(RT PV ; (D ))/(mT PV 。

【由公式P nkT =判断,所以分子数密度为Pnk T=,而气体的分子数为N nV=】4.根据气体动理论,单原子理想气体的温度正比于( D ) (A )气体的体积; (B )气体分子的压强; (C )气体分子的平均动量;(D )气体分子的平均平动动能。

【见第1题提示】5.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( A )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。

大学物理气体动理论和热力学篇

大学物理气体动理论和热力学篇

大学物理气体动理论和热力学篇大学物理单元测试测试范围:第6章—气体动理论基础第7章—热力学基础一、选择题(1-24题,每题3分)图11. 如图1,两个大小不同的容器用均匀的细管相连,管中有一水银滴作活塞,大容器装着氧气,小容器装着氢气,当温度相同时,水银滴正好在细管中央,则此时这两种气体中( B )(A)氢气的密度较大(B)氧气的密度较大(C)密度一样大(D)密度大小无法判定。

2. 一容器内装N1单原子和N2个双原子理想气体分子,当混合系统平衡后,温度为T,则系统内能为( C )(A)(B)(C)(D)图23. 一定质量的理想气体,其内能E与体积V的变化关系为一直线,如图2,则此直线表示的物理过程为(A )(A)等压过程(B)等温过程(C)等体过程(D)绝热过程4. 气缸内盛有一定量氢气(可视作理想气体),当温度不变,而压强增大一倍时,氢气分子的平均碰撞频率以及平均自由程的变化情况是( C )(A)和都增大一倍(B)和都减为原来一半(C)增大一倍,而减为原来的一半(D)减为原来的一半,而增大一倍。

5. 图3所示的是分子速率分布曲线,两条曲线可能是同一温度下的氮气和氦气的分子速率分布曲线的是( B )图 36. 速率分布函数的物理意义为( B )(A)具有速率的分子占总分子数的百分比(B)速率分布在附近的单位速率间隔的分子数占总分子数的百分比(C)具有速率的分子数(D)速率分布在附近的单位速率间隔中的分子数。

7. 两种不同的理想气体,若它们的最概然速率相等,则它们的(A )(A)平均速率相等,方均根速率相等(B)平均速率相等,方均根速率不相等(C)平均速率不相等,方均根速率相等(D)平均速率不相等,方均根速率不相等。

8. 氢气和氧气各一罐,温度相同,下列说法正确的是(D)(A)氧气的分子质量比氢分子大,所以氧气的压强一定比氢气的压强大(B)氧气的分子质量比氢分子大,所以氧气的密度一定比氢气的密度大(C)氧气的分子质量比氢分子大,所以氢气分子的速率一定比氧气的速率大(D)氧气的分子质量比氢分子大,所以氢气分子的方均根速率一定比氧气的方均根速率大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

QJ WJ
TD TA (VA / VD ) 1 300 (0.5)0.4 227.4K
对绝热过程 Qa 0 ,则有
5R Wa E CV ,m (TA TD ) (TA TD ) 1.51 103 J 2
由题可知

VA 2VB VA VB 2V0
二、热力学基本要点
1、准静态过程 2、功(过程量):
V2
W
V1

pdV
3、热力学第一定律、内能
Q W E 或 dQ dW dE
(物理意义?)
4、热力学第一定律的应用
准静态过程
特征 过程方程
等容
等压
等温
绝热
系统做功A
0
吸收热量Q 内能增量ΔE 摩尔热容C
0
0
0
5、循环过程 1)热机(正循环)、制冷机(逆循环) 2)卡诺循环
2N a 3v0
N
2 v0 3 1 v0 2
2 v0 a 7 3 y dv 1 vdv adv N v0 v v0 12 2 0 v0
(4)按方均速率的定义有
v
2


0
2 v0 v 2 dN v 2 f ( v )dv 0 N
所以分子的平均平动动能为
v0 a 2 v0 a 1 1 31 2 2 3 2 k mv m ( v dv v dv ) mv0 0 Nv v0 N 2 2 36 0
容器中分子数相同时,得
p1 : p2 : p3 T1:T2:T3
C ),有一个体 例2.在湖面下50.0m深处(温度为 4.0。 积为 1.0 10-5 m3 的空气泡升到湖面上来,若湖面的 C ,求气泡到达湖面的体积。(大气压 温度为 17。 强 p0 1.013 105 Pa )
解 :气泡内的气体视作理想气体,其在湖底和 湖面的状态参量分别为 ( p1 , V1 , T1 ) 和( p 2 , V 2 , T 2 ), 其中
p
解: 由于只有AB吸热,CD放热,所以 (1) Q Q nC (T T )
1 AB p ,m B A
A
B
Q2 QCD nC p ,m (TD T C )
所以
TD 1 Q T T T TC 1 2 1 C D 1 C Q1 TB TA TB TA TB
p 1 p0 gh, p2 p0
p0 gh T2 p1 T2 V2 V1 V1 p2 T1 p0 T1
6 .11 10 m
5 3
由理想气体物态方程
p1V1 p2V2 T1 T2
① ②
理想气体物态方程为 由式①、②可得气体的压强为
气体分子的平均平动动能为
则其压强之比 PA:PB:PC 为( )。
A 1:2:4 B 1:4:8
C 1:4:16
【分析】分子的方均根速率为
— — —
C 4:2:1
2 3RT / M ,对同种理想气体有

1/ 2 1/ 2 1/ 2 2) 2) ( 2 ) :( :( T1:T2:T3 C A B

,又由物态方程 p nkT ,当
热机效率
W Q Q2 Q T 1 1 2 1 2 Q1 Q1 Q1 T1
致冷机致冷系数
e Q2 Q2 T2 W Q1 Q2 T1 T2
例5. 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视 为刚性分子理想气体)。开始时它们的压强和温度都相同,现在 将3J的热量传给氦气,使之升高到一定的温度。若使氢气也升高
3 k kT 7.49 10 21 J 2
S N
2 v0
0
f ( v )dv N
所以曲线下面积表示系统分子总数N。
a (0, v0 ) v y ( v ) v0 a ( v0 , 2v0 )
所以
N
2 v0
0
y dv
v0
0
2 v0 a 3 vdv adv av0 v0 v0 2

D
C
O
V
由等压过程得
VA VB VC VD , TA TB TC TD

由绝热过程得
1 1 1 1 VB TB VC TC , VD TD VA TA

p A B
TD TA TC TB
T2 1 T1
D
C
O
V
Q p W E C p ,m T C p ,m (VB VA ) C p ,mTA
7Байду номын сангаас TA 8.73 103 J 2
O
C (3) D
0.025
0.05
V
(2)等温膨胀 WT RTInVC / VA 1.73 /103 J
E 0,
(3)绝热膨胀
习 题 课
气体动理论、热力学基础
一、气体动理论基本要点
1、理想气体的物态方程
2、热力学第零定律 3、理想气体微观模型 4、理想气体的压强公式
5、理想气体分子的平均平动动 能与温度的关系 6、能量均分定理
i 7、理想气体的内能 E v RT 2
8、麦克斯韦速率分布律
(f(v),f(v)dv的物理意义?)
VA 4V0 / 3 VB 2V0 / 3
1 V0 1T0 VB TB
A
B
(1)根据分析,对B室有

TB (V0 / VB ) 1T0 1.176T0 ,
TA 2TB 2.352T0
( 2)
5R 5R QA E A EB (TA T0 ) (TB T0 ) 31.7T0 2 2
到同样的温度,则应向氢气传递热量为( ) (A) 6 J (B)3 J (C)5 J (D)10 J
p
解:在P-V图上,它们的过程曲线如图所示
(1)等压膨胀 Wp pA (VB VA )
RTA (VB VA ) RTA 2.49 103 J VA
B A (1) (2)
9、三种统计速率
1)最概然速率
vp 2kT kT 1.41 m m
2)平均速率
3)方均根速率 10、分子平均碰撞次数、平均自由程 1)平均碰撞次数 2)平均自由程
Z
— —


1 2 2d n
kT 2d 2 p
例题解析
例1.三个容器A、B、C中装有同种理想气体,其分子
1/ 2 1/ 2 1/ 2 ( 2 ) :( 2 ) :( 2 ) 1: 2 : 4 数n相同,方均根速率之比为 C A B — — —
相关文档
最新文档