矩阵论 线性空间

合集下载

矩阵论- 线性空间

矩阵论- 线性空间
Q[ x] {an x a1 x a0 a0 , a1 ,, an F , an 0}
n
不是线性空间
例5 [a , b]区间上连续实函数全体所构成的集合C a, b 对通常函数的加法和数乘运算构成相应实数域 R 上 的线性空间,称为实函数空间,记为 C a, b ( R)
(1)幂等律:A∪A=A
(2)交换律:A∪B=B∪A
(3)结合律:(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C) (4)分配律:(A∩B)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(A∩C)∪(B∩C) (5)DeMongan 律: A ( B C ) ( A B) ( A C )
(3)称既单且满的映射为双射或者一一映射。
定理 3 设 A, B, C 是三个集合,f:A B 是由 A 到 B 的映射, g:B C 是由 B 到 C 的映射,对于 A 中的 每一个元素 x ,有 C 中唯一确定的元素 z 满足:
g ( f ( x)) z 。 即存在一个 A C 的映射, 记为:g f ;
1)若数集F中任意两个数作某一运算的结果仍在F 中,则说数集F对这个运算是封闭的. 2)数域的等价定义:如果一个包含0,1在内的数 集F 对于加法,减法,乘法与除法(除数不为0) 是封闭的,则称集 F为一个数域.
例1.证明:数集 是一个数域.
Q( 2 ) a b 2 | a , b Q
类似可证 Q( i ) a bi a , b Q , i 1 是数域.


定理5 任意数域F都包括有理数域Q. 即:有理数域为最小数域.
证明: 设F为任意一个数域.由定义可知,
0 F, 1 F . 于是有 m Z , m 1 1 1 F

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.

矩阵论第1章

矩阵论第1章

例 1.1.4 在实数域上,m n 矩阵全体 R mn 按照通常矩阵 的加法,数与矩阵的乘法构成一个线性空间.
线性空间的三个重要例子:
P n , P[ x]n , P mn
1.1.2线性空间的性质
1 线性空间中零元素是唯一的.
2 线性空间中任一元素的负元素是唯一的.
3 0 0 , (1) , k 0 0 .
向量组之间的等价关系具有如下性质. (1)反身性 每一个向量组都与它自身等价; (2)对称性 如果向量组 1 , 2 ,, m 与 1 , 2 ,, s 等价,则 向量组 1 , 2 ,, s 与 1 , 2 ,, m 等价; (3)传递性 如果向量组 1 , 2 ,, m 与 1 , 2 ,, s 等价,且 向量组 1 , 2 ,, s 与 1 , 2 ,, t 等价,则向量组 1 , 2 ,, m 与
(2)(加法结合律) ( ) ( ) ;
(3)(有零元)在 V 中存在元素 0 ,使对任何 V ,都 有 0 ,称 0 为零元素; ( 4 ) ( 有 负 元 ) 对 任 何 V , 都 有 元 素 V , 使
0 ,称 为 的负元素,记为 ;
所以 在基 1 , 2 , , n 下的坐标为 (a1 , a 2 a1 , , a n a n 1 ) .
T
例 1.2.7 求线性空间 P[ x]n 的一个基、维数以及向量 p 在该基下的坐标.
容易看出,在线性空间 P3 x 2 ,, p n x n1 , p n 1 x n ,
T
例1.2.6 在 R n 中如下的 n 个向量
1 (1,1,1,,1), T 2 (0,1,1,,1) T , , n (0,0,,0,1) T

南京工业大学矩阵论ch1 线性空间讲义

南京工业大学矩阵论ch1 线性空间讲义

第一章 线性空间线性空间是我们以前学习过的n 维向量空间的推广和抽象,它不仅在线性代数和矩阵的有关理论中占有重要的地位,而且它的理论和方法已经渗透到自然科学和工程技术的许多领域。

§1.1 线性空间的定义和性质为下面讨论需要,先引入数域的概念。

定义1 设P 是由一些复数组成的集合,如果它包含0与1,且P 中任意两个数的和、差、积、商(除数不为零)仍然属于P ,则称P 为一个数域。

显然,有理数集Q 、实数集R 和复数集C 都是数域,分别称为有理数域、实数域和复数域。

另外,数集},3{)3(Q b a b a Q ∈+=也是一个数域,但整数集不是数域。

我们知道n 维向量空间n R 就是全体n 维向量组成的集合,在其中定义了加法运算和实数与向量的数乘运算,并且这二种运算满足八条规律。

另外,在全体n m ⨯阶实矩阵组成的集合n m R ⨯中,也定义了矩阵的加法运算和实数与矩阵的数乘运算,且这二种运算满足八条规律。

还有很多这样的例子,从这些例子中可见,所考虑的对象虽然完全不同,但它们有一个共同点,即它们都具有两种运算:一种是两个元素之间的加法运算;另一种运算是数与元素之间的数乘运算,且满足八条规律。

我们撇开这些对象的具体含义,加以抽象化,得到线性空间的概念。

定义2 设P 是一个数域,V 是一个非空集合,如果1. V 中元素具有可加性 对任意V ∈βα,,在V 中总存在唯一元素γ与它们对应,γ称为α与β的和,记作βαγ+=,并且对任意V ∈γβα,,满足:(1)交换律 αββα+=+(2)结合律 )()(γβαγβα++=++(3)在V 中存在零元素0,使对任意V ∈α,都有αα=+0;(4)对任意V ∈α,存在V 中的元素β,使得0=+βα(β称为α的负元素,记为-α);2. V 中元素与数域P 中的数具有可乘性 对任意P k ∈和任意V ∈α,在V 中总存在唯一元素δ与之对应,δ称为数k 与α的数量乘法(简称数乘),记为αδk =,并且对任意P l k ∈,,任意V ∈α,满足(5)αα=1;(6)结合律 αα)()(kl l k =;(7)左分配律 αααl k l k +=+)(;(8)右分配律 βαβαk k k +=+)(;则称非空集合V 为数域P 上的一个线性空间。

矩阵论第一章线性空间和线性变换

矩阵论第一章线性空间和线性变换
而开方运算则不是,因为显然有
∃x∈R, x ∉ R
(采用这种观点来读数学,你不觉得别有情致吗?)每一种作用都有 其特性,因而每种运算都有它所服从的规律——运算律,所以在定义 运算时,需要讨论或说明它的运算律。
既然如此,是否有某种方式来描述我们的物质世界呢?就宏观现 象而论,涉及到各式各样的物质,自然的作用使物质产生互变,而且 我们认为物质世界是“完备”的,这句话意味着人类的向往,例如“点 石成金”等这类愿望。从这些粗糙的认识出发,我们来探讨描述它的
§6.1 K 积……………………………………………………(258) §6.2 拉伸算子Vec ……………………………………………(264)
§6.3 几个常见的矩阵方程…………………………………(271) 参考目录……………………………………………………………(275)
第一章 线性空间和线性变换
§1.1 引言
12121212nnnnnxxyyxxyyxyfxyxyxy?????12????????????????????????????????定义数乘12nnnxxaxaxafxfaxaxax??????????????????????????????容易验证这些运算满足公理系的要求nff是线性空间
目录
第二章 特征值和特征向量………………………………………(86) §2.1 引言………………………………………………………(86) §2.2 特征值、特征多项式和最小多项式……………………(87) §2.3 特征矢量和特征子空间………………………………(103) §2.4 约当标准型……………………………………………(113) §2.5 特征值的分布…………………………………………(128) §2.6 几个例子………………………………………………(138)

矩阵论学习-(线性空间与线性变换)

矩阵论学习-(线性空间与线性变换)

ka1 ,
kb1 +
k( k 2
1 ) a21
ka2 ,
kb2
+
k(
k2
1)
a22
=
ka1
+
ka2 ,
kb1
+
kb2
+
k( k 2
1) (
a21
+
a22 )
+
k2 (
a1 a2 )
.
4
矩 阵 论 学 习 辅 导 与 典型 题 解 析
故有 k⊙ ( α β) = ( k⊙α) ( k⊙β) , 即八条运算法则皆成立 , V 在实域 R 上构
第一章 线性空间与线性变换
线性空间是某一类事物从量方面的一个数学抽象, 线性变换则是反映线性空 间元素之间最基本的线性函数关系 , 它们是研究线性代数的理论基础 .理解本章的 主要概念 , 掌握基本定理、结论和方法 , 对学好矩阵论起着关键的作用 .
§1 .1 线性空间 , 基、维数及坐标
一、线性空间与子空间
mn
mn
mn
∑ ∑ ( aij + bij ) = ∑∑ aij + ∑ ∑ bij = 0
i = 1j = 1
i = 1j = 1
i = 1j = 1
即有 A + B∈ W4 , 同样由于 kA = ( kaij ) m × n ,
mn
mn
∑∑ kaij = k∑∑ aij = k0 = 0
i = 1j = 1
i = 1j = 1
即有 kA∈ W4 .加法运算和数乘运算封闭 , 故 W4 是一个子空间 .
⑥ ( kl ) ⊙α=

矩阵论_第一章_线性空间和线性映射

矩阵论_第一章_线性空间和线性映射

(3) 零元素 在 V 中存在一个元素 0 ,使得对 于任意的 V 都有
0
(4) 负元素 对于 V 中的任意元素 都存 在一个元素 使得
0
1
则称 是 的 负元素. ( 5) 数 1
( 6)
( 7)
k (l ) (kl ) (k l ) k l

[a1 , a2 , a3 , ] [b1, b2 , b3 , ] [a1 b1 , a2 b2 , a3 b3 , ] k[a1, a2 , a3 , ] [ka1, ka2 , ka3 , ]

R

为实数域
R上的一个线性空间。
二 线性空间的基本概念及其性质
于是可得
1 2 0 1 1 0 3 4 x1 1 1 x2 1 1 1 1 1 1 x3 x4 0 1 1 0
解得
7 4 1 2 x1 , x2 , x3 , x4 3 3 3 3
称 n 阶方阵
a1n a22 a2 n an 2 ann a12
a11 a12 a a22 21 P a n1 a n 2
a1n a2 n ann
是由旧的基底到新的基底的过渡矩阵,那么上式可 以写成
1
x1 1 x 1 2 x3 1 x4 4
第三节 线性空间的子空间
定义 设
V 为数域 F 上的一个 n 维线性空间,
W 为 V 的一个非空子集合,如果对于任意的 , W 以及任意的 k , l F 都有
与向量组
1 0 1 1 1 1 1 1 0 0 , 0 0 , 1 0 , 1 1

矩阵论学习复习资料

矩阵论学习复习资料

x V = X = 1 x 3
x 2 x1 − x 4 = 0 x − x = 0, x4 2 3
5. 设 V1, V2 分别是
V1 = {(x1, x2 L, x2 ) x1 + x2 +L+ xn = 0, xi ∈K} V2 = {(x1, x2 L, x2 ) xi − xi+1 = 0, xi ∈K}
6. 求下列矩阵的 求下列矩阵的Jordan标准形 标准形
1 0 3 1 −1 1 − 4 −1 0 A = − 3 − 3 3 , B = 7 1 2 − 2 − 2 2 − 7 − 6 −1
7. 求下列矩阵的最小多项式
a O −1 − 2 6 a A = −1 0 3, B = b −1 −1 3 N b
0 0 1 0
b N b a O a
8.设A 是一个 阶方阵,其特征多项式为 设 是一个6阶方阵 阶方阵, 最小多项式为m ƒ(λ)=(λ+2)2(λ-1)4, 最小多项式为 A(λ)=(λ+2)(λ-1)3, λ 求出A的若当标准形 求出 的若当标准形. 的若当标准形 9.对于 阶方阵 ,如果使 m=O成立的最小正整数 对于n 阶方阵A,如果使A 对于 成立的最小正整数 为m,则称 是m次幂零矩阵,证明所有 阶n-1次幂 次幂零矩阵, ,则称A是 次幂零矩阵 证明所有n阶 次幂 零矩阵彼此相似,并求其若当标准形 零矩阵彼此相似,并求其若当标准形. 10. 如果λ1,λ2,…, λs是A 的特征值,则Ak的特征值只能 的特征值, …
矩阵论复习 一. 线性空间 1. 线性空间的概念 2. 线性空间的基,维数与坐标(基变换与与坐 线性空间的基,维数与坐标( 标变换) 标变换) 3. 线性子空间的概念与运算 (1)定义 (2) 运算(交与和,直和) 定义 运算(交与和,直和)

01_矩阵论_第一章线性空间与线性变换

01_矩阵论_第一章线性空间与线性变换

则有
1 0 0 1 0 0 0 0 A a11 0 0 a12 0 0 a21 1 0 a22 0 1
因此 R22 中任何一个向量都可写成向量组
1 0 0 1 0 0 0 0 E11 0 0 , E12 0 0 , E21 1 0 , E22 0 1
Pn [ x] { ai xi | ai R}
i 0 n 1
在通常多项式加法和数乘多项式运算下构成线性 空间 Pn[x]。 值得指出的是次数等于 n 1 的多项式集合
V { ai x | ai R, an1 0}
i i [a, b] = {f (x) | f (x) 是区间 [a, b] 上 实连续函数 } ,对于函数的加法与数乘运算构成 实数域上的线性空间。
定义 1.3 设 1, 2, …, n 是线性空间 Vn(F) 的一组基,若 V,
xi i (1 2
i 1 n
x1 x2 n ) x n
(1.1)
则称数 x1, x2, …, xn 是 在基 {1, 2, …, n} 下 的坐标,(1.1) 式中向量 (x1, x2, …, xn)T 为 的坐 标向量,也简称为坐标。
从上述线性空间例子中可以看到,许多常见 的研究对象都可以在线性空间中作为向量来研究。 另外应理解加法和数乘分别是 V 中的一个二元运 算和数域 F 和 V 中元素间的运算,要求运算满足 定义 1.1 中的八条性质,它们已不再局限在数的 加法、乘法的概念中。
一个数学例子 取集合为正实数集合 R+,F 为实数域 R,加 法“”和数乘“”如下定义 :a, bR+,ab = ab, :kR(i.e. F ),aR+,k a = ak。 在此运算下,R+ 是 R 上的一个线性空间,其中 加法零元素是 R+ 中的数 1,R+ 中元素 a 的负元素 是 a1。

矩阵论第一章

矩阵论第一章

k1 , k2 ,L, kr ∈ P ,使得
k1α1 + k2α 2 + L + krα r = 0
线性相关的 则称向量组 α1 ,α 2 ,L,α r 为线性相关的;
不是线性相关的 (4)如果向量组 α1 ,α 2 ,L,α r 不是线性相关的,即 )
k1α1 + k2α 2 + L + krα r = 0
上零多项式作成的集合, 上零多项式作成的集合,按多项式的加法和数量乘 上的一个线性空间, 表示. 法构成数域 P上的一个线性空间,常用 P[x]n表示. 上的一个线性空间
P [ x ]n = { f ( x ) = a n − 1 x n − 1 + L + a 1 x + a 0 a n − 1 ,L , a 1 , a 0 ∈ P }
+ ∀a ∈ R + , ∀k ∈ R, k o a = a k ∈ R,且 ak 唯一确定. 唯一确定.
其次, 其次,加法和数量乘法满足下列算律 ① a ⊕ b = ab = ba = b ⊕ a ② (a ⊕ b) ⊕ c = (ab) ⊕ c = (ab)c = a(bc) = a ⊕(bc) = a ⊕(b ⊕ c)
二、线性空间的简单性质
1、零元素是唯一的. 、零元素是唯一的
证明:假设线性空间 有两个零元素 有两个零元素0 证明:假设线性空间V有两个零元素 1、02,则有 01=01+02=02.
2、 α ∈V ,的负元素是唯一的,记为- α . 、 的负元素是唯一的,记为∀
证明: 证明:假设α 有两个负元素 β、γ ,则有
k ,α 的数量乘积 并记做 kα , 如果加法和数量乘法 的数量乘积,并记做

矩阵论 线性空间一(1-3)

矩阵论 线性空间一(1-3)

例2、在线性空间 中,
例3 在三维空间R3中,求k1 , k2 , k3 ,使得
求解
注:讨论向量组的线性表示可化为讨论线性方程组的求
解问题。
给定线性空间V 的两个向量组

,如果
中的每一个向量都可以由向量组 线性表示,则称向
量组
可以由向量组 线性表示;
如果向量组


与向量组
可以相互表示,则称向量 是等价的。
进而得x=0,及
故向量组x1 ,x2 , …,xt , y1 ,y2 , …,yr-t , z1 ,z2 , …,zs-t 线性无关,并构成S1+S2的基。
例3、求
的交空间与和空间的维 数与基
解 由于
并且

的极大线性无关组,故 是和空间L的一组基。
由维数公式得交空间的维数是1,现在要求交空间 的一组基。
一、子空间与生成子空间 1、定义:设V是一个线性空间,S是V的一个子集, 如果S关于V的加法及数乘也构成一个线性空间,则 称S是V的一个子空间。记为 定理 : 线性空间V的一个子集S是V的一个子空间 当且仅当S关于V的加法及数乘是封闭的,即
说明:每个非零线性空间至少有两个子空间,一个是 它自身,另一个是仅由零向量所构成的子集合,称为 零子空间。
命题二 向量组 x1 ,x2 , …,xp 是线性相关的充 要条件是其中的一个向量可由其余的向量线性表 示。
可以证明:
1、在线性空间
中,
线性无关。
其中 表示第i行元素第j列元素1,其它元素为0的 矩阵。
2、在线性空间
中,
线性无关。
定义 设
是线性空间V的向量组,如果
(1)
是线性无关组,

【矩阵论】第1,2章 线性空间与线性变换内积空间

【矩阵论】第1,2章 线性空间与线性变换内积空间

六、基变换和坐标变换
讨论:
不同的基之间的关系 同一个向量在不同基下坐标之间的关系
1 基变换公式 {1 , 2 ,..., n } 设空间中有两组基:{1 , 2 ,..., n }
过渡矩阵C的性质: C为可逆矩阵
则(1 , 2 ,..., n ) (1 , 2 ,..., n )Cnn
子集合:设 S1与S2 表示两个集合,如果集合
都是集合 S 2 的元素,即由 a S1 a S2 , 那么就称 S1是S2 的子集合,记为
S1 S 2或S 2 S1
相等:即
S1 S2且S1 S2 S1 S2
集合的交: S1 S2 x x S1且x S2 集合的并: S1 S2 x x S1或x S2
3 1 在基{E } ij 4 5
例2 设空间F[x]4的两组基为: {1,x,x2,x3}和 {1,( x - 1)1,( x - 1)2,( x - 1)3} 求f(x)=2+3x+4x2+x 3在这两组基下的坐标。
归纳: 有了基,就可以将一个抽象的线性空间中的元素和 一个实际的 R n 元素对应起来,从而将抽象具体化 进行研究。
线性空间的一般性的观点:
线性空间的简单性质(共性): (1) V中的零元素是惟一的。 (2) V中任何元素的负元素是惟一的。 数0 (3)数零和零元素的性质: 0=0,k0=0,k =0 =0 或k=0 ( 4) = ( 1)
向量0
三、向量组的探讨(Review)
向量的线性相关与线性无关:
子空间本身就是线性空间。 子空间的判别方法可以作为判别线性空间的方 法
子空间和非子空间的例子: V={x=(x1,x2,0}R 3, V={x=(x1,x2,1}R 3,

矩阵理论第一章线性空间与线性变换精品PPT课件

矩阵理论第一章线性空间与线性变换精品PPT课件
对、、 V,k、l F 或F C, 成立
(A1) 加法交换律: , (A2) 加法结合律:( ) ( ),
(A3) 具有加法单位元(零向量) V ,使得
(A4) 具有加法逆元(负向量) V
( )
,使得
(M1) 数乘的结合律:k(l ) (kl)
例3 闭区间 [a,b]上的所有实值连续函数按通常函
数的加法和数与函数的乘法,构成线性空间 C[a, b]
例4 次数不超过 n 的所有实系数多项式按通常多项
式加法和数与多项式的乘法,构成线性空间 P[ x]n
例5 所有收敛的实数数列按数列极限的加法和数乘,

构成线性空间
。l
例6 齐次线性方程组 Ax 的所有解的集合构成数 域 R 上的线性空间 N ( A) ,称为 Ax 的解空间,
或矩阵 的A核空间或零空间,即
N ( A) { x Rn | Ax , A Rmn}
Ker( A)
例7 所有矩阵向量积 Ax 的集合构成数域 R 上的
线性空间 R( A) , 称为矩阵 A 的列空间或值域, 也称为矩阵 A 的像 , 即
R( A) { y Rm | y Ax, x Rn, A Rmn}
(M2) 数乘的单位元:1 (D1) 分配律1: k( ) k k (D2) 分配律2:(k l) k l
注意:这里我们不再关心元素的特定属性,而 且我们也不用关心这些线性运算(加法和数乘) 的具体形式。
例2 所有 m n 阶的实(复)矩阵按矩阵的加法和
数乘,构成线性空间 Rmn (C mn ) 。
中,直觉和抽象是交互为用的。”(汤川秀树,1949 年诺贝尔物理奖获得者)。
几何方法与代数方法的融和是数学自身的需要和数 学统一性的体现,也是处理工程问题的有力手段。

矩阵理论讲义第三章 线性空间与线性变换

矩阵理论讲义第三章 线性空间与线性变换

例1 设
R
2 2
a b = a , b, c , d R c d
则 R22 是实数域 R 上的线性空间。
26
GEM
自然基
1 0 0 1 0 0 0 0 E11 = 0 0 , E12 = 0 0 , E21 = 1 0 , E22 = 0 1
(2) a∈V , a 可由a1, a2, … an 线性表示(极大)
a = x1a1+ x2a2+ … +xnan
则称a1, a2, … an 为V 的一组基, 称 x1, x2 , …, xn为a 在基a1, a2, … an 下的坐标, 称 n 为V 的维数,记作 dimV = n 。
25
事实上,线性空间的一组基就是把整个线性空间看成 是由无限个向量构成的向量组的一个极大无关组。G E M
a b A= c d = aE11 + bE12 + cE 21 + dE22
27
GEM
例2 设
1 0 0 a1 = 2 , a 2 = 1 , a 3 = 0 3 2 1
对于函数一般意义的加法、函数和数的乘法构 成线性空间。
7
GEM
例5 n 次多项式的全体
Q[ x ]n = { a n-1 x n-1+ + a 1 x + a 0 a n-1 0 }
对于多项式的加法和乘数运算不构成线性空间
0 p = 0 xn1 + + 0 x + 0 Q[ x ]n
有时候也记为M mn ( R), M mn ( F ), M n ( R)...

矩阵论课件01线性空间

矩阵论课件01线性空间

第一讲 线性空间一、 线性空间的定义及性质 [知识预备]★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。

★数域:一种数集,对四则运算封闭(除数不为零)。

比如有理数域、实数域(R )和复数域(C )。

实数域和复数域是工程上较常用的两个数域。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

线性空间的概念是某类事物从量的方面的一个抽象。

1.线性空间的定义:设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。

如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++;(2)交换律 x y y x +=+;(3)零元律 存在零元素o ,使x +o x =;(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -)。

则有()x x +-= o 。

(II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y k x k y +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。

注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同。

(2)两种运算、八条性质数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。

第一章 矩阵论

第一章 矩阵论

例 设V为数域P上的线性空间, 1 , 2 ,, m 是V中的一组元素,则
Span 1 , 2 , , m k1 1 k 2 2 k m m k1 , k 2 , , k m P
是V 的子空间,称为 1 , 2 ,, m的生成子空 间, 1 , 2 ,, m称为该子空间的生成元. •
定义1.7 设 1 , 2 ,, n和 1 , 2 ,, n是n维线性空间 V 的两组基,显然它们可以互相线性表示,若
1 c11 1 c 21 2 c n1 n , 2 c12 1 c 22 2 c n 2 n , n c1n 1 c 2n 2 c nn n ,
1 x 3 2 x 2 x 2 x 3 x 2 x 1 3 x 3 2x 2 x 1 4 x 3 x 2 1
求由基 渡矩阵.
第三节 线性子空间
一.子空间的概念 定义 设V为数域P上的线性空间,W是V 的非空子集,若W关于V中的线性运算也 构成数域P上的线性空间,则称W是V的 线性子空间,简称子空间. 对任何线性空间V ,显然由V中单个零向 量构成的子集是V的子空间,称为V的零子空 间; V本身也是V的子空间.这两个子空间称 为V的平凡子空间.其它子空间称为V的非平 凡子空间.
二.线性空பைடு நூலகம்的定义与性质
1、线性空间的定义
定义
n 例2 n维向量空间 R(及其子空间)按照向量的加 法以及向量与实数的数乘都构成实线性空间。
例3 全体 m n实矩阵,在矩阵的加法及数乘两种运 算下构成一个实线性空间,记为 R mn .
例4 区间[a,b]上的全体连续实函数,按照函数的 加法及数与函数的乘法构成一个实线性空间,记为 C[a,b].
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2、R[x]n表示所有次数不超过n 的多项式所构 成的一个线性空间,则:
• 线性空间是n维向量空间R n 的推广,是矩阵理论 的基础。
•线性空间是一类具有“线性结构”的元素集合, 这种线性结构是通过两种线性运算“加法”、 “数乘”在一定公理体系下给出的。
定义 设V是一个非空集合,F是一个数域(如实数域R或 [1]加法运算
“和” x y V
复数域C),如果在V上规定了下列两种运算, 则称V是数域F上的一个线性空间
等价命题
命题一 向量组x1 ,x2 , …,x p是线性无关的充要 条件是仅当k1 =k2 =…=k p=0 时成立
k1 x1 k2 x2 k p x p 0
命题二 向量组x1 ,x2 , …,x p是线性相关的充 要条件是其中的一个向量可由其余的向量线性表 示。
可以证明: 1、在线性空间 R mn或C mn 中, Eij ( i 1,2,, m; j 1,2,, n) 线性无关。 其中 E ij 表示第i行元素第j列元素1,其它元素为0的 矩阵。 2、在线性空间
0 A1 1
2 1 , A2 0 0
1 1 , A3 0 0
2 1 , A4 0 1
0 1
定义 设 1 , 2 ,, p 是线性空间V的向量组,如果 (1) 1 , 2 ,, r 是线性无关组, (2)任一向量 i 可由 1 , 2 ,, r线性表示; 则称 1 , 2 ,, r 是向量组 1 , 2 ,, p 的极大无关组; 并称 r 为向量组的秩,记为 rank ( 1 , 2 ,, p ) r 说明:一般地,向量组的极大无关组不是唯一的,但向 量组的每一个极大无关组都与向量组自身是等价的,并 且向量组的每一个极大无关组中所含有的向量的个数都 等于向量组的秩。
例1 在二维空间R2中,任意一个二维向量 都可由标准单位向量e1 , e2 线性表示。
x1 1 0 e1 0 , e2 1 , x x1e1 x2e2 2
例2 在二维空间R2中,任意一个二维向量 都可由 向量f1 , f2 线性表示。
这是因为: 1 0 0
0 1 0 1 0, 0 0 1
Байду номын сангаас
1 1 1 0 1 1 1 0, 0 0 1
从而它们各自都线性无关, 而对于任意向量
x (1 , 2 , 3 )T R 3 , 分别有:
x 1 x1 2 x2 3 x3
x (1 2 )y1 ( 2 3 ) x2 3 x3
第二节 线性空间的基与坐标
主要内容: 一、线性空间的基与向量在基下的坐标
二、坐标变换与过渡矩阵
一、线性空间的基与向量在基下的坐标
设x1 ,x2 , …,x n是线性空间V的向量组,如果 (1) x1 ,x2 , …,x n是V的线性无关组, (2)V的任一向量x可由x1 ,x2 , …,x n线性表示;
可以验证:
n R n维实向量空间是线性空间,仍记作 ;
n维复向量空间是线性空间,仍记作 C n 。
线性空间实例
•例1 所有 m n 型矩阵在矩阵加法和数乘运算下 构成一个线性空间,记为 R mn或C mn •例2 所有次数不超过n 的多项式在多项式加法 和数乘运算下构成一个线性空间,记为
2 n
线性相关
设x1 ,x2 , …,x p是线性空间V 的向量组。如 果存在一组不全为0的数k1 ,k2 , …,k p 使得
k1 x1 k 2 x2 k p x p 0
则称向量组x1 ,x2 , …,x p是线性相关的; 否则,就称向量组x1 ,x2 , …,x p是线性无 关的。

改写成线性方程组为
2 x 1 x1
x2 x2
x3 2 x3 x3
x4
0 0 0 0
x4
求解线性方程组得唯一解 x1 x2 x3 x4 0
1 , 2 , 3 , 4 线性无关
思考 在四维线性空间
R
22
中,讨论下列向量组的线性相关性。
则称x1 ,x2 , …,x n是线性空间V 的一组基。
称n是线性空间V 的维数,记作dimV。 或称线性空间V 是n维线性空间 即:线性空间的维数是其基中所含向量的个数。
若在V中可以找到任意多个线性无关的向量,则称V 是无限维线性空间
说明:线性空间的基不唯一
例1、 证明:在三维向量空间R3中, x1 ,x2 , x3 与y1 ,y2 , y3都是线性空间R3 的一组基
P[ x]n {a0 a1 x a 2 x a n x | ai C , i 0,1,2,, n}
•例3 常系数二阶齐次线性微分方程的解集合对于 函数加法与数与函数的乘法构成一个线性空间。 •例4 闭区间[a,b]上所有连续函数的集合在函数加 法和数乘运算下构成一个线性空间,记为 C[a, b]
(证明略)
线性表示
x1 , x 2 , , x p , x 是V的向量组。 设V是一个线性空间,
如果存在一组数 1 , 2 , , p 使得
x 1 x1 2 x 2 p x p 则称x可由x1 ,x2 , …,x p线性表示,称x是 x1 ,x2 , …,x p的线性组合。
P[ x]n {a0 a1 x a 2 x 2 a n x n | ai C , i 0,1,2,, n}
中, 1, x , x 2 ,, x n 线性无关。
例4 在四维空间R4中,讨论下列向量组的线性相关性。
0 1 1 1 2 1 2 0 1 , 2 , 3 , 4 1 0 0 0 0 0 1 1
对V的任意两个元素x、y,都有V的 唯一的 ,且满足
•(1)交换律 x+y=y+x; •(2)结合律 x+(y+z)=(x+y)+z; •(3)存在0元 x+0=x; •(4)存在负元-x x+(-x)=0 .
[2]数乘运算
• •
对V的任一元x,及F的任一数k,都存在唯一的 “积” kx V ,且满足 (5)分配律 k(x+y)=k x+k y (6)分配律 (k+l)x=k x+lx
k1 k 2 k2
k3 k3 k3
1 2 3
k1 1, k2 1, k3 3
注:讨论向量组的线性表示可化为讨论线性方程组的求
解问题。 给定线性空间V 的两个向量组 1 , 2 ,, p 与 1 , 2 ,, q , 如果 1 , 2 ,, p 中的每一个向量都可以由向量组 1 , 2 ,, q 线性表示,则称向量组 1 , 2 ,, p 可以由向量组 1 , 2 ,, q 线性表示; 如果向量组 1 , 2 ,, p 与 1 , 2 ,, q 可以相互表示, 则称向量组 1 , 2 ,, p 与向量组 1 , 2 ,, q 是等价的。 等价向量组具有:自反性、对称性、传递性
an ( x 1 )( x 2 ) ( x n ).
•其中
1 2 n 1 2 n (1)
n a0 an
an1 an
;
第一章 第一节
线性空间
主要内容: 一 线性空间的定义及其性质 二 向量组的线性相关性
概述
•数学空间是指一个赋予了“某种结构”的集合。
非线性空间举例 所有n阶可逆矩阵在矩阵加法和数乘运算下不 构成线性空间(0矩阵不可逆)。 •所有次数等于n 的多项式在多项式加法和 数乘运算下不构成线性空间。
n C •相容的线性非齐次方程组 Ax b 解的全体按 中的
运算不构成线性空间
定理 设V是数域F上的一个线性空间,则 (1)V的零元是唯一的; (2)V中任意元的负元是唯一的; 0 0, k 0 0, (1) , V , k F (3) (4)如果 k 0 ,则k=0或 0 。

使得
设存在一组数 x1 , x2 , x3 , x4 ,
x11 x2 2 x3 3 x4 4 0
0 1 1 1 2 1 2 0 x1 x 2 x3 x 4 0 1 0 0 0 0 0 1 1
复数基本知识
• • • • • 称下列形式的数为复数 z=a +bi 其中a , b 都是实数,i 2 = -1; 称a 是复数z的实部, b i 是复数z的虚部; Z的共扼复数为
z a bi
代数基本定理
• 任意n次多项式必有n个复根。即
an x an1 x
n
n 1
a1 x a0
1 0 0 x1 0 , x2 1 , x3 0 0 0 1
1 1 1 y1 0 , y2 1 , y3 1 0 0 1
1 1 1 1 X 1 0 , X 2 1 , X 3 1, 2 0 0 1 3
求解
1 1 1 1 k1 0 k 2 1 k3 1 2 , 0 0 1 3
{A C
mn
, rank ( A) r}
常用记号二
• • • • • •
I n diag (1,1,,1); n阶单位矩阵 n阶矩阵的行列式 A det( A), A C nn . 矩阵 A的范数 A ; 向量b的范数 b n阶矩阵A的 逆矩阵A-1 ; m n 矩阵A的广义逆矩阵A+ , A-
相关文档
最新文档