2020-2021四川成都列五中学数学七年级第二月考试题(含答案)
2020-2021学年七年级下学期第二次月考数学试题含答案
一、选择题:(共30分)1.下列不等式中,是一元一次不等式的有( )个.①x>-3;②xy ≥1;③32<x ;④132≤-x x ;⑤11>+xx . A.1 B.2 C.3 D.42.不等式3(x -2)≤x+4的非负整数解有( )个..A.4B.5C.6D.无数3.下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩ B .43624x y x y +=⎧⎨+=⎩ C .44x y x y +=⎧⎨-=⎩ D .35251025x y x y +=⎧⎨+=⎩4.与2x<6不同解的不等式是( )A.2x+1<7B.4x<12C.-4x>-12D.-2x<-65.有下列说法:①带根号的数是无理数;•②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有( )A.0个B.1个C.2个D.3个6.如果不等式(m -2)x>2-m 的解集是x<-1,则有( )A.m>2B.m<2C.m=2D.m ≠27.方程组327413x y x y +=⎧⎨-=⎩的解是( ) A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩8.-53、-2、-3 、-2π四个数中,最大的数是( ).A.-53B.-2C.-3D.-2π9.若∠1与∠2互补,∠2与∠3互补,∠1=50°,则∠3等于( ).(A )50° (B )130° (C )40° (D )140°10.若3378a -=,则a 的值是( )A .78B .78-C .78±D .343512-二、填空题:(共15分)三、解答题16.解不等式(组)并把解集在数轴上表示:(每题6分,共12分)(1)2-5x ≥8-2x (2)⎩⎨⎧+≥--≥+xx x x 2236523 17.解二元一次方程组:(每题6分,共12分)(1 )⎩⎨⎧=--=53623y x x y (代入法) (2)2232328x y x y ⎧+=⎪⎨⎪+=⎩(加减法)18.(10分)如图,宽为50cm的长方形图案由10个相同的小长方形拼成,• 求每个小长方形的长和宽分别是多少?19.(10分)某种商品的进价为800元,出售时标价为1200元.后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,请你帮忙算一算,该商品至多可以打几折?20.(11分)已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;⑵∠PAG的大小.参考答案。
人教版七年级第二学期第二次月考数学试题含答案
【参考答案】***试卷处理标记,请不要删除
三、解答题
21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为 ,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为 ,又知13+23+33+43+53+63+73+83+93+103可表示为 .通过对以上材料的阅读,请解答下列问题.
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
(-3)④=___;5⑥=___;(- )⑩=___.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___;
(3)算一算: ÷(− )④×(−2)⑤−(− )⑥÷
24.观察下列两个等式: , ,给出定义如下:我们称使等式 成立的一对有理数 , 为“共生有理数对”,记为( , ),如:数对( , ),( , ),都是“共生有理数对”.
__________.
14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}= ,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.
15. 的平方根是_______; 的立方根是__________.
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________.
(2)1+ + +…+ 用求和符号可表示为_________.
最新2022-2021年七年级上第二次月考数学试卷含答案解析
七年级(上)第二次月考数学试卷一、选择题:(本大题满分(mǎn fēn)42,每小题3分)1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.2.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.43.若有理数a、b在数轴上对应的位置(wèi zhi)如图所示,则下列关系正确的是()A.|a|<|b| B.a>b C.a<b D.a=b4.单项式2x2y2的次数(cìshù)是()A.1 B.2 C.3 D.45.计算(jì suàn)a×3a的结果(jiē guǒ)是()A.a2B.3a2C.3a D.4a6.与﹣3x2y是同类项的是()A.﹣2x2y B.﹣3xy2C.2x3y D.5xy7.计算(﹣1)2021+(﹣1)2021的结果是()A.﹣1 B.﹣2 C.0 D.28.若x=(﹣2)×3,则x的倒数是()A.B.C.﹣6 D.69.如果a与1互为相反数,则|a|=()A.2 B.﹣2 C.1 D.﹣110.在数轴(shùzhóu)上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣111.下列(xiàliè)各式中,运算结果为负数的是()A.(﹣2)2B.(﹣2)3C.(﹣2)﹣(﹣3)D.(﹣2)×(﹣3)12.“比a的2倍大l的数”用代数式表示(biǎoshì)是()A.2(a+1)B.2(a﹣1)C.2a+1 D.2a﹣113.省政府提出(tí chū)2021年要实现180 000农村贫困人口脱贫,数据(shùjù)180 000用科学记数法表示为()A.1.8×103B.1.8×104C.1.8×105D.1.8×10614.若x、y为有理数,且|x﹣3|+(y+2)2=0,则x+2y的值为()A.﹣4 B.﹣1 C.0 D.4二、填空题:(本大题满分16分,每小题4分)15.化简:﹣a﹣a= .16.若a=﹣1,则﹣a+1的值是.17.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.18.若a﹣b=﹣1,则代数式2a﹣2b﹣2021的值是.三、解答题19.计算:(1)|﹣1|+18×(﹣)2(2)4+(﹣12)×﹣(﹣1)2.20.计算(jì suàn):(1)a(a﹣b)+ab(2)2(a2﹣3)﹣(2a2﹣1)21.先化简,再求值.3x2﹣(y2+3x2)+2(y2﹣3xy),其中(qízhōng)x=2,y=﹣1.22.若c、d互为相反数,x的绝对值是1,且ab=﹣,求﹣2ab+x2的值.23.某校组织七年级学生到距离学校6km的科技馆去参观(cānguān),小胖同学因事没能乘上学校的包车,于是准备在校门口乘岀租车去科技馆,出租车收费标准如表:里程(单位:km)收费(单位:元)3km以下(含3km)8.03km以上(每增加1km) 1.80(1)若出租车行驶的里程(lǐchéng)为3km,则要付车费多少元?;(2)若出租车行驶(xíngshǐ)的里程为x km(x>3),请用x的代数式表示车费y元;(3)小胖同学身上仅有10元钱,够不够支付乘出租车到科技馆的车费?请说明理由.24.海口市某校七年级有5名教师带学生去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有m名学生,则用式子表示两种优惠方案各需要多少元?(2)当m=40时,采用哪种方案优惠?(3)当m=100时,采用哪种方案优惠?七年级(上)第二次月考数学试卷参考答案与试题(shìtí)解析一、选择题1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.【考点(kǎo diǎn)】相反数.【分析】只有(zhǐyǒu)符号不同的两个数互为相反数,0的相反数是0.【解答(jiědá)】解:﹣3的相反数是3.故选B.【点评】此题主要(zhǔyào)考查相反数的意义,较简单.2.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.若有理数a、b在数轴上对应的位置如图所示,则下列关系正确的是()A.|a|<|b| B.a>b C.a<b D.a=b【考点(kǎo diǎn)】绝对值;数轴.【专题(zhuāntí)】计算题;实数.【分析】根据(gēnjù)数轴上点的位置判断即可.【解答(jiědá)】解:根据题意得:|a|>|b|,a<b,故选C【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题(běntí)的关键.4.单项式2x2y2的次数是()A.1 B.2 C.3 D.4【考点】单项式.【分析】根据单项式的次数的定义:所有字母指数的和,据此即可求解.【解答】解:次数是2+2=4.故选D.【点评】本题考查了单项式的次数的定义,单项式的次数就是单项式的所有字母指数的和,理解定义是关键.5.计算a×3a的结果是()A.a2B.3a2C.3a D.4a【考点】单项式乘单项式.【分析】根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式(yīnshì),计算即可.【解答(jiědá)】解:a×3a=3a2,故选:B.【点评(diǎn pínɡ)】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.与﹣3x2y是同类项的是()A.﹣2x2y B.﹣3xy2C.2x3y D.5xy【考点(kǎo diǎn)】同类项.【分析】依据(yījù)同类项的定义求解即可.【解答】解:﹣3x2y与2x2y所含字母相同,相同字母的指数也相同,故:﹣3x2y与2x2y是同类项.故选:A.【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.7.计算(﹣1)2021+(﹣1)2021的结果是()A.﹣1 B.﹣2 C.0 D.2【考点】有理数的混合运算.【分析】先计算乘方,再计算加法即可求解.【解答】解:(﹣1)2021+(﹣1)2021=1﹣1=0.故选:C.【点评】此题考查了有理数的混合运算,有理数混合运算顺序(shùnxù):先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.8.若x=(﹣2)×3,则x的倒数(dǎo shù)是()A.B.C.﹣6 D.6【考点(kǎo diǎn)】倒数.【分析(fēnxī)】先求出x的值,然后根据定义求出x的倒数.【解答(jiědá)】解:若x=(﹣2)×3,则x=﹣6,∴﹣6的倒数是﹣.故选A.【点评】主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.9.如果a与1互为相反数,则|a|=()A.2 B.﹣2 C.1 D.﹣1【考点】绝对值;相反数.【分析】根据互为相反数的定义,知a=﹣1,从而求解.互为相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选C.【点评(diǎn pínɡ)】此题主要是考查了相反数的概念和绝对值的性质.10.在数轴上距离原点2个单位长度(chángdù)的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣1【考点(kǎo diǎn)】数轴.【分析(fēnxī)】分点在原点左边与右边两种情况讨论求解.【解答(jiědá)】解:①在原点左边时,∵距离原点2个单位长度,∴该点表示的数是﹣2;②在原点右边时,∵距离原点2个单位长度,∴该点表示的数是2.综上,距离原点2个单位长度的点所表示的数是﹣2或2.故选C.【点评】本题考查了数轴,难点在于要分点在原点的左边与右边两种情况讨论求解.11.下列各式中,运算结果为负数的是()A.(﹣2)2B.(﹣2)3C.(﹣2)﹣(﹣3)D.(﹣2)×(﹣3)【考点】有理数的混合运算.【分析】根据有理数的减法、有理数的乘法、有理数的乘方运算法则化简各式,再根据小于0的数是负数进行选择.【解答】解:A、(﹣2)2=4>0,A选项错误;B、(﹣2)3=﹣8<0,B选项正确(zhèngquè);C、(﹣2)﹣(﹣3)=10,C选项错误(cuòwù);D、(﹣2)×(﹣3)=6>0,D选项错误(cuòwù).故选:B.【点评】此题考查了有理数的混合运算,注意:两数相乘,同号得正,异号得负,并把绝对值相乘;乘方是乘法(chéngfǎ)的特例,因此乘方运算可转化成乘法法则,由乘法法则又得到了乘方符号法则,即正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶数次幂是正数.0的任何次幂都是0.12.“比a的2倍大l的数”用代数式表示(biǎoshì)是()A.2(a+1)B.2(a﹣1)C.2a+1 D.2a﹣1【考点】列代数式.【分析】由题意按照描述列式子为2a+1,从选项中对比求解.【解答】解:由题意按照描述列下式子:2a+1故选C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.13.省政府提出2021年要实现180 000农村贫困人口脱贫,数据180 000用科学记数法表示为()A.1.8×103B.1.8×104C.1.8×105D.1.8×106【考点】科学记数法—表示较大的数.【分析】科学(kēxué)记数法的表示形式为a×10n的形式(xíngshì),其中1≤|a|<10,n为整数(zhěngshù).确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:180000用科学(kēxué)记数法表示为1.8×105,故选:C.【点评】此题考查了科学(kēxué)记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.若x、y为有理数,且|x﹣3|+(y+2)2=0,则x+2y的值为()A.﹣4 B.﹣1 C.0 D.4【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,x﹣3=0,y+2=0,解得,x=3,y=﹣2,则x+2y=﹣1,故选:B.【点评】本题考查的是非负数的性质,掌握当几个非负数或式的绝对相加和为0时,则其中的每一项都必须等于0是解题的关键.二、填空题:(本大题满分16分,每小题4分)15.化简:﹣a﹣a= ﹣2a .【考点】合并同类项.【分析】根据(gēnjù)合并同类项系数相加字母及指数不变,可得答案.【解答(jiědá)】解:﹣a﹣a=﹣2a,故答案(dá àn)为:﹣2a.【点评】本题考查(kǎochá)了合并同类项,合并同类项系数相加字母及指数不变是解题关键.16.若a=﹣1,则﹣a+1的值是 2 .【考点(kǎo diǎn)】代数式求值.【专题】计算题;实数.【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣1时,原式=1+1=2,故答案为:2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是(1+10%)a 万元.【考点】列代数式.【专题】增长率问题.【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值=(1+10%)a万元,故答案为:(1+10%)a.【点评】本题考查了增长率的知识,增长后的收入=(1+10%)×增长前的收入.18.若a﹣b=﹣1,则代数式2a﹣2b﹣2021的值是﹣2021 .【考点(kǎo diǎn)】代数式求值.【分析(fēnxī)】依据等式的性质先求得2a﹣2b的值,然后代入求解即可.【解答(jiědá)】解:∵a﹣b=﹣1,∴2a﹣2b=﹣2.∴原式=﹣2﹣2021=﹣2021.故答案(dá àn)为:﹣2021.【点评】本题(běntí)主要考查的是求代数式的值,求得2a﹣2b的值是解题的关键.三、解答题19.(2021秋•昌江县校级月考)计算:(1)|﹣1|+18×(﹣)2(2)4+(﹣12)×﹣(﹣1)2.【考点】有理数的混合运算.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(1)|﹣1|+18×(﹣)2=1+18×=1+2=3;(2)4+(﹣12)×﹣(﹣1)2=4﹣6﹣1=﹣3.【点评】此题考查了有理数的混合运算,有理数混合运算的四种运算技巧 1.转化(zhuǎnhuà)法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算. 2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解. 3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算. 4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.20.(2021秋•昌江县校级月考)计算(jì suàn):(1)a(a﹣b)+ab(2)2(a2﹣3)﹣(2a2﹣1)【考点(kǎo diǎn)】单项式乘多项式;整式的加减.【分析】(1)直接去括号(kuòhào),再合并同类项;(2)去括号(kuòhào),再合并同类项.【解答】解:(1)a(a﹣b)+ab,=a2﹣ab+ab,=a2;(2)2(a2﹣3)﹣(2a2﹣1),=2a2﹣6﹣2a2+1,=﹣5.【点评(diǎn pínɡ)】本题考查了单项式乘以多项式,单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.21.先化简,再求值.3x2﹣(y2+3x2)+2(y2﹣3xy),其中(qízhōng)x=2,y=﹣1.【考点(kǎo diǎn)】整式的加减—化简求值.【分析】先去括号(kuòhào),合并同类项,再代入求值.【解答(jiědá)】解:3x2﹣(y2+3x2)+2(y2﹣3xy),=3x2﹣y2﹣3x2+2y2﹣6xy,=y2﹣6xy;当x=2,y=﹣1时,原式=(﹣1)2﹣6×2×(﹣1)=13.【点评】本题考查了整式的加减及化简求值问题,注意去括号时,括号前是负数时,括号内的每一项都要变号;用单项式去乘多项式中的每一项时,不能漏乘,还要注意确定积的符号.22.若c、d互为相反数,x的绝对值是1,且ab=﹣,求﹣2ab+x2的值.【考点】代数式求值.【分析】由题意可知:c+d=0,ab=﹣,x=±1,然后代入求值即可.【解答】解:∵c、d互为相反数,且ab=﹣,x的绝对值是1,∴ab=,c+d=0,x=±1.当x=1时,原式=0﹣2×+1=2;当x=﹣1时,原式=0﹣2×+1=2.综上所述:﹣2ab+x2的值为2.【点评】本题主要考查的是求代数式的值,掌握(zhǎngwò)相反数,绝对值的性质是解题的关键.23.(12分)(2021秋•昌江县校级月考)某校组织七年级学生到距离学校6km的科技馆去参观,小胖同学因事没能乘上学校的包车,于是准备在校门口乘岀租车(zū chē)去科技馆,出租车收费标准如表:里程(单位:km)收费(单位:元)3km以下(含3km)8.03km以上(每增加1km) 1.80(1)若出租车行驶(xíngshǐ)的里程为3km,则要付车费多少元?;(2)若出租车行驶(xíngshǐ)的里程为x km(x>3),请用x的代数式表示(biǎoshì)车费y元;(3)小胖同学身上仅有10元钱,够不够支付乘出租车到科技馆的车费?请说明理由.【考点】列代数式.【分析】(1)根据表格中的数据可以解答本题;(2)根据题意和表格中的数据可以用含x的代数式表示出车费;(3)将x=6代入(2)中的代数式,即可求得所需要的车费,从而可以解答本题.【解答】解:(1)由题意可得,出租车行驶的里程为3km,则要付车费8元;(2)由题意可得,若出租车行驶的里程为x km(x>3),车费为:8+(x﹣3)×1.8=1.8x+2.6,即若出租车行驶的里程为x km(x>3),车费为:(1.8x+2.6)元;(3)故小胖同学身上仅有10元钱,不够不够支付乘出租车到科技馆的车费,理由(lǐyóu);1.8×6+2.6=10.8+2.6=13.4>10,故小胖同学身上(shēn shɑng)仅有10元钱,不够不够支付乘出租车到科技馆的车费.【点评】本题考查列代数式,解题的关键是明确题意(tí yì),列出相应的代数式.24.(14分)(2021秋•昌江县校级月考)海口市某校七年级有5名教师带学生(xué sheng)去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有m名学生,则用式子(shì zi)表示两种优惠方案各需要多少元?(2)当m=40时,采用哪种方案优惠?(3)当m=100时,采用哪种方案优惠?【考点】代数式求值;列代数式.【分析】(1)甲方案:学生总价×80%,乙方案:师生总价×75%;(2)把m=40代入两个代数式求得值进行比较;(3)把m=100代入两个代数式求得值进行比较.【解答】解:(1)甲方案:m×30×80%=24m,乙方案:(m+5)×30×75%=22.5(m+5);(2)当m=40时,甲方案付费为24×40=960元,乙方案付费22.5×45=1012.5元,所以采用甲方案优惠;(3)当m=100时,甲方案付费为24×100=2400元,乙方案付费22.5×105=2362.5元,所以采用乙方案优惠.【点评】此题主要考查了列代数式,以及(yǐjí)代数式求值,解决问题的关键是读懂题意,找到所求的量的等量关系.根据关系式列出式子后再代值计算是基本的计算能力,要掌握.内容总结(1)B、(﹣2)3=﹣8<0,B选项正确。
四川初一初中数学月考试卷带答案解析
四川初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题计算的结果是()A.B.C.D.二、单选题1.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.2.如图,直线直线被直线所截,且,若,则的度数是()A.B.C.D.3.小明现有两根长度为4cm和的小木棒,他想钉一个三角形木框,还差一根木棒,如果有下列长度的四根木棒供他选择,则他应该选的是()A.B.C.D.4.下列各式中不能用平方差公式计算的是( )A.B.C.D.5.如图,能保证的条件是()A.B.C.D.6.如图:要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是 ( )A. SSSB. SASC. S AAD. ASA7.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶.下面的四幅图中,可以近似地刻画出汽车在这段时间内的速度变化情况的是()A.B.C.D.8.如图,直线,C是MN上一点,CE交PQ于A,CF交PQ于B,且∠ECF=90°,如果∠FBQ=50°,则∠ECM的度数为()A.60°B.50°C.30°D.40°9.已知,则代数式的值是()A.-3B.0C.3D.610.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图1中有5个棋子,图2中有10个棋子,图3中有16个棋子,……,则图7中有()个棋子.A.35B.50C.45D.4011.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连结OC、FG,则下列结论:①AE=BD;②AG=BF;③;④图中共有4对全等三角形,其中正确结论的个数()A. 3个B. 2个C. 1个D. 4个三、填空题1.某种细胞的直径只有1.56微米,即0.000 001 56米,把数据0.000 001 56用科学记数法表示为______.2.计算:=_____________.3.一辆汽车以60千米/时的平均速度在路程为100千米的公路上行驶,则它离终点的路程S(千米)与所用的时间(时)的关系式为__________.4.如图,,,∠1 = 25°,则∠2 = ___________.5.若,则=_________.6.如图,过边长为8的等边的边AB上一点P,作于,为延长线上一点,当时,连接交边于,则的长为________.四、解答题1.如图,AC = AE,,AB = AD.求证:.2.计算:(1);(2)3.如图,已知. 求证:(填空并在后面的括号中填理由)证明:∵∠AGD=∠ACB∴DG∥___________ (__________)∴∠3="__________" ( _________ )∵∠1="∠2" ( _______________ )∴∠3="__________" ( _______________ )∴__________∥___________ ( ______________ )4.先化简,再求值: ,其中.5.重庆出租车计费的方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图像解答下列问题:(1)该地出租车起步价是______元;(2)当x>2时,求y与x之间的关系式;(3)若某乘客一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?6.如图,在△ABC中,AD⊥BC,BE⊥AC,AD、BE相交于点,且BF=AC.(1)求证:△ADC≌△BDF(2)若CD=3,BD=5,求AF的长.7.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果,那么称这个四位数为“和平数”.例如:,因为x=y,所以是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是________;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”。
七年级数学第二学期 第二次月考检测测试卷含答案
七年级数学第二学期 第二次月考检测测试卷含答案一、选择题1.若()2320m n -++=,则m n +的值为( ) A .5-B .1-C .1D .52.计算:122019(1)(1)(1)-+-++-的值是( )A .1-B .1C .2019D .2019-3.计算50﹣1的结果应该在下列哪两个自然数之间( ) A .3,4B .4,5C .5,6D .6,74.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会5.下列数中π、227,﹣3,3343,3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 6.下列各数中,比-2小的数是( )A .-1B .-5C .0D .17.下列各组数中,互为相反数的是( ) A .2-与12-B .|2|-与2C .2(2)-与38-D .38-与38-8.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①②B .①③C .②③D .①②③9.估算381-的值( ) A .在6和7之间B .在5和6之间C .在4和5之间D .在7和8之间10.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B二、填空题11.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤372-的最大整数,则M +N 的平方根为________. 12.估计51-与0.5的大小关系是:51-_____0.5.(填“>”、“=”、“<”) 13.m 的平方根是n +1和n ﹣5;那么m +n =_____.14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________. 15.2(2)-的平方根是 _______ ;38a 的立方根是 __________. 16.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号). 17.如果一个数的平方根和它的立方根相等,则这个数是______.18.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.19.设a ,b 都是有理数,规定 3*=a b a b ()()48964***-⎡⎤⎣⎦=__________.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________. (2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数) (2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 23.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; . 请选择其中一个立方根写出猜想、验证过程。
七年级第二学期第二次月考数学试题含解析
七年级第二学期第二次月考数学试题含解析一、选择题1.下列说法正确的个数有( )①过一点有且只有一条直线与已知直线平行;②垂线段最短;③坐标平面内的点与有序实数对是一一对应的;④算术平方根和立方根都等于它本身的数是0和1; ⑤5的小数部分是51-. A .1 B .2 C .3 D .42.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B .2C .3D .63.下列说法错误的是( )A .a 2与(﹣a )2相等B .33()a -与33a 互为相反数C .3a 与3a -互为相反数D .|a|与|﹣a|互为相反数 4.下列结论正确的是( )A .无限小数都是无理数B .无理数都是无限小数C .带根号的数都是无理数D .实数包括正实数、负实数5.关于2的判断:①2是无理数;②2是实数;③2是2的算术平方根;④122<<.正确的是( )A .①④B .②④C .①③④D .①②③④ 6.定义(),2f a b ab =,()22(1)g m m m =-+,例如:()1,22124f =⨯⨯=,()()2112111g -=---+=,则()1,2g f ⎡⎤-⎣⎦的值是( ) A .-4 B .14 C .-14 D .17.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±98.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 2=±D .()515-=- 9.下列说法正确的个数是( ).(1)无理数不能在数轴上表示(2)两条直线被第三条直线所截,那么内错角相等(3)经过一点有且只有一条直线与已知直线平行(4)两点之间线段最短A .0个B .1个C .2个D .3个10.若a 、b 为实数,且满足|a -2|0,则b -a 的值为( )A .2B .0C .-2D .以上都不对 二、填空题 11.若()2320m n ++-=,则m n 的值为 ____.12.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.13的平方根是 _______ ;38a 的立方根是 __________.14.如果某数的一个平方根是﹣5,那么这个数是_____.15.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.16.若x <0____________.17.44.9444≈⋯14.21267≈⋯(精确到0.01)≈__________.18.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b .例如8914*=,那么*(*16)m m =__________.19.若一个正数的平方根是21a +和2a +,则这个正数是____________.20.若x ,y 为实数,且|2|0x +=,则(x+y) 2012的值为____________.三、解答题21.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==, 因为1021024=,所以()10(1024)210g g ==. (1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫ ⎪⎝⎭的值. 22.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = . (2)直接写出下列各式的计算结果: ①1111 (12233420152016)++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯.24.是无理数,而无理是无限不循环小数,因1的小数部分,事的整数部分是1,将这个数减去其整数部的小数部分,又例如:∵23223<<,即23<<的整数部分为2,小数部分为)2。
七年级数学上学期第二次月考试题试题 3(共7页)
2021-2021学年(xuénián)七年级数学上学期第二次月考试题一、选择题〔每一小题2分,一共22分〕1.下面平面图形经过折叠不能围成正方体的是 ( )A. B. C. D.2.国家体育场“鸟巢〞的建筑面积达258000m2,用科学记数法表示为〔〕A. B.C.D.3. 在中,负有理数一共有〔〕A.4个个个个4.以下各式中,去括号正确的选项是〔〕A.B.C.D.5.如图,点A位于点O的___方向上( )0 B.北偏西650 C.南偏东650 D.南偏西6506.以下运算正确的选项是〔〕A. B.C. D.7.以下说法(shuōfǎ)正确的选项是〔〕A.的系数是-2ab3的次数是6次 C.是多项式 D.x2+x-1的常数项为1 8.有理数a、b在数轴上的位置如下图,那么以下各式错误的选项是( )A.b<0<a B.│b│>│a│ C.a+b<0 D.b—a>09.如图2,以下表示角的方法,错误的选项是( )A.∠1与∠AOB表示同一个角;B.∠AOC也可用∠O来表示C.图中一共有三个角:∠AOB、∠AOC、∠BOC;D.∠β表示的是∠BOCa、b互为相反数,cd互为倒数,m的绝对值等于2,那么的值是:( )A.2 B.3 C.4 D.511.假如代数式4y2-2y+5的值是7,那么代数式2y2-y+1的值等于( ) A. 2 B. 3 C.﹣2 D.4二、填空题〔每一小题2分,一共28分〕的相反数是___________,倒数是____________.13. 如图3,能用图中字母表示的射线有________条;能用图中字母表示的线段有________条。
与的和仍是一个(yīɡè)单项式,那么m+n=_________。
图315.假设代数式的值与字母的取值无关,那么=.16.时,代数式的值是.与互为相反数,那么 =_________。
18.M、N是数轴上的两个点,且两点之间的间隔为3,假设点M表示的数为-2,那么点N表示的数为。
四川初一初中数学月考试卷带答案解析
四川初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.点P(3,-4)在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.3.49的平方根为()A.7B.-7C.±7D.±4.如图直线a∥b,∠1=52°,则∠2的度数是()A.38°B.52°C.128°D.48°5.下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有()A.3个B.4个C.5个D.6个6.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40°B.35°C.30°D.20°7.下列命题是真命题的是()A.同旁内角互补B.垂直于同一条直线的两直线平行C.邻补角相等D.两直线平行,内错角相等8.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCE C.∠1=∠2D.∠D+∠ACD=180°9.已知点P在第四象限,且P到x轴的距离为3,到y轴的距离为4,则P点的坐标为()A .(3,-4)B .(-3,4)C .(4,-3)D .(-4,3)10.观察下列计算过程:因为=121,所以=11,因为=12321,所以=111,由此猜想=( )A .111111111B .11111111C .1111111D .111111二、填空题1.比较大小:4 (填“>”、“<”或“=”)2.如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是 .3.1-的相反数与的平方根的和是_____4.如图,∠1+∠2=180°,∠3=108°,则∠4= 度.5.已知三角形ABC 的三个顶点坐标为A (﹣2,3),B (﹣4,﹣1),C (2,0).在三角形ABC 中有一点P (x ,y )经过平移后对应点P 1为(x+3,y+5),将三角形ABC 作同样的平移得到三角形A 1B 1C 1,则A 1的坐标为 .6.如图,AB ,CD 相交于点O ,OE ⊥AB ,垂足为O ,∠COE=44°,则∠AOD= .7.把命题“对顶角相等”写成“如果……,那么…….”的形式为 。
七年级下学期第二次月考数学试题含答案
七年级下学期第二次月考数学试题含答案一、选择题1.对于实数a ,我们规定,用符号a ⎡⎤⎣⎦表示不大于a 的最大整数,称a ⎡⎤⎣⎦为a 的根整数,例如:93⎡⎤=⎣⎦,103⎡⎤=⎣⎦.我们可以对一个数连续求根整数,如对5连续两次求根整数:5221.若对x 连续求两次根整数后的结果为1,则满足条件的整数x 的最大值为( ) A .5B .10C .15D .162.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N3.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >04.下列数中π、22733343 3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个B .2个C .3个D .4个5.下列一组数2211-8,3,0,2,0.010010001 (7)223π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( )A .0个B .1个C .2个D .3个6.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( ) A .26B .65C .122D .1237.若定义f (x )=3x ﹣2,如f (﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f (x )=1时,x =1;②对于正数x ,f (x )>f (﹣x )均成立;③f (x ﹣1)+f (1﹣x )=0;④当a =2时,f (a ﹣x )=a ﹣f (x ).其中正确的是( ) A .①②B .①③C .①②④D .①③④8.若a 、b 为实数,且满足|a -2|2b -0,则b -a 的值为( ) A .2B .0C .-2D .以上都不对9.下列判断中不正确的是( )A 37B .无理数都能用数轴上的点来表示C .﹣17>﹣4D .﹣5的绝对值为510.下列说法:①有理数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③某数的绝对值是它本身,则这个数是非负数;④16的平方根是±4,用式子表示是164=±.⑤若a ≥0,则2()a a =,其中错误的有( )A .1个B .2个C .3个D .4个二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.13.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___14.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____. 15.23(2)0y x --=,则y x -的平方根_________.16.49的平方根是________,算术平方根是______,-8的立方根是_____.17.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.18.已知2(21)10a b ++-=,则22004a b +=________.19.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.20.如图,数轴上的点A能与实数1 5,3,,22---对应的是_____________三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 12345678910111213 F G H J K L Z X C V B N M 14151617181920212223242526给出一个变换公式:(126,3)3217(126,31)318(126,32)3JJJxx x x xxx x x xxx x x x⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余将明文转成密文,如4+24+17=193⇒,即R变为L:11+111+8=123⇒,即A变为S.将密文转成成明文,如213(2117)210⇒⨯--=,即X变为P:133(138)114⇒⨯--=,即D变为F.(1)按上述方法将明文NET译为密文.(2)若按上方法将明文译成的密文为DWN,请找出它的明文.22.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 ……问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)23.下面是按规律排列的一列数: 第1个数:11(1)2--+. 第2个数:()()231112(1)11234⎡⎤⎡⎤----+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦. 第3个数:()()()()2345111113(1)111123456⎡⎤⎡⎤⎡⎤⎡⎤------+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦. …(1)分别计算这三个数的结果(直接写答案).(2)写出第2019个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果. 24.观察下列等式: ①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= .(3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 25.操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:(1)已知x=2,请画出数轴表示出x 的点:(2)在数轴上,我们把表示数2的点定为基准点,记作点O ,对于两个不同的点A 和B ,若点A 、 B 到点O 的距离相等,则称点A 与点B 互为基准等距变换点.例如图2,点A 表示数-1,点B 表示数5,它们与基准点O 的距离都是3个单位长度,我们称点A 与点B 互为基准等距变换点.①记已知点M表示数m,点N表示数n,点M与点N互为基准等距变换点.I.若m=3,则n= ;II.用含m的代数式表示n= ;②对点M进行如下操作:先把点M表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N,若点M与点N互为基准等距变换点,求点M表示的数;③点P在点Q的左边,点P与点Q之间的距离为8个单位长度,对Q点做如下操作: Q1为Q的基准等距变换点,将数轴沿原点对折后Q1的落点为Q2这样为一次变换: Q3为Q2的基准等距变换点,将数轴沿原点对折后Q3的落点为Q4这样为二次变换: Q5为Q4的基准等距变换点......,依此顺序不断地重复变换,得到Q5,Q6,Q7....Q n,若P与Q n.两点间的距离是4,直接写出n的值.26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a18=,a n=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230…①等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②由② ﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以3131212121S-==--请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示a n;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+a n.【参考答案】***试卷处理标记,请不要删除一、选择题1.C【分析】对各选项中的数分别连续求根整数即可判断得出答案.【详解】解:当x=5时,5221,满足条件;当x=10时,10331,满足条件;当x=15时,15331,满足条件;当x=16时,16442,不满足条件;∴满足条件的整数x的最大值为15,故答案为:C.【点睛】本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂题意.2.C解析:C【分析】.【详解】<<,∵91516<<<<,即:343与4之间,故数轴上的点为点M,故选:C.【点睛】本题主要考查了二次根式的估算,熟练掌握相关方法是解题关键.3.D解析:D【分析】根据实数在数轴上的位置判断大小,结合实数运算法则可得.【详解】根据数轴,﹣4<a<﹣3,﹣2<b<﹣1,0<c<1,2<d<3,∵﹣4<a<﹣3,0<c<1,∴ac<0,故A错误;∵﹣2<b<﹣1,0<c<1,∴1<|b|<2,0<|c|<1,故|c|<|b|,故B错误;∵﹣4<a<﹣3,2<d<3,∴﹣3<﹣d<﹣2,故a<﹣d,故C错误;∵﹣2<b<﹣1,2<d<3,∴b+d>0,故D正确.【点睛】本题主要考查实数与数轴以及实数的大小比较,熟练实数相关知识点是解答此题的关键.4.C解析:C 【解析】 【分析】根据无理数的概念解答即可. 【详解】解:在π、2273.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数是: π 3.2121121112…(每两个2之间多一个1),共3个, 故选C. 【点睛】本题考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.是有理数中的整数.5.C解析:C 【分析】根据无理数与有理数的概念进行判断即可得. 【详解】解:2211-8,3,0,2,0.010010001 (7223)π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有:0.010010001 (2)π,(相邻两个1之间依次增加一个0),共2个故选:C 【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方0.1010010001…,等.6.B解析:B 【分析】依照题意分别求出a l =26,n 2=8,a 2=65,n 3=11,a 3=122,n 4=5,a 4=26…然后依次循环,从而求出结果. 【详解】解:∵n 1=5,a l =52+1=26, n 2=8,a 2=82+1=65, n 3=11,a 3=112+1=122,n 4=5,…,a 4=52+1=26… ∵20183=6722÷∴20182=65=a a . 故选:B . 【点睛】此题考查数字的变化规律,找出数字之间的联系,得出数字之间的运算规律,利用规律解决问题.7.C解析:C 【分析】首先理解新定义运算的算法,再根据新定义运算方法列出所求式子,计算得到结果 【详解】 ∵f (x )=1, ∴3x ﹣2=1, ∴x =1,故①正确,f (x )﹣f (﹣x )=3x ﹣2﹣(﹣3x ﹣2)=6x , ∵x >0,∴f (x )>f (﹣x ),故②正确,f (x ﹣1)+f (1﹣x )=3(x ﹣1)﹣2+3(1﹣x )﹣2=﹣4, 故③错误,∵f (a ﹣x )=3(a ﹣x )﹣2=3a ﹣3x ﹣2, a ﹣f (x )=a ﹣(3x ﹣2), ∵a =2,∴f (a ﹣x )=a ﹣f (x ),故④正确. 故选:C . 【点睛】本题考查新定义运算,理解运算方法是重点,并且注意带入数据8.C解析:C 【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=, 所以a=2,b=0. 故b -a 的值为0-2=-2. 故选C.9.C解析:C 【分析】运用实数大小的比较、绝对值有理数和无理数的定义和性质逐项分析即可.【详解】解:A是无理数,原说法正确,故此选项不符合题意;B、无理数都能用数轴上的点来表示,原说法正确,故此选项不符合题意;C44,原说法错误,故此选项符合题意;D故答案为C.【点睛】本题主要考查了实数大小的比较、绝对值有理数和无理数的定义和性质等知识点,灵活运用相关定义和性质是解答本题的关键.10.B解析:B【分析】利用实数的分类,无理数的定义,绝对值的性质、平方根的定义及二次根式的性质.【详解】①有理数和数轴上的点是一一对应的,正确;②无理数不一定是开方开不尽的数,例如π,错误;③绝对值是它本身的数是非负数,正确;④16的平方根是±4,用式子表示是4±,错误;⑤若a≥0,则2a a==,正确;则其中错误的是2个,故选B.【点睛】本题考查了有理数,无理数,绝对值,平方根及二次根式,熟练掌握各自的定义是解本题的关键.二、填空题11..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.12.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.13.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.14.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:,且,∴y -3=0,x-2=0,..的平方根是.故答案为:.【点睛】此题考查算术平解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1.【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.16.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.17.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.18.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】 本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.19.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数12-. 【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.22.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.23.(1)12,32,52;(2)2019-(1+12-)(1+2(1)3-)(1+3(1)4-)…(1+()4036-14037)(1+4037(1)4038-)=40372. 【分析】根据有理数的运算法则,即可求解;按照规律,写出第2019个数:2019-(1+12-)(1+2(1)3-)(1+3(1)4-)…(1+()4036-14037)(1+()4037-14038 ),化简后,算出结果,即可.【详解】解:(1)12,32,52(2)第2019个数:2019-(1+12-)(1+2(1)3-)(1+3(1)4-)…(1+()4036-14037)(1+()4037-14038)=2019-1436523456⨯⨯⨯⨯×…×4038403740374038⨯=2019-12=40372 【点睛】 本题主要考查有理数的乘方和四则混合运算,关键是观察分析出前几个数之间的变化规律,写出第2019个数的形式,并进行计算.24.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯)=12×5051=2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.25.(1)见解析;(2)①I ,1;II 4-m ②112;③2或6. 【分析】(1)在数轴上描点;(2)由基准点的定义可知,22m n +=; (3)(3)设P 点表示的数是m ,则Q 点表示的数是m+8,由题可知Q 1与Q 是基准点,Q 2与Q 1关于原点对称,Q 3与Q 2是基准点,Q 4与Q 3关于原点对称,…由此规律可得到当n 为偶数,Q n 表示的数是m+8-2n ,P 与Q n 两点间的距离是4,则有|m-m-8+2n|=4即可求n ;【详解】解:(1)如图所示,(2)①Ⅰ.∵2是基准点,m=3,3到2的距离是1,所以到2的距离是1的另外一个点是1,∴n=1;故答案为1;Ⅱ.有定义可知:m+n=4,∴n=4-m ;故答案为:4-m②设点M 表示的数是m ,先乘以23,得到23m ,再沿着数轴向右移动2个单位长度得到点N 为23m+2,∵点M 与点N 互为基准等距变换点,∴23m+2+m=4,∴m=112; ③设P 点表示的数是m ,则Q 点表示的数是m+8,如图,由题可知Q 1表示的数是4-(m+8),Q 2表示的数是-4+(m+8),Q 3表示的数是8-(m+8),Q 4表示的数是-8+(m+8),Q 5表示的数是12-(m+8),Q 6表示的数是-12+(m+8)…∴当n 为偶数,Q n 表示的数是-2n+(m+8),∵若P与Q n两点间的距离是4,∴|m-[-2n+(m+8)]|=4,∴n=2或n=6.【点睛】本题考查新定义,数轴上数的特点;能够理解基准点的定义是解决问题的基础,从定义中探究出基准点的两个点是关于2对称的;(3)中找到Q的变换规律是解题的关键.26.(1)12,1712,n-112;(2)24332-;(3)()11111na aa--【分析】(1)12÷1即可求出q,根据已知数的特点求出a18和a n即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12,a18=1×(12)17=1712,a n=1×(12)n﹣1=112n-,故答案为:12,1712,112n-;(2)设S=3+32+33+ (323)则3S=32+33+…+323+324,∴2S=324﹣3,∴S=2433 2-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。
七年级下第二次月考数学试卷(有答案)
七年级下第二次月考数学试卷(有答案)一、选择题(本大题共30分,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a>b,则下列不等式正确的是()A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1 D. +1>+12.下列运算正确的是()A.x2•x3=x6B.a2+a3=a5C.y3÷y=y2D.(﹣2m2)3=﹣6m63.将3x﹣2y=1变形,用含x的代数式表示y,正确的是()A.x=B.y=C.y=D.x=4.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体 B.总体 C.样本容量 D.总体的样本5.如图,直线AB,CD被直线EF所截,交点分别为点E,F.若AB∥CD,下列结论正确的是()A.∠2=∠3 B.∠2=∠4 C.∠1=∠5 D.∠3+∠AEF=180°6.下列命题的逆命题为真命题的是()A.对顶角相等B.如果x=1,那么|x|=1C.直角都相等D.同位角相等,两直线平行7.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,)A.20,20 B.20,25 C.30,25 D.40,208.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是()A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不确定9.不等式组的整数解为()A.0,1,2,3 B.1,2,3 C.2,3 D.310.已知2m=3,4n=5,则23m+2n的值为()A.45 B.135 C.225 D.675二、填空题(本共18分,每小题3分)11.分解因式:﹣m2+4m﹣4═.12.一个角的补角比这个角大20°,则这个角的度数为°.13.将x2+6x+4进行配方变形后,可得该多项式的最小值为.14.如图,在长方形网格中,四边形ABCD的面积为.(用含字母a,b的代数式表示)15.现定义运算“*”,对于任意有理数a,b,满足a*b=.如5*3=2×5﹣3=7,*1=﹣2×1=﹣,计算:2*(﹣1)=;若x*3=5,则有理数x的值为.16.观察等式14×16=224,24×26=624,34×36=1224,44×46=2024,…,根据你发现的规律直接写出84×86=;用含字母的等式表示出你发现的规律为.三、计算题(本题共8分,每小题4分)17.﹣6ab(2a2b﹣ab2)18.已知a﹣2b=﹣1,求代数式(a﹣1)2﹣4b(a﹣b)+2a的值.四、分解因式(本题共6分,每小题6分)19.分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.五、解方程(组)或不等式(组)(本题共10分,每小题5分)20.解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.21.解方程组:.六、读句画图(本题共4分)22.已知:线段AB=3,点C为线段AB上一点,且AB=3AC.请在方框内按要求画图并标出相应字母:(1)在射线AM上画出点B,点C;(2)过点C画AB的垂线CP,在直线CP上取点D,使CD=CA;(3)联结AD,BD;(4)过点C画AD的平行线CQ,交BD于点E.七、解答题(本题共24分,每小题5分)23.已知:如图,直线EF分别与直线AB,CD相交于点P,Q,PM垂直于EF,∠1+∠2=90°.求证:AB∥CD.24.小明同学在做作业时,遇到这样一道几何题:已知:如图1,l1∥l2∥l3,点A、M、B分别在直线l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度数.小明想了许久没有思路,就去请教好朋友小坚,小坚给了他如图2所示的提示:请问小坚的提示中①是∠,④是∠.理由②是:;理由③是:;∠CMD的度数是°.25.列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?26.为弘扬中国传统文化,今年在北京园博园举行了“北京戏曲文化周”活动,活动期间开展了多种戏曲文化活动,主办方统计了4月30日至5月3日这四天观看各种戏剧情况的部分相关数据,绘制统计图表如下:93人,则a=;(2)请计算4月30日至5月3日接待观众人数的日平均增长量;(3)根据(2)估计“北京戏曲文化周”活动在5月4日接待观众约为人.27.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a>b,则下列不等式正确的是()A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1 D. +1>+1【考点】不等式的性质.【分析】根据不等式的性质逐一判断,判断出正确的不等式是哪个即可.【解答】解:∵a>b,∴3a>3b,∴选项A不正确;∵a>b,∴m<0时,ma<mb;m=0时,ma=mb;m>0时,ma>mb,∴选项B不正确;∵a>b,∴﹣a<﹣b,∴﹣a﹣1<﹣b﹣1,∴选项C不正确;∵a>b,∴>,∴+1>+1,∴选项D正确.故选:D.2.下列运算正确的是()A.x2•x3=x6B.a2+a3=a5C.y3÷y=y2D.(﹣2m2)3=﹣6m6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的除法法则:底数不变,指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘分别进行计算即可.【解答】解:A、x2•x3=x5,故原题计算错误;B、a2和a3不能合并,故原题计算错误;C、y3÷y=y2,故原题计算正确;D、(﹣2m2)3=﹣8m6,故原题计算错误;故选:C.3.将3x﹣2y=1变形,用含x的代数式表示y,正确的是()A.x=B.y=C.y=D.x=【考点】解二元一次方程.【分析】把x看做已知数表示出y即可.【解答】解:3x﹣2y=1,解得:y=,故选B4.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体 B.总体 C.样本容量 D.总体的样本【考点】总体、个体、样本、样本容量.【分析】根据总体:我们把所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【解答】解:为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,故选:C.5.如图,直线AB,CD被直线EF所截,交点分别为点E,F.若AB∥CD,下列结论正确的是()A.∠2=∠3 B.∠2=∠4 C.∠1=∠5 D.∠3+∠AEF=180°【考点】平行线的性质.【分析】利用平行线的性质逐项分析即可.【解答】解:∵AB∥CD,∴∠1=∠2,∠3=∠4,∠3+∠AEF=180°,∵∠3=∠5,∴∠4=∠5,所以D选项正确,故选D.6.下列命题的逆命题为真命题的是()A.对顶角相等B.如果x=1,那么|x|=1C.直角都相等D.同位角相等,两直线平行【考点】命题与定理.【分析】分别写出四个命题的逆命题,然后利用对顶角的定义、绝对值的意义、直角的定义和平行线的性质判断它们的真假.【解答】解:A、逆命题为:相等的角为对顶角,此逆命题为假命题.B、逆命题为:若|x|=1,则x=1,此逆命题为假命题;C、逆命题为:相等的角为直角,此逆命题为假命题;D、逆命题为:两直线平行,同位角相等,此逆命题为真命题.故选D.7.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,)A.20,20 B.20,25 C.30,25 D.40,20【考点】众数;统计表;中位数.【分析】根据表格中的数据可以得到这组数据的众数和中位数,本题得以解决.【解答】解:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A.8.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是()A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不确定【考点】垂线;余角和补角.【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【解答】解:∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.9.不等式组的整数解为()A.0,1,2,3 B.1,2,3 C.2,3 D.3【考点】一元一次不等式组的整数解.【分析】先解不等式组得到<x≤3,然后找出此范围内的整数即可.【解答】解:,解①得x>,解②得x≤3,所以不等式组的解集为<x≤3,不等式组的解为1,2,3.故选B.10.已知2m=3,4n=5,则23m+2n的值为()A.45 B.135 C.225 D.675【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先将23m+2n变形为(2m)3•(22)n,然后带入求解即可.【解答】解:原式=(2m)3•(22)n=33•5=135.故选B.二、填空题(本共18分,每小题3分)11.分解因式:﹣m2+4m﹣4═﹣(m﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取﹣1,再利用完全平方公式分解即可.【解答】解:原式=﹣(m2﹣4m+4)=﹣(m﹣2)2,故答案为:﹣(m﹣2)212.一个角的补角比这个角大20°,则这个角的度数为80°.【考点】余角和补角.【分析】设这个角的度数为n°,根据互补两角之和等于180°,列出方程求解即可.【解答】解:设这个角的度数为n°,根据题意可得出,﹣n=20,解得:n=80.所以这个角的度数为80°.故答案为:80.13.将x2+6x+4进行配方变形后,可得该多项式的最小值为﹣5.【考点】解一元二次方程-配方法.【分析】将x2+6x+4利用配方法转化为(x+3)2﹣5,然后根据(x+3)2≥0可得多项式x2+6x+4的最小值.【解答】解:∵x2+6x+4=(x+3)2﹣5,∴当x=﹣3时,多项式x2+6x+4取得最小值﹣5;故答案为﹣5.14.如图,在长方形网格中,四边形ABCD的面积为10ab.(用含字母a,b的代数式表示)【考点】整式的混合运算.【分析】根据图形可以表示出四边形ABCD的面积,然后化简合并同类项即可解答本题.【解答】解:由图可知,四边形ABCD的面积是:4a•4b﹣=10ab.15.现定义运算“*”,对于任意有理数a,b,满足a*b=.如5*3=2×5﹣3=7,*1=﹣2×1=﹣,计算:2*(﹣1)=5;若x*3=5,则有理数x的值为4.【考点】有理数的混合运算.【分析】因为2>﹣1,故2*(﹣1)按照a*b=2a﹣b计算;x*3=5,则分x≥3与x<3两种情况求解.【解答】解:∵2>﹣1,∴根据定义a*b=得:2*(﹣1)=2×2﹣(﹣1)=4+1=5.而若x*3=5,当x≥3,则x*3=2x﹣3=5,x=4;当x<3,则x*3=x﹣2×3=5,x=11,但11>3,这与x<3矛盾,所以种情况舍去.即:若x*3=5,则有理数x的值为4故答案为:5;4.16.观察等式14×16=224,24×26=624,34×36=1224,44×46=2024,…,根据你发现的规律直接写出84×86=7224;用含字母的等式表示出你发现的规律为(10n+4)(10n+6)=100n(n+1)+24.【考点】规律型:数字的变化类.【分析】仔细观察后直接写出答案,分别表示出两个因数后即可写出这一规律.【解答】解:84×86=7224;(10n+4)(10n+6)=100n(n+1)+24(n为正整数),故答案为:7224;(10n+4)(10n+6)=100n(n+1)+24三、计算题(本题共8分,每小题4分)17.﹣6ab(2a2b﹣ab2)【考点】单项式乘多项式.【分析】根据单项式与多项式相乘的运算法则计算即可.【解答】解:原式=﹣6ab•2a2b+6ab•ab2=﹣12a3b2+2a2b3.18.已知a﹣2b=﹣1,求代数式(a﹣1)2﹣4b(a﹣b)+2a的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=a2﹣2a+1﹣4ab+4b2+2a=(a﹣2b)2+1,当a﹣2b=﹣1时,原式=2.四、分解因式(本题共6分,每小题6分)19.分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】(1)原式提取x,再利用平方差公式分解即可;(2)原式利用完全平方公式及十字相乘法分解即可.【解答】解:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=(x2﹣x﹣6)2=(x+2)2(x﹣3)2.五、解方程(组)或不等式(组)(本题共10分,每小题5分)20.解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去括号,再移项,合并同类项,把x的系数化为1并在数轴上表示出来即可.【解答】解:去括号得,2x﹣11<4x﹣20+3,移项得,2x﹣4x<﹣20+3+11,合并同类项得,﹣2x<﹣6,x的系数化为1得,x>3.在数轴上表示为:.21.解方程组:.【考点】解二元一次方程组.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:②×6得:6x﹣2y=10③,①+③得:11x=11,即x=1,将x=1代入①,得y=﹣2,则方程组的解为.六、读句画图(本题共4分)22.已知:线段AB=3,点C为线段AB上一点,且AB=3AC.请在方框内按要求画图并标出相应字母:(1)在射线AM上画出点B,点C;(2)过点C画AB的垂线CP,在直线CP上取点D,使CD=CA;(3)联结AD,BD;(4)过点C画AD的平行线CQ,交BD于点E.【考点】作图—复杂作图.【分析】(1)直接利用AB=3AC,线段AB=3,进而得出B,C点位置;(2)首先作出PC⊥AB,再截取CD=CA;(3)利用D、D′点位置进而得出答案;(4)利用平行线的作法进而得出符合题意的图形.【解答】解:(1)如图所示:点B,C即为所求;(2)如图所示:点D,D′即为所求;(3)如图所示:AD,AD′即为所求;(4)如图所示:EC,CE′即为所求.七、解答题(本题共24分,每小题5分)23.已知:如图,直线EF分别与直线AB,CD相交于点P,Q,PM垂直于EF,∠1+∠2=90°.求证:AB∥CD.【考点】平行线的判定.【分析】先根据垂直的定义得出∠APQ+∠2=90°,再由∠1+∠2=90°得出∠APQ=∠1,进而可得出结论.【解答】证明:∵PM⊥EF(已知),∴∠APQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠APQ=∠1(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).24.小明同学在做作业时,遇到这样一道几何题:已知:如图1,l1∥l2∥l3,点A、M、B分别在直线l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度数.小明想了许久没有思路,就去请教好朋友小坚,小坚给了他如图2所示的提示:请问小坚的提示中①是∠2,④是∠AMD.理由②是:两直线平行,内错角相等;理由③是:角平分线定义;∠CMD的度数是21°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠1=∠AMD=28°,∠2=∠DMB=70°,进而可得∠AMB,再根据角平分线定义可得∠BMC的度数,然后可得答案.【解答】解:∵l1∥l2∥l3,∴∠1=∠AMD=28°,∠2=∠DMB=70°(两直线平行,内错角相等),∴∠AMB=28°+70°=98°,∵MC平分∠AMB,∴∠BMC=∠AMB=98°×=49°(角平分线定义),∴∠DMC=70°﹣49°=21°,故答案为:2;AMD;两直线平行,内错角相等;角平分线定义;21.25.列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?【考点】二元一次方程组的应用.【分析】设生产帽子x件,生产T恤y件,根据“两种纪念品共生产6000件,且T恤比帽子的2倍多300件”列方程组求解可得.【解答】解:设生产帽子x件,生产T恤y件.根据题意,得:,解得:答:生产帽子1900件,生产T恤4100件.26.为弘扬中国传统文化,今年在北京园博园举行了“北京戏曲文化周”活动,活动期间开展了多种戏曲文化活动,主办方统计了4月30日至5月3日这四天观看各种戏剧情况的部分相关数据,绘制统计图表如下:93人,则a=775;(2)请计算4月30日至5月3日接待观众人数的日平均增长量;(3)根据(2)估计“北京戏曲文化周”活动在5月4日接待观众约为801人.【考点】扇形统计图;用样本估计总体;统计表;加权平均数.【分析】(1)用当天看豫剧的人数除以看豫剧人数占当天总人数的百分比即可得;(2)用4月30日至5月3日增加的人数除以天数即可得;(3)根据(2)中日均增加的人数,估计5月4日在5月3日基础上也大约增加26人,即可得答案.【解答】解:(1)若5月3日当天看豫剧的人数为93人,则a==775(人),故答案为:775;(2)4月30日至5月3日接待观众人数的日平均增长量为=26;(3)由(2)知,接待观众人数的日平均增长量为26人,∴估计该活动在5月4日接待观众约为775+26=801人,故答案为:801.27.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.【考点】二元一次方程组的解.【分析】根据题意得出关于a、b的方程组,求出方程组的解即可.【解答】解:由题意可得:,解之,,所以a=6,b=.2016年10月25日。
七年级下学期第二次月考数学试题_(含答案)
第1页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………七年级下学期第二次月考数学试题考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共8题)( )A .2x +5=B .3x -2y =6C .=5-xD .x 2+2x =02. 下列四组数中,是方程的解的是( )A .B .C .D .3. 如果,则下列变形中正确的是( )A .B .C .D .4. 已知等腰三角形的两边长分别为和,则它的周长为( )A .B .C .D .5. 下列标志中,可以看作是轴对称图形的是( )A .B .C .D .6. 若一个多边形的每个外角都等于60°,则它的内角和等于( ) A .180°B .720°C .1080°D .540°7.如图:,要使,则只要( )答案第2页,总8页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .8.如图,在△ABC中,BC边上的高是( )A .CEB .ADC .CFD .AB第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共6题)1. 已知,用含的代数式表示,则_______________.2. 装修大世界出售下列形状的地砖:(1)正三角形;(2)正五边形;(3)正六边形;(4)正八边形;(5)正十边形,若只选购一种地砖镶嵌地面,你有___________种选择.3. 三角形的三边长分别是,则的取值范围是__________ .4. 如图所示,请将用“>”排列__________________.5. 如图,将直角△ABC 沿BC 方向平移得到直角△DEF ,其中AB =8,BE =6,DM =4,则阴影部分的面积是______.6. 如图,在△ABC 中,△BAC =70°,将△ABC 绕点A 逆时针旋转,得到△AB 'C ',连接C 'C .若C 'C △AB ,则第3页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………△BAB '=______°.评卷人 得分二、解答题(共10题)列方程(组):(1)(2) 8. 解下列不等式(组): (1)(2)9. 已知是方程的解,求关于的方程 的解.10. 如果一个多边形的内角和是它的外角和的6倍,那么这个多边形是几边形.11. 学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本? 12.如图,,,,证明:△△△.证明:△,(已知) △=________,=________() 在△与△中,答案第4页,总8页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………△△△△( ).13. 如图,.求证:.14. 如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上.(1)画出△ABC 关于直线OM 对称的△A 1B 1C 1. (2)画出△ABC关于点O的中心对称图形△A 2B 2C 2.(3)△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A 1B 1C 1与△A 2B 2C 2组成的图形 (填“是”或“不是”)轴对称图形.15. 某汽车制造厂开发一款新式电动汽车,计划一年生产安装辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:名熟练工和名新工人每月可安装辆电动汽车;名熟练工和名新工人每月可安装辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车? (2)如果工厂招聘名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?16. 将一副三角板中的两块直角三角尺的直角顶点O 按如图方式叠放在一起. (1)如图(1)若△BOD =35°,则△AOC= . 如图(2)若△BOD =35°,则△AOC= . (2)猜想△AOC 与△BOD 的数量关系,并结合图(1)说明理由. (3)三角尺AOB 不动,将三角尺COD 的OD 边与OA 边重合,然后绕点O 按顺时针或逆时针方向任意第5页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………转动一个角度,当△AOD (0°<△AOD <90°)等于多少度时,这两块三角尺各有一条边互相垂直.(填空) (3)当 △ 时,△AOD = . 当 △ 时,△AOD = . 当 △ 时,△AOD = .当 △ 时,△AOD = .参数答案1.【答案】:mx_answer_5197942.png 【解释】:mx_parse_5197942.png 2.【答案】:mx_answer_5197943.png 【解释】:mx_parse_5197943.png 3.【答案】:mx_answer_5197944.png 【解释】:mx_parse_5197944.png 4.【答案】:mx_answer_2606036.png 【解释】:mx_parse_2606036.png 5.【答案】:mx_answer_8292048.png 【解释】:mx_parse_8292048.png 6.【答案】:mx_answer_6028787.png答案第6页,总8页【解释】:mx_parse_6028787.png 7.【答案】:mx_answer_8292049.png 【解释】:mx_parse_8292049.png 8.【答案】:mx_answer_5197947.png 【解释】:mx_parse_5197947.png 【答案】:mx_answer_8292050.png 【解释】:mx_parse_8292050.png 【答案】:mx_answer_5197950.png 【解释】:mx_parse_5197950.png 【答案】:mx_answer_1387592.png 【解释】:mx_parse_1387592.png 【答案】:mx_answer_8292051.png 【解释】:mx_parse_8292051.png 【答案】:mx_answer_8292052.png 【解释】:mx_parse_8292052.png 【答案】:mx_answer_8292053.png 【解释】:mx_parse_8292053.png 【答案】:第7页,总8页mx_answer_8292054.png 【解释】:mx_parse_8292054.png 【答案】:mx_answer_5197955.png 【解释】:mx_parse_5197955.png 【答案】:mx_answer_8292055.png 【解释】:mx_parse_8292055.png 【答案】:mx_answer_5197957.png 【解释】:mx_parse_5197957.png 【答案】:mx_answer_5197958.png 【解释】:mx_parse_5197958.png 【答案】:mx_answer_8292056.png 【解释】:mx_parse_8292056.png 【答案】:mx_answer_8292057.png 【解释】:mx_parse_8292057.png 【答案】:mx_answer_5197961.png 【解释】:mx_parse_5197961.png 【答案】:mx_answer_4888186.png答案第8页,总8页【解释】:mx_parse_4888186.png【答案】:mx_answer_8292058.png【解释】:mx_parse_8292058.png。
2020-2021学年七年级数学下学期月考考试含答案
一、选择题(共10小题,每小题2分,共20分) 1.下列计算正确的是( ▲ )A.632a a a =•B.y y y =÷33C.m 3 + 3n = 6mnD.623)(x x = 2.如果( )×23262b a b a -=,则( ▲ )内应填的代数式是 A.23ab -B.ab3- C. ab 3 D. 23ab3.下列计算正确的是( ▲ ) A. (-a3)÷(-a)7=41a B.(-1)-1=1 C.2a -3=321a D. (-1)0=-14.下列算式能用平方差公式计算的是( ▲ )A .(2a +b )(2b -a )B .)1)(1(--+x xC .(-a -b )(-a +b )D .(3x -y )(-3x +y )5.下列四个图中,∠1和∠2是对顶角的图的个数是( ▲ )A .0个B .1个C .2个D .3个6.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示是(▲ )。
A.41043.0-⨯B.5103.4-⨯C.61043-⨯D.5103.4⨯12 1 21212EODCBA21FECBA7.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为4a2-12ab+ ,你觉得这一项应是( ▲ )A.3b2B.6b2C. 36b2D.9b28.已知:如图,∠1=∠2,则有( ▲ )A.AB ∥CDB.AE ∥DFC. AB ∥CD 且AE ∥DFD.以上都不对9.下列各式中,计算结果是x2-3x-28的是(▲ )。
A .(x+7)(x+4)B 。
(x-2)(x+14)C 。
(x+4)(x-7)D 。
(x+7)(x-4) 10.如图1-4-1,从边长为(a +4) cm 的正方形纸片中剪去一个边长为⎝⎛⎭⎫a +1 cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ▲ )A .(2a2+5a) cm2B .(3a +15) cm2C .(6a +9) cm2D .(6a +15) cm2二、填空题(共6小题,每小题3分,共18分) 温馨提示:填空题必须是将最简洁最正确的答案填在空格处!11.计算:8xy2÷(-4xy)=____ ▲ _______ . 12.计算:32a a •= ________▲ ___.13.若α∠=36°,则∠α的补角为__▲ ____度.14.如图:AB 、CD 相交于点O ,OB 平分∠DOE ,若∠DOE =64°, 则∠AOC 的度数是 ▲ 度.15.把241x +加上一个单项式,使其成为一个完全平方式.请你写出所有符合条件的单项式_________▲ ____.。
成都列五中学七年级数学上册第二单元《整式的加减》测试(含答案解析)
一、选择题1.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 2.若代数式4x +的值是2,则x 等于( ) A .2B .2-C .6D .6- 3.关于x 的方程2x m 3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .3 4.下列方程中,其解为﹣1的方程是( ) A .2y=﹣1+y B .3﹣y=2 C .x ﹣4=3 D .﹣2x ﹣2=4 5.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43- 6.解方程32282323x x x ----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x );②6x ﹣4﹣3x ﹣6=16﹣4x ;③3x +4x =16+10;④x =267. A .① B .② C .③ D .④7.对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.8.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D9.佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( )A .2060元B .3500元C .4000元D .4100元 10.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n11.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2 B .12 C .-2 D .1-212.下列方程中,以x =-1为解的方程是( )A .B .7(x -1)=0C .4x -7=5x +7D .x =-3二、填空题13.我们规定:若关于x 的一元一次方程ax =b 的解为b +a ,则称该方程为“和解方程“. 例如:方程2x =﹣4的解为x =﹣2,而﹣2=﹣4+2,则方程2x =﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程3x =a 是“和解方程”,则a 的值为_____;(2)已知关于x 的一元一次方程﹣2x =ab +b 是“和解方程“,并且它的解是x =b ,则a +b 的值为_____.14.为了创建宜居城市,某单位积极响应植树活动,由一人植树要80小时完成.现由一部分人植树5小时,由于单位有紧急事情,再增加2人,4小时后完成植树任务.若这些人的工作效率相同,则先植树的有________人.15.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.16.一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;17.若4a +9与3a +5互为相反数,则a 的值为_____.18.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.19.若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.20.已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.三、解答题21.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且24(1)0a b ++-=,现将A ,B 之间的距离记作BA ,定义AB a b .(1)求,a b 的值;(2)求AB 的值; (3)设点P 在数轴上对应的数是x ,当2PA PB -=时,求x 的值22.一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时?23.为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.下表是小明家1至4月份水量和缴纳水费情况,根据表格提供的数据,回答:)规定用量内的收费标准是 元吨,超过部分的收费标准是 元/吨;(2)问该市每户每月用水规定量是多少吨?(3)若小明家六月份应缴水费50元,则六月份他们家的用水量是多少吨?24.运用等式的性质解下列方程:(1)3x =2x -6;(2)2+x =2x +1;(3)35x -8=-25x +1. 25.利用等式的性质解下列方程:(1)x -2=5;(2)-23x =6; (3)3x =x +6.26.解方程:(1)3x ﹣4=2x +5; (2)253164x x --+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设小长方形的长为x,根据大的长方形对边相等得到小长方形的宽为2x,再根据长方形的周长列等量关系得到2(2x+2x+x)=150,再解方程求出x,然后计算小长方形的面积.【详解】解:设小长方形的长为x,则宽为2x,根据题意得2(2x+2x+x)=150,解得x=15,2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm2.故选A.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.2.B解析:B【分析】由已知可得4x+=2,解方程可得.【详解】由已知可得4x+=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.3.B解析:B【解析】由已知得413m-=,解得m=1;故选B.4.A解析:A 【分析】分别求出各项中方程的解,即可作出判断.【详解】解:A 、方程2y=-1+y ,移项合并得:y=-1,符合题意;B 、方程3-y=2,解得:y=1,不合题意;C 、方程x-4=3,移项合并得:x=7,不合题意;D 、方程-2x-2=4,移项合并得:-2x=6,解得:x=-3,不合题意,故选A .【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.C解析:C【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值.【详解】 解第一个方程得:133k y -=, 解第二个方程得:53y =-, ∴133k -=53-, 解得:k=2.故选C .【点睛】 本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义.6.B解析:B【分析】根据解一元一次方程的基本步骤依次计算可得.【详解】①去分母,得:2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x );②6x ﹣4﹣3x+6=16﹣4x ,③6x ﹣3x+4x =16+4﹣6,④x =2,错误的步骤是第②步,【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.7.D解析:D【分析】ax+b=0(a,b为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A、当a≠0时,方程的解是x=-ba,故错误;B、当a=0,b≠0时,方程无解,故错误;C、当a=0,b=0,方程有无数解,故错误;D、以上都不正确.故选D.【点睛】此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.8.A解析:A【分析】设运动x秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出x的值,将其代入2x中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点.【详解】解:设运动x秒后,乌龟和兔子第2020次相遇,依题意,得:2x+6x=2×4×2020,解得:x=2020,∴2x=4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A.故选:A.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.C解析:C【分析】设佳佳的压岁钱是x元,根据利息本金之和为4120元,列方程求解即可.设佳佳的压岁钱是x 元.根据题意,得(1 1.5%)4060x +=,解得4000x =.故选C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.A解析:A【分析】要比较m 、n 、k 的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.【详解】解:(1)∵|2x−3|+m =0无解,∴m >0.(2)∵|3x−4|+n =0有一个解,∴n =0.(3)∵|4x−5|+k =0有两个解,∴k <0.∴m >n >k .故选:A .【点睛】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.11.B解析:B【分析】根据题意列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:2x-6+3+4x=0移项合并得:6x=3,解得:x=12, 故选:B .【点睛】 本题考查解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.12.A解析:A【解析】【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-1分别代入四个选项进行检验即可.【详解】解:A、把x=-1代入方程的左边= -=右边,左边=右边,所以是方程的解;B、把x=-1代入方程的左边=-14≠右边,所以不是方程的解;C、把x=-1代入方程的左边=-11≠右边,不是方程的解;D、把x=-1代入方程的左边=-≠右边,不是方程的解;故选:A.【点睛】本题关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.二、填空题13.【详解】解:(1)解方程3x=a得x=∵关于x的一元一次方程3x=a是和解方程∴=3+a解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b∴﹣2b=ab+b∵方程﹣2x=ab+b是和解方程∴b=a解析:92-113-【详解】解:(1)解方程3x=a得x=,∵关于x的一元一次方程3x=a是“和解方程”,∴=3+a,解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b,∴﹣2b=ab+b,∵方程﹣2x=ab+b是“和解方程“,∴b=ab+b﹣2,即b=﹣2b﹣2,解得b=﹣,∴a=﹣3,∴a+b=﹣3﹣=﹣.故答案为﹣,﹣.14.8【分析】理解题意根据工作总量等于各分量之和设先植树的有x人可得【详解】设先植树的有x人可得解得x=8故答案为:8【点睛】考核知识点:一元一次方程应用根据工作量关系列出方程是关键解析:8【分析】理解题意,根据工作总量等于各分量之和,设先植树的有x 人,可得()42518080x x ++=. 【详解】设先植树的有x 人,可得 ()42518080x x ++=, 解得x =8.故答案为:8【点睛】考核知识点:一元一次方程应用.根据工作量关系列出方程是关键.15.4【解析】8个班进行友谊赛也就是说每个班级要和其余7个班级比赛根据总比赛场数为7设赢了x 场则3x+(7-x)=15解得x=4故答案为:4解析:4【解析】8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x 场,则3x +(7-x )=15,解得x =4,故答案为:4.16.x +3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之解析:x +3【分析】根据顺水速度=静水中的速度+水速,即可列出代数式.【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题,解决问题的关键是读懂题意,找到所求的量之间的关系. 17.-2【分析】利用相反数的性质求出a 的值即可【详解】解:根据题意得:4a+9+3a+5=0移项合并得:7a =﹣14解得:a =﹣2故答案为﹣2【点睛】本题考查了解一元一次方程以及相反数熟练掌握运算法则是解析:-2【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a +9+3a +5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键. 18.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买解析:200元或210元【分析】根据购物顺序不同分类讨论即可.【详解】①若先买单价为120元的物品,赠送一张50元购物券,再去买单价为60元和80元的物品,实际花费为:120+60+80-50=210元;②若先买60元和80元的物品,赠送一张50元购物券,再去买120元的物品,实际花费为:60+80+120-50=210元;③若先买60元和120元的物品,赠送一张50元购物券,再去买80元的物品,实际花费为:60+120+80-50=210元;④若先买80元和120元的物品,赠送两张50元购物券,再去买60元的物品,此时购物券可抵扣60元,实际花费为:120+80=200元;故答案为200元或210元.【点睛】此题考查的是分类讨论的数学思想.19.【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组求出a 的值即可【详解】∵是关于x 的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元 解析:1-【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组,求出a 的值即可.【详解】∵()||110a a x --=是关于x 的一元一次方程, ∴1=a 且10a -≠,解得a=-1.故答案为:-1【点睛】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.20.5【解析】【分析】此题用m 替换x 解关于m 的一元一次方程即可【详解】∵x =m ∴3m−2=2m+3解得:m =5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数解析:5【解析】【分析】此题用m 替换x ,解关于m 的一元一次方程即可.【详解】∵x =m ,∴3m−2=2m+3,解得:m =5.故答案为:5.【点睛】本题考查一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.三、解答题21.(1)-4,1;(2)5;(3)12x =- 【分析】(1)根据非负数的和为0,各项都为0,求出a ,b 的值即可;(2)根据数轴上两点间的距离公式AB a b 计算即可求解;(3)分三种情况解题,当P 在点A 左侧时,当P 在点B 右侧时,当P 在A 、B 之间时,再利用AB a b 解答即可. 【详解】解:(1)∵24(1)0a b ++-=,∴4010a b +=⎧⎨-=⎩, 解得:41a b =-⎧⎨=⎩, (2))∵41a b =-⎧⎨=⎩, ∴4155AB a b ; (3)当P 在点A 左侧时,()52,PA PB PB PA AB -=--=-=-≠ 当P 在点B 右侧时,52PA PB AB -==≠.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,()44,11,PA x x PB x x =--=+=-=- ∵2PA PB -=,∴()412x x +--=. ∴12x =-, 即x 的值为12-. 【点睛】 本题考查了绝对值问题,有理数的乘方的意义,一元一次方程的解法,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.22.3【分析】设三队合作时间为x ,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh ,乙、丙两队合作为(6)x h -,总工程量为1, 由题意得:11111()()(6)11015201520x x ++++-=, 解得:3x =,答:甲队实际工作了3小时.【点睛】 本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.23.(1)2;3(2)规定用水量为10吨(3)六月份的用水量为20吨【分析】(1)由小明家1,2月份的用水情况,可求出规定用量内的收费标准;由小明家3,4月份的用水情况,可求出超过部分的收费标准;(2)设该市规定用水量为a 吨,由小明家3月份用水12吨缴纳26元,即可得出关于a 的一元一次方程,解之即可得出结论;(3)设小明家6月份的用水量是x 吨,根据应缴水费=2×10+3×超出10吨部分,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】(1)由表可知,规定用量内的收费标准是2元/吨,超过部分的收费标准为3元/吨 (2)设规定用水量为a 吨;则23(12)26a a +-=,解得:10a =,即规定用水量为10吨;(3)∵2102050⨯=<,∴六月份的用水量超过10吨,设用水量为x 吨,则2103(10)50x ⨯+-=,解得:20x, ∴六月份的用水量为20吨 【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:通过分析小明家1-4月用水量和交费情况,找出结论;找准等量关系,正确列出一元一次方程. 24.(1)x =-6;(2)x =1;(3)x =9【分析】(1)根据等式的性质:方程两边都减2x ,可得答案;(2)根据等式的性质:方程两边都减x ,化简后方程的两边都减1,可得答案. (3)根据等式的性质:方程两边都加25x ,化简后方程的两边都加8,可得答案. 【详解】(1)两边减2x ,得3x -2x =2x -6-2x .所以x =-6.(2)两边减x ,得2+x -x =2x +1-x .化简,得2=x +1.两边减1,得2-1=x +1-1所以x =1.(3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8.所以x =9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 25.(1)x =7;(2)x =-9;(3)x =3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解; (3)两边同时减x ,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x -2+2=5+2,即x =7.(2)等式两边乘-32,得x =6×(-32), 即x =-9.(3)等式两边减x ,得2x =6.两边除以2,得x =3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立. 26.(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键.。
七年级数学下学期第二次月考试题 试题_3
2021-2021学年度第二学期第二次质量调研七年级数学试卷时间:2022.4.12单位:……*** 创编者:十乙州〔总分:100分时间是:90分钟〕一.选择题:〔每一小题3分,一共24分〕〔〕1. 为了考察某初中3500名毕业生的数学成绩,从中抽出20本套试卷,每本30份,在这个问题中,样本容量是A.3500 B.20 C.30D.600〔〕倍,它是A. 四边形B. 五边形C. 六边形D. 八边形〔〕()1122331xx x⎧+≤⎪⎨⎪-<+⎩的解集在数轴上表示正确的选项是〔〕4.某股票在七个月之内增长率的变化状况如下图.从图上看出,以下结论不正确的选项是A.2~6月份股票月增长率逐渐减少B .7月份股票的月增长率开场上升C .这七个月中,每月的股票不断上涨D .这七个月中,股票有涨有跌〔 〕5.如图,在△ABC 中,点D 在BC 上,且AD=BD=CD ,AE 是BC 边上的高,假设沿AE所在直线折叠,点C 恰好落在点D 处,那么∠B 等于 A .25° B.30° C.45° D.60°〔 〕6. 如图,AB=AC=BD ,那么∠1和∠2之间的关系是A. ∠1=2∠2B. 2∠1+∠2=180°C. 3∠1-∠2=180°D. ∠1+3∠2=180°〔 〕7.关于x 的不等式组21x x x a <⎧⎪>-⎨⎪<⎩,,无解,那么a 的取值范围是〔 〕 A.1a ≤-B.12a -<< C.a ≥0 D.2a ≤〔 〕8.下面说法正确的个数有〔 〕①假如三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②假如三角形的一个外角等于与它相邻的一个内角,那么这个三角形是直角三角形;③假如一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④假如∠A=21∠B =21∠C ,那么△ABC 是直角三角形;⑤假设三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在∆ABC 中,假设∠A +∠B=∠C ,那么此三角形是直角三角形。
七年级数学下学期第二次月考试题21
智才艺州攀枝花市创界学校宁县育新二零二零—二零二壹七年级下学期第二次月考数学试题一.选择题(每一小题3分,一共30分)1.如右图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD , 使其不变形,这样做的根据是〔〕。
A .两点之间的线段最短B .长方形的四个角都是直角C .长方形的稳定性D .三角形的稳定性2在以下长度的四根木棒中,能与3cm 和7cm 的两根木棒围成一个三角形的是〔〕A 、7cmB 、4cmC 、3cmD 、10cm3.以下调查方式适宜的是()A .为了理解民对电影金陵十三钗的感受,小明在某校随机采访了10名九年级学生B .为了理解某电视台大运会收视情况,小白同学在网上向4位好友做了调查 “神州八号〞卫星零部件的状况,检测人员采用了全面调查的方式 D .为了理解全国青少年的睡眠时间是,统计人员采用了全面调查方式。
4.不等式组10235x x +⎧⎨+<⎩≤,的解集在数轴上表示为〔〕5.为理解一批电视机的使用寿命,从中抽取100台电视机进展试验,这个问题的样本是:〔〕A 、这批电视机B 、这批电视机的使用寿命C 、抽取的100台电视机使用寿命D 、100A .B .C .D .6.如图,直线AB 与直线CD 相交于点O ,OE ⊥AB ,垂足为O ,∠EOD=21∠AOC , 那么∠BOC=〔〕A .150°B .140°C .130°D .120°7.如图,是象棋盘的一局部,假设帅位于点〔1,-2〕上,相位于点〔3,-2〕上,那么炮位于点〔〕上. A.〔-1,1〕B.〔-1,2〕C.〔-2,1〕D.〔-2,2〕 8.如图,∠A+∠B+∠C+∠D+∠E+∠F 等于〔〕 A .180°B .360°C .540°D .720°9.小龙和小刚两人玩“打弹珠〞游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子〞.小刚却说:“只要把你的31给我,我就有10颗〞,假设设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,那么列出的方程组正确的选项是〔〕 A .⎩⎨⎧=+=+303202y x y x B .⎩⎨⎧=+=+103102y x y x C .⎩⎨⎧=+=+103202y x y x D .⎩⎨⎧=+=+303102y x y x10、如图,周长为34cm 的长方形ABCD 被分成7个形状大小完全一样的小长方形,那么长方形ABCD 的面积为〔〕 A .49cm 2B .68cm 2C .70cm 2D .74cm 2二.填空〔每一小题3分,一共24分〕 11.将方程632=+yx 写成用含x 的代数式表示y ,那么y =____.12.假设点P 〔a-2,a+2〕在y 轴上,那么P 点坐标为_________________。
2020-2021成都列五中学七年级数学下期中试卷及答案
B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;
C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.
(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)
(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;
(2)请写出你猜想的第n个等式(用含n的式子表示),并证明该等式成立.
25.解方程组
(1)
(2)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据点P在x轴上,即y=0,可得出a的值,从而得出点P的坐标.
【详解】
∵点P(3a,a+2)在x轴上,
∴y=0,
即a+2=0,
解析:105°
【解析】
【分析】
先过点 作 ,根据同角的余角相等,得出 ,根据角平分线的定义,得出 ,再设 , ,根据 ,可得 ,根据 ,可得 ,最后解方程组即可得到 ,进而得出 .
【详解】
解:如图,过点 作 ,
,
,
即 ,
又 ,
,
,
平分 , 平分 ,
, ,
,
设 , ,
则 , , , ,
,
, ,
,
中,由 ,
【解析】
【分析】
平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;
旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.
【详解】
2020-2021成都列五中学七年级数学下期末试题(及答案)
2020-2021成都列五中学七年级数学下期末试题(及答案)一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B的度数是( )A.20o B.30o C.40o D.60o2.已知关于x的不等式组的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤53.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°4.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.2 5.2-的相反数是()A.2-B.2C.12D.12-6.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.87.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个8.如图,下列能判断AB∥CD的条件有()①∠B +∠BCD =180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .49.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°10.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .3211.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5 C .7 D .912.若0a <,则下列不等式不成立的是( )A .56a a +<+B .56a a -<-C .56a a <D .65a a< 二、填空题13.若264a =3a =______.149________.15.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.16.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.17.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.18.已知a >b ,则﹣4a +5_____﹣4b +5.(填>、=或<)19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.关于x 的不等式111x -<-的非负整数解为________.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.22.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO 的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.23.一个工程队原定在10天内至少要挖土600m3,在前两天一共完成了120m3,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m3?24.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?25.解不等式组533(2)1233x xx x->-⎧⎪⎨-≤-⎪⎩,并把解集表示在数轴上,再找出它的整数解.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30o故选B【点睛】熟练运用平行线的判定和性质.2.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.3.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.5.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.7.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.9.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.10.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=VV(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.11.B解析:B【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.12.C解析:C【解析】【分析】直接根据不等式的性质进行分析判断即可得到答案.【详解】A .0a <,则a 是负数,56a a +<+可以看成是5<6两边同时加上a ,故A 选项成立,不符合题意;B .56a a -<-是不等式5<6两边同时减去a ,不等号不变,故B 选项成立,不符合题意;C .5<6两边同时乘以负数a ,不等号的方向应改变,应为:56a a >,故选项C 不成立,符合题意;D .65a a<是不等式5<6两边同时除以a ,不等号改变,故D 选项成立,不符合题意. 故选C .【点睛】本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;不等式两边同乘以(或除以)同一个负数,不等号的方向改变.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.a ,∴a=±8.∴3a=±2解:∵264故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数.. 14.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平解析:3【解析】【分析】根据算术平方根的性质求出9=3,再求出3的算术平方根即可.【详解】解:∵9=3,3的算术平方根是3,∴9的算术平方根是3.故答案为:3.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.15.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C (32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.16.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=解析:48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=48(cm2)故答案为48 cm2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.17.a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.18.<【解析】【分析】根据不等式的基本性质即可解决问题【详解】解:∵a >b ∴﹣4a <﹣4b ∴﹣4a+5<﹣4b+5故答案为<【点睛】本题考查不等式的基本性质应用不等式的性质应注意的问题:在不等式的两边都解析:<【解析】【分析】根据不等式的基本性质即可解决问题.【详解】解:∵a >b ,∴﹣4a <﹣4b ,∴﹣4a +5<﹣4b +5,故答案为<.【点睛】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.19.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD是解题关键.20.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不解析:0,1,2【解析】【分析】先解不等式,确定不等式的解集,然后再确定其非负整数解即可得到答案.【详解】解:解不等式111x<-得:111x<,=<<=,∵3911164∴1113x<<,∴1113x<<的非负整数解为:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了二次根式的应用及一元一次不等式的整数解的知识,确定其解集是解题的关键.三、解答题21.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N =100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.(1) C (5,﹣4);(2)90°;(3)见解析.【解析】分析:(1)利用非负数的和为零,各项分别为零,求出a ,b 即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a ﹣3)2+|b+4|=0,∴a ﹣3=0,b+4=0,∴a=3,b=﹣4,∴A (3,0),B (0,﹣4),∴OA=3,OB=4,∵S 四边形AOBC =16.∴0.5(OA+BC )×OB=16, ∴0.5(3+BC )×4=16, ∴BC=5,∵C 是第四象限一点,CB ⊥y 轴,∴C (5,﹣4);(2)如图,延长CA ,∵AF 是∠CAE 的角平分线,∴∠CAF=0.5∠CAE ,∵∠CAE=∠OAG ,∴∠CAF=0.5∠OAG ,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.23.80m3【解析】试题分析:设以后几天内,平均每天要挖掘xm3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600-120)m3的土方,根据题意可得不等式,解不等式即可.试题解析:设平均每天挖土x m3,由题意得:(10﹣2﹣2)x≥600﹣120,解得:x≥80.答:平均每天至少挖土80m3.点睛:本题考查了一元一次不等式的应用,关键是弄清题意,清楚600m3的土方到底要用几天干完.24.(1)有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x的取值范围,最后根据x的值列出不同方案.【详解】(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金25.312-<≤x,图详见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,结合数轴可知其整数解.【详解】533(2)1233x x x x ->-⎧⎪⎨-≤-⎪⎩①② 解不等式①得32x >-, 解不等式②得1x ≤,则不等式组的解集为312-<≤x 在数轴上表示为:其整数解为:-1,0,1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
2020-2021成都列五中学数学七年级上第二月考试题(含答案)
2020-2021成都列五中学数学七上第二月考试题(含答案)第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、下列方程中,一元一次方程是( )A. 2x=1B. 3x –5C. 3+7=10D.x^2=42.下列选项中,正确的是A .方程变形为 B .方程变形为 C .方程变形为 D .方程变形为3.把弯曲的河道改成直的,可以缩短航程,其理由是( )A .经过两点有且只有一条直线B .两点之间,线段最短C .两点之间,直线最短D .线段可以比较大小4.数轴上表示5的点与表示-3的点的距离是( )A .3B .-2C .+2D .85.下列计算正确的是…………………………………………………………………( )A .-3(a +b )=-3a +3bB .2(x +12y )=2x +12y C .x 3+2x 5=3x 8 D .-x 3+3x 3=2x 36.在代数式13ab、3xy、a+1、3ax2y2、1-y、4x、x2+xy+y2中,单项式有……()A.3个B.4个C.5个D.6个7.如图,数轴上每相邻两点之间相距1个单位长度,点A对应的数为a,B对应的数为b,且b-2a=7,那么数轴上原点的位置在…………………………………………()A.点A B .点B C.点C D.点D8.已知m≥2,n≥2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么下列四个叙述中正确的有………………………………()①在25的“分解”中,最大的数是11.②在43的“分解”中,最小的数是13.③若m3的“分解”中最小的数是23,则m=5.④若3n的“分解”中最小的数是79,则n=5.A.1个B.2个C.3个D.4个9.一个多项式与221x x-+的和是32x-,则这个多项式是( )(A)253x x-+(B)21x x-+- (C)253x x-+-(D)2513x x--10.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>b B.|a|>|b|C.﹣a<b D.a+b<0第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃。
成都列五中学数学七年级模拟精华试卷(含答案)
成都列五中学数学七模拟精华试卷(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.8-的相反数是().A. 18B. 8-C. 8D.18-2. 12点15分,钟表上时针与分针所成的夹角的度数为A.B.C.D.3...........( )A.B.C.D.4.地球的表面积约为510 000 000 km2,用科学计数法表示为()km2 A.51×108B.5.1×108C.51×107D.5.1×1075.....................A...B...C...D...6.把弯曲的道路改直,能够缩短行程,其道理用数学知识解释应是……………( ) A.垂线段最短B.两点确定一条直线C.线段可以大小比较D.两点之间,线段最短7. 如图中的两个角∠1和∠2之间的关系是 ·······················································()A.同位角B.内错角C.同旁内角D.对顶角8.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为……………………………………………………………………………()A. 2a-3b B . 4a-8b C. 2a-4b D. 4a-10b9、下列各数中互为相反数的有().A、+(-5.2)与-5.2;B、+(+5.2)与-5.2;C、-(-5.2)与5.2;D、5.2与1/5.210.下列说法正确的是()A. 正数和负数统称有理数B. 正整数和负整数统称为整数C. 小数3.14不是分数D. 整数和分数统称为有理数第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.(1)A盆地海拔是-10m,B盆地海拔是-15m,那么的地势较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021四川成都列五中学数学七第二月考试题(含答案)
第Ⅰ卷选择题(共30分)
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.-2的的的的的的的
A.-2 B.2 C.1/2 D.-1/2
2、有下列各数:8,-6.7,0,-80,-1/7,-(-4),-|-3|,-(+62),其中属于非负整数的共有( )
A、1个
B、2个
C、3个
D、4个
3.已知,,则与的大小关系是
A.B.C.D.无法确定
4.如果一个角的余角是50°,则这个角的补角的度数是
A.130°
B.140°
C.40°
D.150°
5.16的平方根是()
A.4 B.±4 C.8 D.±8
6.把弯曲的道路改直,能够缩短行程,其道理用数学知识解释应是……………( ) A.垂线段最短B.两点确定一条直线
C.线段可以大小比较D.两点之间,线段最短
7.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为--------------------------------------------()
A.2a+5B.2a+8 C.2a+3 D.2a+2
8.一个长方形的周长为20,其中它的长为a ,那么该长方形的面积是…………( )
A .20a
B .a (20-a )
C .10a
D .a (10-a )
9.已知x =1是关于x 的方程2-ax =x +a 的解,则a 的值是( ) A .
B .
C .
D .1
10.观察下列关于x 的单项式,探究其规律: x ,3x 2,5x 3,7x 4,9x 5,11x 6,…
按照上述规律,第2015个单项式是( )
A .2015x 2015
B .4029x 2014
C .4029x 2015
D .4031x 2015
第Ⅱ卷 非选择题(共90分)
二、填空题(本大题共5个小题,每小题3分,共15分)
11. -8的绝对值是 ,-8的倒数是 .
12、有理数1.7,-17,0,-1/7,-0.001,-9,2011和-1中,负数有 个,其中负整
数有 个,负分数有 个.、
13.国家体育场“鸟巢”的建筑面积达258000m 2,用科学记数法表示为____________ m 2.
14.若单项式3a 5b m +1与-2a n b 2是同类项,那么m +n = .
15.将连续的正整数按以下规律排列,则位于第6行、第六列的数是______.
第一列 第二列 第三列 第四列 第五列 第六列 … 第1行 -1 +2 -4 +7 -11 +16
第2行 +3 -5 +8 -12 +17
第3行 -6 +9 -13 +18 … 第4行 +10 -14 +19 … 第5行 -15 +20 … 第6行 +21
…
…
…
…
…
三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)
…
… … … …
16.计算:① 8+(-10)―(―5)+(-2); ② 31+(-34)-(-16)+5
4
③ (12-59+712)×(-36) ④ (-1)2013+(-5)×[(-2)3+2]-(-4)2÷(-1
2)
17.解方程(每小题4分,共8分)
(1) 3(x -4)=12; (2) x -x -12 =2-x +2
3.
18.如图,所有小正方形的边长都为1,A 、B 、C 都在格点上. (1)过点C 画直线AB 的平行线(不写画法,下同); (2)过点A 画直线BC 的垂线,并注明垂足..为G ;过点A 画直线AB 的垂线,交BC 于点H . (3)线段 的长度是点A 到直线BC 的距离;
(4)线段AG 、AH 的大小..关系为 AG AH .(填写下列符号>,<,
之一 )
19.小明用172元钱买了语文和数学的辅导书,共10本,语文辅导书的单价为18元,数学辅导书的单价为10元.求小明所买的语文辅导书有多少本?
20.如图,纸上有五个边长为1的小正方形组成的图形纸(图1),我们可以把它剪开拼成一个正
方形(图2).
(1)图2中拼成的正方形的的面积是▲;边长是▲;(填实数)
(2)请你在图3中画一个面积为5的正方形,要求所画正方形的顶点都在格点上
........
请用虚线画出.
(3)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的
形式把它重新拼成一个正方形.并求出它的边长.
21.已知数轴上有A,B,C三点,分别表示数-24,-10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.
(1)问甲、乙在数轴上的哪个点相遇?
(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同
时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出
....多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.
A
0 10
-24-10
B C
22、(12分)水是生命之源泉,是人体需要的第一营养素,具有极为重要的生
理功能。
为
此,学校为保障学生身心健康,在每个教室里安放有一台饮水机(如
图),饮水机上
有两个放水管,课间时同学们依次到饮水机前用茶杯接水,假设接水过程中水不发生
泼洒,每个同学所接的水量都是相等的,两个放水管同时打开时,它们的流量相同,
如果放水时先打开一个水管,2分钟后,再打开第二个水管,放水过程中阀门一直开
着,饮水机的存水量(升)与放水时间(分钟)的关系如下表所示:放水时间(分)0 2 12 …
饮水机中存水量
18 17 8 …
(升)
(1)当两个放水管都打开时,求每分钟的总出水量;
(2)如果从开始到2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几
分钟?
(3)按(2)的放水方法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?
23.(11分)已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.
(1)如图1,若∠COF=34°,则∠BOE=;若∠COF=n°,则∠BOE=;∠BOE与∠COF 的数量关系为.
(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?如成立请写出关系式;如不成立请说明理由.
(3)在图3中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与
∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.。