3-1-1金属键与金属特性
金属键与金属特性
实用文档
(2)导热性 金属容易导热,是由于自由电子运动时与金属
离子碰撞把能量从温度高的部分传到温度低的部分, 从而使整块金属达到相同的温度。
(3)延展性 金属晶体中由于金属离子与自由电子间的相互
Ⅲ.六方堆积 镁、锌、钛等属于六方堆积
第一种: 将第三层球对准第一层的球
A
12
6
3
B
54
A
于是每两层形成 一个周期,即 AB AB 堆积方式,形成六方堆积。
实用文档
B A
上图是此种六方 堆积的前视图
六方最密堆积分解图
配位数 12 ( 同层 6,上下层各 实用文档
第三层的另一种排列 方式,是将球对准第一层 的 2,4,6 位,不同于 AB 两层的位置,这是 C 层。
微粒数为:8×1/8 + 1 = 2
(2)面心立方:
在立方体顶点的微粒为8个晶胞共有,在面心的 为2个晶胞共有。
微粒数为:8×1/8 + 6×1/2 = 4
(3)六方晶胞:
在六方体顶点的微粒为6个晶胞共有,在面心的 为2个晶胞共有,在体内的微粒全属于该晶胞。
微粒数为:12×1/6 + 2×1/2 + 3 = 6
晶胞在空间连续重复延伸而形成晶体。
实用文档
金属晶体
1. 晶体
(1)定义:通过结晶过程形成的具有规则几
何外形的固体叫晶体。 通常情况下,大多数金属单质及其合金也 是晶体。
实用文档
2.晶胞
什么是晶胞?
晶体中能够反映晶体结构特征的基 本重复单位
说明:
金属学与热处理第一章 金属的晶体结构
晶体结构特征:
点阵参数: a1=a2=a3=a,
α 1=α 2=α 3=1200
平面轴X1、X2、X3和Z轴的夹角=90 ——四轴坐标系
O
Z轴的单位长度=c,用a、c两个量来度量
点阵参数:α=β=90º, γ=120º; a1=a2=a3≠c, 理想状态:c/a=1.633
第一章 金属的晶体结构
本章教学目的
建立金属晶体结构的理想模型 揭示金属的实际晶体结构
§1-1 金属
一. 金属的特性和概念
1. 特性
金属通常表现出的特性:良好的导电性、导 热性、塑性、金属光泽、不透明。
2. 概念
(1) 传统意义上的概念。 (2) 严格意义上的概念:具有正的电阻温度系 数的物质,即电阻随温度的升高而增加的物质。
晶向─晶体点阵中,由阵点组成的任一直线,代 表晶体空间内的一个方向,称为晶向。 晶面─晶体点阵中,由阵点所组成的任一平面, 代表晶体的原子平面,称为晶面。
1.晶向指数的标定
晶向指数─用数字符号定量地表示晶向,这种数字符 号称为晶向指数。 以晶胞为基础建立三维坐标体系: z C′ O′ A′ c
γ O β α
晶体有各向异性, 非晶体则各向同性。
各向异性:不同方向上的性能有差异。
3.晶体与非晶体的相互转化性
玻璃
长时间保温
金属 极快速凝固
“晶态玻璃”
“金属玻璃”
非晶新材料的发展:光、电、磁、耐蚀 性、高强度等方面的高性能等。
二.晶体学简介
1.晶体结构模型的建立
(1) 假设:原子为固定不动的刚性小球,每个原子 具有相同的环境。
O′
z B′
C′
金属键与金属晶体
金属键与金属晶体
[学习目标] 1.认识金属键的本质,掌握金属键的特点与金属某些性质的关系。 2.能用“电子气理论”解释金属具有导电性、导热性和延展性的原因。 3.借助金属晶体等模型认识金属晶体的结构特点。
[重点难点] 1.用金属键解释、比较金属性质的差异。 2.金属晶体的结构特点。
情景引入
55Cs(铯) 28.84 678.4
从锂到铯,价电子数相同,但原子半径依次增大,导致金属键的能量越来越 小,熔沸点也就依次降低。
2.金属晶体熔点的变化规律 (1)金属晶体熔点的变化规律 不同金属晶体,其熔点差别较大。有的熔点很低,如Hg(汞)低至-38.87 ℃ ; 也有的熔点很高,如W(钨)高达3 000 ℃以上。因此,金属晶体的熔点跨度非 常大。 (2)金属键的强弱对金属单质物理性质的影响 金属硬度的大小,熔、沸点的高低与金属键的强弱有关。金属键越强,金属 晶体的熔、沸点越高,硬度越大。 (3)一般合金的熔点比各组分的熔点低。
知识拓展
金属的光泽 因为固态金属中有“自由电子”,所以当可见光照射到金属表面上时,“自 由电子”能够吸收所有频率的光并迅速释放,使得金属不透明并具有金属光 泽。
导思
思考下列关于金属的几个问题。 (1)含有阳离子的晶体中一定含有阴离子吗? 提示 不一定。如金属晶体中只有阳离子和自由电子,没有阴离子。 (2)纯铝硬度不大,形成硬铝合金后,硬度很大,金属形成合金后为什么有些 物理性质会发生很大的变化? 提示 金属晶体中掺入不同的金属或非金属原子时,影响了金属的延展性和 硬度。 (3)为什么金属在粉末状态时,失去金属光泽而呈暗灰色或黑色?
面心立方堆积
自我测试
1234
1.下列有关金属晶体的说法不正确的是
①金属晶体是一种“巨分子” √
【原创】 金属键与金属特性
三、影响金属键强弱因素
部分金属的熔点
金属
Na
Mg
Al
Cr
熔点/℃
97.5 650 660 1900
为什么金属晶体熔点差距如此巨大? 金属熔化时克服的作用力是什么? 影响金属键的强弱的因素是什么呢?
三、影响金属键强弱因素
部分金属的原子半径、原子化热和熔点
金属
Na
Mg
Al
原子外围电子排布
3s1
3s2
3s23p1
原子半径/pm
186 160 143.1
原子化热/kJ·mol-1 108.4 146.4 326.4
熔点/℃
97.5 650
660
Cr 3d54s1 124.9 397.5 1900
原子化热:1mol金属固体完全气化成相互远离的气态原子时吸收的能量。 原子化热来衡量金属键的强弱。
原子化热数值越大,金属键越强。 (1)金属键与金属熔点之间的关系? (2)金属键的影响因素?
选修3 苏教版 物质结构与性质
专题3 微粒间作用力与物质性质
金属键 金属晶体
金属键
1.非金属原子之间通过共价键结合成单质或化合物,活泼金 属与活泼非金属通过离子键结合形成了离子化合物。那么,金 属单质中金属原子之间是采取怎样的方式结合的呢?
2.根据生活体验,你能归纳出金属的物理性质吗?请思考金属 为什么具有这些物理性质。
金属离子沉浸在自由电子的“海洋”中
一、金属键
1.定义: 金属阳离子和自由电子之间的强烈的相互作用
2.成键微粒: 金属阳离子和自由电子
为主
3.实质:
静电作用 (引力和斥力)
4.存在:
金属单质和合金中
5.成键特征: 无饱和性、无方向性
金属键与金属晶体
B
C. Li Be Mg D. Li Na Mg
晶体: 具有规则几何外形的固体
晶体的分类: 原子晶体,分子晶体,离子晶体,金属晶体
晶胞: 能够反映晶体结构特征的基本重复单元。
二、金属晶体
金属晶体
晶胞:从晶体中“截取”出来具有代表性的最小 部分。是能够反映晶体结构特征的基本重复单位。
晶胞与晶体 砖块与墙 蜂室与蜂巢
1. 下列生活中的问题,不能用
金属键知识解释的是 (D)
A. 用铁制品做炊具
B. 用金属铝制成导线
C. 用铂金做首饰
D. 铁易生锈
7. 金属键的强弱与金属价电子数的多少有关,
价电子数越多金属键越强;与金属阳离子的半
径大小也有关,金属阳离子的半径越大,金属
键越弱。据此判断下列金属熔点逐渐升高的是
A. Li Na K B. Na Mg Al
(2)形成 成键微粒: 金属阳离子和自由电子 存 在: 金属单质和合金中
(3)方向性: 无方向性
判断:有阳离子 必须有阴离子吗?
2. 金属的物理性质
具有金属光泽,能导电,导热,具有良好的延 展性,金属的这些共性是有金属晶体中的化学
键和金属原子的堆砌方式所导致的
(1)导电性 (2)导热性 (3)延展性
第一单元
金属键 金属晶体
第一课时
金属键与金属特性
金属元素在周期表中的位置及原子结构特征
大家都知道晶体有固定的几何外形、有固 定的熔点,水、干冰等都属于分子晶体,靠范 德华力结合在一起,金刚石等都是原子晶体, 靠共价键相互结合,那么我们所熟悉的铁、铝 等金属是不是晶体呢?它们又是靠什么作用结 合在一起的呢?
通常情况下,金属原子的部分或全部 外围电子受原子核的束缚比较弱,在金 属晶体内部,它们可以从金属原子上 “脱落”下来的价电子,形成自由流动 的电子。这些电子不是专属于某几个特 定的金属离子,是均匀分布于整个晶体 中。
金属键与金属特性
2.金属键: 金属离子和自由电子之间的强 烈的相互作用称为金属键。
金属键没有方向性和饱和性!
金属键强弱判断:阳离子所带电荷多、 半径小-金属键强,熔沸点高。
3、金属晶体:通过金属键作用形成的单 质晶体
三、金属晶体的结构与金属性质的内在联系
【讨论1】 金属为什么易导电 ? 在金属晶体中,存在着许多自由电子,
练习
1、金属晶体的形成是因为晶体中存在(C)
A.金属离子间的相互作用 B.金属原子间的相互作用 C.金属离子与自由电子间的相互作用 D.金属原子与自由电子间的相互作用
练习
2.金属能导电的原因是( B)
A.金属晶体中金属阳离子与自由电子间的 相互作用较弱 B.金属晶体中的自由电子在外加电场作用下 可发生定向移动 C.金属晶体中的金属阳离子在外加电场作用 下可发生定向移动 D.金属晶体在外加电场作用下可失去电子
金属样品 Ti
一、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
金属为什么具有这些共同性质呢?
二、金属的结构
问题:构成金属晶体的粒子有哪些?
组成粒子: 金属阳离子和自由电子
1.自由电子理论 金属原子脱落来的价电子形成遍布整
个晶体的“电子气”,被所有原子所共用, 从而把所有的原子维系在一起。
金属晶体中由于金属离子与自由电子间 的相互作用没有方向性,各原子层之间发生 相对滑动以后,仍可保持这种相互作用,因 而即使在外力作用下,发生形变也不易断裂。
不同的金属在某些性质方面,如密度、硬度、 熔点等又表现出很大差别。这与金属原子本 身、晶体中原子的排列方式等因素有关。
资料
金属之最
熔点最低的金属是-------- 汞 熔点最高的金属是-------- 钨 密度最小的金属是-------- 锂 密度最大的金属是-------- 锇 硬度最大的金属是-------- 铬 延性最好的金属是-----ቤተ መጻሕፍቲ ባይዱ-- 铂 展性最好的金属是-------- 金 最活泼的金属是---------- 铯(除放射性金属外) 最稳定的金属是---------- 金
化学键金属键的形成与特性
化学键金属键的形成与特性化学键:金属键的形成与特性化学键是指原子之间通过共用、转移或者捐赠电子而形成的相互联系。
其中,金属键是一种特殊的化学键,常见于金属元素之间或者金属与非金属元素之间的化合物中。
本文将介绍金属键的形成和特性。
一、金属键的形成金属元素具有特殊的电子结构,其外层电子只有少数几个,容易与其他原子形成键合。
金属的电子云模型是描述金属键形成的重要理论,它可以解释金属的导电性、延展性和高熔点等性质。
在金属中,原子核周围存在自由移动的电子云,这些电子几乎没有固定的位置,相互间的电子排列是无序的。
当几个金属原子靠近时,它们的电子云发生重叠,形成一个共享的电子云区域,被称为金属键。
金属键的形成是通过电子的共享实现的。
金属原子会捐赠其外层电子到共享电子云中,形成正离子。
这些电子在金属晶体中可以平移自由,从而使金属具有良好的导电性和热导性。
二、金属键的特性1. 导电性:金属键是金属具有良好导电性的基础。
在金属中,自由移动的电子可以自由地在金属中传导电流。
这是由于金属键的共享电子云形成了电子的传输通道,使电子在金属中流动变得容易。
2. 延展性:金属键的特点之一是其延展性。
金属晶体中的原子排列紧密,金属键连接着相邻的原子。
当金属受到外力拉伸时,金属键会被延长,但不容易破裂。
这是因为金属键的电子云在拉伸时可以随着原子的移动而重新分布,使金属保持整体连续性。
3. 熔点和沸点:金属键强度较高,使得金属具有较高的熔点和沸点。
金属晶体中的金属键需要克服较大的能量才能断裂,所以金属的熔点和沸点相对较高。
4. 密度:金属晶体的密度通常较大,这是由于金属键的密集性造成的。
金属原子之间的金属键非常紧密,使金属具有相对较高的密度。
5. 弹性:金属的弹性是由于金属键的特性所导致的。
金属中的金属键具有一定的弹性,使金属在受力时能够恢复到原来的形态。
三、金属键的应用金属键的性质使得金属在生活和工业生产中有着广泛应用。
以下是金属键应用的几个常见领域:1. 金属导线:金属的导电性使得金属广泛应用于电缆、电线等导电材料中。
崔忠圻《金属学与热处理原理》(第3版)笔记和课后习题(含考研真题)详解
崔忠圻《金属学与热处理原理》(第3版)复习笔记第1章金属与合金的晶体结构1.1 复习笔记一、金属原子间的结合1.金属原子的结构特点(1)金属原子的最外层电子金属原子的最外层的电子数很少,一般为一两个,不超过3个。
①正电性元素金属原子的外层电子很容易脱离原子核的束缚而变成自由电子,此时的原子变为正离子,故金属元素又称正电性元素。
②负电性元素非金属元素的外层电子数较多,易于获得电子变为负离子,故非金属元素又称负电性元素。
(2)元素的化学特性决定于最外层的电子(价电子)数,而与内壳层的结构无关。
(3)过渡族金属的特性①过渡族金属化合价可变;②过渡族金属的原子彼此相互结合时,最外层电子和次外层电子均参与结合;③过渡族金属的原子间结合力特别强,熔点高、强度高;④价电子决定其主要性能。
2.金属键(1)电子云(电子气)处于聚集状态的金属原子,全部或大部分将它们的价电子贡献出来为整个原子集体所共有,称为电子云或电子气。
(2)金属键贡献出价电子的金属原子变成正离子沉浸在电子云中,它们依靠运动于其间的公有化的自由电子的静电作用而结合起来,这种结合方式称为金属键。
它没有饱和性和方向性。
(3)金属键模型金属键模型如图1-1-1所示。
在固态金属中,绝大部分原子处于正离子状态,少数原子处于中性原子状态。
图1-1-1 金属键模型3.结合力与结合能(资料来源https:///BoVJDuXm)(1)结合力的特性如图1-1-2(a)所示,则:①两原子的结合力为吸引力和排斥力的代数和;②吸引力为长程力,排斥力是短程力;③当两原子间距较大时,吸引力大于排斥力,两原子自动靠近。
在两原子靠近过程中,排斥力急剧增长;④两原子距离为d0时,吸引力与排斥力相等,原子间结合力为零,d0即相当于原子的平衡位置;⑤任何对平衡位置的偏离,都将会受到一个力的作用,促使其回到平衡位置;⑥原子间的最大结合力出现在d c位置处;⑦在点d0附近,结合力与距离的关系接近直线关系。
2020高中化学人教版选修三教学学案:3-3-1 金属键与金属晶体的性质 Word版含答案
姓名,年级:时间:第一课时金属键与金属晶体的性质学习目标:1。
了解金属键的含义—-“电子气”理论,能用电子气理论解释金属具有导电、导热、延展性的原因。
2。
理解金属键的概念,能用金属键理论解释金属的物理性质.[知识回顾]1.金属单质的物理性质有哪些通性?答:具有金属光泽,有导电性、导热性和延展性.2.两种或两种以上的金属(或金属与非金属)熔合而成的具有金属特性的物质叫做合金.合金的熔点比各成分金属的都低。
硬度比成分金属大。
[要点梳理]1.金属键(1)概念:金属原子脱落下来的价电子形成遍布整块晶体的“电子气”被所有原子所共有,从而把所有金属原子维系在一起。
(2)成键微粒:金属阳离子和自由电子。
(3)成键的条件:金属单质或合金。
(4)应用:“电子气”理论能很好地解释金属材料良好的延展性、导电性、导热性。
2.金属晶体在金属单质的晶体中,原子之间以金属键相互结合,构成金属晶体的粒子是金属阳离子和自由电子。
3.金属键的强度差别很大,例如,金属钠的熔点较低,硬度较小,而钨是熔点最高的金属,这是由于形成的金属键强弱不同的缘故.一般来说,金属的原子半径越小,金属键越强,金属的价电子数越多,金属键越强.4.金属材料有良好的延展性,由于金属键没有方向性,当金属受到外力作用时,晶体中的各原子层发生相对滑动而不会破坏金属键;金属材料有良好的导电性是由于金属晶体中的自由电子可以在外加电场作用下发生定向移动;金属的热导率随温度升高而降低是由于在热的作用下,自由电子与金属原子频繁碰撞,阻碍了自由电子对能量的传递。
知识点一金属键1.金属键的定义:金属阳离子与自由电子之间的强烈的相互作用叫金属键。
2.金属键的本质——电子气理论:金属原子对外围电子的束缚力不强,从金属原子脱落下来的价电子形成遍布整块晶体的“电子气”。
正是由于“自由电子”在整个金属固体中不停地运动,被所有的金属原子所共用,从而把所有金属原子维系在一起,使得体系的能量大大降低。
化学金属键与金属特性
导热性
由于金属晶体中自由电子运动时与金属离子
碰撞并把能量从温度高的部分传导温度低的 部分,从而使整块金属达到相同的温度
延展性
由于金属晶体中金属键是没有方向性的,各原 子层之间发生相对滑动以后,仍保持金属键的 作用,因而在一定外力作用下,只发生形变而 不断裂
(4)金属的熔点
部分金属的熔点
金属 熔点/℃
解释的是
( D)
A. 用铁制品做炊具
B. 用金属铝制成导线
C. 用铂金做首饰
D. 铁易生锈
7. 金属键的强弱与金属价电子数的多少有关,
价电子数越多金属键越强;与金属阳离子的半
径大小也有关,金属阳离子的半径越大,金属
键越弱。据此判断下列金属熔点逐渐升高的是
A. Li Na K B. Na Mg Al
二、金属键与金属的物理性质
(二).金属键
(1)定义:
金属离子和自由电子之间的强烈的相互作用。
(2)形成
成键微粒: 金属阳离子和自由电子 存 在: 金属单质和合金中
通常情况下金属晶体内部电子的 运动是自由流动的,但在外加电场的 作用下会定向移动形成电流
共性
小结:
金属晶体与性质的关系
导电性
在金属晶体中,存在许多自由电子,自由电子 在外加电场的作用下,自由电子定向运动,因 而形成电流
6. 影响金属键强弱的因素
(1)金属元素的原子半径 (2)单位体积内自由电子的数目 一般而言:
金属元素的原子半径越小,单位体 积内自由电子数目越大,金属键越强, 金属晶体的硬度越大,熔、沸点越高。
总结
• 金属键的概念
• 运用金属键的知识解释金属的物理 性质的共性和个性
• 影响金属键强弱的因素
金属键与金属特性
问题探究二 哪种排列方式圆球周围剩余空隙最小?
(a)非密置层
(b)密置层
密置层则充分利用空间,从而降低体系内能,粒子相 互结合时体系更稳定。
问题探究三
金属原子的几种堆积方式
1 6 5
2 3 4 6
1
2 3
5
4
A
B A
B A
规律:每两层形成一个周期,即ABAB堆 积方式形成六方紧密堆积。实例:镁、 锌、钛等
如何衡量金属键的强弱?影响金属键的强弱的因素是什么?
判断下列金属熔点逐渐升高的是( B )
A、Li
C、Li
Na
Be
K
Mg
B、Na
D、Li
Mg
Na
Al
Mg
原子和离子都具有一定的有效半径,因而可以看 成是具有一定大小的球体。在金属晶体和离子晶 体中,金属键和离子键没有方向性和饱和性。因 而, 金属原子之间或者粒子之间的相互结合,在 形式上可以看作是球体间的相互堆积。
c
120o
六方堆积
a
a
面心立方堆积
体心立方堆积
板 6、组成晶胞的各质点的占有率 书 体心:1
面心:1/2 立方晶胞 边心:1/4
顶点:1/8
课堂练习
1、根据离子晶体的晶胞结构判断下列离子晶体的化学式:
A B
C
化学式:ABC3
课堂练习
2、下列物质中含有金属键的是 A、金属铝 C、NaOH B、合金 D、NH4Cl
离子键 共价键 氢 键 极性键 ( 分子间作用力 微粒间作用力 ) 极性分子 非极性分子
非极性键
温故知新 1.含(非)极性键的分子就是(非)极性分子 2.含离子键的是离子化合物,含共价键的是共价 化合物 3. 离子化合物中一定有金属阳离子 4. 只有离子化合物中有金属阳离子 5. 晶体中有金属阳离子必有阴离子
苏教版高中化学选修3金属键金属晶体金属键与金属特性
第1课时金属键与金属特性[核心素养发展目标] 1.了解金属键的概念,理解金属键的本质和特征,能利用金属键解释金属单质的某些性质,促进宏观辨识与微观探析的学科核心素养的发展。
2.能结合原子半径、原子化热解释、比较金属单质性质的差异,促进证据推理与模型认知的学科核心素养的发展。
一、金属键1.概念:指金属离子与自由电子之间强烈的相互作用。
2.成键微粒:金属阳离子和自由电子。
3.特征:没有方向性和饱和性。
4.存在:存在于金属单质和合金中。
自由电子不是专属于某个特定的金属阳离子,即每个金属阳离子均可享有所有的自由电子,但都不可能独占某个或某几个自由电子,电子在整块金属中自由运动。
例1下列关于金属键的叙述中,不正确的是( )A.金属键是金属阳离子和自由电子这两种带异性电荷的微粒间的强烈相互作用,其实质与离子键类似,也是一种电性作用B.金属键可以看作是许多原子共用许多电子所形成的强烈的相互作用,有方向性和饱和性C.金属键是带异性电荷的金属阳离子和自由电子间的强烈的相互作用,故金属键无饱和性和方向性D.构成金属键的自由电子在整个金属内部的三维空间中做自由运动答案 B解析从基本构成微粒的性质看,金属键与离子键的实质类似,都属于电性作用,特征都是无方向性和饱和性;自由电子是由金属原子提供的,并且在整个金属内部的三维空间内运动,为整个金属的所有阳离子所共有,从这个角度看,金属键无方向性和饱和性。
例2下列物质中只含有阳离子的物质是( )A.氯化钠B.金刚石C.金属铝D.氯气答案 C解析氯化钠是离子化合物,既含阳离子又含阴离子;金属铝中含有阳离子和自由电子;金刚石由原子组成,氯气由分子组成,都不含阳离子,故C正确。
易误提醒某物质有阳离子,但不一定有阴离子;而有阴离子时,则一定有阳离子。
二、金属的物理性质1.物理特性分析(1)良好的导电性:金属中的自由电子可以在外加电场作用下发生定向移动。
(2)金属的导热性:是自由电子在运动时与金属离子碰撞而引起能量的交换,从而使能量从温度高的部分传到温度低的部分,使整块金属达到相同的温度。
化学键中的键能和键级
化学键中的键能和键级化学键是化学反应中的重要概念,它是化学物质中原子之间的相互作用力。
化学键的形成和断裂是化学反应发生的基础,而键能和键级则是描述化学键强度和类型的重要参数。
一、键能的概念和意义键能是指化学键形成时释放或吸收的能量。
在化学反应中,原子通过共享、转移或捐赠电子来形成化学键,这个过程伴随着能量的变化。
键能的大小决定了化学键的稳定性和反应性。
一般来说,键能越大,化学键越稳定,反应难度越大。
二、键能与键级的关系键级是指化学键的强度和长度,它是描述化学键类型的重要参数。
常见的化学键类型包括离子键、共价键和金属键。
不同类型的化学键具有不同的键能和键级。
1. 离子键离子键是由正负电荷之间的静电相互作用力形成的,常见于金属和非金属之间的化合物中。
离子键的键能较高,通常在几百千焦耳/摩尔的范围内。
离子键的键级为1。
2. 共价键共价键是由原子间电子的共享形成的,常见于非金属之间的化合物中。
共价键的键能和键级的大小取决于电子的共享程度和原子间的距离。
一般来说,共价键的键能在几十到几百千焦耳/摩尔之间,键级为1-3。
3. 金属键金属键是由金属原子之间的电子云形成的,常见于金属元素和合金中。
金属键的键能较低,通常在几十千焦耳/摩尔的范围内。
金属键的键级为1。
三、键能的影响因素键能的大小受多种因素的影响,包括原子间的电荷、电子云的重叠程度和原子间的距离等。
1. 原子间的电荷原子的电荷决定了键能的大小。
正负电荷之间的相互作用力越强,键能越大。
例如,离子键中正负电荷之间的吸引力较强,因此离子键的键能较高。
2. 电子云的重叠程度电子云的重叠程度决定了键能的大小。
电子云重叠越大,键能越大。
例如,共价键中电子云的重叠程度较高,因此共价键的键能较大。
3. 原子间的距离原子间的距离也会影响键能的大小。
原子间距离越近,键能越大。
例如,金属键中原子间的距离较近,因此金属键的键能较大。
四、键能的应用键能的大小和类型对于化学反应的速率和平衡有重要影响,因此在化学工程、材料科学和生物化学等领域有着广泛的应用。
离子键、配位健与金属键
离子键、配位健与金属键银光闪闪的精美银器会令居室内熠熤生辉,玲珑晶莹的银制饰物也会让你变的光彩照人。
你当然应清楚:之所以有这么多不同的银制品来装点人类的生活,原因是金属银是可以被改变形状的,可以被压成薄片,也可以被拉成细丝。
构成金属银的微粒能发生相对滑动但又不容易被分开而断使银断裂。
说明微粒之间存在着较强的相互作用力,这就是金属键。
金属键是化学键的一种。
这一节我们主要来学习几种重要的化学键。
一、离子键:1、定义:阴、阳离子间通过静电作用而形成的化学键2、离子键的形成条件:成键原子所属元素的电负性差值越大,原子间越容易发生电子得失。
一般认为,当成键原子所属元素的电负性差值大于1.7时,原子间才有可能形成离子键。
如:电负性较小的金属元素的原子容易失去价电子形成阳离子,电负性较大的非金属元素的原子容易得电子形成阴离子。
当这两种原子相互接近到一定程度时,容易发生电子得失而形成阴、阳离子。
镁与氧气在通电情况下生成氧化镁,同时发出强光。
在这一反应过程中,镁原子失去两个电子成为Mg2+,氧分子中的每个原子得到两个电子成为O2-,带正电的Mg2+和带负电的O2-通过静电作用形成稳定的离子化合物——氧化镁。
以NaCl为例说明离子键的形成过程:例1元素的原子可以形成离子键的是( )A.a 和bB.a 和fC.d 和gD.b 和g解析:较活泼的金属因素的原子与较活泼的非金属因素的原子可以形成离子键。
答案:BD3、离子键的实质(1)实质:离子键的实质阴阳离子之间的静电作用。
(2)静电引力:根据库仑定律,阴、阳离子间的静电引力(F )与阳离子所带电荷(q +)和阴 离子所 带 电 荷(q -)的 乘 积 成 正 比,与阴、阳离子的核间距离(r )的平方成反比。
F= (k 为比例系数)(3)静电斥力:阴、阳离子中都有带负电荷的电子和带正电荷的原子核,除了异性电荷间的吸引力外,还存在电子与电子、原子核与原子核之间同性电荷所产生的排斥力。
化学金属细节知识点总结
化学金属细节知识点总结金属元素的特性1. 金属元素的晶体结构:金属元素通常具有紧密的结晶结构,其原子之间通过金属键相互连接。
金属键是一种特殊的化学键,是由金属原子之间的电子云共享形成的。
金属键的存在使得金属元素具有良好的导电性和导热性,因为电子在金属中可以自由流动。
2. 金属元素的物理性质:金属元素通常具有良好的延展性和韧性。
这是由于金属元素的结晶结构和金属键的存在使得金属元素可以在受力作用下发生塑性变形,而不易断裂。
此外,金属元素的延展性还使得金属可以被拉成细丝或者轧制成薄片。
3. 金属元素的化学性质:金属元素通常具有较强的还原性,能够失去电子形成阳离子。
此外,金属元素在化学反应中通常是电负性较低的,因此通常表现出氧化性。
金属元素的化学反应1. 金属的氧化反应:金属在空气中与氧气发生氧化反应,产生金属氧化物。
金属氧化物通常是碱性或者弱碱性的,可以与酸发生中和反应,生成盐和水。
2. 金属的酸反应:金属与酸发生反应,生成氢气和相应的盐。
3. 金属的碱反应:金属与碱发生反应,生成氢气和相应的盐。
4. 金属的还原反应:金属在一些化学反应中可以发生还原反应,失去电子形成阳离子。
例如,金属可以与一些金属离子发生置换反应,生成新的金属和金属离子。
金属元素的应用1. 电工材料:金属元素具有良好的导电性和导热性,因此广泛应用于电线、电缆、电路板等电器材料中。
2. 结构材料:金属元素通常具有较好的机械性能,因此广泛应用于建筑结构、汽车、航空航天器等领域。
3. 金属合金:金属元素可以与其他元素合金化,形成具有特定性能的金属合金。
金属合金具有较好的性能,广泛应用于各种领域。
4. 化学催化剂:一些金属元素及其化合物具有较好的催化活性,被广泛应用于化学反应中。
总之,金属元素是化学中重要的一类元素,具有独特的物理化学性质及广泛的应用价值。
对金属元素的深入了解不仅有助于深入理解化学原理,同时也能够为金属材料的应用提供理论指导。
化学键与金属键金属键的形成与性质
化学键与金属键金属键的形成与性质化学键是指原子间通过电子的共享、转移或者排斥而形成的化学连接。
金属键是一种特殊的化学键,形成于金属元素之间。
它具有独特的性质,对于金属的物理和化学性质起着重要的影响。
本文将探讨化学键与金属键的形成机制以及金属键的性质。
一、化学键的形成当原子间存在相互作用力时,会形成化学键。
化学键的形成种类有多种,包括离子键、共价键、金属键等。
离子键形成于金属与非金属之间,通过电子的转移产生带电离子,正负离子之间通过电荷吸引力结合在一起。
共价键形成于非金属之间,通过电子的共享形成共价键。
而金属键则形成于金属元素之间。
二、金属键的形成金属元素的电子排布具有特殊性。
金属元素的原子一般只有几个外层电子,并且原子核内的电子与外层电子之间的屏蔽效应较弱。
由于这种电子排布的特殊性,金属元素的外层电子能够自由移动形成电子云,金属元素中形成了“海洋”一般的自由电子云层。
在这个电子云层中,金属原子的正离子呈现出排列有序的结构。
金属键的形成即是由这种排列有序的正离子和自由电子云之间的相互作用力所致。
三、金属键的特性金属键具有以下几个重要的性质:1.高电导性:由于金属元素中存在着大量的自由电子,这些电子能够自由地在金属中移动,所以金属具有良好的电导性能。
这也是为什么金属是良好的电导体的原因之一。
2.良好的导热性:金属的自由电子在金属晶体中能够自由地传递,所以金属有良好的导热性能。
3.高密度与高熔点:金属键的形成使得金属原子之间紧密排列,并且以金属键为连接,所以金属的密度通常较高。
此外,金属原子之间的金属键比较强,需要较大的能量才能破坏。
因此,金属通常具有较高的熔点。
4.延展性和可塑性:金属晶体中的金属原子排列有序,通过金属键相互连接。
这种排列结构使得金属具有很高的延展性和可塑性,能够被拉长或压扁成形。
金属键的形成与性质对于金属的物理和化学性质起着重要的影响。
它决定了金属的导电性、导热性、熔点等特性,也决定了金属的延展性和可塑性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般而言:
金属元素的原子半径越小,单位体积内自由电子数目越大,金属键越强,金属晶体的硬度越大,熔、沸点越高。
如:同一周期金属原子半径越来越小,单位体积内自由电子数增加,故熔点越来越高,硬度越来越大;同一主族金属原子半径越来越大,单位体积内自由电子数减少,故熔点越来越低,硬度越来越小。
四、金属的熔、沸点、硬度与金属键的关系
【学生分组讨论】课本P33根据表中的数据,总结影响金属键的因素。
1.原子化热:1mol金属固体完全气化成 相互远离的气态原子时吸收的能量。
【讲解】金属键无方向性,无固定的键能,金属键的强弱和自由电子的多少有关,也和离子半径、电子层结构等其它许多因素有关,很复杂.金属键的强弱可以用金属原子化热等来衡量.金属原子化热是指1mol金属变成气态原子所需要的热量.金属原子化热数值小时,其熔点低,质地软;反之,则熔点高,硬度大.
【作业布置】
【课后反思】
复习提问法
讲授法
板书பைடு நூலகம்
交流讨论
课堂小结
当堂检测
金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单 质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整 个晶体的离域化学键。这种键既没有方向性也没有饱和性,
【板书】
1.构成微粒:金属阳离子和自由电子
2.金属键:金属阳离子和自由电子之间的较强的相互作用
3.成键特征:自由电子被许多金属离子所共有;无方向性、饱和性
【课堂小结】结构性质
金属键
金属内部的特殊结构金属的物理共性
金属阳离子自由 电子原子化热导电性导热性延展性
金属阳离子半径、自由电子数熔沸点高低、硬度大小
【当堂检测】
1.下列有关金属元素特性的叙述正确的是( )
A.金属原子只有还原性,金属离子只有氧化性B.金属元素在化合物中一定显正化合价
C.金属元素在不同化合物中化合价均不相同D.金属元素的单质在常温下均为晶体
金属容易导热,是由于自由电子运动时与金属离子碰撞把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。
3.金属延展性:
当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。因此,金属都有良好的延展性
二、金属特性
1.金属导电性:
在金属晶体中,充满着自由电子,而自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向移动,因而形成电流,所以金属容易导电
2.金属导热性
自由电子在运动时经常与金属离子碰撞,引起两者能量的交换。当金属某部分受热时,那个区域里的自由电子能量增加,运动速度加快,通过碰撞,把能量传给金属离子。
课题
金属键与金属特性
备课时间
2015年月日
上课时间
2015年月日
主备
审核
教
学
目
标
知识技能
1、知道金属键的涵义,知道决定金属键强弱的主要因素。
2、能用金属键理论解释金属的一些物理性质。
过程与方法
进一步丰富物质结构的知识 ,提高分析问题和解决问题的能力和联想比较思维能 力。
情感价值
进一步丰富物质结构的知识 ,提高分析问题和解决问题的能力和联想比较思维能 力。
4.金属晶体结构具有金属光泽和颜色
由于自由电子可吸收所有频率的光,然后很快释放出各种频率的光,因此绝大多数金属具有银白色或钢灰色光泽。而某些金属(如铜、金、铯、铅等)由于较易吸收某些频率的光而呈现较为特殊的颜色。当金属成粉末状时,金属晶体的晶面取向杂乱、晶格排列不规则,吸收可见光后辐射不出去,所以成黑色。
教学重点
金属键理论解释金属的一些物理性质。
教学难点
金属键理论解释金属的一些物理性质。
教学步骤:
教学手段、方法
金属键与金属特性
【复习提问】
1.金属有哪些物理共性?
2.金属原子的外层电子结构、原子半径和电离能?
【教师讲授】
1、金属键
金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属晶体的组成粒子:金属阳离子和自由电子。金属离子通过吸引自由电子联系在一起,形成金属晶体.经典的金属键理论把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子,金属原子则“浸泡”在“自由电子”的“海洋”之中。 金属键的形象说法:“失去电子的金属离子浸在自由电子的海洋中”.