第10章 方差分析与试验设计
方差分析选择题及答案
第10章方差分析与试验设计三、选择题1.方差分析的主要目的是判断()。
A. 各总体是否存在方差B. 各样本数据之间是否有显著差异C. 分类型自变量对数值型因变量的影响是否显著D. 分类型因变量对数值型自变量的影响是否显著2.在方差分析中,检验统计量F是()。
A. 组间平方和除以组内平方和B. 组间均方除以组内均方C. 组间平方除以总平方和D. 组间均方除以总均方3.在方差分析中,某一水平下样本数据之间的误差称为()。
A. 随机误差B. 非随机误差C. 系统误差D. 非系统误差4.在方差分析中,衡量不同水平下样本数据之间的误差称为()。
A. 组内误差B. 组间误差C. 组内平方D. 组间平方5.组间误差是衡量不同水平下各样本数据之间的误差,它()。
A. 只包括随机误差B. 只包括系统误差C. 既包括随机误差,也包括系统误差D. 有时包括随机误差,有时包括系统误差6.组内误差是衡量某一水平下样本数据之间的误差,它()。
A. 只包括随机误差B. 只包括系统误差C. 既包括随机误差,也包括系统误差D. 有时包括随机误差,有时包括系统误差7.在下面的假定中,哪一个不属于方差分析中的假定()。
A. 每个总体都服从正态分布B. 各总体的方差相等C. 观测值是独立的 D. 各总体的方差等于08.在方差分析中,所提出的原假设是210:μμ=H = ···=k μ,备择假设是( ) A. ≠≠H 211:μμ···k μ≠ B. >>H 211:μμ···k μ> C. <<H 211:μμ···k μ< D. ,,:211μμH ···k μ,不全相等 9.单因素方差分析是指只涉及 ( )。
A. 一个分类型自变量 B. 一个数值型自变量 C. 两个分类型自变量 D. 两个数值型因变量 10.双因素方差分析涉及 ( )。
实验设计的方差分析与正交试验
实验设计的方差分析与正交试验一、实验设计中的方差分析方差分析(analysis of variance,ANOVA)是一种统计方法,用于比较不同组之间的均值差异是否具有统计学上的显著性。
在实验设计中,方差分析主要被用来分析因变量(dependent variable)在不同水平的自变量(independent variable)中的变化情况。
通过比较不同组之间的方差,判断是否存在显著差异,并进一步分析差异的原因。
1. 单因素方差分析单因素方差分析是最简单的方差分析方法,适用于只有一个自变量的实验设计。
该方法通过比较不同组之间的方差来判断各组均值是否有差异。
步骤如下:(1)确定研究目的,选择合适的因变量和自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差和组间方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
2. 多因素方差分析多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量的情况下进行的。
这种方法可以用来分析多个因素对因变量的影响,并判断各因素的主效应和交互效应。
步骤如下:(1)确定研究目的,选择合适的因变量和多个自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差、组间方差和交互方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
二、正交试验设计正交试验设计是一种设计高效实验的方法,可以同时考虑多个因素和各个因素之间的交互作用,并通过较少的试验次数得到较准确的结果。
1. 正交表的基本原理正交表的设计是基于正交原理,即每个因素和其他所有因素的交互效应都是独立的。
通过正交表设计实验,可以确保各因素和交互作用在样本中能够均匀地出现,从而减少误差来源,提高实验结果的可靠性。
2. 正交试验设计的步骤(1)确定要研究的因素和水平。
方差分析与试验设计
方差分析与试验设计方差分析是一种通过比较不同组之间的变差来判断均值差异是否显著的统计方法。
它通常用于试验设计中,用于分析不同处理组间的均值差异是否显著,从而评估不同处理的效果。
试验设计是科学研究中的一项重要工作,旨在通过科学的方法来验证研究假设。
试验设计涉及确定适当的样本大小、确定控制组和实验组、识别并控制潜在的影响因素等。
好的试验设计能够最大程度地减少偏差,提高实验的可靠性和准确性。
在方差分析中,我们通常将变量分为因素变量和响应变量。
因素变量是试验设置的处理组,例如不同的药物剂量或不同的施肥量。
响应变量是实验结果,可以是连续变量(如体重、收益等)或分类变量(如治疗成功与否)。
方差分析的基本原理是计算组内变差与组间变差之比,通过比较比值与理论的F分布来判断差异是否显著。
如果比值较大,则表明组间差异显著,即不同处理组的均值差异明显。
在进行方差分析时,我们需要满足一些前提条件,如独立性、正态性和方差齐性。
如果数据不符合这些条件,我们可以应用一些转换方法或进行非参数检验来处理。
完全随机设计是最简单的试验设计方法之一,它将实验对象随机分配到不同的处理组中。
这种设计方法适用于研究变量之间没有任何关系的情况,其优点是简单易行,但缺点是可能存在一些潜在的影响因素未被控制。
随机区组设计是一种常用的试验设计方法,它将实验对象分组后再随机分配到不同的处理组中。
这种设计方法能够控制部分潜在因素的影响,并提高实验的可靠性和准确性。
Latin square设计是一种更加复杂的试验设计方法,它在随机区组设计的基础上增加了均衡性。
Latin square设计通过交叉安排处理组和区块,使得每个处理出现在每个区块中,从而进一步控制潜在因素的影响。
除了上述常见的试验设计方法外,还有其他一些高级试验设计方法,如因子分析设计、回归分析设计等。
这些方法可以根据实验的具体要求来选择和应用。
综上所述,方差分析和试验设计是统计学中重要的概念和方法。
张勤主编的生物统计学方面的习题作业及答案
第一章绪论一、名词解释总体个体样本样本含量随机样本参数统计量准确性精确性二、简答题1、什么是生物统计?它在畜牧、水产科学研究中有何作用?2、统计分析的两个特点是什么?3、如何提高试验的准确性与精确性?4、如何控制、降低随机误差,避免系统误差?第二章资料的整理一、名词解释数量性状资料质量性状资料半定量(等级)资料计数资料计量资料二、简答题1、资料可以分为哪几类?它们有何区别与联系?2、为什么要对资料进行整理?对于计量资料,整理的基本步骤怎样?3、在对计量资料进行整理时,为什么第一组的组中值以接近或等于资料中的最小值为好?4、统计表与统计图有何用途?常用统计图、统计表有哪些?第三章平均数、标准差与变异系数一、名词解释算术平均数几何平均数中位数众数调和平均数标准差方差离均差的平方和(平方和)变异系数二、简答题1、生物统计中常用的平均数有几种?各在什么情况下应用?2、算术平均数有哪些基本性质?3、标准差有哪些特性?4、为什么变异系数要与平均数、标准差配合使用?三、计算题1、10头母猪第一胎的产仔数分别为:9、8、7、10、12、10、11、14、8、9头。
试计算这10头母猪第一胎产仔数的平均数、标准差和变异系数。
2、随机测量了某品种120头6月龄母猪的体长,经整理得到如下次数分布表。
试利用加权法计算其平均数、标准差与变异系数。
组别组中值(x)次数(f)80—84 288—92 1096—100 29104—108 28112—116 20120—124 15128—132 13136—140 33、某年某猪场发生猪瘟病,测得10头猪的潜伏期分别为2、2、3、3、4、4、4、5、9、12(天)。
试求潜伏期的中位数。
4、某良种羊群1995—2000年六个年度分别为240、320、360、400、420、450只,试求该良种羊群的年平均增长率。
5、某保种牛场,由于各方面原因使得保种牛群世代规模发生波动,连续5个世代的规模分别为:120、130、140、120、110头。
10方差分析与试验设计
10方差分析与试验设计方差分析是一种统计学方法,用于比较多个组之间的均值是否有显著差异。
在实验设计中,方差分析可以用来确定不同处理之间的差异是否由于实验因素的变化引起,同时还可以帮助研究人员确定实验因素对结果的影响程度。
方差分析的一个重要应用是试验设计。
试验设计是一种系统地操纵和控制实验因素的方法,旨在确定因素对结果的影响。
通过合理的试验设计和方差分析,研究人员可以确定实验因素对结果的作用,找出最佳的处理组合,并进一步进行优化和改进。
在试验设计中,常用的方差分析方法有单因素方差分析、多因素方差分析和混合设计方差分析。
单因素方差分析是用于比较一个处理因素对结果的影响是否显著。
在单因素方差分析中,研究人员将被试随机分配到不同的处理组中,并对各组进行实验。
通过方差分析,可以检验不同组之间均值是否存在差异,从而确定处理因素的显著性。
多因素方差分析是用于比较两个或更多处理因素对结果的影响是否显著,并确定各因素之间以及因素与交互作用之间的关系。
在多因素方差分析中,研究人员将被试随机分配到多个处理组中,并对各组进行实验。
通过方差分析,可以判断不同因素和因素交互作用对结果的影响是否显著,并进一步分析因素之间的关系。
混合设计方差分析是将固定效应和随机效应结合起来分析的一种方法,适用于同时考虑因子固定效应和随机效应的情况。
在混合设计方差分析中,研究人员将被试随机分配到不同的处理组中,并对各组进行实验。
通过方差分析,可以确定因子的固定效应和随机效应对结果的影响是否显著,并进一步分析这些效应的大小和方向。
方差分析和试验设计在很多领域中都有广泛的应用。
例如,在医学研究中,可以使用方差分析和试验设计方法来比较不同药物的疗效;在工程领域中,可以用于优化生产过程和改进产品质量;在社会科学研究中,可以用于分析不同因素对人们行为的影响。
总之,方差分析和试验设计是统计学中重要的方法,可以帮助研究人员确定因素对结果的影响,找出最优解,并加以优化和改进。
第10章单因素方差分析
第10章单因素方差分析单因素方差分析(0ne-Way ANOV A),又称一维方差分析,它能够对单因素多个独立样本的均数进行比较,可以用10种检验方法对变量间的均数进行两两比较(即多重比较检验)并给出方差分析表,还可以作出5种类型图形(Type of plots)和2种均数图形(Means plot options)10.1 单因素方差分析的计量资料[例10—1] 某社区随机抽取了30名糖尿病患者、IGT异常人和正常人进行载脂蛋白(mg/dL)测定,结果示于表10—1。
试问3组人群的载脂蛋白测定结果含量是否相同?(倪宗瓒.卫生统计学.第4版,北京:人民卫生出版社,2001.50)本例是一个完全随机设计的单因素方差分析。
已建立SAS数据集文件并保存Sasuser.onewav4。
(1)进入SAS/Win(v8)系统,单击Solutions-Analysis-Analyst,得到分析家窗口。
(2)单击File-open By SAS Name—Sasuser-0neway4—0K,调入数据文件。
(3)在“分析家”窗口单击Statistics-ANOV A-One way ANOV A,得到图10—1所示对话框。
本例因变量(Dependent)为A(载脂蛋白),单击A—Dependent。
自变量(1ndependent):B(3种人的组别),单击B—Independent 。
图10.1 0ne—way ANOV A:0neway4(单因素方差分析)对话框(4)单击Tests按钮,得到图10—2所示对话框。
在此对话框的ANOV A(F—检验)选项中可进行如下设置。
Analysis of variance,方差分析。
Welch’s variance-weighted ANOV A,威尔奇方差—权重方差分析。
Tests for equal variance,相等方差检验,即方差齐性检验。
Barlett’s test,巴特尼特检验。
医学统计学:第十章 常用实验设计方法
分组结果 甲组:4、6、8、11、15号
乙组:3、5、9、12、14号
和检验、Ridit 分析、有序变量的 logistic 回归 模型和有序变量的对数线型模型等。 (2)若比较各样本不同等级构成情况,用 2 检验。
14
4.双向有序且属性不同资料的比较 (1)若分析两变量是否存在线性相关关系时,用 等级相关分析或 Pearson 列联系数。 (2)若分析两变量是否存在直线变化趋势时,用 线性趋势检验。 5.双向有序且属性相同资料的一致性检验,用
丙组:1、2、7、10、13号
10
11
(二)统计分析
数值变量资料
1.两样本比较 (1)小样本时 ①两样本来自正态分布总体且总 体方差相等时,用成组设计的两样本均数比较的
t 检验;②两样本来自非正态总体或总体方差不
等时,通过变量变换使数据呈正态或方差齐后,
再用成组设计的两样本均数比较的 t 检验;若仍 达不到 t 检验的应用条件时,可选用 t' 检验或成
18 1 10 13 17 2 0 3 8 15 7 4 19 12 5 14 9 11 6 16
动物编号 1 2 3 4 5 6 7 8 9 10 随机数字 1 2 0 3 8 7 4 5 9 6 组 别甲乙乙甲乙甲乙甲甲乙
分组结果 甲组:1、4、6、8、9号小鼠 乙组:2、3、5、7、10号小鼠
17
随机分组
1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 小鼠编号
正交试验设计中的方差分析
目的
通过方差分析,可以确定不同组之间 的平均值差异是否由随机误差引起, 还是由处理因素或自变量引起。
方差分析的数学模型
数学模型
方差分析使用数学模型来描述数据之间的关系,特别是不同组之间的平均值差异。模型通常包括组间差异和组内 差异两部分。
医学研究
通过正交试验设计中的方差分析,研究不同治疗方案、药物剂量等因素对疾病治疗效果的影响,为临床 治疗提供科学依据。
方差分析的局限性
04
方差分析对数据的要求
独立性
数据必须是相互独立的,不存 在相互关联或依赖关系。
正态性
数据应符合正态分布,才能保 证统计推断的准确性。
同方差性
各组数据的方差应相等,否则 可能导致误判。
制定试验方案
根据正交表设计试验方案,确定每个因素的每个 水平。
实施试验
按照试验方案进行试验,记录每个试验的结果。
方差分析
利用方差分析法对试验结果进行分析,确定各因 素对试验结果的影响程度和显著性。
优化方案
根据方差分析结果,优化试验方案,进行下一步试验。
方差分析的基本原理
02
方差分析的定义与目的
定义
拉丁方设计方差分
析
适用于需要控制试验条件的试验, 通过拉丁方设计平衡试验条件和 试验误差。
正交试验设计中的方差分析步骤
确定试验因素和水平
根据研究目的和实际情况确定试验因 素和水平。
制定正交表
根据试验因素和水平选择合适的正交 表。
安排试验
按照正交表进行试验,记录试验数据。
方差分析
对试验数据进行方差分析,包括自由 度、离均平方和、均方、F值等计算。
最新人大版_贾俊平_第五版_统计学_第10章_方差分析PPT课件
பைடு நூலகம்
10.1.3 方差分析中的基本假定 1.每个总体都应服从正态分布
• 对于因素的每一个水平,其观察值是来自服从正态 分布总体的简单随机样本。
• 比如,每种颜色饮料的销售量必需服从正态分布 2.各个总体的方差必须相同
• 对于各组观察数据,是从具有相同方差的总体中抽 取的
10.2 单因素方差分析
10.2.1 数据结构
观察值 ( j )
1 2 : : n
水平A1
x11 x21 : : xn1
因素(A) i
水平A2
…
x12
…
x22
…
:
:
:
:
xn2
…
水平Ak
x1k x2k : : xnk
10.2.2 分析步骤
1.提出假设
• 一般提法 H0: m1 = m2 =…= mk (因素有k个水平) H1: m1 ,m2 ,… ,mk不全相等
身所造成的,后者所形成的误差是由系统性因素造成的, 称为系统误差
2.两类方差 (1)组内方差(误差平方和 、残差平方和、 SSE)
– 因素的同一水平(同一个总体)下样本数据的方差 – 比如,无色饮料A1在5家超市销售数量的方差 – 组内方差只包含随机误差
(2)组间方差(因素平方和、SSA)
– 因素的不同水平(不同总体)下各样本之间的方差 – 比如,四种颜色饮料销售量之间的方差 – 组间方差既包括随机误差,也包括系统误差
水平A ( i ) 粉色(A2) 橘黄色(A3)
绿色(A4)
1
26.5
31.2
27.9
30.8
方差分析与实验设计
方差分析与实验设计方差分析(Analysis of Variance,简称ANOVA)是一种统计方法,用于比较两个或多个样本均值之间的差异是否显著。
它是实验设计中常用的一种方法,可以帮助研究者确定实验结果是否受到不同因素的影响,并进一步分析这些因素对实验结果的贡献程度。
实验设计是科学研究中的重要环节,它涉及到如何选择实验对象、确定实验因素、设计实验方案等问题。
合理的实验设计可以提高实验的可靠性和有效性,减少误差的影响,从而得到更准确的结论。
一、方差分析的基本原理方差分析的基本原理是通过比较组间变异与组内变异的大小来判断不同因素对实验结果的影响是否显著。
组间变异是指不同组之间的差异,组内变异是指同一组内部的差异。
如果组间变异显著大于组内变异,说明不同组之间的差异是由于实验因素的影响,而不是由于随机误差的影响。
二、方差分析的步骤方差分析的步骤主要包括:确定实验因素、选择实验对象、设计实验方案、收集数据、计算方差、进行假设检验和结果解释等。
1. 确定实验因素:首先需要明确研究的目的和问题,确定需要研究的实验因素。
实验因素是指可能对实验结果产生影响的变量,比如不同处理、不同时间、不同地点等。
2. 选择实验对象:根据实验因素的不同水平,选择适当的实验对象。
实验对象应该具有代表性,能够反映出实验因素对实验结果的影响。
3. 设计实验方案:根据实验因素的不同水平,设计实验方案。
常用的实验设计方法有完全随机设计、随机区组设计、因子设计等。
4. 收集数据:按照实验方案进行实验,收集实验数据。
数据的收集应该准确、全面、可靠。
5. 计算方差:根据收集到的数据,计算组间变异和组内变异的大小。
常用的方差计算方法有单因素方差分析、双因素方差分析等。
6. 进行假设检验:根据计算得到的方差值,进行假设检验。
常用的假设检验方法有F检验、t检验等。
7. 结果解释:根据假设检验的结果,解释实验结果。
如果差异显著,则说明实验因素对实验结果有显著影响;如果差异不显著,则说明实验因素对实验结果没有显著影响。
正交试验设计中的方差分析
那么正交试验的方差分析可以从以下几步进行:
1.计算差方和(离差平方和): 包括以下几部分:
1)各因素差方和:
正交试验都是多因素多水平的试验,因此有必要对各因素的 差方和进行计算。 各因素差方和等于它的各水平均值k1A,k2A,…,kmA之间偏差平 方和。 以因素A为例,它在正交表中的某列,用xij表示A在第i个水 平的第j次试验结果,则;
即:fA×B=fA×fB 试验误差的自由度fe=fT-f因 。
3.计算平均差方和(均方): 在计算各因素的差方和时,按照前面的讲述,它是各水平的 偏差方的和,其大小与水平数有关,故此还不能确切的反映 各因素的情况。为了消除水平数的影响,可以计算其平均差 方和:
因素的平均差方和=因素差方和 =Q因 因素的自由度 f因
试验误差的差方和是所有试验结果在不同水平下的指标值与该 水平下的均值之间的差的平方和。它是由随机误差引起的,故 叫误差的差方和。
Qe QT ( QA QB QN )
2.计算自由度:
试验的总自由度: fT n 1
各因素自由度: f因 m 1
如果有交互作用,则交互作用的自由度为两因素自由度之积:
一.几个数据处理中常用的数理统计名词:
首先对几个数理统计名词进行回顾
1. 平均值 x
就是所有数据的和除以数据的个数。
x
1 n
n i 1
xi
1 n
x1
x2
xn
总体平均值:
1 n
n
xi
i 1
n
总体:数理统计学中指的是研究对象的某一特性值的全体; 样本:从总体中随机抽出的一组测量值。
2.极差 R: 就是一组数据中的最大值减去最小值得到的差值。 3.差方和Q: 测量值对平均值的偏差的平方和,就叫~。也叫离差平方和。
正交试验设计的方差分析
三.正交试验设计的方差分析 现以实验室制取H2为例,来说明正交设计的方 差分析的基本方法。若该实验所考察的因素、水平 如表1和表2所示。
表1. 因素水平
因素 水平 一 二 A wH2SO4 (%) 20 25 B mCuSO4· 5H2O(g) 0.4 0.5 C mZn (g) 4 5
三
30
0.6
为了弥补直观分析方法的不足,可采用方差分析 方法对实验结果进行计算分析。所谓方差分析就是将 因素水平(或交互作用)的变化引起的实验结果间的差 异与误差的波动所引起的实验结果间的差异区分开来 的一种数学方法。 方差分析的中心要点是:把实验数据总的波动分 解成两部分,一部分反映因素水平变化引起的波动, 另一部分反映实验误差引起的波动。即把数据总的偏 差平方和(S总)分解为因素的偏差平方和(SA、SB、SC ……)与误差的偏差平方和(Se),并计算它们的平均偏 差平方和(也称均方和,或均方),然后进行检验,最 后得出方差分析表。
方差分析是把实验数据总的波动(即数据的总的偏差平方 和S总)分解成两部分:一部分反映因素水平变化引起的波动 (即因素的偏差平方和),对本例而言仅为S wH2SO4;另一部分 反映实验误差引起的波动(即误差的偏差平方和Se)。即: (1) Se的计算
表3.实验结果分析 参与wH2SO4某一水平的实验编号 A1(20%) 1 4 7 A2 (25%) 2 5 8 平均值y A3 (30%) 3 6 9 10minH2产率 A1(20%) 32.62 34.97 36.62 34.74 A2 (25%) 40.40 36.53 39.19 38.71 A3 (30%) 41.07 45.75 44.53 43.78
在F分布表上横行(n1:1, 2, 3…)代表F比中分子的自 由度;竖行(n2:1, 2, 3…)代表F比中分母的自由度;表 中的数值即各种自由度情况下F比的临界值。 例如,某因素A的偏差平方和的自由度fA=1,误差 (e)的偏差平方和的自由度fe=8,查得F0.1(1,8)=3.64,这 里0.1是信度。 在判断时(如判断因素A的水平的改变对实验结果 是否有显著影响),信度a是指我们对做出的判断有多大 的把握,若a=5%,那就是指当FA>F0.05(fA, fe )时,大概 有95%的把握判断因素A的水平改变对实验结果有显著 影响。对于不同的信度a,有不同的F分布表,常用的 有a=1%, a=5%, a=10%等。根据自由度的大小,可 在各种信度的F表上查得F比的临界值,分别记作 F0.01(n1, n2 ), F0.05(n1, n2 ), F0. 10 (n1, n2 )等。
第九章 方差分析与实验设计
第十章 方差分析与实验设计一、填空题1、在方差分析中所要检验的对象称为 。
2、在方差分析中所要检验的对象称为 ,其不同表现称为 。
3、从两个总体中分别抽取17n =和26n =的两个独立随机样本。
经计算得到下面的方差分析表:其中“A ”单元格内的结果是_________________。
4、在方差分析中,设因素的水平个数为k ,全部观测值的个数为n ,总平方和的自由度为 。
5、在方差分析中,设用于检验的行因素为R ,列因素为C ,行因素有k 个水平,列因素有r 个水平,并假设两个因素没有交互作用,残差平方和的自由度是____________。
6、在单因素方差分析中,涉及到两个变量,一个是 ,另一个是 。
7、完全随机化实验设计,必须符合 要求,必须符合 原则。
8、接受“处理”的对象或实体称为 。
9、搜集样本的计划称为 。
10、在方差分析中用于检验的统计量是 。
11、从三个总体中选取了4个观测值,得到组间方差平方和SSA=536,组内平方和SSE=828,组间均方与组内均方分别为 和 。
二、单项选择题1、在方差分析中,设用于检验的行因素为R ,列因素为C ,并假设两个因素没有交互作用,用于检验因素R 的统计量是 ( )。
A 、 SSR F SSC =B 、MSR F MSC = C 、MSR F MSE =D 、MSRF MST= 2、在双因素方差分析中,度量两个分类自变量对因变量影响的统计量是2R ,其计算公式为 ( )。
A 、2SSR SSC R SST +=B 、2MSR MSC R MST += C 、2SSR R SST =D 、2SSC R SST=3、一次涉及因子A 的4个水平与因子B 的3个水平以及3次重复的因子试验得到的结果为SST=280,SSA=26,SSB=23,SSAB=175,在0.05α=的显著性水平下,检验因子A 的显著性,即检验假设0H :因子A 不显著,得到的结论是( )。
第10章单因素方差分析
第10章单因素方差分析单因素方差分析(0ne-Way ANOV A),又称一维方差分析,它能够对单因素多个独立样本的均数进行比较,可以用10种检验方法对变量间的均数进行两两比较(即多重比较检验)并给出方差分析表,还可以作出5种类型图形(Type of plots)和2种均数图形(Means plot options)10.1 单因素方差分析的计量资料[例10—1] 某社区随机抽取了30名糖尿病患者、IGT异常人和正常人进行载脂蛋白(mg/dL)测定,结果示于表10—1。
试问3组人群的载脂蛋白测定结果含量是否相同?(倪宗瓒.卫生统计学.第4版,北京:人民卫生出版社,2001.50)本例是一个完全随机设计的单因素方差分析。
已建立SAS数据集文件并保存Sasuser.onewav4。
(1)进入SAS/Win(v8)系统,单击Solutions-Analysis-Analyst,得到分析家窗口。
(2)单击File-open By SAS Name—Sasuser-0neway4—0K,调入数据文件。
(3)在“分析家”窗口单击Statistics-ANOV A-One way ANOV A,得到图10—1所示对话框。
本例因变量(Dependent)为A(载脂蛋白),单击A—Dependent。
自变量(1ndependent):B(3种人的组别),单击B—Independent 。
图10.1 0ne—way ANOV A:0neway4(单因素方差分析)对话框(4)单击Tests按钮,得到图10—2所示对话框。
在此对话框的ANOV A(F—检验)选项中可进行如下设置。
Analysis of variance,方差分析。
Welch’s variance-weighted ANOV A,威尔奇方差—权重方差分析。
Tests for equal variance,相等方差检验,即方差齐性检验。
Barlett’s test,巴特尼特检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 方差分析与试验设计 三、选择题1.方差分析的主要目的是判断 ( )。
A. 各总体是否存在方差B. 各样本数据之间是否有显著差异C. 分类型自变量对数值型因变量的影响是否显著 D. 分类型因变量对数值型自变量的影响是否显著 2.在方差分析中,检验统计量F是 ( )。
A. 组间平方和除以组内平方和 B. 组间均方除以组内均方 C. 组间平方除以总平方和 D. 组间均方除以总均方 3.在方差分析中,某一水平下样本数据之间的误差称为 ( )。
A. 随机误差 B. 非随机误差 C. 系统误差 D. 非系统误差 4.在方差分析中,衡量不同水平下样本数据之间的误差称为 ( )。
A. 组内误差 B. 组间误差 C. 组内平方 D. 组间平方 5.组间误差是衡量不同水平下各样本数据之间的误差,它 ( )。
A. 只包括随机误差 B. 只包括系统误差C. 既包括随机误差,也包括系统误差 D. 有时包括随机误差,有时包括系统误差6.组内误差是衡量某一水平下样本数据之间的误差,它 ( )。
A. 只包括随机误差 B. 只包括系统误差C. 既包括随机误差,也包括系统误差 D. 有时包括随机误差,有时包括系统误差7.在下面的假定中,哪一个不属于方差分析中的假定 ( )。
A. 每个总体都服从正态分布 B. 各总体的方差相等 C. 观测值是独立的 D. 各总体的方差等于08.在方差分析中,所提出的原假设是210:μμ=H = ···=k μ,备择假设是( ) A. ≠≠H 211:μμ···k μ≠ B. >>H 211:μμ···k μ> C. <<H 211:μμ···k μ< D. ,,:211μμH ···k μ,不全相等9.单因素方差分析是指只涉及 ( )。
A. 一个分类型自变量 B. 一个数值型自变量 C. 两个分类型自变量 D. 两个数值型因变量 10.双因素方差分析涉及 ( )。
A. 两个分类型自变量 B. 两个数值型自变量 C. 两个分类型因变量 D. 两个数值型因变量11.在方差分析中,数据的误差是用平方和来表示的。
其中反映一个各观测值误差大小的平方和称为 ( )。
A. 组间平方和 B. 组内平方和 C. 总平方和 D. 水平项平方和12.在方差分析中,数据的误差是用平方和来表示的。
其中反映各个值之间误差大小的平方和称为()。
A. 误差项平方和B. 组内平方和C. 组间平方和D. 总平方和13.在方差分析中,数据的误差是用平方和来表示的。
其中反映全部误差大小的平方和称为()。
A. 误差项平方和B. 组内平方和C. 组间平方和D. 总平方和14.组内平方和除以相应的自由度的结果称为()。
A. 组内平方和B. 组内方差C. 组间方差D. 总方差15.组间平方和除以相应的自由度的结果称为()。
A. 组内平方和B. 组内方差C. 组间方差D. 总方差16.在方差分析中,用于检验的统计量是()。
A. 组间平方和B. 组间平方和组内平方和总平方和C. 组间方差D. 组间方差组内方差总方差R。
其计算方法为17.在方差分析中,用于度量自变量与因变量之间关系强度的统计量是2()。
A. 组间平方和B. 组间平方和2R= 2R=组内平方和总平方和C. 组间方差D. 组间方差2R= 2R=组内方差总方差18.在方差分析中,进行多重比较的前提是()。
A. 拒绝原假设B. 不拒绝原假设C. 可以拒绝原假设也可以不拒绝原假设D. 各样本均值相等19.在方差分析中,多重比较的目的是通过配对比较来进一步检验()。
A. 哪两个总体均值之间有差异B. 哪两个总体方差之间有差异C. 哪两个样本均值之间有差异D. 哪两个样本方差之间有差异20.有交互作用的双因素方差分析是指用于检验的两个因素()。
A. 对因变量的影响是独立的B. 对因变量的影响是有交互作用的C. 对自变量的影响是独立的D. 对自变量的影响是有交互作用的R,其计算公式为21.在双因素方差分析中,度量两个分类自变量对因变量影响的统计量是2()A. SST SSC SSR R +=2 B. MST MSCMSR R +=2C. SST SSR R =2 D. SSTSSCR =222.从两个总体中分别抽取71=n 和62=n 的两个独立随机样本。
经计算得到下面的方差分析表: 差异源 SS df MS F P-value F crit 组间A 1 7.50 3.15 0.10 4.84 组内 26.19 11 2.38 总计33.6912表中“A ”单元格内的结果是 ( )A. 4.50 B. 5.50 C. 6.50 D. 7.5023. 从两个总体中分别抽取71=n 和62=n 的两个独立随机样本。
经计算得到下面的方差分析表: 差异源 SS df MS F P-value F crit 组间 7.50 A 7.50 3.15 0.10 4.84 组内 26.19 B 2.38 总计33.6912表中“A ”单元格内和“B ”单元格内的结果是 ( )A. 2和9 B. 2和10 C. 1和11 D. 2和1124. 从两个总体中分别抽取71=n 和62=n 的两个独立随机样本。
经计算得到下面的方差分析表: 差异源 SS df MS F P-value F crit 组间 7.50 1 A 3.15 0.10 4.84 组内 26.19 11 B 总计33.6912表中“A ”单元格内和“B ”单元格内的结果是 ( ) A. 6.50和1.38 B. 7.50和2.38 C. 8.50和3.38 D. 9.50和4.3825. 从两个总体中分别抽取71=n 和62=n 的两个独立随机样本。
经计算得到下面的方差分析表: 差异源 SS df MS F P-value F crit 组间 7.50 1 7.50 A 0.10 4.84 组内 26.19 11 2.38 总计33.6912表中“A ”单元格内的结果是 ( )A. 2.15 B. 3.15 C. 4.15 D. 5.1526. 从两个总体中分别抽取71=n 和62=n 的两个独立随机样本。
经计算得到下面的方差分析表:差异源 SS df MS F P-value F crit 组间 7.50 1 7.50 3.15 0.10 4.84 组内 26.19 11 2.38 总计33.6912用的05.0=α的显著性水平检验假设210:μμ=H ,10:μH 和2μ不相等,得到的结论是( )A. 拒接0H B. 不拒绝0HC. 可以拒接0H 也可以不拒绝0H D. 可能拒绝0H 也可能不拒绝0H27. 从两个总体中分别抽取71=n 和62=n 的两个独立随机样本。
经计算得到下面的方差分析表: 差异源 SS df MS F P-value F crit 组间 7.50 1 7.50 3.15 0.10 4.84 组内 26.19 11 2.38 总计33.6912用的05.0=α的显著性水平检验假设3210:μμμ==H ,3210,,:μμμH 不全相等,得到的结论是( )A. 拒接0H B. 不拒绝0HC. 可以拒接0H 也可以不拒绝0H D. 可能拒绝0H 也可能不拒绝0H 28.下面是一个方差分析表: 差异源 SS df MS F 组间 24.7 4 C E 组内 A B D 总计62.734表中A,B,C,D,E 五个单元格内的数据分别是 ( ) A. 38,30,6.175,1.27,4.86 B. 38,29,6.175,1.27,4.86 C. 38,30,6.175,1.27,5.86 D. 27.7,29,6.175,1.27,4.8629.从三个总体中各选取了4个观察值,得到组间平方和SSA=536,组内平方和SSE=828,组间均方与组内均方分别为 ( )A. 268, 92 B. 134, 103.5 C. 179, 92 D. 238, 9230. 从三个总体中各选取了4个观察值,得到组间平方和SSA=536,组内平方和SSE=828,用的05.0=α的显著性水平检验假设3210:μμμ==H ,3210,,:μμμH 不全相等,得到的结论是( )A. 拒接0H B. 不拒绝0HC. 可以拒接0H 也可以不拒绝0H D. 可能拒绝0H 也可能不拒绝0H31. 从四个总体中各选取了16个观察值,得到组间平方和SSA=1200,组内平方和SSE=300,用的05.0=α的显著性水平检验假设43210:μμμμ===H ,43210,,,:μμμμH 不全相等,得到的结论是( )A. 拒接0H B. 不拒绝0HC. 可以拒接0H 也可以不拒绝0H D. 可能拒绝0H 也可能不拒绝0H 四、选择题答案1. C2. B3. A4. B5. C6. A7. D8. D9. A 10.A 11.B 12.C 13.D 14.B 15.C 16.C 17.B 18.A 19.A 20.B 21. A 22.D 23.C 24.B 25.B 26.B 27.B 28.A 29.A 30.B 31. A。