整式的乘除知识点归纳教学提纲
整式的乘除知识点归纳
![整式的乘除知识点归纳](https://img.taocdn.com/s3/m/e4ac2c6a580102020740be1e650e52ea5518cee6.png)
整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。
一、整式的定义整式由单项式或多项式组成。
单项式是一个数字或变量的乘积,也可以包含指数。
例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。
多项式是多个单项式的和。
例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。
二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。
2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。
3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。
在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。
例如,(2x^2)×(3y)=6x^2y。
三、整式的除法整式的除法是乘法的逆过程。
除法运算中,被除数除以除数得到商。
以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。
例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。
例如,5/0没有意义。
在进行整式的除法运算时,要注意约分和消去的原则。
例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。
四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。
常见的运算顺序规则如下:1.先解决括号内的运算。
2.然后进行乘法和除法的运算。
3.最后进行加法和减法的运算。
五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。
对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。
(完整word版)整式的乘除知识点及题型复习
![(完整word版)整式的乘除知识点及题型复习](https://img.taocdn.com/s3/m/b10248c7ee06eff9aff807b1.png)
的长方形,则需要A类卡片________张,B类卡片_______张,C类卡片_______张.
解析:因式分解的一般步骤是:若多项式的各项有公因式,就先提公因式,然后观察剩下因式的特征,如果剩下的因式是二项式,则尝试运用平方差公式;如果剩下的因式是三项式,则尝试运用完全平方公式继续分解。
1、
2、已知 ,求 的值。
3、
三、课后作业
1、 (1) (2)
(3) (4) (运用乘法公式)
2、(5分)先化简,再求值: ,其中 .
所以:
练习:
1、已知 与 的和是单项式,则 的值是______.
经典题目:
1、已知整式 ,求 的值。
考点2、整式的乘法运算
例:计算: =.
解: = = .
练习:
8、若 ,求 、 的值。
9、已知 , ,则 的值为( )。
A. B. C. D.
10、代数式 的值( )。
A.只与 有关 B.只与 有关
C.与 都无关 D.与 都有关
考点4、利用整式运算求代数式的值
例:先化简,再求值: ,其中 .
分析:本题是一道综合计算题,主要在于乘法公式的应用。
解:
当 , 时, 。
1、 ,其中 , .
2、若 ,求 、 的值.
3、当代数式 的值为7时,求代数式 的值.
4、已知 , , ,求:代数式 的值.
5、已知 时,代数式 ,求当 时,代数式 的值。
练习:
1、已知一个多项式与单项式 的积为 求这个多项式。
2、已知一个多项式除以多项式 所得的商式是 ,余式是 ,求这个多项式。
方法总结:①乘法与除法互为逆运算.
整式的乘除与因式分解知识点
![整式的乘除与因式分解知识点](https://img.taocdn.com/s3/m/84b6cb22b4daa58da0114aa7.png)
整式的乘除与因式分解基本知识点一、整式的乘除:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.例如:_______3=-a a ;________22=+a a ;________8253=+-+b a b a__________________210242333222=-++-+-x xy x y x xy xy y x2、同底数幂的乘法法则:a m ·a n =a m+n (m ,n 是正整数).同底数幂相乘,底数不变,指数相加.例如:________3=⋅a a ;________32=⋅⋅a a a注:此性质可以逆用,即a m +n =a m ×a n 。
如:已知2a =5,2b =7,则2a +b =2a 2b =5×7=35。
另外三个或三个以上同底数幂相乘时,也具有这一性质,即a m ·a n ·a p =a m +n +p (m 、n 、p 都是正整数)3、幂的乘方法则:(a m )n =a mn (m ,n 是正整数).幂的乘方,底数不变,指数相乘.例如:_________)(32=a ;_________)(25=x ;()334)()(a a = 注:注意不要把幂的乘方与同底数幂的乘法混淆,前者是指数相乘,后者是指数相加。
还要注意逆向运用。
4、积的乘方的法则:(ab)m =a m b m (m 是正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.例如:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a注:在积的乘方运算中很容易将底数中某一项或几项不乘方而出现错误,所以在进行积的乘方运算时应先确定底数有几项,然后将这几项全都乘方,再将结果相乘。
还要注意逆向运用。
例如:。
5、同底数幂的除法法则:a m ÷a n =a m-n (a ≠0,m ,n 都是正整数,并且m >n).同底数幂相除,底数不变,指数相减. 规定:10=a 例如:________3=÷a a ;________210=÷a a ;________55=÷a a注:根据同底数幂除法的运算性质a m ÷a n =a m -n (a ≠0, m,n 为正整数,并且m >n),当指数相同时,则有a n ÷a n =a n -n =a 0=1,从而诠释了“任何不等于0的数的0次幂都等于1”的道理,同时,又将同底数幂除法的运算性质中m >n 的条件扩大为m ≥n ;而当m <n 时,仍然使用a m ÷a n =a m -n ,则m -n <0,便出现了负指数幂a -p = ( a ≠0, p 为正整数);至此,同底数幂除法的运算性质a m ÷a n =a m -n 的适用范围已不必再过分的强调m 、n 之间的大小关系,m 、n 的值也由正整数扩大到全体整数了.6、单项式乘法法则单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母连同它的指数作为积的因式。
最新整理初一数学教案北师大版七年级数学下册《整式的乘除》知识点归纳.docx
![最新整理初一数学教案北师大版七年级数学下册《整式的乘除》知识点归纳.docx](https://img.taocdn.com/s3/m/acc37a76910ef12d2af9e7cc.png)
最新整理初一数学教案北师大版七年级数学下册《整式的乘除》知识点归纳北师大版七年级数学下册《整式的乘除》知识点归纳一、整式的乘法(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
相同字母的幂相乘时,底数不变,指数相加。
3、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
4、单项式乘以单项式的结果仍是单项式。
(二)单项式与多项式相乘1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。
即:m(a+b+c)=ma+mb+mc。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。
相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
二、平方差公式1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。
2平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
3、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成(a+b)?(a-b)的形式,然后看a2与b2是否容易计算。
三、完全平方公式1、(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
整式乘除知识点总结归纳
![整式乘除知识点总结归纳](https://img.taocdn.com/s3/m/94b6d06f492fb4daa58da0116c175f0e7dd11969.png)
整式乘除知识点总结归纳一、整式的基本定义1. 整式的定义:整式是由多项式相加(减)得到的式子。
多项式是一个或多个单项式的和。
整式可以包含有限个数的变量,并且变量的次数为非负整数。
2. 整式的分类:整式可以根据变量的次数和系数的种类进行分类,分为一元整式和多元整式;再细分为单项式、多项式和混合式。
二、整式的乘法整式的乘法是代数学中的基本运算之一,它涉及到多项式之间的相乘。
在进行整式的乘法时,主要需要掌握以下几个要点:1. 单项式相乘:同底数的单项式相乘,指数相加;不同底数的单项式相乘,底数相乘,指数相加。
2. 多项式相乘:多项式相乘时,需要用分配律(乘法分配律)进行展开,然后对每一对单项式进行乘法运算。
3. 多项式的乘法规则:多项式相乘的规则与单项式相乘的规则一致,同底数指数相加,底数相乘。
需要注意的是,展开乘法时,需要对每一对单项式进行乘法运算,并将得到的结果进行合并。
例题:(1)计算:(3x+4y)*(2x-5y)解:按照乘法分配律,展开得到:6x^2-15xy+8xy-20y^2合并同类项,得到最终结果:6x^2-7xy-20y^2三、整式的除法整式的除法是代数学中的难点之一,它涉及到多项式之间的相除。
在进行整式的除法时,主要需要掌握以下几个要点:1. 用辅助线将被除式和除数进行排列,然后进行长除法计算。
2. 长除法计算过程:(1)确定被除式中的最高次项,选择一个除数,使得除数的最高次项与被除式中的最高次项相同。
(2)将除数乘以一个常数倍数,使得乘积的最高次项与被除式中最高次项的系数相同。
(3)将得到的乘积与被除式相减,得到一个新的多项式。
(4)重复以上步骤,直至新的多项式的次数小于除数的次数。
(5)最终得到商式和余数。
例题:(2x^2+7xy-3y^2)÷(x-2y)解:按照长除法步骤,得到商式和余数为:2x+11y-5 和 -21y+12所以,商式为2x+11y-5,余式为-21y+12。
整式的乘除知识点总结
![整式的乘除知识点总结](https://img.taocdn.com/s3/m/df2fee40a66e58fafab069dc5022aaea988f4164.png)
整式的乘除知识点总结一、幂的运算1. 同底数幂的乘法- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n (m,n都是正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m,n都是正整数)。
- 例如:(3^2)^3 = 3^2×3=3^6。
3. 积的乘方- 法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即(ab)^n=a^nb^n(n是正整数)。
- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。
4. 同底数幂的除法- 法则:同底数幂相除,底数不变,指数相减。
即a^mdiv a^n=a^m - n(a≠0,m,n都是正整数,m > n)。
- 例如:5^5div5^3 = 5^5 - 3=5^2。
- 规定:a^0 = 1(a≠0);a^-p=(1)/(a^p)(a≠0,p是正整数)。
二、整式的乘法1. 单项式与单项式相乘- 法则:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
- 例如:3x^2y·(-2xy^3)=[3×(-2)](x^2· x)(y· y^3)= - 6x^3y^4。
2. 单项式与多项式相乘- 法则:就是用单项式去乘多项式的每一项,再把所得的积相加。
即m(a + b + c)=ma+mb+mc。
- 例如:2x(3x^2 - 4x + 5)=2x×3x^2-2x×4x + 2x×5 = 6x^3-8x^2 + 10x。
3. 多项式与多项式相乘- 法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即(a + b)(m + n)=am+an+bm+bn。
【人教版】初中数学知识点总结整式的乘除
![【人教版】初中数学知识点总结整式的乘除](https://img.taocdn.com/s3/m/0fb6f893a6c30c2258019e38.png)
整式的乘法目标认知学习目标:1.掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方),能用字母式子和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。
2.掌握单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,并能运用它们进行运算。
重点:整式乘法性质的准确掌握和熟练运用。
难点:字母的广泛含义的理解。
二、知识要点梳理知识点一:同底数幂的乘法要点诠释:同底数幂相乘,.底数不变,指数相加用字母表示为:a m×a n=a m+n(m、n都是正整数).三个或三个以上同底数幂相乘时,也具有这一性质,即a m·a n·a p=a m+n+p(m、n、p都是正整数).此性质可以逆用,即a m+n=a m×a n(m、n都是正整数).知识点二:幂的乘方要点诠释:幂的乘方,底数不变,指数相乘。
用字母表示为:(a m)n=a mn. (m、n都是正整数)知识点三:积的乘方要点诠释:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
用字母表示为:(ab)n=a n b n(n是正整数).知识点四:单项式乘以单项式要点诠释:单项式与单项式相乘,把它们的系数、相同字母分别相乘.对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.知识点五:单项式乘以多项式要点诠释:单项式与多项式相乘,就是用单项式乘以多项式的每一项,再把所得的积相加,用字母表示为m(a+b+c)=ma+mb+mc.知识点六:多项式乘以多项式要点诠释:多项式乘以多项式,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.用字母表示为(a+b)(m+n)=ma+na+mb+nb.三、规律方法指导1.在学习本节内容时,应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义.2.幂的三个运算性质是学习整式乘法的前提条件,单项式乘法是幂的运算性质的一个直接应用,单项式与多项式乘法及多项式与多项式乘法是在单项式乘法的基础上,利用分配律的更复杂的运算.3.在单项式的乘法法则中:①系数相乘,是有理数的乘法运算;相同字母相乘,是同底数幂的乘法运算;②单项式与单项式相乘的结果是单项式,一般确定结果的系数,往往先确定绝对值,再确定符号.4.在单项式与多项式相乘时:①单项式乘以多项式的依据是乘法对加法的分配律.②单项式与多项式相乘,结果是一个多项式,其项数和因式中多项式的项数相同,计算时要注意各项的符号.5.在多项式与多项式相乘时:①多项式乘以多项式可以化为单项式乘以多项式或单项式乘以单项式.②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应该等于两个多项式的项数的积.整式的乘法经典例题透析类型一:同底数幂的运算1、计算:(1)(-)(-)2(-)3 (2) -a4·(-a)3·(-a)5思路点拨:(1)分析:①(-)就是(-)1,指数为1;②底数为-,不变;③指数相加1+2+3=6;④乘方时先定符号“+”,再计算的6次幂(2)分析:①-a4与(-a)3不是同底数幂;②可利用-(-a)4=-a4③变为同底数幂总结升华:同底数幂的乘法法则是本章中的第一个幂的运算法则,也是整式乘法的主要依据之一。
整式的乘除知识点整理
![整式的乘除知识点整理](https://img.taocdn.com/s3/m/9b7b943ae009581b6ad9eb08.png)
一、知识点归纳: (一)幂的四种运算:1、同底数幂的乘法:⑴语言叙述:同底数幂相乘,底数不变,指数相加; ⑵字母表示:a m ·a n = a m+n ;(m ,n 都是整数) ;⑶逆运用:a m+n = a m ·a n2、幂的乘方:⑴语言叙述:幂的乘方,底数不变,指数相乘; ⑵字母表示:(a m ) n = a mn ;(m ,n 都是整数); ⑶逆运用:a mn =(a m )n =(a n )m ;3、积的乘方:⑴语言叙述:积的乘方,等于每个因式乘方的积; ⑵字母表示:(ab)n = a n b n ;(n 是整数); ⑶逆运用:a n b n = (a b)n ;4、同底数幂的除法:⑴语言叙述:同底数幂相除,底数不变,指数相减;⑵字母表示:a m ÷a n = a m-n ;(a≠0,m 、n 都是整数); ⑶逆运用:a m-n = a m ÷a n .(二)整式的乘法:1、单项式乘以单项式:⑴语言叙述:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
⑵实质:分三类乘:⑴系数乘系数;⑵同底数幂相乘;⑶单独一类字母,则连同它的指数照抄; 2、单项式乘以多项式:⑴语言叙述:单项式与多项式相乘,就是根据分配律用单项式去乘多项式中的每一项,再把所得的积相加。
⑵字母表示:c)=ma +mb +mc ;(注意各项之间的符号!) 3、多项式乘以多项式:(1)语言叙述:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加;(2)字母表示:=mn +mb +an +ab ;(注意各项之间的符号!) 注意点:⑴在未合并同类项之前,积的项数等于两个多项式项数的积。
⑵多项式的每一项都包含它前面的符号,确定乘积中每一项的符号时应用“同号得正,异号得负”。
⑶运算结果中如果有同类项,则要 合并同类项(三)乘法公式: 1、平方差公式:(1)语言叙述:两数和与这两数差的积,等于这两个数的平方差。
第一章 整式的乘除 知识点总复习
![第一章 整式的乘除 知识点总复习](https://img.taocdn.com/s3/m/864107b083c4bb4cf6ecd176.png)
7、多项式乘以多项式 法则:多项式乘以多项式,先用一个多项式的每一项去 乘另一个多项式的每一项,再把所得的积相加。
6
8、平方差公式 法则:两数的和乘以这两数的差,等于这两数的平方差。 数学符号表示:
第一章 整式的乘除
1
一、整式的有关概念
1、单项式:数与字母乘积,这样的代数式叫单项式。单独 一个数或字母也是单项式。 2、单项式的系数:单项式中的数字因数。 3、单项式的次数:单项式中所有的字母的指数和。 4、多项式:几个单项式的和叫多项式。 5、多项式的项及次数:组成多项式中的单项式叫做多项式 的项,多项式中次数最高项的次数叫多项式的次数。
(a b)2 a2 2ab b2 其中a, b既可以是数,也可以是代数式.
即 : (a b)2 a 2 2ab b2
特别说明:完全平方公式是根据乘方的意义和 多项式乘法法则得到的。
切记! (a b)2 a2 b2 8
(二)整式的除法
1、单项式除以单项式
法则:单项式除以单项式,把它们的系数、相同字母的 幂分别相除后,作为商的一个因式,对于只在被除式里 含有的字母,则连同它的指数一起作为商的一个因式。
特别注意:多项式的次数不是组成多项式的所有项指数和。
6、整式:单项式与多项式统称整式。(分母含有字母的代 数式不数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。
a • a a 数学符号表示:
mn
(其中m、n为正整数)
mn
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
(a ) a 数学符号表示:
mn
mn
整式的乘除与因式分解知识点归纳
![整式的乘除与因式分解知识点归纳](https://img.taocdn.com/s3/m/b510f3c58662caaedd3383c4bb4cf7ec4afeb68d.png)
整式的乘除与因式分解知识点归纳整式是由常数、变量及它们的积和和差经过有限次加、减、乘运算得到的式子。
整式有不同的运算法则,包括乘法、除法和因式分解。
以下是整式的乘除与因式分解的知识点归纳:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。
在整式相乘时,需注意以下几点:-两个或多个常数相乘,结果仍是常数;-两个或多个同类项相乘,结果是它们的系数相乘,指数相加的同类项;-不同类项相乘时,按照乘法交换律和乘法结合律可以调整次序、合并同类项;-乘法运算中可以运用分配率,将一个整式乘以一个括号内的整式,再将结果分别与括号内的各项相乘,最后合并同类项得出结果。
2.整式的除法:整式的除法是指将一个整式除以另一个整式的运算。
在整式相除时,需要注意以下几点:-除法的定义:对于两个整式f(x)和g(x),若存在整式q(x)和r(x),使得f(x)=q(x)·g(x)+r(x),且r(x)是0或次数低于g(x)的整式,则称g(x)是f(x)的除式,q(x)是商式,r(x)是余式;-除法的步骤:进行长除法运算,从被除式中选择一个最高次项与除式的最高次项相除,得到商式的最高次项;-对除式乘以商式后减去得到的结果,继续进行除法计算,重复以上步骤;-最后得到的商式即为整式的商,最后得到的余式即为整式的余式。
3.整式的因式分解:因式分解是指将一个整式拆分成多个整式的乘积。
在进行因式分解时,需要注意以下几点:-提取公因式:当一个整式的各个项都有相同的因子时,可以提取出该因子作为公因式;-分解差的平方:对于形如a^2-b^2的差的平方,可以分解成(a+b)(a-b)的乘积;-分解一些特殊形式的整式,如完全平方差、完全立方和差、完全立方和等;-假设原式可分解成两个较简单的整式,然后根据求解思路进行分解。
整式的乘除运算和因式分解是数学中重要的操作,有广泛的应用。
在代数方程求解、多项式计算、消元法等多个数学领域中,都需要运用到整式的乘除与因式分解的知识。
整式的乘除(重点、难点、考点复习总结)精选全文
![整式的乘除(重点、难点、考点复习总结)精选全文](https://img.taocdn.com/s3/m/cc4b43138f9951e79b89680203d8ce2f006665cc.png)
可编辑修改精选全文完整版整式的乘除(重点、难点、考点复习总结)1.知识系统总结2.重点难点易错点归纳(1)几种幂的运算法则的推广及逆用例1:(1)已知52x=4,5y=3,求(53x)2; 54x+2y-2练习:1. 已知a x=2,a y=3, a z=4求a3x+2y-z(2)46×0.256= (-8)2013×0.1252014 =(2)同底数幂的乘除法:底数互为相反数时如何换底能使计算简便判断是否同底:判断底数是否互为相反数:看成省略加号的和,每一项都相反结果就互为相反数换底常用的两种变形:例2:(1)-x7÷(-x)5·(-x)2 (2)(2a-b)7·(-b+2a)5÷(b-2a)8(3)区分积的乘方与幂的乘方例3:计算(1)(x3)2 (2) (-x3)2 (3)(-2x3)2(4)-(2x3)2(4)比较法:逆用幂的乘方的运算性质求字母的值(或者解复杂的、字母含指数的方程)例4:(1)如果2×8n×16n=28n ,求n的值(2)如果(9n)2=316,求n的值(3)3x=,求x的值(4)(-2)x= -,求x的值(5)利用乘方比较数的大小指数比较法:833,1625, 3219底数比较法:355,444,533乘方比较法:a2=5,b3=12,a>0,b>0,比较a,b的大小比较840与6320的大小(6)分类讨论思想例6:是否存在有理数a,使(│a│-3)a =1成立,若存在,求出a的值,若不存在,请说明理由整式的乘法(1)计算法则明确单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的计算法则,尤其注意符号的问题,结果一定要是最简形式。
单项式乘以多项式、多项式乘以多项式最终都是要转化为单项式乘以单项式,通过省略加号的和巧妙简化符号问题。
【例1】计算:(1)(-3x2y)(-xz4)(-2y3zt) (2)-5x n y n+2(3x n+2y-2x n y n-1+y n) (3)(-x+2)(x3-x2)练一练:先化简再求值:[xy(x2-3y)+3xy2](-2xy)+x3y2(2x-y),其中x=-0.25,y=4(2)利用整式的乘法求字母的值①指数类问题:②系数类问题:【例2】已知-2x3m+1y2n与7x m-6y-3-n的积与x4y是同【例3】在x2+ax+b与2x2-3x-1的积中,x3项项,求m与n的值的系数为—5,x2项的系数为-6,求a,b的值(3)新定义题【例4】现规定一种新运算:a*b=ab+a-b,其中a,b为有理数,则(a*b)+[(b-a)*b]=练一练:现规定一种新运算:a※b=ab+a-b,其中a,b为有理数,计算:[(m+n)※n]+[(n-m)※n] 课后提升:1.(-0.7×104)×(0.4×103)×(-10)=2.若(2x-3)(5-2x)=ax2+bx+c,则a= ,b=3.若(-2x+a)(x-1)的结果不含x的一次项,则a=4.计算:(1)(-5x-6y+z)(3x-6y) (2)-2xy(x2-3y2)- 4xy(2x2+y2)平方差公式(1)公式:(a+b)(a-b)=a2-b2注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式,只要不是单独的数字或字母,写成平方的差时都要加括号公式的验证:根据面积的不同表达方式是验证整式乘法公式常用的方法(2)平方差公式的不同变化形式【例1】计算下列各式:(1)(-5x+2y)(-2y-5x)= (2)(2a-1)(2a+1)(4a2+1)=(3)20132-2012×2014 =练一练:1、(2y-x-3z)(-x-2y-3z)=2、99×101×10001=3、 3×(22+1)×(24+1)×(28+1)×…×(232+1)+1=(3)平方差公式的逆用【例2】∣x+y-3∣+(x-y+5)2=0,求3x2-3y2的值练一练:已知实数a,b满足a+b=2,a-b=5,求(a+b)3(a-b)3的值.课后提升:1.已知下列式子:①(x-y)(-x-y);②(-x+y)(x-y);③(-x-y)(x+y);④(x-y)(y-x).其中能利用平方差公式计算的是2.(-a-3)( )=9-a23.如果a2-2k=(a-0.5)(a+0.5),那么k=4.为了美化城市,经统一规划,将一正方形的南北方向增加3米,东西方向缩短3米,将改造后的长方形草坪面积与原来的正方形草坪面积相比()A.增加6平方米B.增加9平方米C.减少9平方米D.保持不变5.解方程:(3x+4)(3x-4)=9(x-2)26.计算:(2+1)×(22+1)×(24+1)×…×(22014+1)完全平方公式(1)公式:(a±b)2=a2±2ab +b2首平方,尾平方,2倍乘积放中央,同号加,异号减注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式【例1】计算下列各式:(2x-5y)2 = (-mn+1)2 =(-t2-2)2=(2)完全平方公式的推广应用①直接推广②间接推广【例2】计算(a-2b+3c)2【例3】已知x+y+z=10,xy+xz+yz=8,求x2+y2+z2的值(3)利用完全平方公式求字母的值【例4】两数和的平方的结果是x2+(a-1)x+25,则a的值是()A.-9B.1C.9或-11D.-9或11(4)利用完全平方公式进行简化计算【例5】计算:(1)1992 (2)3.012(5)完全平方公式的变形应用【例6】(1)已知m+n=7,mn=10,求8m2+8n2的值(2)已知(x+y)2=16,(x-y)2=4,求xy的值课后提升:1.下列展开结果是2mn-m2-n2的式子是()A.(m+n)2B.(-m+n)2C.-(m-n)2D.-(m+n)22.(x+2y-z)2=3.若∣x+y-7∣+(xy-6)2=0,则3x2+3y2=4.若代数式x2+3x+2可以表示为 (x-1)2+a(x-1)+b的形式,则a+b的值是5.计算:(2x-y)2(2x+y)2整式的除法(1)计算法则整式乘法的逆运算,可以互相验证。
整式的乘除与因式分解知识点全面
![整式的乘除与因式分解知识点全面](https://img.taocdn.com/s3/m/29404e44eef9aef8941ea76e58fafab069dc44e8.png)
整式的乘除与因式分解知识点全面一、整式的乘法与除法知识点:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。
乘法的结果称为“积”。
-乘法的交换律:a×b=b×a-乘法的结合律:(a×b)×c=a×(b×c)-乘法的分配律:a×(b+c)=a×b+a×c2.整式的除法:整式的除法是指一个整式被另一个整式除的运算。
除法的结果称为“商”和“余数”。
-除法的除数不能为0,即被除式不能为0。
-除法的商和余数满足等式:被除式=除数×商+余数3.次数与次项:整式中的变量的幂次称为整式的次数。
次数为0的项称为常数项,次数最高的项称为最高次项。
4.整式的乘除法规则:-乘法规则:乘法运算时,将整式中的每一项依次相乘,然后将结果相加即可。
-除法规则:除法运算时,可以通过因式分解的方法进行计算。
5.乘法口诀:乘法口诀是指两个整数相乘时的计算规则。
-两个正整数相乘,结果为正数。
-两个负整数相乘,结果为正数。
-一个正整数与一个负整数相乘,结果为负数。
二、因式分解知识点:1.因式分解:因式分解是将一个整式表示为几个乘积的形式的运算。
可以通过提取公因式、配方法等方式进行因式分解。
2.提取公因式:提取公因式是指将整式中公共的因子提取出来,分解成公因式和余因式的乘积的过程。
3.配方法:配方法是指将整式中的一些项配对相加或相乘,通过变换形式,使得整个式子能够因式分解的过程。
4.差的平方公式:差的平方公式是指一个完全平方的差能够分解成两个因子相加的形式。
例如:a^2-b^2=(a+b)(a-b)。
5. 完全平方公式:完全平方公式是指一个完全平方的和可以分解成一个因子的平方的和的形式。
例如:a^2 + 2ab + b^2 = (a + b)^26.公式法:根据特定的公式,将整式进行因式分解。
7.分组法:将整式中的项分为两组,分别提取公因式,然后进行配方法或其他操作,将整式进行因式分解。
整式的乘除八年级上册数学知识点
![整式的乘除八年级上册数学知识点](https://img.taocdn.com/s3/m/bb2a589d7e192279168884868762caaedd33ba27.png)
整式的乘除八年级上册数学知识点
一、整式的乘法:
1. 同底数相乘:将各项的系数相乘,底数相乘,并将指数相加得到新的指数。
2. 不同底数相乘:将各项的系数相乘,并将底数相乘得到新的底数。
3. 括号法则:对于带有括号的整式,使用分配率进行展开,然后合并同类项。
二、整式的除法:
1. 长除法:按照长除法的步骤进行计算,将除数乘以合适的倍数,依次减去被除数,并将减法结果作为商的系数。
2. 短除法:在除数和被除数的每一项上分别除以一个公因式,得到商式,然后再按照长除法的步骤进行计算。
3. 余式:整式的除法中,被除式除以除数得到的商式和余式,即表示被除式能不能整除除数,商式表示商,余式表示余数。
4. 最大公因式:求两个多项式的最高公因式,可以使用因式分解、综合除法等方法进行求解。
三、整式的因式分解:
1. 公因式提取法:找到各项的最大公因式,并提取出来,剩下的部分作为新的因式。
2. 公式法则:利用二次方差、完全平方公式、立方差和立方和等公式进行因式分解。
四、整式的展开与配方法:
1. 分配率:利用分配率将整式展开成多个单项式的和。
2. 配方法:对于特定形式的整式,使用配方法进行展开,例如二次三角恒等式、完全平方式等。
以上是八年级上册数学中关于整式的乘除的知识点,希望对你有帮助!。
北师大版七年级数学下册《整式的乘除》知识点
![北师大版七年级数学下册《整式的乘除》知识点](https://img.taocdn.com/s3/m/c9758bafd4d8d15abe234ea3.png)
北师大版七年级数学下册《整式的乘除》知识点北师大版七年级数学下册《整式的乘除》知识点第一节、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n = am﹒an。
5、底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
第二节、幂的乘方与积的乘方一、幂的乘方1、幂的乘方是指几个相同的幂相乘。
(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。
(am)n=amn。
3、此法则也可以逆用,即:amn =(am)n=(an)m。
二、积的乘方1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
即(ab)n=anbn。
3、此法则也可以逆用,即:anbn =(ab)n。
三、三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
第三节、同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。
2、此法则也可以逆用,即:am-n = am÷an(a≠0)。
3、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
4、任何不等于零的数的p次幂,等于这个数的p次幂的倒数,即:a-p=1/ap初中数学北师大版七年级下册《第一章整式的乘除》前三节知识点归纳总结注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
第一章整式的乘除考点整合及方法梳理(教案)
![第一章整式的乘除考点整合及方法梳理(教案)](https://img.taocdn.com/s3/m/3b56e190db38376baf1ffc4ffe4733687e21fcc3.png)
在教学过程中,我也发现了一些亮点。例如,通过分组讨论和实验操作,学生们增强了合作意识,提高了动手操作能力。在今后的教学中,我会继续发挥这种教学方法的优势,激发学生的学习兴趣。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式乘除的基本概念。整式乘除是指……(单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的运算规则)。它是……(解决实际问题时进行数学运算的基础)。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了整式乘除在实际中的应用,以及它如何帮助我们解决问题。
(2)多项式乘法法则及运用;
(3)平方差公式和完全平方公式的推导和应用;
(4)整式除法的运算方法及步骤;
(5)通过典型例题,对整式的乘除进行方法梳理和考点整合。
二、核心素养目标
《第一章整式的乘除考点整合及方法梳理》
1.培养学生的数学运算能力:通过本章节的学习,使学生能够熟练运用整式的乘除法则,准确进行相关运算,提高解题速度和正确率。
2.培养学生的逻辑思维和推理能力:在学习平方差公式、完全平方公式等过程中,引导学生发现数学规律,培养学生的逻辑思维和推理能力。
3.培养学生的数学建模能力:通过解决实际问题时运用整式的乘除知识,让学生学会将现实问题转化为数学问题,提高数学建模能力。
4.培养学生的合作交流能力:在学习过程中,组织学生进行小组讨论和合作探究,培养学生的团队协作能力和交流表达能力。
四、教学流程
(一)导入新课(用时5分钟)
整式乘除知识框架梳理
![整式乘除知识框架梳理](https://img.taocdn.com/s3/m/dc247e90192e45361066f5b3.png)
知识框架梳理:整式乘除包括:1.单项式与单项式相乘除2.单项式与多项式相乘除3.多项式与多项式相乘除复杂公式补充:1.三项完全平方公式()2222222a b c a b c ab ac bc++=+++++()2222222a b c a b c ab ac bc--=++--+222222()()()222222a b b c c a a b c ab bc ca+++++=+++++ 2.立方和、立方差公式2233()()a b a ab b a b+-+=+2233()()a b a ab b a b-++=-3.完全立方公式和的完全立方公式33223()33a b a a b ab b+=+++差的完全立方公式33223()33a b a a b ab b-=-+-【例1】利用三项完全平方公式计算:1.2(3)x y++=2.2122x y z⎛⎫--=⎪⎝⎭整式乘除【例2】利用立方和(差)公式填空:1.2x x x+-+=( )(2)(24)2.(2a-5b) ( )=8a3-125b3【例3】利用完全立方公式计算:1.(x+2)3=2.(3x-2y)3=【例4】整式计算技巧之降幂已知2310x x x23118--+的值。
--=,求代数式32x x停下来好好想想今天咱们掌握了:1.三项完全平方公式2.立方和、立方差公式3.完全立方公式4.运算技巧之降幂在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.下列式子中计算正确的个数是 ( )①8238326m m ab a c a b c ⨯=; ②1n a a n b a b a b ⨯=; ③22()n n a a =;④2m m m b b b ⨯=A .0B .1C .2D .32.计算()(22)x y x y +-的结果是 ( )A .2222x y -B .222x y -C .222x y -D .2222x y +3.计算3(3)x +的结果是 ( )A .3292727x x x +++B .32927x x ++ C .32927x x x ++ D .327x +4.已知1a a +=2212a a ++的值为( )A .13B .15C .17D .19。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整 式 的 乘 除
知识点归纳:
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:
如:1223223--+-y xy y x x
按x 的升幂排列:3223221x y x xy y +-+--
按x 的降幂排列:1223223--+-y xy y x x
5、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)
同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+
6、幂的乘方法则:mn n m a a =)((n m ,都是正整数)
幂的乘方,底数不变,指数相乘。
如:10253)3(=-
幂的乘方法则可以逆用:即m n n m mn a a a
)()(== 如:23326)4()4(4== 已知:23a =,326b =,求3102
a b +的值;
7、积的乘方法则:n n n b a ab =)((n 是正整数)
积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5
101555253532)()()2(z y x z y x -=•••-
8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m φ
同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷
9、零指数和负指数;
10=a ,即任何不等于零的数的零次方等于1。
p
p a a 1=
-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
如:81)21(233==- 10、科学记数法:如:0.00000721=7.216
10-⨯(第一个不为零的数前面有几个零就是负几次方)
11、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
注意:
①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
②相同字母相乘,运用同底数幂的乘法法则。
③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式
④单项式乘法法则对于三个以上的单项式相乘同样适用。
⑤单项式乘以单项式,结果仍是一个单项式。
如:=•-xy z y x 3232
12、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,
即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)
注意:
①积是一个多项式,其项数与多项式的项数相同。
②运算时要注意积的符号,多项式的每一项都包括它前面的符号。
③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。
]
如:)(3)32(2y x y y x x +--
13、多项式与多项式相乘的法则;
多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。
如:)6)(5(2)3)(23(1
-+-+x x b a b a 、、 14、平方差公式:2
2))((b a b a b a -=-+注意平方差公式展开只有两项
公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。
右边
是相同项的平方减去相反项的平方。
如:(a+b -1)(a -b+1)= 。
计算(2x +y -z +5)(2x -y +z +5)
15、完全平方公式:2
222)(b ab a b a +±=±
公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。
注意: ab b a ab b a b a 2)(2)(2222+-=-+=+
ab b a b a 4)()(22-+=-
222)()]([)(b a b a b a -=--=+-
222)()]([)(b a b a b a +=+-=-- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。
如:⑴、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
⑵、已知 2()16,4,a b ab +==求22
3a b +与2()a b -的值.
16、三项式的完全平方公式:
bc ac ab c b a c b a 222)(2222+++++=++
17、单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式
如:()()
b a m b a 242497÷-
18、多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。
即:c b a m cm m bm m am m cm bm am ++=÷+÷=÷=÷++)( 方法总结:①乘法与除法互为逆运算。
②被除式=除式×商式+余式
例如:已知一个多项式除以多项式243a a +-所得的商式是21a +,余式是28a +,求这()()()()()
()()12223244222222222222....a b ab a b a b ab a b a b a b a b a b a b ab +-=+-+=+++-=++--=
个多项式。
怎样熟练运用公式:
(一)、明确公式的结构特征
这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.
(二)、理解字母的广泛含义
乘法公式中的字母a 、b 可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算(x +2y -3z )2,若视x +2y 为公式中的a ,3z 为b ,则就可用(a -b )2=a 2-2ab +b 2来解了。
(三)、熟悉常见的几种变化
有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点.
常见的几种变化是:
1、位置变化 如(3x +5y )(5y -3x )交换3x 和5y 的位置后即可用平方差公式计算了.
2、符号变化 如(-2m -7n )(2m -7n )变为-(2m +7n )(2m -7n )后就可用平方差公式求解了(思考:不变或不这样变,可以吗?)
3、数字变化 如98×102,992,912等分别变为(100-2)(100+2),(100-1)2,(90+1)2后就能够用乘法公式加以解答了.
4、系数变化 如(4m +2n )(2m -4n )变为2(2m +4n )(2m -4
n )后即可用平方差公式进行计算了.
5、项数变化 如(x +3y +2z )(x -3y +6z )变为(x +3y +4z -2z )(x -3y +4z +2z )后再适当分组就可以用乘法公式来解了.
(四)、注意公式的灵活运用
有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.如
计算(a 2+1)2·(a 2-1)2,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便.即原式=[(a 2+1)(a 2-1)]2=(a 4-1)2=a 8-2a 4+1.
对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-221
)(1-231)(1-241)…(1-291)(1-2101),若分别算出各因式的
值后再行相乘,不仅计算繁难,而且容易出错.若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题.。