焊接标准
导线焊接标准
导线焊接标准
一、焊接材料选择
1. 根据导线类型、规格和用途选择合适的焊接材料,如焊锡、助焊剂等。
2. 确保焊接材料符合质量要求,如熔点、导电性、耐腐蚀性等。
3. 根据导线材料和焊接要求选择适当的焊接材料,如无铅焊锡、有铅焊锡等。
二、焊接前的准备
1. 准备焊接工具,如电烙铁、焊台、镊子等。
2. 检查导线连接部位是否清洁,如有氧化层或污垢,应进行清理。
3. 根据导线规格和用途选择合适的接头或端子,确保连接牢固可靠。
4. 对接头的表面进行清洁和镀锡处理,以提高焊接质量和导电性能。
三、焊接工艺参数
1. 根据导线规格和用途选择合适的焊接温度和时间。
2. 控制电烙铁的温度和通电时间,避免因过热而损坏导线或接头。
3. 掌握正确的焊接技巧,如焊锡的量、送锡方式、回锡时间等。
4. 焊接过程中保持稳定的焊接速度和力度,确保焊接质量一致。
四、焊接质量要求
1. 焊接表面光滑,无气泡、虚焊、漏焊等现象。
2. 导线与接头连接牢固,无松动或接触不良现象。
3. 焊点抗拉强度和机械强度符合要求,无脱落或断裂现象。
4. 焊点导电性能良好,电阻值符合设计要求。
五、焊接缺陷预防措施
1. 保持焊接工具的清洁和完好,避免因工具问题导致焊接缺陷。
2. 对导线连接部位进行充分清理和镀锡处理,提高焊接质量。
3. 控制焊接速度和力度,避免因速度过快或力度过大导致焊接不良。
4. 定期检查和维护焊接设备,确保设备正常运转。
5. 加强操作人员的技能培训和质量意识教育,提高焊接质量水平。
焊接标准
焊接篇第一章焊接方法及工艺选择焊接方法时必须符合以下要求:能保证焊接产品的质量优良可靠,生产率高;生产费用低,能获得较好的经济效益。
焊接工艺的选择必须考虑当时的生产条件(接头设计、风和天气、环境温度、供热等)以及质量的要求,包括咬边和表面自然状况。
对于常用材料主结构板的拼接中的长焊缝和环缝采用自动埋弧焊,其余焊缝采用熔化极气体保护焊。
在一些焊角尺寸不大的长角焊缝中,可使用自动角焊机进行CO2气保焊。
在使用自动埋弧焊机和自动角焊机时,焊接电流、焊接电压、焊接速度必须符合焊接工艺要求,禁止过载使用!手工焊条电弧焊设备简单、轻便,操作灵活。
特别是可以用于难以达到的部位的焊接。
因此在装配定位焊和补焊中使用,一些特殊的材料(如钢轨)的焊接也使用手工焊条电弧焊。
钨极惰性气体保护焊因其焊接速度较慢,一般只用于对焊缝质量要求比较高且只能单面焊时的打底焊、铝材的焊接、对外观质量要求较高的细管的焊接。
第二章焊缝符号的表示1 主要符号和补充符号焊缝的主要符号是根据ISO2553(电焊、钎焊和锡焊接缝-图纸上符号表示方法)表示的。
符号不代表连接方法。
使用频率最高的主要符号见表2。
组合对称焊缝的主要符号范例见表3。
补充符号见表4。
补充符号的使用范例见表5。
符号显示不详尽的地方请参见相关标准。
表4 补充符号表5 补充符号应用范例4.10.2符号位置除了主要符号和补充符号外,一个完整的表示同时包括(见图1):一条箭头线(1)一条双参考线,包括一条真正的参考线(2a实线)和一条标识线(2b虚线),这两条平行线。
对称焊缝不要求有标识线,所以可能被省略。
尺寸数字和补充说明。
图1 表示方法接头的位置可通过几种方式表示:---- 箭头线的位置---- 参考线的位置---- 符号位置如果愿意在符号处详细注明(如焊接方法、接受等级、位置等),可在参考线尾加注,见图2 。
图2 单面V形坡口对焊焊缝带封底焊缝的表示方法箭头线的位置相对于焊缝,箭头线的位置通常不重要。
焊接标准大全
焊接标准大全【焊接基础通用标准】131、GB/T3375--94 焊接术语2、Gb324--88 焊缝符号表示法3、GB5185--2005T 金属焊接及钎焊方法在图样上的表示代号4、GB12212--2012 技术制图焊缝符号的尺寸、比例及简化表示法5、GB4656--2008 技术制图棒料、型材及其断面的简化表示法6、GB/T 985.1-2008 气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口8、GB/T 985.2-2008 埋弧焊的推荐坡口9、GB/T 985.3-2008 铝及铝合金气体保护焊的推荐坡口10、GB/T 985.4-2008 复合钢的推荐坡口11、GB/T12467金属焊接质量等级标准12、GBl0854--89 钢结构焊缝外形尺寸13、GB/T16672—1996 焊缝----工作位置----倾角和转角的定义【焊接材料标准】——焊条161、GB/T5117--2012 非合金钢及细晶粒钢焊条2、GB/T 5118-2012 热强钢焊条3、GB/T 983-2012 不锈钢焊条4、GB984--2001 堆焊焊条5、GB/T3670--1995 铜及铜合金焊条 GB/T13147-2009 铜及铜合金复合钢板焊接技术要求6、GBT 3669-2001 铝及铝合金焊条7、GBl0044--2006 铸铁焊条及焊丝8、GB/T13814—2008 镍及镍合金焊条9、GB895--86 船用395焊条技术条件10、JB/T6964—93 特细碳钢焊条11、JB/T8423—96 电焊条焊接工艺性能评定方法12、GB3429--2002 碳素焊条钢盘条13、JBT 56100-1999 堆焊焊条产品质量分等14、JBT 56101-1999铸铁焊条产品质量分等15、JBT 56102-1999碳钢、低合金钢、不锈钢焊条产品质量分等16、JB/T3223--96 焊接材料质量管理规程——焊丝91、GB/T14957—94 熔化焊用钢丝2、GB/T14958--94 气体保护焊用钢丝3、GB/T8110--2008 气体保护电弧焊用碳钢、低合金钢焊丝4、GB/Tl0045--2001 碳钢药芯焊丝5、GB9460--2008 铜及铜合金焊丝6、GBl0858--2008 铝及铝合金焊丝7、YB-T5092-2005焊接用不锈钢丝8、GB/T15620--2008 镍及镍合金焊丝9、JB/T56099--1999 铜及铜合金焊丝产品质量分等——焊剂21、GB5293--1999 碳素钢埋弧焊用焊剂2、GBl2470--2003 低合金钢埋弧焊焊剂——钎料、钎剂91、GB/T6208--1995 钎料型号表示方法(已废)2、GBl0859---2008 镍基钎料13、GBl0046--2008 银基钎料4、GB/T6418--2008 铜基钎料5、GB/T13815--2008 铝基钎料6、GB/T13679--92 锰基钎料7、JB/T6045--92 硬钎焊用钎剂8、SJ/T 10753-1996 电子器件用金、银及其合金钎焊料9、GB3131--2001 锡铅焊料10、GB8012--2000 铸造锡铅焊料【焊接用气体】81、GB6052--2011 工业液体二氧化碳2、GB4842--2006 氩3、GB4844--2011氦4、GBT 3634.2-2011 氢气第2部分:纯氢、高纯氢和超纯氢5、GBT 3863-2008 工业氧6、GB3864--2008 工业用气态氮7、GB6819--2004 溶解乙炔8、GBlll74--2011 液化石油气9、GBl0665--2004 电石【焊接质量试验及检验标准】——钢材试验31、GBT 1954-2008 镍铬奥氏体不锈钢铁素体含量测定方法2、GB6803--2008 铁素体钢的无塑性转变温度落锤试验方法3、GB2971--82 碳素钢和低合金钢断口试验方法(已作废)——焊接性试验151、GB4675.1--84 焊接性试验斜Y型坡口焊接裂纹试验方法(已作废)2、GB4675.2—84 焊接性试验搭接接头(CTS)焊接裂纹试验方法(已作废)3、GB4675.3--84 焊接性试验T型接头焊接裂纹试验方法(已作废)4、GB4675.4--84 焊接性试验压板对接(FISCO)焊接裂纹试验方法(已作废)5、GB4675.5—84 焊接热影响区最高硬度试验方法(已作废)6、GB9447--88 焊接接头疲劳裂纹扩展速率试验方法7、GB/T13817--92 对接接头刚性拘束焊接裂纹试验方法8、GB2358--80 裂纹张开位移(COD)试验方法9、GB7032--86 T型角焊接头弯曲试验方法 10、GB9446--88 焊接用插销冷裂纹试验方法11、GB4909.12—85 裸电线试验方法镀层可焊性试验焊球法12、GB2424.17--82 电工电子产品基本环境试验规程锡焊导则13、GB4074.26—83 漆包线试验方法焊锡试验 14、JB/ZQ3690 钢板可焊性试验方法15、SJl798--81 印制板可焊性测试方法——力学性能试验81、GB2649--89 焊接接头机械性能试验取样方法2、GB2650--89 焊接接头冲击试验方法3、GB2651—89 焊接接头拉伸试验方法4、GB2652—89 焊缝及熔敷金属拉伸试验方法5、GB2653--89 焊接接头弯曲及压扁试验方法6、GB2654--89 焊接接头及堆焊金属硬度试验方法7、GB2655--89 焊接接头应变时敏感性试验方法 8、GB2656--81 焊接接头和焊缝金属的疲劳试验方法——焊接材料试验 21、GB3731--83 涂料焊条效率、金属回收率和熔敷系数的测定2、GB/T3965--19952熔敷金属中扩散氢测定方法——焊接检验 461、GB/T12604.1--90 无损检测术语超声检测2、GB/T12604.2--90 无损检测术语射线检测3、GB/T12604.3--90 无损检测术语渗透检测4、GB/T12604.4--90 无损检测术语声发射检测5、GB/T12604.5--90 无损检测术语磁粉检测6、GB/T12604.6--90 无损检测术语涡流检测7、GB5618--85 线型象质计 8、GB3323--87 钢熔化焊对接接头射线照相和质量分级9、GB/T12605--90 钢管环缝熔化焊对接接头射线透照工艺和质量分级 10、GB/T14693--93 焊缝无损检测符号11、GBll343--89 接触式超声斜射探伤方法 12、GBll345--89 钢焊缝手工超声波探伤方法和探伤结果的分级13、GBll344--89 接触式超声波脉冲回波法测厚 14、GB2970--82 中厚钢板超声波探伤方法15、JBll52--81 锅炉和钢制压力容器对接焊缝超声波探伤16、GB/T15830—1995 钢制管道对接环缝超声波探伤方法和检验结果的分级17、GB827--80 船体焊缝超声波探伤 18、GBl0866--89 锅炉受压元件焊接接头金相和断口检验方法19、GBll809---89 核燃料棒焊缝金相检验 20、JB/T9215--1999 控制射线照相图像质量的方法21、JB/T9216--1999 控制渗透探伤材料质量的方法22、JB/T9217--1999 射线照相探伤方法23、JB/T9218--1999 渗透探伤方法 24、JB3965--85 钢制压力容器磁粉探伤25、EJ187--80 磁粉探伤标准26、JB/T6061--92 焊缝磁粉检验方法和缺陷磁痕的分级 27、JB/T6062--92 焊缝渗透检验方法和缺陷迹痕的分缀28、EJl86---80 着色探伤标准 29、JB/ZQ3692 焊接熔透量的钻孔检验方法30、JB/ZQ3693 钢焊缝内部缺陷的破断试验方法 31、GBll373--89 热喷涂涂层厚度的无损检测方法32、EJ188--80 焊缝真空盒检漏操作规程 33、JBl612--82 锅炉水压试验技术条件34、GB9251--88 气瓶水压试验方法 35、GB9252--88 气瓶疲劳试验方法36、GBl2135---89 气瓶定期检查站技术条件 37、GBl2137--89 气瓶密封性试验方法38、GBll639--89 溶解乙炔气瓶多孔填料技术指标测定方法 39、GB7446--87 氢气检验方法40、GB4843--84 氩气检验方法 41、GB4845--84 氮气检验方法 42、JB4730—94 压力容器无损检测43、DL/T820-2002 管道焊接接头超声波检验技术规程44、DL/T821-2002 钢制承压管道对接焊接接头射线检验技术规程45、DL/T541-94 钢熔化焊角焊缝射线照相方法和质量分级46、JB4744—2000 钢制压力容器产品焊接试板的力学性能检验——焊接质量81、GB6416--86 影响钢熔化焊接头质量的技术因素2、GB6417--86 金属熔化焊焊缝缺陷分类及说明3、TJl2.1--81 建筑机械焊接质量规定4、JB/T6043--92 金属电阻焊接接头缺陷分类5、JB/ZQ3679 焊接部位的质量6、JB/ZQ3680 焊缝外观质量7、JB/TQ330--83 通风机焊接质量检验38、GB999--82 船体焊缝表面质量检验方法【焊接方法及工艺标准】271、GBl2219--90 钢筋气压焊2、GBll373--89 热喷涂金属件表面预处理通则3、JB/Z261--86 钨极惰性气体保护焊工艺方法4、JB/Z286--87 二氧化碳气体保护焊工艺规程5、JB/ZQ3687 手工电弧焊的焊接规范6、SDZ019--85 焊接通用技术条件7、J134251—86 摩擦焊通用技术条件8、ZBJ59002.1--88 热切割方法和分类 9、ZBJ59002.2--88 热切割术语和定义10、ZBJ59002.3--88 热切割气割质量和尺寸偏差 11、ZBJ59002.4—88 热切割等离子弧切割质量和尺寸偏差12、ZBJ59002.5--88 热切割气割表面质量样板 13、JB/ZQ3688 钢板的自动切割14、ZBK540339--90 汽轮机铸钢件补焊技术条件 15、NJ431—86 灰铸铁件缺陷焊补技术条件16、GBll630--89 三级铸钢锚链补焊技术条件 17、GB/Z66--87 铜极金属极电弧焊18、JB/TQ368—84 泵用铸钢件焊补 19、JB/TQ369---84 泵用铸铁件焊补20、HB/Z5l34--79 结构钢和不锈钢熔焊工艺 21、JB/T6963—93 钢制件熔化焊工艺评定22、JB4708--2000 钢制压力容器焊接工艺评定 23、JB4709—2000 钢制压力容器焊接规程24、DL/T752-2001 火力发电厂异种钢焊接技术规程 25、DL/T819-2002 火力发电厂焊接热处理技术规程26、DL/T868-2004 焊接工艺评定规程 27、DL/T869—2004 火力发电厂焊接技术规程【焊接设备标准】441、GB2900-22--85 电工名词术语电焊机2、GB8118--87 电弧焊机通用技术条件3、GB8366--87 电阻焊机通用技术条件4、GBl0249--88 电焊机型号编制方法5、GBl0977--89 摩擦焊机6、GB/T13164--91 埋弧焊机7、ZBJ64001--87 TIG焊焊炬技术条件8、ZBJ64003--87 弧焊整流器9、ZBJ64004188 MIG/MAG弧焊机 10、ZBJ64005--88 电阻焊机控制器通用技术条件11、ZBJ64006--88 弧焊变压器 12、ZBJ64008--88 电阻焊机变压器通用技术条件13、ZBJ64009--88 钨极惰性气体保护弧焊机(TIG焊机)技术条件 14、ZBJ64016--89 MIG/MAG焊枪技术条件15、ZBJ64021—89 送丝装置技术条件 16、ZBJ64022--89 引弧装置技术条件 17、ZBJ64023--89 固定式点凸焊机18、JB5249--91 移动式点焊机19、JB5250--91 缝焊机20、ZBJ33002--90焊接变位机21、ZBJ33003--90 焊接滚轮架 22、JB5251--91 固定式对焊机 23、JB685--92 直流弧焊发电机24、JB/DQ5593.1—90 电焊机产品质量分等总则 25、JB/DQ5593.2--90 电焊机产品质量分等弧焊变压器.26、JB/DQ5593.3--90 电焊机产品质量分等便携式弧焊变压器27、JB/DQ5593.4--90 电焊机产品质量分等弧焊整流器28、JB/DQ5593.5--90 电焊机产品质量分等MIG/MAG弧焊机29、JB/DQ5593.6--90 电焊机产品质量分等TIG焊机30、JB/DQ5593.7--90 电焊机产品质量分等原动机弧焊发电机组31、JB/DQ5593.8--90 电焊机产品质量分等TIG焊焊炬32、JB/DQ5593.9--90 电焊机产品质量分等电焊机冷却用风机33、JB/DQ5593.10-90 电焊机产品质量分等MIG/MAG焊焊枪434、JB/DQ5593.11-90 电焊机产品质量分等电阻焊机控制器35、JB/DQ5593.12-90 电焊机产品质量分等摩擦焊机 36、JB/Z152--81 电焊机系列型谱37、JB2751--80 等离子弧切割机 38、JBJ33001—87 小车式火焰切割机 39、JBl0860--89 快速割嘴40、GB5110--85 射吸式割炬 41、JB/T5102--91 坐标式气割机 42、JB5101--91 气割机用割炬43、JB6104--92 摇臂仿形气割机 44、GB5107--85 焊接和气割用软管接头【焊接安全与卫生标准】41、GB9448—88 焊接与切割安全2、GBl0235--88 弧焊变压器防触电装置3、GB8197--87 防护屏安全要求4、GBl2011--89 绝缘皮鞋【焊工培训与考试标准】81、GB6419--86 潜水焊工考试规则2、JJl2.2--87 焊工技术考试规程3、EJ/Z3--78 焊工培训及考试规程4、DL/T679--1999 焊工技术考核规程5、JB/TQ338--84 通风机电焊工考核标准6、GB/T15169--94 钢熔化焊手焊工资格考试方法7、SDZ009--84 手工电弧焊及埋弧焊焊工考试规则8、JBll52--88 机械部焊工技术等级标准说明:JB4708等已经出了新标准,请查看NB47014、NB47015、NB47016、NB47018 共计223条5。
中国焊接标准(GBweldingstandards)
工程用焊接结构弯板链、附件和链轮
Cranked-link mill chains of welded construction,attachments and sprockets
GB/T15970.8-2005
金属和合金的腐蚀应力腐蚀试验第8部分: 焊接试样 的制备和应用
GB 17268-2009
工业用非重复充装焊接钢瓶
Non-refillable steel welded cylinders for industrial use
GB 1767பைடு நூலகம்-1999
液化丙烯、丙烷钢质焊接气瓶
Welded steel cylinders for liquefied propylene and propane gases
Arc welding equipment--Part 1:Welding power sources
GB15579.12-1998
弧焊设备安全要求第12部分: 焊接电缆耦合装置
Safety requirements for arc welding equipment--Part
12:Coupling devices for welding cables
GB8965.2-2009
防护服装 阻燃防护 第2部分:焊接服
Protective clothing - Flame-retardant protection -
Part 2: Protective clothing for welders
GB 9448-1999
焊接与切割安全
Safety in welding and cutting
()
DL/T5070-1997(2005)
焊接标准
只是浪费
2、焊接过程中容易出现的缺陷
裂纹
气泡
过热
产生原因: 1)烙铁、烙铁头选用不当; 2)电烙铁温度太高
产生原因: 1)助焊剂产生的焊烟排放不畅; 2)烙铁、烙铁头选用不当; 3)电烙铁温度太高
产生原因: 1)电烙铁温度太高; 2)焊接时间太长
锡球
润焊不良
焊孔锡不足
锡球发生之原因: 很多助焊剂的配方中,多少都会
2、焊点要求 1)在PCB
焊接面上出 现的焊现点均应 匀内弧状。 通孔2)中焊之点填 底部面积应 与板3)子焊上点的 之锡柱爬升 高度大不约可为超 过圆形焊盘 直径4)之锡一量半 之多少应以 填满5)焊锡盘面边 应呈现光泽 性,6)表对面贯应 穿孔的PCB 而言要,求焊超锡过 PCB厚度的 50%以上)
焊接孔与零件脚的比率不正确。 3)贯穿孔壁有贯穿孔内或沾到铜垫 表面(单层板)
产生原因:1)焊锡量过剩;2)电 路板设计不合理
4)零件孔受到污染。
5)防焊油墨流入贯穿孔内。
6)助焊剂因过度受热而没有活性。
1、正确的 焊接方法
应将焊锡丝 置于烙铁头 和 如被 果焊 长焊 期点 将 焊锡丝往烙 铁 下头 面上 第送 一, 种 是正确的, 第二种是错
渗入少量的水,但这微量的水还不 致引起锡球,当锡球突然发生时, 可能是以下原因所造成的:
1) PCB预热不够,导致表面的助 焊剂未干;
2)助焊剂的配方中含水量过高; 3)不良的贯穿孔(PTH); 4)工厂环境温度过高。
锡未全面而且不均匀包覆在被焊物 表面让焊接物表面金属裸露。 产生原因:焊接表面的污染;严重 氧化膜
锡量大
焊点成外圆弧状,焊锡完全包住被焊件的头部, 过多的锡隐藏了焊点和PCB间润焊的曲度;它也 可能覆盖零件脚该露出之部份,使肉眼看不到。 而且包锡并不能加强焊接物的坚牢度或导电度,
焊接技术标准
焊接技术标准焊接是一种常用的金属连接方法,广泛应用于各个领域,包括建筑、制造业、航空航天等。
为了确保焊接连接的质量和安全性,制定了一系列的焊接技术标准。
本文将介绍焊接技术标准的意义、内容和应用。
一、焊接技术标准的意义焊接技术标准是通过规范和统一焊接过程中的各个环节,确保焊接接头具备合格的力学性能和耐久性。
焊接技术标准可以提供以下几个方面的指导和保障:1. 质量保证:焊接技术标准规定了焊接接头的质量要求,包括焊缝的强度、密封性和耐蚀性等。
通过执行标准,可以保证焊接接头具备良好的质量特性。
2. 安全性保障:焊接技术标准规定了焊接操作的安全要求,例如必要的个人防护措施、焊接设备的安全操作规程等。
合理遵守标准可以降低焊接过程中的事故风险。
3. 通用性:焊接技术标准是一种通用的规范,与焊接对象和行业无关。
无论是建筑、制造、海洋工程还是航空航天,不同领域的焊接均可以依照标准进行。
二、焊接技术标准的内容焊接技术标准涵盖了以下几个方面的内容:1. 材料选择:焊接材料的选择对于焊接接头的质量至关重要。
标准规定了不同材料的适用焊接方法、焊接材料的规格要求及其物理和化学性能等。
2. 焊接工艺:焊接技术标准包含了不同焊接工艺的要求,如手工弧焊、氩弧焊、电阻焊等。
标准会规定焊接工艺的步骤、操作要点和技术规范等。
3. 设备要求:焊接设备是保证焊接质量的关键因素之一。
标准会明确规定焊接设备的类型、规格、使用和维护要求,以确保焊接过程的稳定性和可靠性。
4. 质量检验:焊接接头的质量检验是标准中重要的一环。
标准会详细说明不同焊接接头的检验方法、设备和标准要求,以保证焊接连接的可靠性和合格性。
三、焊接技术标准的应用焊接技术标准广泛应用于各个行业和领域。
以下是一些应用示例:1. 建筑工程:在大型建筑结构的焊接中,焊接技术标准能够确保焊接接头的强度和密封性,以满足结构的安全和耐久要求。
2. 制造业:焊接技术标准在制造业中应用广泛,如汽车制造、机械制造等。
焊接质量标准国标
焊接质量标准国标如下:
1. 表面无缺陷,咬边不超过0.1cm,余高大于0.5cm,没有超过焊缝尺寸的20%。
填充焊丝材质与焊件相同,焊缝金属抗拉能力与母材相同,接头强度达到母材的85%以上。
2. 焊缝表面平整,无气孔,飞溅少。
焊缝成型良好,焊脚尺寸符合规定。
二级焊缝不得有肉眼可见的危害性缺陷。
3. 焊接区不得有裂纹、气孔、夹渣等缺陷。
如发现有上述缺陷时,应彻底铲除缺陷处焊肉,视缺陷性质采用补焊、重修焊、铲除后重新焊接等方法修补,以保证焊缝质量。
4. 施焊焊口不得低于设备本体或其热影响区所能达到的最低抗腐蚀或其它损伤性要求。
碳钢焊缝严禁打火检验,以及层状撕裂。
无损检测必须保证设备本体的最小厚度以及整件的有效容积,不可伤及设备结构。
焊接质量标准国标要求严格控制焊接工艺和材料,确保焊接质量符合相关标准和安全要求。
同时,在焊接过程中需要注意一些细节问题,如咬边、余高、填充焊丝的材质、焊缝成型等。
只有经过严格的质量控制和检查,才能保证焊接质量达到国家标准和安全要求。
以上内容仅供参考,建议到相关网站查询以获得更多信息。
焊接质量判定标准
一、以下
8 种焊点被认为是不可接受的:
1. 虚焊(无溶核或者溶核的尺寸小于4mm )焊点,代号为L 2. 沿着焊点周围有裂纹的焊点,代号为C 3. 烧穿,代号为B
4. 边缘焊点(不包括钢板所有边缘部分的焊点),代号为E 5. 位置偏差的焊点(与标准焊点位置的距离超过10mm ),代号P 6. 钢板变形超过25度的焊点,代号为D
7. 压痕过深的焊点(材料厚度减少50%),代号为I 8. 漏焊,代号为M
二、以下焊缝被认为是不可接受的:
1.焊缝偏离焊接位置
2.气泡、夹渣
直径大于1.5mm 的气孔或
渣;每10mm 长的
焊缝内总长大1.5mm 、个数超过3的气孔或夹渣
3.弧坑
弧坑长度L>5mm
4.咬边
深度H>0.5mm ,两侧
咬边总长超过15%设计要求
5.焊肉不足
深度H>δ25% 或1mm
6.余高太大
余高h>3mm
7. 未焊透
深度h>δ15%
8.
焊缝长度超过或短于设计要求长度的10%
9.烧穿 10.漏焊。
焊接评定标准
焊接评定标准
焊接评定标准是用于评定焊接操作员技能水平的标准。
根据不同的国家和行业,焊接评定标准可能会有所不同,但通常包括以下几个方面的评定:
1. 焊接工艺规范:评定焊接操作员是否熟悉和理解相应的焊接工艺规范,包括焊接材料的选择、预热和后处理等步骤。
2. 焊接操作技能:评定焊接操作员的实际焊接技能,包括焊接电弧的点燃和维持、焊丝和焊条的操作以及焊缝的质量等方面。
3. 焊接缺陷检测:评定焊接操作员是否能够正确识别和判定焊接缺陷,如气孔、裂纹和夹渣等,并有能力进行相应的修复措施。
4. 焊接设备操作:评定焊接操作员对焊接设备的操作熟练度,包括电弧焊机、气体保护焊机和等离子焊机等设备的正确设置和操作。
5. 安全意识和措施:评定焊接操作员对焊接安全的重视程度,包括佩戴个人防护装备、正确使用火焰和电弧护目镜、防止火灾和爆炸等安全措施。
这些评定标准通常由国家相关机构、行业协会或认证机构编制和制定,并根据焊接操作员的级别和所从事的焊接工作进行细分。
焊接操作员需要通过相应的评定考试来取得焊接评定证书,以证明其具备相应的焊接技能。
金属材料焊接工艺标准
金属材料焊接工艺标准焊接是金属加工中常用的连接方法之一,通过加热和冷却使两个或更多金属零件相互融合,形成一个坚固的连接。
为了确保焊接质量和连接的可靠性,制定了一系列金属材料焊接工艺标准。
1.焊接制备:在进行金属材料的焊接之前,需要对连接的两个金属零件进行制备工作。
包括去除脏污和氧化物、切割、加工,并确保焊接接头的几何形状符合设计要求。
2.焊接设备和工具:选择适当的焊接设备和工具对焊接过程的质量和效率有重要影响。
确保设备和工具的完好性、合适的功率和稳定的工作性能。
3.焊接电流和电压:根据金属材料的类型、厚度和焊接方式等因素选择合适的焊接电流和电压。
过高或过低的电流和电压都会对焊接质量产生不利影响。
4.焊接电极和填充材料:选择合适的电极和填充材料对焊接接头的强度和耐腐蚀性有重要影响。
根据焊接金属材料的种类和性质,选择相应的电极和填充材料。
5.焊接速度和温度:焊接过程中控制焊接速度和温度是确保焊接质量的关键。
过高或过低的焊接速度和温度都会导致焊接接头出现裂纹、变形和内应力等问题。
6.焊接顺序和方法:根据具体焊接要求和设计要求,制定合理的焊接顺序和方法。
确保每个焊缝的焊接质量符合标准要求。
7.焊接质量检验:对焊接接头进行质量检验是保证焊接连接的可靠性和耐久性的重要环节。
包括外观检查、X射线检测、超声波检测和拉伸试验等。
8.焊接后处理:焊接完成后,需要进行相应的后处理工作。
包括去除焊渣、打磨、除锈和表面处理等,以提高焊接接头的外观和耐腐蚀性。
9.焊接质量记录:对每个焊接接头的焊接过程和质量情况进行记录,建立焊接质量档案。
以便日后的质量追溯和分析。
10.焊接安全:焊接时需要注意安全事项,包括佩戴适当的防护装备,确保焊接区域的通风良好,防止火灾和爆炸等事故的发生。
综上所述,金属材料焊接工艺标准涵盖了焊接制备、设备和工具选择、电流和电压控制、电极和填充材料选择、焊接速度和温度控制、焊接顺序和方法、质量检验、后处理、质量记录和安全等方面的内容。
焊接焊缝标准
焊接焊缝标准
根据《浅谈焊缝质量标准及等级分类》一文,不同等级的焊缝有不同的质量标准:
- 保证项目:
- 焊接材料应符合设计要求和有关标准的规定,应检查质量证明书及烘焙记录。
- 焊工必须经考试合格,检查焊工相应施焊条件的合格证及考核日期。
- Ⅰ、Ⅱ级焊缝必须经探伤检验,并应符合设计要求和施工及验收规范的规定,检查焊缝探伤报告。
- Ⅰ、Ⅱ级焊缝不得有裂纹、焊瘤、烧穿、弧坑等缺陷。
Ⅱ级焊缝不得有表面气孔、夹渣、弧坑、裂纹、电弧擦伤等缺陷,且Ⅰ级焊缝不得有咬边、未焊满等缺陷。
- 基本项目:
- 焊缝外观:焊缝外形均匀,焊道与焊道、焊道与基本金属之间过渡平滑,焊渣和飞溅物清除干净。
- 表面气孔:Ⅰ、Ⅱ级焊缝不允许;Ⅲ级焊缝每50mm长度焊缝内允许直径≤0.4t且≤3mm气孔2个;气孔间距≤6倍孔径。
- 咬边:Ⅰ级焊缝不允许。
Ⅱ级焊缝:咬边深度≤0.05t,且
≤0.5mm,连续长度≤100mm,且两侧咬边总长≤10%焊缝长度。
Ⅲ级焊缝:咬边深度≤0.1t,且≤1mm。
- 允许偏差项目:应符合设计及相关规范要求。
若你想了解更多关于焊缝标准的内容,建议咨询专业的焊接工程师。
焊接质量检验标准
焊接质量检验标准1. 引言焊接质量检验是确保焊接工艺和焊接接头符合设计和规范要求的关键步骤。
本文将介绍焊接质量检验的标准和方法,以确保焊接接头的质量和可靠性。
2. 检验标准焊接质量检验的标准通常基于国际标准组织(ISO)和美国焊接学会(AWS)等机构制定的标准,以下是一些常用的焊接检验标准:2.1 焊接接头的尺寸测量焊缝的尺寸测量是评估焊接接头质量的关键部分。
常用的尺寸测量标准包括:•焊缝厚度测量:根据设计要求和规范,测量焊缝的最小厚度、最大厚度和平均厚度。
•焊缝宽度测量:测量焊缝的宽度,根据设计要求和规范检查宽度是否在允许范围内。
•焊缝长度测量:根据设计要求和规范,测量焊缝的实际长度和规定长度的差异。
2.2 焊接接头的可视检查可视检查是评估焊接接头质量的重要手段。
以下是一些常用的焊接接头可视检查标准:•表面质量:检查焊缝表面是否存在裂纹、气孔、夹渣等缺陷。
•边缘形状:检查焊缝边缘的形状是否符合设计和规范要求。
•坡口形状:检查坡口的形状和尺寸是否符合设计和规范要求。
2.3 焊接接头的无损检测无损检测是评估焊接接头质量的关键方法之一。
以下是一些常用的焊接接头无损检测标准:•超声波检测:使用超声波技术检测焊缝中的内部缺陷,如夹渣、气孔等。
•射线检测:使用射线技术检测焊缝中的内部缺陷,如裂纹、夹渣等。
•磁粉检测:使用磁粉技术检测焊缝表面和近表面的裂纹等缺陷。
3. 检验方法焊接质量检验通常采用以下方法:3.1 样本采集从焊接工艺中随机采集样本来进行检验,确保样本具有代表性。
根据不同的检验项目,需要使用不同的检验设备,如焊缝尺寸规、可视检查工具、超声波探头等。
3.3 检验过程根据标准和规范,进行相应的检验过程。
检验过程应包括样本准备、检验设备的准备、检验操作、记录和报告等步骤。
3.4 判定结果根据检验结果和规范要求,判定焊接接头的合格与否。
如果接头符合规范要求,则判定为合格;如果接头存在缺陷,符合规范要求的缺陷数量和大小也可以接受,则判定为可修复缺陷;如果接头存在严重缺陷,不符合规范要求,则判定为不合格。
焊接公差标准
焊接公差标准
焊接作为一种常见的金属连接方式,其质量的好坏直接关系到产品的使用性能和安全性。
而焊接公差标准作为评定焊接质量的重要指标,对于保证焊接质量具有重要的意义。
本文将对焊接公差标准进行详细介绍,以便广大焊接工作者和相关人员更好地了解和掌握焊接公差标准的相关知识。
首先,焊接公差标准是指在焊接过程中所允许的偏差范围和要求。
焊接公差标准的制定是为了保证焊接接头的质量,确保其能够满足设计要求和使用要求。
焊接公差标准一般由国家标准、行业标准或企业标准等制定,具有一定的权威性和约束力。
其次,焊接公差标准通常包括尺寸公差、形位公差和表面质量要求等内容。
尺寸公差是指焊接件的尺寸允许偏差范围,包括焊缝尺寸、焊接件尺寸等;形位公差是指焊接件的形状、位置、方向等要求,包括焊接面的平直度、垂直度、倾斜度等;表面质量要求是指焊接件表面的光洁度、无损伤、无气孔、无裂纹等要求。
另外,焊接公差标准的制定需要考虑到具体的焊接材料、焊接工艺、焊接设备等因素。
不同的焊接材料具有不同的热膨胀系数、
热导率、力学性能等特点,因此在制定焊接公差标准时需要进行相
应的修正和调整。
同时,不同的焊接工艺和焊接设备对焊接质量也
会产生影响,因此在制定焊接公差标准时需要考虑这些因素的影响。
总之,焊接公差标准是确保焊接质量的重要保障,对于提高焊
接质量、保证产品质量具有重要的意义。
只有严格遵守焊接公差标准,才能够保证焊接接头的质量稳定、可靠,从而确保产品的使用
性能和安全性。
因此,各个相关行业的从业人员都应该加强对焊接
公差标准的学习和掌握,不断提高焊接质量,推动焊接行业的发展。
钢筋焊接规范要求标准最新
钢筋焊接规范要求标准最新钢筋焊接是建筑施工中的一项关键技术,它对确保结构的稳定性和安全性具有重要意义。
随着建筑技术的发展,钢筋焊接规范也在不断更新以满足更高的工程质量要求。
以下是钢筋焊接规范要求的最新标准:1. 材料要求:- 钢筋应符合国家或行业标准规定的化学成分和力学性能要求。
- 焊接材料(焊条、焊丝等)应与母材相匹配,满足焊接工艺要求。
2. 焊接工艺:- 焊接前应对钢筋进行清洁,去除锈蚀、油污等杂质。
- 焊接工艺应根据钢筋的直径、级别和焊接位置选择合适的焊接方法,如电弧焊、闪光对接焊等。
3. 焊接质量:- 焊接接头应无裂纹、未熔合、咬边、气孔、夹渣等缺陷。
- 焊接接头的弯曲性能和抗拉性能应满足设计要求。
4. 焊接环境:- 焊接环境温度应控制在规定范围内,避免在极端天气条件下进行焊接作业。
- 焊接区域应保持干燥、通风良好,避免潮湿环境影响焊接质量。
5. 操作人员:- 焊接操作人员应持有相应的资格证书,并定期接受培训和考核。
- 操作人员应熟悉焊接工艺和安全操作规程。
6. 质量检验:- 焊接完成后,应对焊接接头进行外观检查和无损检测,如超声波检测、X射线检测等。
- 对于重要结构,应进行取样试验,以验证焊接接头的性能。
7. 记录和文档:- 焊接过程中应详细记录焊接参数、操作人员、焊接日期等信息。
- 焊接完成后,应编制焊接报告,包括焊接质量检验结果和相关证明文件。
8. 安全措施:- 焊接现场应配备必要的安全设施,如防火、防爆设备。
- 操作人员应穿戴适当的防护装备,如防护眼镜、手套、工作服等。
9. 环境保护:- 焊接过程中产生的废气、废渣等应按照环保要求进行处理。
- 采取措施减少焊接作业对周围环境的影响。
10. 后续处理:- 焊接接头在冷却后应进行适当的后续处理,如去除焊渣、矫正变形等。
以上规范要求旨在确保钢筋焊接的质量和安全性,适用于各种建筑结构的钢筋焊接工程。
随着技术的发展和工程实践的深入,这些规范可能会进一步更新和完善。
焊接过程检验标准
一、拼板焊的焊接检验标准1、检验标准1.1拼板点焊最大直径不超过3mm,1.2点焊不允许熔透,凹坑深度不超过0.5mm1.3拼板焊后尺寸公差要求:a.对角线差不大于2mm。
b.拼板间隙应小于1mm。
c.长短板误差不能大于1.5mm。
高低板误差不能大于0.5mm1.4拼缝两端距离铜垫凹槽边距离>1mm,错边小于0.3mm。
1.5引熄弧板焊缝长度大于10mm。
1.6焊丝干伸长8—12mm;焊缝高度不大于2mm,单条缝宽度差应小于1mm。
1.7焊缝成形后, 焊缝正面宽度4—6mm,高度1—2mm, 焊缝表面没有咬边、气孔、偏焊等缺陷。
2、检验工具及方法采用钢直尺、目视检查、蜡线、直尺二、角柱角件焊的焊接检验标准1、检验标准1.1选定规范参数施焊。
a.角件转角处无断焊。
b.检查装配位置是否正确,控制角柱不能出现“八”字型。
c.检查上下角件有无错装。
d.检查焊接质量,保证角件焊道无缺陷。
e.严格执行首检、抽检制度。
1.2箱外:角柱侧焊脚尺寸5~12mm,角件侧焊脚尺寸3~4mm且不超出角件;箱内:焊脚尺寸5~8mm,且两焊脚尺寸差不超过1mm;焊缝咬边深度不大于0.2mm。
焊缝凸度不超过2mm。
,内侧焊脚高5-7 mm。
1.3焊缝表面均匀、光滑、饱满、纹络细密清晰,不允许有咬边、偏焊等常规缺陷,焊缝不超角件外表面,拐角处焊缝饱满圆滑包角。
1.4飞溅彻底清理干净,无焊接缺陷。
2、检验工具及方法三、前端装框装焊的焊接检验标准1、检验标准1.1前墙板与前端上、下梁的装配尺寸符合图纸要求后点焊,点焊点在波的拐角处,点焊要正,饱满,焊点直径3-5mm.1.2装配前端上梁,保证前端楣板与角件的距离,间隙(不大于3mm)应分中,2、检验工具及方法目视检查、蜡线四、前端焊接的焊接检验标准1、检验标准1.1波纹板焊点须点在凹波位。
避免锤印。
1.2装配线保证小于±2mm。
1.3焊缝表面均匀,不超前上梁、光滑、饱满,高低差≤2mm。
焊接质量试验及检验标准
焊接质量试验及检验标准摘要:焊接是一种常用的金属连接方法,在各种行业中广泛应用。
焊接质量的好坏直接关系到连接件的强度和使用安全性。
本文将对焊接质量试验和检验标准进行详细介绍,以帮助读者了解焊接质量的重要性以及如何进行有效的质量控制。
一、引言焊接是将两个或多个金属部件通过加热或压力的作用使其产生连续的金属结合。
焊接质量的好坏对产品的质量和安全性都有直接影响,因此,在焊接过程中进行质量试验和检验是必不可少的。
二、焊接质量试验焊接质量试验是通过一系列试验项目来评估焊接质量的好坏。
以下是常见的焊接质量试验项目:1.外观检验:通过目视检查焊缝的表面质量,检查是否存在焊缝缺陷,如气孔、裂纹、夹渣等。
2.尺寸检验:测量焊缝的尺寸和形状,确保焊接符合设计要求。
3.力学性能测试:对焊接试样进行拉伸、弯曲、冲击等力学性能测试,评估焊接材料的强度和韧性。
4.金相组织分析:通过金相显微镜观察和分析焊缝的组织结构,了解焊接过程中发生的相变和组织演变,评估焊接质量。
5.硬度测试:测量焊缝的硬度,评估焊接材料的硬度分布情况。
三、焊接质量检验标准焊接质量检验标准是规定焊接质量接受与否的参考依据。
以下是常见的焊接质量检验标准:1.国家标准:根据国家标准进行焊接质量的检验。
例如,对于钢结构,可使用国家标准《钢结构焊接》(GB/T 12470)进行检验。
2.行业标准:不同行业有相应的焊接质量检验标准,根据行业需求进行选择和执行。
例如,对于航空航天行业的焊接,可使用行业标准《航空航天焊接技术规范》进行检验。
3.国际标准:根据国际标准进行焊接质量的检验。
例如,对于焊接材料的硬度测试,可使用国际标准《焊接材料硬度测试方法》(ISO 6507)进行检验。
四、焊接质量控制有效的焊接质量控制可以确保焊接质量符合要求,并且减少焊接缺陷的发生。
以下是一些常用的焊接质量控制方法:1.焊接操作规程:制定详细的焊接操作规程,包括焊接参数、焊接顺序、焊接工艺和焊接工装等,以确保焊接过程的标准化和一致性。
一般焊接标准
一般焊接标准
一般焊接标准根据不同的行业和具体需求会有所不同,但以下是一些常见的焊接标准和基本要求:
1.焊接时焊缝要求平滑,不得有气孔夹渣等焊接缺陷,发现缺陷要
及时修补。
2.焊接时要求焊缝高度不能小于母材(焊件)的厚度。
不同厚度的
母材(焊件)焊接时,焊缝高度不能小于最薄母材(焊件)厚度。
3.焊接工艺参数:根据工件厚度选择焊接直径。
板厚≤4mm,焊条
直径不超过焊件厚度;板厚4~12mm,焊条直径3.2~4mm;板厚>12mm,焊条直径4~5mm。
4.焊接电流与焊条直径的关系:焊条直径3.2~4mm,焊接电流50~
40A;焊条直径4~5mm,焊接电流50~45A。
需要注意的是,不同的材料、不同的焊接方法以及不同的应用场景都会有不同的焊接标准和要求,因此在实际操作中需要结合具体情况进行选择和调整。
同时,还需要注意安全操作和环境保护等方面的要求。
焊接标准大全-焊接国家标准汇总
焊接国家标准总汇标准号标准名称焊接基础通用标准GB/T3375--94 焊接术语GB324--88 焊缝符号表示法GB5185--85 金属焊接及钎焊方法在图样上的表示代号GB12212--90 技术制图焊缝符号的尺寸、比例及简化表示法GB4656--84 技术制图金属结构件表示法GB985--88 气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式和尺寸GB986--88 埋弧焊焊缝坡口的基本形式与尺寸GB/T12467.1—1998 焊接质量要求金属材料的熔化焊第1部分:选择及使用指南GB/Tl2468.2--1998 焊接质量保证金属材料的熔化焊第2部分:完整质量要求GB/Tl2468.3--1998 焊接质量保证金属材料的熔化焊第3部分:一般质量要求GB/Tl2468.4--1998 焊接质量保证金属材料的熔化焊第4部分:基本质量要求GB/T12469--90 焊接质量保证钢熔化焊接头的要求和缺陷分级GBl0854--90 钢结构焊缝外形尺寸GB/T16672—1996 焊缝----工作位置----倾角和转角的定义焊接材料标准焊条GB/T5117--1995 碳钢焊条GB/T5118--1995 低合金钢焊条GB/T983—1995 不锈钢焊条GB984--85 堆焊焊条GB/T3670--1995 铜及铜合金焊条GB3669--83 铝及铝合金焊条GBl0044--88 铸铁焊条及焊丝GB/T13814—92 镍及镍合金焊条GB895--86 船用395焊条技术条件JB/T6964—93 特细碳钢焊条JB/T8423—96 电焊条焊接工艺性能评定方法GB3429--82 碳素焊条钢盘条JB/DQ7388--88 堆焊焊条产品质量分等JB/DQ7389--88 铸铁焊条产品质量分等JB/DQ7390--88 碳钢、低合金钢、不锈钢焊条产品质量分等JB/T3223--96 焊接材料质量管理规程焊丝GB/T14957—94 熔化焊用钢丝GB/T14958--94 气体保护焊用钢丝GB/T8110--95 气体保护电弧焊用碳钢、低合金钢焊丝GBl0045--88 碳钢药芯焊丝GB9460--83 铜及铜合金焊丝GBl0858--89 铝及铝合金焊丝GB4242--84 焊接用不锈钢丝GB/T15620--1995 镍及镍合金焊丝JB/DQ7387--88 铜及铜合金焊丝产品质量分等焊剂GB5293--85 碳素钢埋弧焊用焊剂GBl2470--90 低合金钢埋弧焊焊剂钎料、钎剂GB/T6208--1995 钎料型号表示方法GBl0859---89 镍基钎料GBl0046--88 银基钎料GB/T6418--93 铜基钎料GB/T13815--92 铝基钎料GB/T13679--92 锰基钎料JB/T6045--92 硬钎焊用钎剂GB4906--85 电子器件用金、银及其合金钎焊料GB3131--88 锡铅焊料GB8012--87 铸造锡铅焊料焊接用气体GB6052--85 工业液体二氧化碳GB4842--84 氩气GB4844--84 氮气GB7445--87 氢气GB3863--83 工业用气态氧GB3864--83 工业用气态氮GB6819--86 溶解乙炔GBlll74--89 液化石油气GBl0624--89 高纯氩GBl0665--89 电石其它GB12174--90 碳弧气刨用碳棒焊接质量试验及检验标准钢材试验GBl954--80 镍铬奥氏体不锈钢铁素体含量测定方法GB6803--86 铁素体钢的无塑性转变温度落锤试验方法G132971--82 碳素钢和低合金钢断口试验方法焊接性试验GB4675.1--84 焊接性试验斜Y型坡口焊接裂纹试验方法GB4675.2—84 焊接性试验搭接接头(CTS)焊接裂纹试验方法GB4675.3--84 焊接性试验T型接头焊接裂纹试验方法GB4675.4--84 焊接性试验压板对接(FISCO)焊接裂纹试验方法GB4675.5—84 焊接热影响区最高硬度试验方法GB9447--88 焊接接头疲劳裂纹扩展速率试验方法GB/T13817--92 对接接头刚性拘束焊接裂纹试验方法GB2358--80 裂纹张开位移(COD)试验方法GB7032--86T型角焊接头弯曲试验方法GB9446--88 焊接用插销冷裂纹试验方法GB4909.12—85 裸电线试验方法镀层可焊性试验焊球法GB2424.17--82 电工电子产品基本环境试验规程锡焊导则GB4074.26—83 漆包线试验方法焊锡试验JB/ZQ3690 钢板可焊性试验方法SJl798--81 印制板可焊性测试方法力学性能试验GB2649--89 焊接接头机械性能试验取样方法GB2650--89 焊接接头冲击试验方法GB2651—89 焊接接头拉伸试验方法GB2652—89 焊缝及熔敷金属拉伸试验方法GB2653--89 焊接接头弯曲及压扁试验方法GB2654--89 焊接接头及堆焊金属硬度试验方法GB2655--89 焊接接头应变时敏感性试验方法GB2656--81 焊接接头和焊缝金属的疲劳试验方法焊接材料试验GB3731--83 涂料焊条效率、金属回收率和熔敷系数的测定GB/T3965--1995 熔敷金属中扩散氢测定方法焊接检验GB/T12604.1--90 无损检测术语超声检测GB/T12604.2--90 无损检测术语射线检测GB/T12604.3--90 无损检测术语渗透检测GB/T12604.4--90 无损检测术语声发射检测GB/T12604.5--90 无损检测术语磁粉检测GB/T12604.6--90 无损检测术语涡流检测GB5618--85 线型象质计GB3323--87 钢熔化焊对接接头射线照相和质量分级GB/T12605--90 钢管环缝熔化焊对接接头射线透照工艺和质量分级GB/T14693--93 焊缝无损检测符号GBll343--89 接触式超声斜射探伤方法GBll345--89 钢焊缝手工超声波探伤方法和探伤结果的分级GBll344--89 接触式超声波脉冲回波法测厚GB2970--82 中厚钢板超声波探伤方法JBll52--81 锅炉和钢制压力容器对接焊缝超声波探伤GB/T15830—1995 钢制管道对接环缝超声波探伤方法和检验结果的分级GB827--80 船体焊缝超声波探伤GBl0866--89 锅炉受压元件焊接接头金相和断口检验方法GBll809---89 JB/T9215--1999 JB/T9216--1999 JB/T9217--1999 JB/T9218--1999 JB3965--85EJ187--80JB/T6061--92 JB/T6062--92 EJl86---80JB/ZQ3692JB/ZQ3693GBll373--89EJ188--80JBl612--82GB9251--88GB9252--88GBl2135---89 GBl2137--89 GBll639--89 GB7446--87GB4843--84GB4845--84JB4730—94DL/T820-2002 DL/T821-2002 DL/T541-94JB4744—2000 核燃料棒焊缝金相检验控制射线照相图像质量的方法控制渗透探伤材料质量的方法射线照相探伤方法渗透探伤方法钢制压力容器磁粉探伤磁粉探伤标准焊缝磁粉检验方法和缺陷磁痕的分级焊缝渗透检验方法和缺陷迹痕的分缀着色探伤标准焊接熔透量的钻孔检验方法钢焊缝内部缺陷的破断试验方法热喷涂涂层厚度的无损检测方法焊缝真空盒检漏操作规程锅炉水压试验技术条件气瓶水压试验方法气瓶疲劳试验方法气瓶定期检查站技术条件气瓶密封性试验方法溶解乙炔气瓶多孔填料技术指标测定方法氢气检验方法氩气检验方法氮气检验方法压力容器无损检测管道焊接接头超声波检验技术规程钢制承压管道对接焊接接头射线检验技术规程钢熔化焊角焊缝射线照相方法和质量分级钢制压力容器产品焊接试板的力学性能检验焊接质量GB6416--86 影响钢熔化焊接头质量的技术因素GB6417--86 金属熔化焊焊缝缺陷分类及说明TJl2.1--81 建筑机械焊接质量规定JB/T6043--92 金属电阻焊接接头缺陷分类JB/ZQ3679 焊接部位的质量JB/ZQ3680 焊缝外观质量JB/TQ330--83 通风机焊接质量检验GB999--82 船体焊缝表面质量检验方法A-4 焊接方法及工艺标准GBl2219--90 钢筋气压焊GBll373--89 热喷涂金属件表面预处理通则JB/Z261--86 钨极惰性气体保护焊工艺方法JB/Z286--87 二氧化碳气体保护焊工艺规程JB/ZQ3687 手工电弧焊的焊接规范SDZ019--85 焊接通用技术条件J134251—86 摩擦焊通用技术条件ZBJ59002.1--88 热切割方法和分类ZBJ59002.2--88 热切割术语和定义ZBJ59002.3--88 热切割气割质量和尺寸偏差ZBJ59002.4—88 热切割等离子弧切割质量和尺寸偏差ZBJ59002.5--88 热切割气割表面质量样板JB/ZQ3688 钢板的自动切割ZBK540339--90 汽轮机铸钢件补焊技术条件NJ431—86 灰铸铁件缺陷焊补技术条件GBll630--89 三级铸钢锚链补焊技术条件GB/Z66--87 铜极金属极电弧焊JB/TQ368—84 泵用铸钢件焊补JB/TQ369---84 泵用铸铁件焊补HB/Z5l34--79 结构钢和不锈钢熔焊工艺JB/T6963—93 钢制件熔化焊工艺评定JB4708--2000 钢制压力容器焊接工艺评定JB4709—2000 钢制压力容器焊接规程DL/T752-2001 火力发电厂异种钢焊接技术规程DL/T819-2002 火力发电厂焊接热处理技术规程DL/T868-2004 焊接工艺评定规程DL/T869—2004 火力发电厂焊接技术规程焊接设备标准GB2900-22--85 电工名词术语电焊机GB8118--87 电弧焊机通用技术条件GB8366--87 电阻焊机通用技术条件GBl0249--88 电焊机型号编制方法GBl0977--89 摩擦焊机GB/T13164--91 埋弧焊机ZBJ64001--87TIG焊焊炬技术条件ZBJ64003--87 弧焊整流器ZBJ64004188 MIG/MAG弧焊机ZBJ64005--88 电阻焊机控制器通用技术条件ZBJ64006--88 弧焊变压器ZBJ64008--88 电阻焊机变压器通用技术条件ZBJ64009--88 钨极惰性气体保护弧焊机(TIG焊机)技术条件ZBJ64016--89MIG/MAG焊枪技术条件ZBJ64021—89 送丝装置技术条件ZBJ64022--89 引弧装置技术条件ZBJ64023--89 固定式点凸焊机JB5249--91 移动式点焊机JB5250--91 缝焊机ZBJ33002--90 焊接变位机ZBJ33003--90 焊接滚轮架JB5251--91 固定式对焊机JB685--92JB/DQ5593.1—90JB/DQ5593.2--90JB/DQ5593.3--90JB/DQ5593.4--90JB/DQ5593.5--90JB/DQ5593.6--90JB/DQ5593.7--90JB/DQ5593.8--90JB/DQ5593.9--90JB/DQ5593.10-90JB/DQ5593.11-90JB/DQ5593.12-90JB/Z152--81JB2751--80JBJ33001—87JBl0860--89GB5110--85JB/T5102--91JB5101--91JB6104--92GB5107--85 直流弧焊发电机电焊机产品质量分等总则电焊机产品质量分等弧焊变压器.电焊机产品质量分等便携式弧焊变压器电焊机产品质量分等弧焊整流器电焊机产品质量分等MIG/MAG弧焊机电焊机产品质量分等TIG焊机电焊机产品质量分等原动机弧焊发电机组电焊机产品质量分等TIG焊焊炬电焊机产品质量分等电焊机冷却用风机电焊机产品质量分等MIG/MAG焊焊枪电焊机产品质量分等电阻焊机控制器电焊机产品质量分等摩擦焊机电焊机系列型谱等离子弧切割机小车式火焰切割机快速割嘴射吸式割炬坐标式气割机气割机用割炬摇臂仿形气割机焊接和气割用软管接头焊接安全与卫生标准GB9448—88GBl0235--88GB8197--87GBl2011--89 焊接与切割安全弧焊变压器防触电装置防护屏安全要求绝缘皮鞋焊工培训与考试标准GB6419--86JJl2.2--87EJ/Z3--78DL/T679--1999 JB/TQ338--84 GB/T15169--94 SDZ009--84 JBll52--88 潜水焊工考试规则焊工技术考试规程焊工培训及考试规程焊工技术考核规程通风机电焊工考核标准钢熔化焊手焊工资格考试方法手工电弧焊及埋弧焊焊工考试规则机械部焊工技术等级标准国家质量监督检验检疫总局锅炉压力容器压力管道焊工考试与管理规则( 船舶)焊工考试规则冶金建设工程焊工考试规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)IPC-ESD-2020: 静电放电控制程序开发的联合标准。
包括静电放电控制程序所必须的设计、建立、实现和维护。
根据某些军事组织和商业组织的历史经验,为静电放电敏感时期进行处理和保护提供指导。
2) IPC-SA-61 A: 焊接后半水成清洗手册。
包括半水成清洗的各个方面,包括化学的、生产的残留物、设备、工艺、过程控制以及环境和安全方面的考虑。
3) IPC-AC-62A: 焊接后水成清洗手册。
描述制造残留物、水成清洁剂的类型和性质、水成清洁的过程、设备和工艺、质量控制、环境控制及员工安全以及清洁度的测定和测定的费用。
4) IPC-DRM -4 0E: 通孔焊接点评估桌面参考手册。
按照标准要求对元器件、孔壁以及焊接面的覆盖等详细的描述,除此之外还包括计算机生成的3D 图形。
涵盖了填锡、接触角、沾锡、垂直填充、焊垫覆盖以及为数众多的焊接点缺陷情况。
5) IPC-TA-722: 焊接技术评估手册。
包括关于焊接技术各个方面的45 篇文章,内容涉及普通焊接、焊接材料、手工焊接、批量焊接、波峰焊接、回流焊接、气相焊接和红外焊接。
6) IPC-7525: 模板设计指南。
为焊锡膏和表面贴装粘结剂涂敷模板的设计和制造提供指导方针i 还讨论了应用表面贴装技术的模板设计,并介绍了带有通孔或倒装晶片元器件的?昆合技术,包括套印、双印和阶段式模板设计。
7) IPC/EIA J-STD-004: 助焊剂的规格需求一包括附录I 。
包含松香、树脂等的技术指标和分类,根据助焊剂中卤化物的含量和活化程度分类的有机和无机助焊剂;还包括助焊剂的使用、含有助焊剂的物质以及免清洗工艺中使用的低残留助焊剂。
8)IPC/EIA J-STD -005 :焊锡膏的规格需求一包括附录I 。
列出了焊锡膏的特征和技术指标需求,也包括测试方法和金属含量的标准,以及粘滞度、塌散、焊锡球、粘性和焊锡膏的沾锡性能。
9) IPC/EIA J-STD -0 06A: 电子等级焊锡合金、助焊剂和非助焊剂固体焊锡的规格需求。
为电子等级焊锡合金,为棒状、带状、粉末状助焊剂和非助焊剂的焊锡,为电子焊锡的应用,为特殊电子等级焊锡提供术语命名、规格需求和测试方法。
10) IPC-Ca-821: 导热粘结剂的通用需求。
包括对将元器件粘接到合适位置的导热电介质的需求和测试方法。
11) IPC-3406: 导电表面涂敷粘结剂指南。
在电子制造中为作为焊锡备选的导电粘结剂的选择提供指导。
12) IPC-AJ-820: 组装和焊接手册。
包含对组装和焊接的检验技术的描述,包括术语和定义;印制电路板、元器件和引脚的类型、焊接点的材料、元器件安装、设计的规范参考和大纲;焊接技术和封装;清洗和覆膜;质量保证和测试。
13) IPC-7530: 批量焊接过程(回流焊接和波峰焊接)温度曲线指南。
在温度曲线获取中采用各种测试手段、技术和方法,为建立最佳图形提供指导。
有铅工艺和无铅工艺的区别有铅工艺和无铅工艺之间的差别到底在哪里?价格差那么大,对生产的影响到底体现在哪些方面?该如何选择?在传统的印刷电路板组装的焊锡工艺中,一般采用锡铅焊料(Sn-Pb),其中铅是作为合金焊料的一种基本元素存在并发挥作用。
无铅工艺的基本概念就是在焊锡过程中,无论是手工烙铁焊、浸焊、波峰焊和回流焊,所使用的焊料都是无铅焊料(Pb-Feer Soder),但无铅焊料并不是代表100%不含铅。
在有铅焊料中,铅是作为一种基本元素而存在的。
在无铅焊料中,基本元素不含铅。
但作为一种杂质元素,铅的存在是不可避免的。
因为世界上不存在100%的纯金属。
实质上无铅焊料的定义就是无铅焊料中铅的上限值的问题。
欧盟出台的ROHS指令明确要求将铅的含量控制在0.1wt%以下。
无铅工艺趋势首先我们来看看有铅和无铅的趋势,随着国际环保要求逐步提高,无铅工艺成为电子产业发展的一个必然过程。
尽管无铅工艺已经推行这么多年,仍有部分企业使用有铅工艺,但无铅工艺完全代替有铅这是一个必然的结果。
但是无铅工艺在使用方面有些地方也许还不如有铅工艺,所以我们以后要研究的是如何让无铅工艺更好地替代有铅工艺。
让ROHS环保更广泛的普及,达到既盈利又环保的双赢目标。
无铅工艺的现状当前国内许多大公司也没有完全采用无铅工艺而是采取有铅工艺技术来提高可靠性,在机车行业中西门子和庞巴迪等国际知名公司也没有完全采用无铅工艺进行生产,而是尽量豁免。
当前有许多专业也认为无铅技术还有许多问题有待于进一步认识,如著名工艺专家李宁成博士也认为当前的无铅工艺技术的发展还没有有铅技术成熟,如先前的无铅焊接采用的最多的Sn3Ag0.5Cu焊料合金,最近发现由于Cu的含量稍低,焊点可靠性有些问题,有人建议将Cu的质量分数提高到1%~2%,但是现在时常上还没有这种焊料合金的产品。
同时无铅焊接的电子产品的可靠性数据远远没有有铅焊接生产的电子产品丰富。
有铅工艺和无铅工艺的比较有铅工艺技术有上百年的发展历史,经过一大批有铅工艺专家研究,具有交好的焊接可靠性和稳定性,拥有成熟的生产工艺技术,这主要取决于有铅焊料合金的特点。
有铅焊料合金熔点低,焊接温度低,对电子产品的热损坏少;有铅焊料合金润湿角小,可焊性好,产品焊点“假焊”的可能性小;焊料合金的韧性好,形成的焊点抗震动性能好于无铅焊点。
无铅焊接工艺从目前的研究结果中摸索有可替代合金的熔点温度都高于现有的锡铅合金。
例如从目前较可能被业界广泛接受的“锡——银——铜”合金看来,起熔点是217℃,这将在焊接工艺中造成工艺窗口的大大缩小。
理论上工艺窗口的缩小为从锡铅焊料的37℃降到23℃。
实际上,工艺窗口的缩小远比理论值大。
因为在实际工作中我们的测温法喊有一定的不准确性,加上DFM的限制,以及要很好地照顾到焊点“外观”等,回流焊接工艺窗口其实只有约14℃。
不只是工艺窗口的缩小给工艺人员带来巨大的挑战,焊接温度的提高也使得焊接工艺更加困难。
其中一项就是高温焊接过程中的氧化现象。
我们都知道,氧化层会使焊接困难、润湿不良以及造成虚焊。
氧化程度除了器件来料本身要有足够的控制外,拥护的库存条件和时间、加工前的处理(例如除湿烘烤)以及焊接中预热(或恒温)阶段所承受的热能(温度和时间)等都是决定因素。
由于无铅焊接工艺窗口比起含铅焊接工艺窗口有着显著的缩小,业界有些人认为氮气焊接环境的使用也许有必要。
氮气焊接能够减少熔锡的表面张力,增加其湿润性。
也能防止预热期间造成的氧化。
但氮气非万能,它不能解决所有无铅带来的问题。
尤其是不可能解决焊接工艺前已经造成的问题。
在目前的回流焊接设备中,使用强制热风对流原理的炉子设计是主流。
热风对流技术在升温速度的可控性以及恒温能力方面较强。
在加热效率和加热均匀性以重复性等方面较弱。
这些弱点,在含铅技术中体现的并不严重,许多情况下还可以被接受。
随着无铅技术工艺窗口的缩小和对重复性的更高要求,热风对流技术将受到挑战。
质量,是每个SMT厂不断追求的目标。
那么企业如何提高SMT贴片加工质量呢?下面跟靖邦技术员来了解下吧。
1、企业技术人员的挑选企业内部建立全面质量(TQC)机构网络,作到质量反馈及时、准确挑选人员素质最好的作为生产线的质检员,而行政上仍属质量部管理,从而避免其他因素对质量判定工作的干扰。
2、确保检测维修仪器设备的精确产品的检验、维修是通过必要的设备、仪器来实施的,如万用表、防静电手腕、烙铁、ICT等等。
因而,仪器本身的质量好坏将直接影响到生产质量。
要按规定及时送检和计量,确保仪器的可靠性。
靖邦科技具有阿立德离线AOI检测仪、X-RAY检测仪、LCR 电桥检测仪、60倍数码电子显微镜等高精检测设备,确保每个产品质量达标。
3、质量过程控制点的设置为保证SMT贴片加工能够正常进行,必须加强各工序的质量检查,从而监控其运行状态。
因此在一些关键工序后设立质量控制点显得尤为重要,这样可以及时发现上段工序中的品质问题并加以纠正,杜绝不合格产品进入下道工序。
4、制定有关质量的规章制度质量部要制订必要的有关质量的规章制度和本部门的工作责任制通过法规来约束人为可以避免的质量事故,赏罚分明,用经济手段参与质量考核,企业内部专设每月质量奖。
5、管理措施的实施率达不到国标要求的应退货,并将检验结果书面记录备案的措施。
失效分析就是要分析损坏的产品从而为改进设计或明确责任提供素材的工作。
但是从行业来看,目前很多公司特别是中小型公司的失效分析做的并不好。
中国有句俗话叫:“吃一堑,长一智”,《论语》中也有“不贰过”的说法。
其本质就是要从失败中吸取教训避免进一步的犯错。
甚至不能保证物料的真伪。
更有甚者,一些企业就没有失效分析的概念,停留在坏了就修的救火状态。
也谈不到从根本上吸取教训的问题。
有的企而后送到全球失效分析中心排队分析,结果一个失效分析下来往往要1~2个月。
而拿到的报告往往是说用户使用不当。
比如静电没有保护好、潮湿敏感器件出了爆米花效应之类的。
好像从来就没有电子元器件生产商的责任。
而事实上,对于很多器件,特别是新推出的某些专用芯片,往往在其刚刚进入市场时会有很多bug,这些bug会造成这样那样的失效。
这中bug又是电子器件生产商遮遮掩掩的。
而且,对于很多中小企业而言如果他们进货渠道很多,很多时候在第一个环节就被原厂给拒绝了。
一般而言原厂都是要求由代理商提供失效样品的送样。
结果就出现了新的代理一查批号说不是我买的货,我不能送样。
而原来的供应商则说,你都不买我的货了,我为什么给你送样的情况。
导致很多中小企业的东西损坏的不明不白。
也许你会说,不是有专业的失效分析公司么?是的,目前有很多做电子元器件失效分析的公司,但是其中良莠不齐。
一个比较普遍的现象是,缺乏深层次失效机理的分析能力。
很多都停留在使用高精尖的设备发现失效点上,至于为什么出现这种失效,如何避免,究竟是谁的责任,往往不能提供很深入的帮助。
因此企业需要有一定的失效分析能力。
这其中也有个需要注意的问题。
一个是仪器的配备,一个是人员的配备。
高级的失效分析仪器往往价格昂贵,像扫描电镜都是数以百万计的仪器。
对于一般的企业,往往没有实力配备全套的仪器设备。
另一方面,就是配备了这些仪器设备,对于仪器的操作、结果的判读、机理的推断都需要有高素质的失效分析人员来进行。
要配备齐全的设备和专家的人员对一般企业而言都是很难做的。
这就是失效分析尴尬的现状。
但是,难做不等于不能做。
对于绝大多数企业而言,根据自己的实力来装备培养自己失效分析队伍也是需要的。
一般的企业做失效分析可以先配备一个晶体管图示仪,好点的国产货也就万把块钱。
在一个仪器上培养这方面的人,就比全面铺开要方便很多。
而通过晶体管图示仪基本上可以把失效器件定位到失效的管脚上,如果条件好,还能确认是电过应力损坏还是静电损坏。
知道了这两点就可以帮助开发人员检查设计,而如果是静电损伤,则可改善生产使用的防护条件了。