频率与概率(全国优质课课件)

合集下载

课件 频率与概率

课件   频率与概率
想一想
袋中是何色球
一个口袋中有8个白球和若 干个黄球,如果不许将球倒 出来数,那么你能估计出其 中的白球吗?
做一做
袋中是何色球
小明是这样做的: 从口袋中随机摸出一球, 记下其颜色,再把它放回 口袋中.不断重复上述过程. 我共摸了200次,其中有57 次摸到白球,因此我估计口 袋中大约有20个黄球.
如果有X个黄球,8个白球, 那么白球的理论概率是多少?
8 8 x
实际操作中的情况:
白球次数 每次摸一个: 总次数 每次摸取一组球:
每次白球数与总球数 比值的平均数
如果每次抽一个抽了200次,白 球出现57次,有多少黄球?
8 57 8 x 200
X≈20
如果每次抽10个,抽了20次,
小亮是这样做的:
利用抽样调查的方法,从口袋中 一次随机摸出10个球,求出其 中白球数与10的比值,再把它放 回口袋中.不断重复上述过程.我 总共摸了20次,白球数与10的比 值的平均数为0.25,因此我估计 口袋中大约有24个黄球.
想一想
你能说说小明这样做 的道理吗?
假设口袋中有x个黄球,通过多次试验 ,我们可以估计出从口袋中随机摸出一 球,它为白球的概率;另一方面,这个概 率又应等于8/(8+x),据此可估计出黄 球数x.
18个
二、学科间综合题
11、生物工作者往往要统计某一地 区鸟类的数量,他们在某地区范围 内捕获100只作上标记,然后放回 小山中,过一段时间后又进行一次 捕获,结果在捕获的300只鸟中有5 只有标记,则山中大约有多少只鸟?
二、应用题
张大爷想知道自己所承包的池 塘的鱼的情况,第一次随机捞出50 条,称得总重量98千克,将这50条 鱼作出标记后又放回池塘,等他们 完全融入其他鱼后又随机捕捞200 条,称得总重量为402千克,且带 有标记的鱼有5条,你能帮张大爷 估计出与鱼塘里鱼的数量和总重量 吗?

《概率与频率》课件

《概率与频率》课件

频率与概率的近似关系
在大量重复试验中,频率可以作为概 率的近似值。
这种近似关系在统计学和概率论中非 常重要,因为在实际应用中,我们通 常无法知道事件的准确概率,只能通 过频率来估计。
随着试验次数的增加,频率会逐渐接 近概率。
大数定律
大数定律是指在大量重复试验中,某一事件的相对频率趋于其概率的极限定理。
概率的取值范围
概率的取值范围是0到1之间,其中0 表示事件不可能发生,1表示事件一 定发生。
概率的取值范围
概率的取值范围是0 到1之间,包括0和1 。
概率的取值对于理解 和预测随机事件的发 生非常重要。
概率的取值表示随机 事件发生的可能性大 小。
概率的基本性质
01
02
03
概率具有非负性
任何事件的概率都大于等 于0。
《概率与频率》PPT课件
目 录
• 概率的基本概念 • 频率与概率的关系 • 概率的运算 • 概率在生活中的应用 • 概率与统计的关系 • 概率在计算机科学中的应用
01
概率的基本概念
概率的定义
概率的定义
概率的基本性质
表示随机事件发生的可能性大小的数 值。
概率具有非负性、规范性、可加性等 基本性质。
随机数生成
在密码学中,随机数是非常重要的,因为它们用于生成加密密钥和初始化向量等 。概率可以用来评估随机数生成器的质量,例如,评估其是否足够随机和不可预 测。
人工智能中的概率
机器学习中的概率
机器学习是人工智能的一个重要分支,其中概率发挥着关键 作用。例如,在分类问题中,概率可以用来计算分类器对某 个实例属于某个类别的信任度。在聚类问题中,概率可以用 来评估聚类结果的稳定性。
3

概率与频率PPT课件

概率与频率PPT课件
第2页/共31页
基本知识
随机试验:满足下列三个条件
试验可以在相同的情况下重复进行; 试验的所有可能结果是明确可知的,且不止一个; 每次试验的结果无法预知,但有且只有一个结果。
概率与频率
概率是指某个随机事件发生可能性的一个度量,是该随机事件本身的属 性。 频率是指某随机事件在随机试验中实际出现的次数与随机试验进行次数 的比值。
perms(1:n) 生成由 1:n 组成的全排列,共 n! 个
第4页/共31页
Matlab 中的随机函数
random('name',A1,A2,A3,M,N)
name 的取值可以是
'norm' or 'Normal' 'unif' or 'Uniform' 'poiss' or 'Poisson' 'beta' or 'Beta' 'exp' or 'Exponential' 'gam' or 'Gamma' 'geo' or 'Geometric' 'unid' or 'Discrete Uniform'
k 0,1, , n
X ~ b(n, p)
例: n=500,p=0.05 时的二项式分布密度函数图
x=0:50; y=binopdf(x,500,0.05); plot(x,y)
第19页/共31页
离散分布: Poisson 分布
泊松分布也属于离散分布,是1837年由发个数
学家 Poisson 首次提出,其概率分布列为:

频率与概率(课件)

频率与概率(课件)
其余均相同,小新从布袋中随机摸出一球,记下颜色后放回,摇匀……如此做大
量摸球试验后,小新发现摸出红球的频率稳定于20%,摸出黑球的频率稳定于
50%,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率
稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸
球100次,必有20次摸出的是红球.其中说法正确的是( B )
所示:
则这个厂生产的瓷砖是合格品的概率估计值是______.(精确到0.01)
0.95
提示:运用频率和概率之间的关系,根据频率的波动情况估算概率.
探究新知
归纳:频率估计概率的一般步骤:
①大量重复试验;
②检验频率是否已表现出_______;
稳定性
③频率的________即为概率.
稳定值
课堂练习
1.明天降雨的概率为0.85,则说明( B )
1
3
A.
2
3
B.
1
4
C.
1
6
D.
课堂练习
4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针
落在数字“Ⅳ”所示区域内的概率是( A)
1
3
A.
1
4
B.
1
6
C.
1
8
D.
5.如图,正方形ABCD内接于☉O,☉O的直径为 2分米,若在这个圆
面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( A)
能是( D )
A.在“石头、剪刀、布”的游戏中,小明随机出的是
“剪刀”
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张
牌,其花色是红桃
C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,

《频率与概率》课件

《频率与概率》课件
$P(A|B) = frac{P(B|A) cdot P(A)}{P(B)}$,其中$P(A|B)$表示在 事件B发生的条件下,事件A发生的概率。
贝叶斯定理应用
贝叶斯定理在统计学、机器学习、决策理论等领域有广泛应用, 尤其是在处理不确定性和主观概率方面。
全概率公式
全概率公式定义
全概率公式用于计算一个复杂事件发生的概率,该复杂事件可以分 解为若干个互斥且完备的子事件。
市场调查
在市场调查中,全概率公式可以用于计算某个事件发生的概率,例如消费者购买某产品的概率,可以通过考虑不 同市场细分和购买行为的条件概率来计算。
感谢您的观看
THANKS
概率的乘法性质是指一个事件发生后,另一个事件接着发生的概率等于前一事 件的概率乘以后一事件的概率。
详细描述
如果事件A和事件B有因果关系,即B的发生依赖于A的发生,那么 P(AB)=P(A)P(B)。如果事件A和事件B没有因果关系,那么P(AB)=P(A)P(B)。
条件概率与独立性
总结词
条件概率是指在某个已知条件下,一个事件发生的概率。独立性是指两个事件之 间没有相互影响。
中心极限定理的实例
在投掷骰子实验中,随着投掷次数的增加,出现3.5次朝上的频率 逐渐接近正态分布。
大数定律与中心极限定理的应用
在统计学中的应用01 Nhomakorabea大数定律和中心极限定理是统计学中的基本原理,用于估计样
本均值和方差,以及进行假设检验和置信区间的计算。
在金融领域的应用
02
大数定律和中心极限定理用于金融风险管理和资产定价,例如
方差
方差是随机变量取值与其期望的差的 平方的平均值,表示随机变量取值的 离散程度。
05
大数定律与中心极限定理

《频率与概率》概率 PPT教学课件

《频率与概率》概率 PPT教学课件

乙击中 10 环的次数(m) 8 19 44 93 177 453
乙击中 10 环的频率(mn ) 0.8 0.95 0.88 0.93 0.885 0.906
(2)由(1)中的数据可知两名运动员击中 10 环的频率都集中在 0.9 附近,所以预测两人
在奥运会上击中 10 环的概率均约为 0.9,也就是说甲、乙两人的实力相当.
必修第二册·人教数学A版
返回导航 上页 下页
[自主检测] 1.某人将一枚硬币连续抛掷了 10 次,正面朝上的情形出现了 6 次,则( ) A.正面朝上的概率为 0.6 B.正面朝上的频率为 0.6 C.正面朝上的频率为 6 D.正面朝上的频率接近于 0.6
解析:160=0.6 是此次试验正面朝上的频率而不是概率. 答案:B
必修第二册·人教数学A版
返回导航 上页 下页
1.给出下列四个命题: ①设有一批产品,其次品率为 0.05,则从中任取 200 件,必有 10 件是次品; ②做 100 次抛硬币的试验,结果 51 次出现正面朝上,因此,出现正面朝上的概率是 15010; ③随机事件发生的频率就是这个随机事件发生的概率; ④抛掷骰子 100 次,得点数是 1 的结果 18 次,则出现 1 点的频率是590. 其中正确命题为________(填序号).
返回导航 上页 下页
[解析] 频率是不能脱离试验次数的实验值,而概率是具有确定性的不依赖于试验次 数的理论值,故②③不正确.①④显然正确.
[答案] A
必修第二册·人教数学A版
返回导航 上页 下页
频率是事件 A 发生的次数 m 与试验总次数 n 的比值,利用此公式可求出它们的频 率.频率本身是随机变量,当 n 很大时,频率总是在一个稳定值附近摆动,这个稳 定值就是概率.

频率与概率优秀课件ppt

频率与概率优秀课件ppt

114530.524. 21840
同理可求得2000年、2001年和2002年男婴出生的频率分别为:
0.521,0.512,0.512.
(2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生
的概率约是0.52.
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
注意点: 1.随机事件A的概率范围 必然事件与不可能事件可看作随机事 件的两种特殊情况.
因此,随机事件发生的概率都满足: 0≤P(A)≤1
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
人们经过大量试验和实际经验的积累逐 渐认识到:在多次重复试验中,同一事件 发生的频率在某一数值附近摆动,而且随 着试验次数的增加,一般摆动幅度越小,
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
概率的意义
像木棒有长度,土地有面积一样,概率 是对随机事件发生的可能性大小的度量, 它反映了随机事件发生的可能性的大小。 但随机事件的概率大,并不表明它在每一 次试验中一定能发生。概率的大小只能说 明随机事件在一次试验中发生的可能性的 大小,即随机性中含有的规律性。认识了 这种随机性中的规律性,就使我们能比较 准确地预测随机事件发生的可能性。
4 所谓天才,只不过是把别人喝咖啡的功夫都用在工作上了。—— 鲁 迅 5 人类的希望像是一颗永恒的星,乌云掩不住它的光芒。特别是在今天,和平不是一个理想,一个梦,它是万人的愿望。—— 巴 金

10.3 频率与概率课件ppt

10.3 频率与概率课件ppt
(周期很长),它们具有类似随机数的性质.因此,计算器或计算机产生的随机
数不是真正的随机数,我们称它们为伪随机数.
2.蒙特卡洛方法
利用计算器或计算机软件可以产生随机数,我们可以根据不同的随机试验
构建相应的随机数模拟试验,这种利用随机模拟解决问题的方法为蒙特卡
洛方法.
微思考
用频率估计概率,需要做大量的重复试验,有没有其他方法可以替代试验呢?
每组随机数字代表一个样本点;
(2)按比例确定表示各个结果的数字个数及总个数;
(3)产生的整数随机数的组数n越大,估计的概率准确性越高;
(4)这种用模拟试验来求概率的方法所得结果是不精确的,且每次模拟试验
最终得到的概率值不一定是相同的.
变式训练4从甲、乙、丙、丁4人中,任选3人参加志愿者活动,请用随机模
拟的方法估计甲被选中的概率.
解 用1,2,3,4分别表示甲、乙、丙、丁四人.
利用计算器或计算机产生1到4之间的随机数,每三个一组,每组中数不重复,

得到n组数,统计这n组数中含有1的组数m,则估计甲被选中的概率为 .
素养形成
1.对频率与概率关系问题的多方位辨析
典例1某同学掷一枚硬币10次,共有7次反面向上,于是他指出:“掷一枚硬币,
探究四
利用随机数求事件的概率
例4一个盒子中有除颜色外其他均相同的5个白球和2个黑球,用随机模拟
法求下列事件的概率:
(1)任取一球,得到白球;
(2)任取三球,都是白球.
分析将这7个球编号,产生1到7之间的整数值的随机数.(1)一个随机数看成
一组即代表一次试验;(2)每三个随机数看成一组即代表一次试验.统计组
类别
厨余垃圾
可回收物
其他垃圾

频率与概率(优秀)课件

频率与概率(优秀)课件

率都相等。由 此,我们可以 画出树状图.
综上,共有以下八种机会均等的结果: 正正正 正正反 正反正 反正正 正反反 反正反 反反正 反反反
P(正正正)=P(正正反)学=习交流P1PT
所以,这一说法正确.
9
8
练习
1.小明是个小马虎,晚上睡觉时将两双不同的 袜子放在床头,早上起床没看清随便穿了两只 就去上学,问小明正好穿的是相同的一双袜子 的概率是多少?
P(出现两个正面)=
试验得到的频率与理论分析计 算出的概率有何关系?
列表法:事件包含两步时,用表格列出事件所有可能出现的结果
学习交流PPT
5
也可用如下方法求概率:
开始
硬币1


硬币2 正 反 正 反
树状图
P(出现两个正面)=
树状图法:按事件发生的次序从上至下每条路径 列出事件的一个可能出现的结果。
(1)满足两个骰子的点数相同的结果有6个,

P(点数相同)=
6 36
1
=6
(2)满足两个骰子的点数之和是9的结果有4个, 则
4
P(和为9)= 36
1
=9
(3)满足至少有一个骰子的点数为2的结果有11
个,则
11
P(至少一个点数为2)= 学习交流PPT
36
8
例:抛掷一枚普通的硬币3次.有人说连续掷出三个正面和先掷出
用力旋转图25.2.2所示的转盘甲和转盘乙的 指针,如果你想让指针停在蓝色区域,那么选哪 个转盘成功的概率比较大?
学习交流PPT
12
思考
1、有同学说:转盘乙大,相应地,蓝色区域的面积也大, 所以选转盘乙成功的概率比较大。你同意吗?
成功的概率不由扇形面积的大小决定,而由 扇形面积所占转盘面积的百分比决定的。

频率与概率_课件

频率与概率_课件

探究:重复做同时抛掷两枚质地均匀地的硬币的实验,设事件 A=“一个正面朝上,一个反面朝上”,统计A出现的次数并计算 频率,再与其概率进行比较,你发现了什么规律?
连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗 ? 概率具有随机性,试验次数太少的时候偏差容易很大 。
探究:重复做同时抛掷两枚质地均匀地的硬币的实验,设事件 A=“一个正面朝上,一个反面朝上”,统计A出现的次数并计算 频率,再与其概率进行比较,你发现了什么规律?
我们称利用随机模拟解决问题的方法为蒙特卡 洛.
1、从所在班级任意选出6名同学,调查它们的出生年月,假 设出生在一月,二月......十二月是等可能的.舍事件A=“至少 有两人出生年月份相同”,设计一种实验方法,模拟20次, 估计事件A发生的概率.
0.7 0
2、有一次奥运会男子羽毛球比赛中,运动员甲和乙进入了决 赛,假设每局比赛甲获胜的概率为0.6,乙获胜的概率是0.4, 利用计算机模拟实验,估计甲获胜得冠军的概率.
(4) 概率为
3、(1) 掷两枚质地均匀的骰子,计算点数和为7的概率 (2) 利用随机模拟的方法,实验120次,计算出现点数和为7 的概率 (3) 所得频率与概率相差大吗?为什么会有这种差异?
(2) 由于调查新生儿人数的样本非常大,根据频率的稳定性,上述 对男婴出生率的估计值具有较高的可信度.因此,我们有理由怀疑 “生男孩和生女孩是等可能的”的结论.
2、一个游戏包内含两个随机事件A和B,规定事件A发生则甲 获胜,事件B发生则乙获胜,判断游戏是否公平的标准是事件 A和B发生的概率是否相等. 在游戏过程中,甲发现:玩了10次时,双方各胜5次;但玩到 1000次是,自己才胜300次,而乙却胜了700次,据此,甲认 为游戏不公平,但乙认为游戏是公平的,你更支持谁的结论? 为什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、创设情境,引入新课
第一种看法是:这个游戏不公平。
理由是:向空中掷两枚硬币有三种情形出现:(正、正),(反、反), (一正、一反)。 出现一正一反的概率为1/3, 出现两面一样的概率为 2/3。因此,倩倩听了当然非常高兴,因为她获胜的概率为2/3。
第二种看法是:这个游戏对双方是公平的。
玲玲和倩倩获胜的概率都为1/2。分析如下:
(1,5) (1,6) (2,5) (2,6) (3,5) (3,6) (4,5) (4,6) (5,3) (5,4) (5,5) (5,6) (6,3) (6,4) (6,5) (6,6)
变式训练
五、归纳总结,画龙点睛
1、本节课你有哪些收获?有何感想? 2、用列表法求概率时应注意什么情况?
我有哪些 收获?
开始
正 正 反 正 反 反
(正,正) 正,反)(反,正)反,反) ( (
二、师生互动、探求新知
如果有两组牌,它们的牌面数字分别是1,2,3,那 么从每组牌中各摸出一张牌, (1)两张牌的牌面数字和等于4的概率是多少呢? (2)两张牌的牌面数字和为几的概率最大?
2
+
1
=3
两张牌的牌面数字和等于3。
小明:
2、由下面这张表格,你还能提出哪些问题吗?
第一枚骰子 第二枚 的点数 骰子的点数
1
2
3 (1,3) (2,3) (3,3) (4,3)
4 (1,4) (2,4) (3,4) (4,4)
5
6
1 2 3 4 5 6
(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2) (5,1) (5,2) (6,1) (6,2)
第二张牌 的牌面数字
第一张牌的 牌面数字

你认为用列表法求概率时应注意些什么?
• 用列表法求概率时,应注意各种情况出现的可能 性必须相同。 • 从小亮的表格中你还能获得哪些事件发生的概率呢?
第一张牌的 牌面数字 第二张牌 的牌面数字
1 (1,1) (2,1) (3,1)
2 (1,2) (2,2) (3,2)
可以先把转盘A的红色区域 等分成2份,分别记作“红色1”、 “红色2”,然后制作了下表:
B 盘 A 盘 红色1 红色2 蓝色
红色 (红1,红) (红2,红) (蓝,红)
蓝色 (红1,蓝) (红2,蓝) (蓝,蓝)
据此求出游戏者获胜的 概率也是1/2。
四 、 提 高 拓 展 激 励 创 新
1、掷两枚骰子,它们的点数和可能有哪些值? 用列表的方法求: (1)“点数和为7点”的概率; (2)“两颗骰子点数相同”的概率; (3)两颗骰子点数都是相同偶数的概率。
学会了 用列表法求随机事件发生的理论概率 (也可借用树状图分析) 明白了
用列表法求概率时应注意各种情况发生的可 能性务必相同
懂得了
合作交流的重要性,并且体会到了一种精神: 就是要勇于暴露自己的思想
六、布置作业,复习巩固
1、必做题P162.1。 2、思考题: (1)请设计一个游戏,使得参与游戏的双方都公平。 (2)玲玲是一个特别爱美的女孩子,一次和爸爸、妈妈外 出旅游,带了一大包衣服,妈妈问她都带了些什么,她高 兴地说:“3件上衣分别是棕色,蓝色和白色,2条裤子分 别是黑色和白色。”妈妈为了考玲玲,问:“你一共可以 配成多少套不同的衣服?如果任意拿出1件上衣和1条长裤, 正好是白色套装的概率是多少?”你能帮玲玲解决这些问 题吗?
3 (1,3) (2,3) (3,3)
1 2 3
请你用列表法求出将两枚均匀的一元硬币抛出去,两个 都是正面朝上的概率是多少?
第一枚硬币
正面
第二枚硬币
反面 (正,反)
正硬币都是正面朝上的概率为 1 。 4
三、自主探索,合作交流
红+蓝=紫
列表如下:
A盘
黄色 (红,黄) (白,黄)

蓝色
绿色
B盘
红色 白色
(红,蓝) (红,绿) (白,蓝) (白,绿)
由表格可以看出游戏者获胜的概率为 1 。
6
小芳制作了如图所示 的转盘进行“配紫色”游戏, 列出了下表:
B盘 A盘 红色 蓝色
红色
蓝色 (红,蓝) (蓝,蓝)
(红,红)
(蓝,红)
并据此求出游戏者获胜 的概率为1/2。你认为小芳的 做法对吗?为什么?
1 4开始 42 5 6 3 2 3 4 3 4 牌面数字和的可能值 25 3 5 6 3 11 (1,1) 2 (1,2) (1,3) 小亮: 你认为谁做得对?并说出你的理由。 相应的概率 (2,1) (2,2) 1 (2,3) 1 1 1 1 2 53 5 3 1 52 25 3 5 1 2 1 (3,1) (3,2) (3,3) 3 小颖:
相关文档
最新文档