立体几何垂直证明题常见模型及方法(考试学习)
高中立体几何证明方法及例题
1.空间角与空间距离在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。
2.立体几体的探索性问题立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。
近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。
对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。
对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。
(一)平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。
1.线线、线面、面面平行关系的转化:面面平行性质α//βαI γ=a ,βI γ⎫⎬⇒a =b ⎭//baa //b⎫⎬ba ⊄α,b ⊂α⎭α⇒a //αa ⊂α,b ⊂αAb a I b =Aαaa //β,b //ββ⎫⎪⎬⎪⎭(a//b,b//c线线∥⇒a //c)公理4线面平行判定线面平行性质线面∥⇒α//β面面平行判定1面面∥面面平行性质面面平行性质1α//γ⎫β//γ⎭⎫⎪a ⊂β⎬αI β=b ⎪⎭a //α⇒a //bα//β⎫a ⊂α⎭⎬⎬⇒α//β⇒a //β2.线线、线面、面面垂直关系的转化:⎫⎪a Ib =O ⎬l ⊥a ,l ⊥b ⎪⎭a ,b ⊂α⇒l ⊥α⎫⎬⇒α⊥βa ⊂β⎭a ⊥α面面⊥三垂线定理、逆定理线线⊥PA ⊥α,AO 为PO 在α内射影a ⊂α则a ⊥OA ⇒a ⊥PO a ⊥PO ⇒a ⊥AOl ⊥α线面垂直判定1线面垂直定义线面⊥α⊥β面面垂直判定面面垂直性质,推论2⎫⎬a ⊂α⎭⇒l ⊥a⎫⎪αI β=b ⎬⇒a ⊥αa ⊂β,a ⊥b ⎪⎭α⊥γβ⊥γαI β⎫⎪⎬⇒a ⊥γ=a ⎪⎭面面垂直定义αI β=l ,且二面角α-l -β⎫成直二面角⎬⇒α⊥β⎭3.平行与垂直关系的转化:a //b ⎫a ⊥αa ⊥α⎫⇒b ⊥αa⎬⎭⎬⇒αa ⊥β⎭//β线线∥线面垂直判定2线面垂直性质2a ⊥α⎫线面⊥面面平行判定2面面平行性质3面面∥⎬⇒a //b b ⊥α⎭α//β⎫a ⊥α⎬a ⊥β⎭4.应用以上“转化”的基本思路——“由求证想判定,由已知想性质。
第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习
垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。
【分类练习】考向一线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA ⊥平面PAD ;【答案】(1)证明见解析;(2)2.【解析】(1)过A 作AF ⊥DC 于F ,则CF =DF =AF ,所以∠DAC =90°,即AC ⊥DA ,又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC ⊥PA ,因为PA 、AD ⊂面PAD ,且PA ∩AD =A ,所以AC ⊥平面PAD .例2、如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点求证:AC ⊥平面BEF ;【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,∴AC ⊥EF .∵AB BC =.∴AC ⊥BE ,∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .【巩固练习】1、如图,在三棱柱ABC-A 1B 1C 1中,AB=AC,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.证明:A 1D⊥平面A 1BC;【答案】见解析【解析】证明:设E 为BC 的中点,连接A 1E,AE.由题意得A 1E⊥平面ABC,所以A 1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A 1BC.连接DE,由D,E 分别为B 1C 1,BC 的中点,得DE∥B 1B 且DE=B 1B,从而DE∥A 1A 且DE =A 1A,所以AA 1DE 为平行四边形.于是A 1D∥AE.因为AE⊥平面A 1BC,所以A 1D⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所所以PA ∥平面EDB .(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E = ,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ;(2)求证:PA ⊥平面PCD【答案】(1)详见解析(2)详见解析【解析】(1)连结OE .因为四边形ABCD 是平行四边形,AC ,BD 相交于点O ,所以O 为AC 的中点.因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥.由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC ,PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点又E 为AB 中点//AE FG ∴,AE FG=四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H= 由AEH CDH ∆∆ 及E 为AB 中点又BAD ∠为公共角GAE BAC∴∆∆ 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A= DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .例3、如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。
高考立体几何知识点与题型精讲
高考立体几何知识点与题型精讲在高考数学中,立体几何是一个重要的板块,它不仅考查学生的空间想象能力,还对逻辑推理和数学运算能力有较高要求。
接下来,咱们就一起深入探讨一下高考立体几何的知识点和常见题型。
一、知识点梳理1、空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
(2)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
2、空间几何体的表面积和体积(1)圆柱的表面积:S =2πr² +2πrl (r 为底面半径,l 为母线长)。
体积:V =πr²h (h 为高)。
(2)圆锥的表面积:S =πr² +πrl 。
体积:V =1/3πr²h 。
(3)球的表面积:S =4πR² 。
体积:V =4/3πR³ 。
3、空间点、直线、平面之间的位置关系(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
4、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
5、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
6、直线与平面垂直的判定与性质(1)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
(2)性质定理:垂直于同一个平面的两条直线平行。
7、平面与平面垂直的判定与性质(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)
【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。
立体几何专题复习(自己精心整理)
专题一 证明平行垂直问题 题型一 证明平行关系(1)如图所示,在正方体 ABCD -A 1B 1C 1D 1 中, M , N分别是 C 1C ,B 1C 1的中点.求证: MN ∥平面 A 1BD.(2)如图,在四面体 A -BCD 中,AD ⊥平面 BCD ,BC ⊥CD ,AD = 2,BD =2 2,M 是 AD 的中点,P 是 BM 的中点,点 Q 在线段 AC 上,且 AQ = 3QC.求证: PQ ∥平面 BCD.题型二 证明垂直关系 (微专题 )微专题 1:证明线线垂直(1)已知空间四边形 OABC 中,M 为 BC 中点,N 为 AC中 点,P 为 OA 中点,Q 为 OB 中点,若 AB =OC.求证:PM ⊥QN.(2)(2019 山·西太原检测 )如图,直三棱柱 ABC -A 1B 1C 1中,AA 1=AB = AC =1,E ,F 分别是 CC 1,BC 的中点,AE ⊥A 1B 1,D 为棱 A 1B 1上的点,求证:DF ⊥AE.(3)在正方体 ABCD -A 1B 1C 1D 1中,求证: BD 1⊥平面 ACB 1. (4)(2019 河·南六市一模 )在如图所示的几何体中, ABC -A 1B 1C 1为三棱柱, 且 AA 1⊥平面 ABC ,四边形 ABCD 为平行四边形, AD =2CD ,∠ADC = 60°. 若 AA 1= AC ,求证: AC 1⊥平面 A 1B 1CD.微专题 3:证明面面垂直(5)已知正方体 ABCD -A 1B 1C 1D 1中,E ,F 分别是 BB 1,CD 的中点, 求证:平面 DEA ⊥平面 A 1FD 1.(2)在正方体 AC 1 中,M ,点,求证:平面 AMN ∥平N ,E ,F 分别是 A 1B 1,A 1D 1,B 1C 1,C 1D 1 的中 EFDB.思考题 1 (1)如图所示, 平面PAD ⊥平面 ABCD ,ABCD 为正方形,△ PAD 是直角三角形, 且 PA =AD =2,E ,F ,G 分别是线段 PA ,PD ,CD 的中点, 求证:平面 EFG ∥平面 PBC.微专题 2:证明线面垂直若不存在,说明理由.专题二 求解异面直线所成角和线面角问题题型一 异面直线所成的角(1)在棱长为 2 的正方体 ABCD -A 1B 1C 1D 1中,O 是底面 ABCD 的中心, E ,F 分别1(6)如图,四边形 ABCD 为正方形, PD ⊥平面 ABCD ,PD ∥QA ,QA =AB = 2 PD ,求证:平面 PQC ⊥平面 DCQ.思考题 2 (1)(2019 北·京东城区模拟 )如图,在四棱锥 P-ABCD 中,底 面 ABCD 是正方形,侧棱 PD ⊥底面 ABCD ,PD =DC ,E 是 PC 的中点,作 EF ⊥BP 交 BP 于点 F ,求证: PB ⊥平面 EFD.(2)(2019济·南质检)如图,在三棱锥 P -ABC 中,AB =AC ,D 为 BC 的 中点, PO ⊥平面 ABC ,垂足 O 落在线段 AD 上.已知 BC =8,PO =4,AO =3,OD =2.①证明: AP ⊥BC ;②若点 M 是线段 AP 上一点,且 AM =3,试证明平面 AMC ⊥平面BMC.题型三 探究性问题在四棱锥 P -ABCD 中,PD ⊥底面 ABCD ,底面 ABCD 为正 方形, PD =DC ,E ,F 分别是 AB ,PB 的中点.(1)求证: EF ⊥CD ;(2)在平面 PAD 内是否存在一点 G ,使 GF ⊥ 平面 PCB若. 存在,确定 G 点的位置;若不存在,试说明理由.思考题 3 (2019 ·山西长治二模 )如图所示,四棱锥 P -ABCD 的底面 是边长为 1的正方形, PA ⊥CD ,PA =1,PD = 2,E为 PD 上一点, PE = 2ED.(1)求证: PA ⊥平面 ABCD ; (2)在侧棱PC 上是否存在一点 F ,使得 BF ∥ 平面 AEC 若存在,指出 F 点的位置,并证明;是 CC 1,AD 的中点,则异面直线 OE 和 FD 1 所成的角的余弦值等于 .(2)(2019 安·徽知名示范高中联合质检 )若在三棱柱 ABC -A 1B 1C 1中,∠A 1AC=∠BAC =60°, 平面 A 1ACC 1⊥平面 ABC ,AA 1=AC =AB ,则异面直线 AC 1与 A 1B 所成角的余弦值为思考题 1 (2019·湖南雅礼中学期末 )如图 1,在矩形 ABCD 中,AB =2,BC =1,E 是的中点;如图 2,将△DAE 沿 AE 折起,使折后平面 DAE ⊥平面 ABCE ,则异面直线 AE 和 所成角的余弦值为(1)(2019 山·东荷泽期末 )在斜三棱柱 ABC -A 1B 1C 1中,侧棱 AA 1⊥平面 AB 1C 1, △AB 1C 1为等边三角形, B 1C 1=2AA 1=2,则直线 AB 与平面 B 1C 1CB 所成角的正切值为 ((2)如图,在正方体 ABCD -A 1B 1C 1D 1中,点O 为线段 BD 的中点.设点 P 在线段 CC 1上,直线 OP 与平面 A 1BD 所成的角为 α,则 sin α的取值范围是 B .[ 36, 1] C .[ 36,232]D .思考题 2 (1)(2019 河·北石家庄一模 )如图所示,在三棱柱中,侧棱垂直于底面,底面是边长为 2 的正三角形,侧棱长为 面 AB 1C 1 所成的角的大小为(2)把正方形 ABCD 沿对角线 AC 折起,当以 A ,B ,C ,D 四点为顶点的三棱锥体积最大时, 直线 BD 和平面 ABC 所成的角的大小为 ( )题型三 向量法求线面角DCBD ()A .[ 33, 1]22 [232,1]A .90°B .60°C . 45°D . 30°)ABC -3,则 BB 1与(1)(2019河·南郑州月考)如图,已知四棱锥P-ABCD 的底面ABCD是边长为2的正方形,PA=PD=5,平面ABCD⊥平面PAD,M 是PC 的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是.(2)如图,菱形ABCD中,∠ ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=2,CF=3.若直线FO 与平面BED所成的角为45°,则AE = ______ .思考题 3 (1)正四棱锥 S -ABCD 中,O 为顶点 S 在底面上的射影, P 为侧棱SD 的中点, 且 SO = OD ,则直线 BC 与平面 PAC 所成的角是 .(2) (2019 河·南百校联盟联考 )已知斜四棱柱 ABCD -A 1B 1C 1D 1 的各棱长均为 2,∠A 1AD = 60°,∠ BAD = 90°,平面 A 1ADD 1⊥平面 ABCD ,则直线 BD 1 与平面 ABCD 所成的角的正切值为 ()是边长为 2的正方形, PA ⊥ BD.①求证: PB =PD ;②若 E ,F 分别为 PC ,AB 的中点, EF ⊥平面 PCD ,求直线 PB 与平面PCD 所成角的大小.(2)(2019 湖·南长郡中学选拔考试 )如图,在直三棱柱 ABC-A 1B 1C 1中,BA =BC =5,AC =8,D 为线段 AC 的中点.①求证: BD ⊥A 1D ;4②若直线 A 1D 与平面 BC 1D 所成角的正弦值为 5,求 AA 1的长.思考题 4 (2019 ·石家庄质检二 )如图,三棱柱 ABC -A 1B 1C 1 中,侧面BB 1C 1C 为∠CBB 1=60°的菱形, AB =AC 1.(1)证明:平面 AB 1C ⊥平面 BB 1C 1C ;(2)若 AB ⊥B 1C ,直线 AB 与平面 BB 1C 1C 所成的角为 30°,求直线 AB 1 与平面 A 1B 1C 所成角的正弦值.专题三 求解二面角问题 题型一 定义法求二面角(1)(2019 台·州一模 )在边长为ABC 中,AD ⊥BC 于点 D ,沿 AD 折成二面角1(1)(2019太·原模拟一 )如图,在四棱锥 P -ABCD 中,底面 ABCDa 的等边三角B -AD -C ,若时BC=2a,则二面角B-AD-C 的大小为.(2)如图,二面角α-l-β的大小是60°,线段ABα,B∈l,AB与l 所成的角为30°,则AB 与平面β所成的角的正弦值是(3)已知三棱锥P-ABC的所有顶点都在表面积为16π的球O的球面上,AC 为球O的直径.当三棱锥P-ABC的体积最大时,设二面角P-AB-C的大小为θ,则sin θ=( )思考题 1 (1)如图,在矩形ABCD中,AB=2,AD=3,点E为AD 的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D 重合于F,此时二面角E-BC-F的余弦值为( )(2)如图,设AB为圆锥PO的底面直径,PA为母线,点C在底面圆周上,题型二向量法求二面角若PA=AB=2,AC=BC,则二面角P-AC-B的正切值是.(1)已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的锐二面角的正切值为.(2)(2019河·南安阳)二面角的棱上有A,B两点,直线AC,BD分别在这个A.150°B.45°C.60°D.120°二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2 17,则该二面角的大小为( )思考题 2 (1)设平面α的一个法向量为n1=(1,2,-2),平面β的一个法向量为n2=(-22,-4,k),若α和β所成的锐二面角的余弦值为3,则k=(2)(2019 辽·宁丹东模拟)如图,正方形A1BCD折成直二面角 A-BD-C,则二面角A-CD-B 的余弦值是.(3)(2019 广·东中山模拟)在矩形ABCD中,已知AB=2,AD= 2 2,M,N分别为AD和BC的中点,沿MN把平面ABNM折起,若折起后|AC| =6,则二面角A-MN-C的大小为( )A.30°B.45°C.60° D.90°(2019 ·惠州二次调研)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ ABC=60°,PA⊥PB,PC=2.(1)求证:平面PAB⊥平面ABCD;(2)若PA=PB,求二面角A-PC-D 的余弦值.思考题 3 (2019 ·河北五一名校联考)在斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,底面△ABC是边长为 2 的正三角形,A1A=A1C,A1A⊥ A1C.(1)求证:A1C1⊥B1C;(2)求二面角B1-A1C-C1 的正弦值.题型三空间角的综合问题(2019 ·唐山五校联考)如图,在四棱锥P-ABCD中,ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD,中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E 的余弦值为36,求直线PA与平面EAC所成角的正弦值.思考题 4 (2019·江南十校素质检测)如图,在以为顶点的五面体中,平面CDEF⊥平面四边形,且∠BCD=45°.ABCD,FC=FB,(1)求证:CD⊥BF;(2)若AB=2EF=2,BC=2,直线BF与平面ABCD所成角为45°,求平面ADE与平面BCF 所成锐二面角的余弦值.专题四综合问题题型一空间的距离(1)(2019 江·西九江期末)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为正方形,E为CD的中点,F为PA的中点,且PA=AB=2.则点P到平面BEF的距离为( )(2)已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E,F 分别是AB,AD的中点,求点 B 到平面GEF的距离.思考题 1 (1)(2019黑·龙江哈尔滨期末)三棱柱ABC -A1B1C1 底面为正三角形,侧棱与底面垂直,若AB=2,AA1=1,则点A到平面A1BC的距离为( )2.(2017 课·标全国Ⅰ,理)如图,在四棱锥P-ABCD中,∠BAP=∠CDP=90 °.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠ APD=90°,求二面角A-PB-C的余弦值.(2)(2019 湖·南长沙一模)正方体ABCD-A1B1C1D1的棱长为1,E,F分别为BB1,CD的中点,求点 F 到平面A1D1E 的距离.题型二探究性问题(2019 ·湖南重点校联考)如图,在四棱锥P-ABCD中,PA⊥ 平面ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=4 2,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M-AC-D 的大小为45°,如果存在,求BM 与平面MAC 所成角的正弦值,如果不存在,请说明理由.思考题 2 (2019 ·西安八校联考)已知几何体ABCC 1B1N的直观图如图所示,CB⊥底面ABB1N,且ABB1N 为直角梯形,侧面BB1C1C为矩形,AN=AB=BC=4,BB1=8,∠NAB=∠ABB1=90°.(1)连接B1C,若M 为AB的中点,在线段CB上是否存在一点P,使得MP∥平面CNB1 若存在,求出BP的长;若不存在,请说明理由.(2)求二面角C-NB1-C1 的余弦值.题型三翻折问题(2019 安·徽合肥调研性检测)平面四边形ABCD中,π∠DAB=2,AD=AB,△BCD为等边三角形.现将△ABD沿BD 翻折得到四面体P-BCD,点E,F,G,H 分别为PB,PD,CD,CB的中点.(1)求证:四边形EFGH为矩形;(2)当平面PBD⊥平面CBD时,求直线BG 与平面PBC所成角的正弦值.思考题 3 如图,在直角梯形 ABCP 中,∠ A =∠B = 90°,AB =BC =3,AP =6,CD ⊥AP 于 D ,现将 △PCD 沿线 段 CD 折成 60°的二面角 P -CD -A ,设 E ,F ,G 分别是 PD ,PC ,BC 的中点.(1)求证: PA ∥平面 EFG ;(2)若M 为线段 CD 上的动点,求直线 MF 与平面 EFG 所成角的最大角,并确定成最大角 时点 M 在什么位置高考题呈现1.(2014 全·国Ⅱ)如图,四棱锥 ⊥平面 ABCD ,E 为 PD的中点.(1)证明: PB ∥平面 AEC ; (2)设 AP =1,AD = 3,三棱锥PBC 的距离.2.(2016北·京)如图,在四棱锥 P -ABCD 中,平面 PAD ⊥平面 ABCD , PA ⊥PD ,PA = PD , AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证: PD ⊥平面 PAB ;(2)求直线 PB 与平面 PCD 所成角的正弦值;(3) 在棱 PA 上是否存在点 M ,使得 BM ∥平面 PCD 若存在,求A A M P 的值;若不存在,说明 P -ABCD 中,底面 ABCD 为矩形,PA 3P -ABD 的体积 V = 4 ,求 A 到理由.3.(2018 浙·江)如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明: AB 1⊥平面 A 1B 1C 1;(2)求直线 AC 1 与平面 ABB 1所成的角的正弦值.4. (2016 课·标全国 Ⅲ)如图,四棱锥 P -ABCD 中,PA ⊥底面 ABCD , AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段 AD 上一点,AM=2MD , N 为 PC 的中点.(1)证明: MN ∥平面 PAB ;(2)求直线 AN 与平面 PMN 所成角的正弦值.5.(2018课·标全国Ⅰ)如图,四边形 ABCD 为正方形, E ,F 分别为 AD ,BC 的中点,以 DF 为折痕把△ DFC 折起,使点 C 到达点 P 的位置,且(1)证明:平面 PEF ⊥平面 ABFD ;(2)求 DP 与平面 ABFD 所成角的正弦值.6.(2016·课标全国 Ⅰ,理)如图,在以 A ,B , 为顶点的五面体中,面 ABEF 为正方形, AF =2FD , 面角 D -AF -E 与二面角C -BE - F 都是 60°.(1)证明:平面 ABEF ⊥ 平面 EFDC ;(2)求二面角 E -BC -A 的余弦值.7.(2017 课·标全国Ⅰ,理 )如图,在四棱锥 P -ABCD 中,AB ∥CD , 且∠BAP =∠CDP =90°.(1)证明:平面 PAB ⊥平面 PAD ;(2)若 PA =PD =AB =DC ,∠ APD =90°,求二面角 A -PB-C 的余 弦值.PF ⊥BF.C ,D ,E ,F∠AFD =90°,且8.(2018 课·标全国Ⅱ,理)如图,在三棱锥P-ABC中,AB =BC=2 2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M 在棱BC上,且二面角M-PA-C 为30°,求PC 与平面PAM 所成角的正弦值.9.(2018·北京,理)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G 分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1 的余弦值;(3)证明:直线FG与平面BCD相交.10.(2017北·京,理)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M 在线段PB上,PD∥平面MAC,PA=PD=6,AB=4.(1)求证:M 为PB的中点;(2)求二面角B-PD-A 的大小;(3)求直线MC 与平面BDP所成角的正弦值.。
立体几何垂直证明题常见模型和方法
立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,BE 'ADFG2,CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =类型3:面面垂直的证明。
立体几何中的向量方法——证明平行及垂直
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。
2017年__高二年级立体几何垂直证明题常见模型和方法
立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
高中立体几何最佳解题方法及考题详细解答
高中立体几何最佳解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。
(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。
(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。
7、夹在两个平行平面之间的平行线段相等。
二、线面平行的证明方法1、定义法:直线和平面没有公共点。
2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。
(线面平行的判定定理)3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。
4、反证法。
三、面面平行的证明方法1、定义法:两个平面没有公共点。
2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
(面面平行的判定定理)3、平行于同一个平面的两个平面平行。
4、经过平面外一点,有且只有一个平面与已知平面平行。
5、垂直于同一条直线的两个平面平行。
四、线线垂直的证明方法1、勾股定理;2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。
7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。
(三垂线定理)8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。
9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
五、线面垂直的证明方法:1、定义法:直线与平面内的任意直线都垂直;2、点在面内的射影;3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。
(线面垂直的判定定理)4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。
立体几何中的向量方法(一)证明平行与垂直
立体几何中的向量方法(一)证明平行与垂直【考点梳理】1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0【考点突破】考点一、利用空间向量证明平行问题【例1】如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD =22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.证明:PQ∥平面BCD.[解析]法一如图,取BD的中点O,以O为原点,OD,OP所在射线分别为y,z轴的正半轴,建立空间直角坐标系O-xyz.由题意知,A(0,2,2),B(0,-2,0),D(0,2,0).设点C的坐标为(x0,y0,0).因为AQ→=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).∵CF→=14CD →,设点F 坐标为(x ,y ,0),则 (x -x 0,y -y 0,0)=14(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0 又由法一知PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, ∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .【类题通法】1.恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.2.证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【对点训练】如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .[解析] ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一 ∴EF→=(0,1,0),EG →=(1,2,-1),设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎨⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量,∵PB→=(2,0,-2), ∴PB→·n =0,∴n ⊥PB →, ∵PB ⊄面EFG , ∴PB ∥平面EFG .法二 PB→=(2,0,-2),FE →=(0,-1,0),FG→=(1,1,-1).设PB →=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧t =2,t -s =0,-t =-2,解得s =t =2. ∴PB→=2FE →+2FG →, 又∵FE→与FG →不共线, ∴PB→,FE →与FG →共面. ∵PB ⊄平面EFG , ∴PB ∥平面EFG .考点二、利用空间向量证明垂直问题【例2】如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .[解析] (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM→·PB →=32×1+0×0+32×(-3)=0,∴DM→⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB . ∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB . 【类题通法】1.利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.2.用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.【对点训练】如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .[解析] 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c , m =λBA 1→+μBD →=⎝ ⎛⎭⎪⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫λ+12μa +μb +λc =4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证.法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →, 故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .考点三、利用空间向量解决探索性问题【例3】如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.[解析] (1)设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3,∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 平面AA 1C 1C ∩平面ABCD =AC , A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABCD ,以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .【类题通法】向量法解决与垂直、平行有关的探索性问题1.根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.2.假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.【对点训练】如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ ⊥平面PQMN ?若存在,求出实数λ的值;若不存在,说明理由.[解析] (1)以D 为坐标原点,建立如图所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN→=(-1,-1,0),NP →=(-1,0,λ-2).当λ=1时,FP→=(-1,0,1),因为BC 1→=(-2,0,2), 所以BC 1→=2FP →, 即BC 1∥FP . 而FP ⊂平面EFPQ , 且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎨⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1). 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0, 即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22. 故存在λ=1±22,使平面EFPQ ⊥平面PQMN .。
立体几何题型与解题方法
O
a
A
三垂线定理的逆定理亦成立.
直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这
个平面.(“线线垂直 线面垂直”)
直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.
性质:如果两条直线同垂直于一个平面,那么这两条直线平行.
分线上。
4. 平面平行与平面垂直.
(1). 空间两个平面的位置关系:相交、平行.
(2). 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
(“线面平行 面面平行”)
推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.
[注]:一平面内的任一直线平行于另一平面.
推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为 , , ,则 cos2 cos2 cos2 2 .
[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四棱柱的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不 相交,若两条边相交,则应是充要条件) (2). 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个三棱锥四个面可以都为直角三角形.
②一个棱柱可以分成等体积的三个三棱锥;所以 V 、、 Sh 3V 、、 .
a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.
[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)
立体几何中的向量方法——证明平行及垂直
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
立体几何平行垂直的证明方法
• (1)证明 如图,设AC与BD交于点G,则G为AC 的中点.连接EG,GH,由于H为BC的中点, • 故GH=(1/2)AB. • 又EF=(1/2)AB ,∴EF=GH. • 又EF∥AB GH∥AB ∴EF ∥ GH • ∴四边形EFHG为平行四边形. • ∴EG∥FH. • 而EG⊂平面EDB,FH⊄平面EDB, • ∴FH∥平面EDB.
3、如果一条直线和一个平面内的两条相交直线垂直,那么
这条直线垂直于这个平面。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们 交线的直线垂直于另一个平面。(面面垂直的性质定理) 5、两条平行直线中的一条垂直于平面,则另一条也垂直于
1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。
四、线线垂直的证明方法:
1、勾股定理。 2、等腰三角形,三线合一
3、菱形对角线,等几何图形
4、直径所对的圆周角是直角。 5、点在线上的射影。
6、如果一条直线和一个平面垂直,那么这条直线就和这个
平面内任意的直线都垂直。
7、如果两条平行线中的一条垂直于一条直线,则另一条也
垂直于这条直线。
五、线面垂直的证明方法:
3.利用线面平行的性质定理: 如果一条直线平行于一个平面,经过这条直线的
平面和这个平面相交,则这条直线和交线平行 4.利用面面平行的性质定理: 如果两个平行平面同时和第三个平面相 交,那么它们的交线平行, 5.利用线面垂直的性质定理: 垂直于同一个平面的两条直线平行
二、线面平行的证明方法:
1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行
立体几何证垂直的方法
立体几何证垂直的方法垂直是立体几何中一个非常重要的概念,常常用于判断两个直线、两个平面或者一个直线和一个平面之间的关系。
本文将介绍几种常见的方法来证明两个线段、两个直线、两个平面或者一个线段和一个平面之间的垂直关系。
1. 定义证明法:垂直可以通过定义来证明。
垂直的定义是:两条直线相交,互相垂直。
这个定义可以用来判断两条直线之间是否垂直。
如果已知两条直线相交,并且相交角度为90度,则可以得出两条直线垂直的结论。
2. 重叠线证明法:当两个线段的一个端点重合,并且两个线段的另一个端点也重合时,可以得出这两个线段垂直的结论。
这是因为,当两个线段垂直时,它们的端点将构成一个直角,而直角的两条边重合时,会得到一个重叠的线段,从而可以推出两个线段垂直。
3. 垂直性质证明法:根据垂直性质来证明两个直线或者平面之间的垂直关系。
例如,两个直线垂直的性质之一是:直线的斜率相乘为-1。
如果已知两个直线的斜率,且斜率的乘积等于-1,则可以得出这两条直线垂直的结论。
类似地,两个平面之间垂直的性质之一是:平面上两个垂直的直线在平面上的投影线也垂直。
如果已知两个平面上的直线的投影线垂直,则可以得出这两个平面垂直的结论。
4. 垂直线性等式证明法:当两个线段、直线或平面上的点坐标可以满足垂直线性等式时,可以证明它们之间的垂直关系。
例如,对于两个直线L1:y = a1x + b1和L2:y = a2x + b2,如果它们的斜率满足a1 * a2 = -1,则可以得出这两条直线垂直的结论。
5. 三角形几何证明法:在三角形中,垂直性质也可以用来证明两个线段或直线之间的垂直关系。
例如,如果一条线段平分了一个角,并且与另一条线段垂直相交,那么可以得出这两个线段垂直的结论。
同样地,如果一个直角三角形中的两条边互相垂直,那么可以得出这两条边垂直的结论。
总结起来,证明垂直关系的方法有很多种,包括基于定义、重叠线、垂直性质、线性等式和三角形几何的方法。
立体几何中平行与垂直证明方法归纳
a ∥
a∥
α
a a
β
3) 利用定义:直线在平面外,且直线与平面没有公共点
(三)平面与平面平行的证明
常见证明方法:
1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
3
a ⊂ b ⊂
a ∩b P
a // b //
⇒ /性:如正方体的上下底面互相平行等
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。
a
b
ab
A
l
l a l b
l
b
Aa
4) 利用平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
5
l
a
a
a l
l
5) 利用常用结论:
① 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。
在同一个平面内,垂直于同一条直线的两条直线互相平行。
8) 利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1) 利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
a
a
b a∥
a∥b
b
2) 利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a b ba
b a
α
4) 利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这
两条直线互相垂直。
4
l a b al
bl
ab
β b
(完整版)立体几何证明垂直专项含练习题及答案.doc
精品字里行间精品文档立体几何证明 ------ 垂直一. 复习引入1.空间两条直线的位置关系有: _________,_________,_________三种。
2.(公理 4)平行于同一条直线的两条直线互相 _________.3.直线与平面的位置关系有 _____________,_____________,_____________三种。
4.直线与平面平行判定定理 : 如果 _________的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么 _________________________.6.两个平面的位置关系 :_________,_________.7.判定定理 1:如果一个平面内有 _____________直线都平行于另一个平面,那么这两个平面平行 .8.线面垂直性质定理:垂直于同一条直线的两个平面 ________.9.如果两个平行平面同时和第三个平面相交,那么它们的________平行 .10.如果两个平面平行,那么其中一个平面内的所有直线都 _____于另一个平面 . 二.知识点梳理知识点一、直线和平面垂直的定义与判定定义语言描述如果直线l 和平面α内的任意一条直线都垂直,我们就说直线 l 与平面互相垂直,记作 l ⊥α图形判定一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直 .条件 b 为平面α内的任一直线,而 l 对这l ⊥m, l ⊥n,m∩n=B,m ,一直线总有 l ⊥αn结论l ⊥l ⊥要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直)知识点二、直线和平面垂直的性质性质语言描述一条直线垂直于一个平面,那么这条垂直于同一个平面的两条直线平行.直线垂直于这个平面内的所有直线图形条件结论知识点三、二面角Ⅰ .二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角-AB-. (简记P-AB-Q)二面角的平面角的三个特征:ⅰ.点在棱上ⅱ.线在面内ⅲ .与棱垂直Ⅱ .二面角的平面角:在二面角-l-的棱l上任取一点O,以点O为垂足,在半平面,内分别作垂直于棱 l 的射线 OA 和 OB ,则射线 OA 和 OB 构成的AOB叫做二面角的平面角.作用:衡量二面角的大小;范围:001800.知识点四、平面和平面垂直的定义和判定定义判定文字描述两个平面相交,如果它们所成的二面一个平面过另一个平面的垂线,则这角是直二面角,就说这两个平面垂两个平面垂直直.图形结果α∩β =lα-l-β=90oα⊥β(垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼)三.常用证明垂直的方法立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法:( 1)通过“平移”。
高三数学 立体几何中的垂直问题 知识精讲 苏教版
高三数学 立体几何中的垂直问题 知识精讲 苏教版【本讲教育信息】一. 教学内容:立体几何中的垂直问题二. 高考要求:1. 理解直线和平面垂直的概念掌握直线和平面垂直的判定定理;2. 掌握直线和平面垂直的判定定理和性质定理。
3. 通过例题的讲解给学生总结归纳证明线面垂直的常见方法:(1)证直线与平面内的两条相交直线都垂直;(2)证与该线平行的直线与已知平面垂直;(3)借用面面垂直的性质定理;(4)同一法;(5)向量法。
三. 知识点归纳:1. 线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直。
其中直线叫做平面的垂线,平面叫做直线的垂面足。
直线与平面垂直简称线面垂直,记作:a ⊥α。
2. 直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
3. 直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
4. 三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;(2)推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭。
5. 三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 。
其实质是:斜线和平面内一条直线垂直的判定和性质定理。
⑵要考虑a 的位置,并注意两定理交替使用。
6. 两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面。
7. 两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
用空间向量解决立体几何中的垂直问题
第2课时用空间向量解决立体几何中的垂直问题学习目标 1.能用向量法判断一些简单线线、线面、面面垂直关系.2.掌握用向量方法证明有关空间线面垂直关系的方法步骤.知识点一向量法判断线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m⇔a·b =0⇔a1b1+a2b2+a3b3=0.知识点二向量法判断线面垂直设直线l的方向向量a=(a1,b1,c1),平面α的法向量μ=(a2,b2,c2),则l⊥α⇔a∥μ⇔a=kμ(k∈R).知识点三向量法判断面面垂直思考平面α,β的法向量分别为μ1=(x1,y1,z1),μ2=(x2,y2,z2),用向量坐标法表示两平面α,β垂直的关系式是什么?答案x1x2+y1y2+z1z2=0.梳理若平面α的法向量为μ=(a1,b1,c1),平面β的法向量为v=(a2,b2,c2),则α⊥β⇔μ⊥v⇔μ·v=0⇔a1a2+b1b2+c1c2=0.(1)平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.(×)(2)两直线的方向向量垂直,则两条直线垂直.(√)(3)直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.(√)(4)两个平面的法向量平行,则这两个平面平行;两个平面的法向量垂直,则这两个平面垂直.(√)类型一线线垂直问题例1已知正三棱柱ABC-A1B1C1的各棱长都为1,M是底面上BC边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直证明 设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,OO 1所在直线为z 轴建立如图所示的空间直角坐标系Oxyz . 由已知得A ⎝⎛⎭⎫-12,0,0, B ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫0,32,0, N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1, ∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN -→=⎝⎛⎭⎫-14,34,14,AB 1-→=(1,0,1),∴MN -→·AB 1-→=-14+0+14=0.∴MN -→⊥AB 1-→,∴AB 1⊥MN .反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直证明 ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC ,BC ,C 1C 两两垂直.如图,以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Cxyz .则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), ∵AC →=(-3,0,0),BC 1-→=(0,-4,4), ∴AC →·BC 1-→=0.∴AC ⊥BC 1.类型二 证明线面垂直例2 如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点. 求证:AB 1⊥平面A 1BD .考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,且平面ABC ∩平面BCC 1B 1=BC ,AO ⊂平面ABC ,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为坐标原点,OB ,OO 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3), B 1(1,2,0).所以AB 1-→=(1,2,-3),BA 1-→=(-1,2,3), BD -→=(-2,1,0).因为AB 1-→·BA 1-→=1×(-1)+2×2+(-3)×3=0. AB 1-→·BD -→=1×(-2)+2×1+(-3)×0=0.所以AB 1-→⊥BA 1-→,AB 1-→⊥BD -→,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 反思与感悟 用坐标法证明线面垂直的方法及步骤 方法一:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量. (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示. (3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.求证:直线PB 1⊥平面P AC .考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直证明 如图,以D 为坐标原点,DC ,DA ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz , C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2), PC →=(1,0,-1),P A →=(0,1,-1), PB 1-→=(1,1,1),B 1C -→=(0,-1,-2), B 1A -→=(-1,0,-2).PB 1-→·PC →=(1,1,1)·(1,0,-1)=0,所以PB 1-→⊥PC →,即PB 1⊥PC . 又PB 1-→·P A →=(1,1,1)·(0,1,-1)=0, 所以PB 1-→⊥P A →,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC . 类型三 证明面面垂直问题例3 三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC ,A 1A =3,AB =AC =2A 1C 1=2,D 为BC 的中点.证明:平面A 1AD ⊥平面BCC 1B 1. 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直证明 方法一 如图,以A 为坐标原点,AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3). ∵D 为BC 的中点,∴D 点坐标为(1,1,0), ∴AD →=(1,1,0),AA 1-→=(0,0,3),BC →=(-2,2,0), ∴AD →·BC →=1×(-2)+1×2+0×0=0, AA 1-→·BC →=0×(-2)+0×2+3×0=0, ∴AD →⊥BC →,AA 1-→⊥BC →, ∴BC ⊥AD ,BC ⊥AA 1.又A 1A ∩AD =A ,∴BC ⊥平面A 1AD .又BC ⊂平面BCC 1B 1,∴平面A 1AD ⊥平面BCC 1B 1. 方法二 同方法一建系后,得AA 1-→=(0,0,3), AD →=(1,1,0),BC →=(-2,2,0),CC 1-→=(0,-1,3). 设平面A 1AD 的法向量为n 1=(x 1,y 1,z 1), 平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧n 1·AA 1-→=0,n 1·AD →=0,得⎩⎪⎨⎪⎧3z 1=0,x 1+y 1=0,令y 1=-1,则x 1=1,z 1=0, ∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧n 2·BC →=0,n 2·CC 1-→=0,得⎩⎪⎨⎪⎧-2x 2+2y 2=0,-y 2+3z 2=0,令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝⎛⎭⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2, ∴平面A 1AD ⊥平面BCC 1B 1.反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明. (2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点. (1)求证:平面AED ⊥平面A 1FD 1;(2)在直线AE 上求一点M ,使得A 1M ⊥平面AED . 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直(1)证明 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Dxyz .设正方体的棱长为2,则D (0,0,0),A (2,0,0),E (2,2,1),F (0,1,0),A 1(2,0,2),D 1(0,0,2),∴DA →=D 1A 1-→=(2,0,0),DE →=(2,2,1),D 1F -→=(0,1,-2). 设平面AED 的一个法向量为n 1=(x 1,y 1,z 1).由⎩⎪⎨⎪⎧n 1·DA →=(x 1,y 1,z 1)·(2,0,0)=0,n 1·DE →=(x 1,y 1,z 1)·(2,2,1)=0,得⎩⎪⎨⎪⎧2x 1=0,2x 1+2y 1+z 1=0. 令y 1=1,得n 1=(0,1,-2).同理,平面A 1FD 1的一个法向量为n 2=(0,2,1). ∵n 1·n 2=(0,1,-2)·(0,2,1)=0,∴n 1⊥n 2, ∴平面AED ⊥平面A 1FD 1. (2)解 由于点M 在直线AE 上, 因此可设AM -→=λAE →=λ(0,2,1)=(0,2λ,λ), 则M (2,2λ,λ),∴A 1M -→=(0,2λ,λ-2). 要使A 1M ⊥平面AED ,只需A 1M -→∥n 1, 即2λ1=λ-2-2,解得λ=25. 故当AM =25AE 时,A 1M ⊥平面AED .1.下列命题中,正确命题的个数为( )①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β ⇔ n 1·n 2=0;③若n 是平面α的法向量,a 是直线l 的方向向量,若l 与平面α平行,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面不垂直. A .1 B .2 C .3 D .4考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直 答案 C解析 ①中平面α,β可能平行,也可能重合,结合平面法向量的概念,可知②③④正确.2.已知两直线的方向向量为a,b,则下列选项中能使两直线垂直的为()A.a=(1,0,0),b=(-3,0,0)B.a=(0,1,0),b=(1,0,1)C.a=(0,1,-1),b=(0,-1,1)D.a=(1,0,0),b=(-1,0,0)考点向量法求解直线与直线的位置关系题点向量法解决线线垂直答案 B解析因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所以a⊥b,故选B. 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α斜交考点向量法求解直线与平面的位置关系题点向量法解决线面垂直答案 B解析∵a∥μ,∴l⊥α.4.平面α的一个法向量为m=(1,2,0),平面β的一个法向量为n=(2,-1,0),则平面α与平面β的位置关系是()A.平行B.相交但不垂直C.垂直D.不能确定考点向量法求解平面与平面的位置关系题点向量法解决面面垂直答案 C解析∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面垂直.5.在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=13,SB=29,则异面直线SC与BC是否垂直________.(填“是”或“否”)考点向量法求解直线与直线的位置关系题点向量法解决线线垂直答案是解析如图,以A为坐标原点,AB,AS所在直线分别为y轴,z轴建立空间直角坐标系Axyz , 则由AC =2,BC =13, SB =29,得B (0,17,0),S (0,0,23),C ⎝ ⎛⎭⎪⎫21317,417,0, SC →=⎝⎛⎭⎪⎫21317,417,-23, CB →=⎝⎛⎭⎪⎫-21317,1317,0. 因为SC →·CB →=0,所以SC ⊥BC .空间垂直关系的解决策略一、选择题1.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( ) A .-2 B .2 C .6 D .10考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直 答案 D解析 因为a ⊥b ,故a ·b =0,即-2×3+2×(-2)+m =0,解得m =10.2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( ) A .10 B .-10 C.12 D .-12考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直 答案 B解析 因为α⊥β,所以它们的法向量也互相垂直, 所以a ·b =(-1,2,4)·(x ,-1,-2)=0, 解得x =-10.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),P (x,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( ) A .(1,0,-2) B .(1,0,2) C .(-1,0,2)D .(2,0,-1)考点 向量法求解直线与平面的位置关系 题点 向量法解决线面垂直 答案 C解析 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ),又P A ⊥平面ABC ,所以有AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0. ① AC →·AP →=(2,0,1)·(x ,-1,z )=0,得2x +z =0,② 联立①②得x =-1,z =2,故点P 的坐标为(-1,0,2).4.在正方体ABCD-A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .A 1A考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直答案 B解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .设正方体的棱长为1.则C (0,1,0),B (1,1,0),A (1,0,0),D (0,0,0),C 1(0,1,1),A 1(1,0,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫12,-12,1,AC →=(-1,1,0), BD →=(-1,-1,0),A 1D -→=(-1,0,-1),A 1A -→=(0,0,-1),∵CE →·BD →=(-1)×12+(-1)×⎝⎛⎭⎫-12+0×1=0,∴CE ⊥BD . 5.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A. (1,-1,1)B.⎝⎛⎭⎫1,3,32C.⎝⎛⎭⎫1,-3,32D.⎝⎛⎭⎫-1,3,-32 考点 直线的方向向量与平面的法向量题点 法向量求解线面垂直答案 B解析 要判断点P 是否在平面α内,只需判断向量P A →与平面α的法向量n 是否垂直,即P A →·n是否为0,因此,要对各个选项进行检验.对于选项A ,P A →=(1,0,1),则P A →·n =(1,0,1)·(3,1,2)=5≠0,故排除A ;对于选项B ,P A →=⎝⎛⎭⎫1,-4,12,则P A →·n =⎝⎛⎭⎫1,-4,12·(3,1,2)=0,故B 正确;同理可排除C ,D.故选B.6.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC , 则( )A .EF 至多与A 1D ,AC 中的一个垂直B .EF ⊥A 1D ,EF ⊥ACC .EF 与BD 1相交D .EF 与BD 1异面考点 直线的方向向量与平面的法向量题点 求直线的方向向量答案 B解析 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z轴,建立空间直角坐标系Dxyz ,设正方体的棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫13,0,13,F ⎝⎛⎭⎫23,13,0,B (1,1,0),D 1(0,0,1),∴A 1D -→=(-1,0,-1),AC →=(-1,1,0),EF →=⎝⎛⎭⎫13,13,-13,BD 1-→=(-1,-1,1),∴EF →=-13BD 1-→,A 1D -→·EF →=0,AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC ,故选B.7.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A .-3B .6C .-6D .-12考点 向量法求解平面与平面的位置关系题点 向量法求解面面垂直答案 B解析 ∵α⊥β,∴μ·v =0,即-6+y +z =0,即y +z =6.二、填空题8.如图所示,在三棱锥A -BCD 中,DA ,DB ,DC 两两垂直,且DB =DC ,E 为BC 的中点,则AE →·BC →=_______.考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直答案 0解析 因为BE =EC ,故AE →=DE →-DA →=12(DB →+DC →)-DA →,在三棱锥A -BCD 中, DA ,DB ,DC 两两垂直,且DB =DC ,故AE →·BC →=⎣⎡⎦⎤12(DB →+DC →)-DA →·(DC →-DB →)=12(DC →2-DB →2)=0. 9.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量. 其中正确的是________.(填序号)考点 向量法求解直线与直线的位置关系题点 向量法解决线线垂直答案 ①②③解析 AP →·AB →=(-1,2,-1)·(2,-1,-4)=-1×2+2×(-1)+(-1)×(-4)=0,∴AP ⊥AB ,即①正确.AP →·AD →=(-1,2,-1)·(4,2,0)=-1×4+2×2+(-1)×0=0.∴AP ⊥AD ,即②正确.又∵AB ∩AD =A ,∴AP ⊥平面ABCD ,即AP →是平面ABCD 的一个法向量,③正确.10.在△ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1).若向量n 与平面ABC 垂直,且|n |=21,则n 的坐标为________________.考点 向量法求解线面垂直问题题点 向量法求解线面垂直答案 (-2,4,1)或(2,-4,-1)解析 据题意,得AB →=(-1,-1,2),AC →=(1,0,2).设n =(x ,y ,z ),∵n 与平面ABC 垂直,∴⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -x -y +2z =0,x +2z =0,可得⎩⎪⎨⎪⎧y =4z ,y =-2x . ∵|n |=21,∴x 2+y 2+z 2=21,解得y =4或y =-4.当y =4时,x =-2,z =1;当y =-4时,x =2,z =-1.三、解答题11.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD=5,∠DAB =∠ABC =90°,E 是CD 的中点.证明:CD ⊥平面P AE .考点 向量法求解直线与平面的位置关系题点 向量法解决线面垂直证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Axyz .设P A =h ,则A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).所以CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD⊥平面P AE.12.如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥底面ABCD,P A=AB=1,AD=3,点F是PB的中点,点E在边BC上移动.求证:无论点E在BC边的何处,都有PE⊥AF.考点向量法求解直线与直线的位置关系题点方向向量与线线垂直证明 以A 为坐标原点,AD ,AB ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则P (0,0,1),B (0,1,0),F ⎝⎛⎭⎫0,12,12,D ()3,0,0, 设BE =x (0≤x ≤3),则E (x,1,0),PE →·AF →=(x,1,-1)·⎝⎛⎭⎫0,12,12=0, 所以x ∈[0, 3 ]时都有PE ⊥AF ,即无论点E 在BC 边的何处,都有PE ⊥AF .13.如图,在底面为平行四边形的四棱锥P -ABCD 中,AB ⊥AC ,P A ⊥平面ABCD ,且P A =AB ,点E 是PD 的中点.求证:(1)AC ⊥PB ;(2)PB ∥平面AEC .考点 向量法求解直线与直线的位置关系题点 方向向量与线线垂直证明 (1)如图,以A 为坐标原点,AC ,AB ,AP 所在直线分别为x 轴,y轴,z 轴,建立空间直角坐标系Axyz ,设AC =a ,P A =b .则有A (0,0,0),B (0,b,0),C (a,0,0),P (0,0,b ),∴AC →=(a,0,0),PB →=(0,b ,-b ).从而AC →·PB →=0,∴AC ⊥PB .(2)由已知得D (a ,-b,0),E ⎝⎛⎭⎫a 2,-b 2,b 2,∴AE →=⎝⎛⎭⎫a 2,-b 2,b 2. 设平面AEC 的一个法向量为n ,则n ⊥AC →且n ⊥AE →,可得n =(0,1,1).∵n ·PB →=0,∴n ⊥PB .又PB ⊄平面AEC ,∴PB ∥平面AEC . 四、探究与拓展14.如图,P A ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的比值为( )A .1∶2B .1∶1C .3∶1D .2∶1 答案 B解析 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系Axyz ,设正方形边长为1,P A =a ,则B (1,0,0),E ⎝⎛⎭⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y,0),则BF →=(-1,y,0),PE →=⎝⎛⎭⎫12,1,-a .因为BF ⊥PE ,所以BF →·PE →=0,解得y =12,即点F 的坐标为⎝⎛⎭⎫0,12,0,所以F 为AD 的中点,所以AF ∶FD =1∶1.15.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:ME ⊥平面BCC 1B 1.考点 向量法求解直线与平面的位置关系题点 向量法解决线面垂直证明 (1)以B 为坐标原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3),∴BD 1→=BE →+BF →,故BD 1→,BE →,BF →共面.又它们有公共点B ,∴E ,B ,F ,D 1四点共面.(2)设M (0,0,z ),则GM -→=⎝⎛⎭⎫0,-23,z ,而BF →=(0,3,2), 由题设得GM -→·BF →=-23·3+z ·2=0,得z =1. ∵M (0,0,1),E (3,0,1),∴ME -→=(3,0,0),又BB 1→=(0,0,3),BC →=(0,3,0)∴ME -→·BB 1→=0,ME -→·BC →=0,从而ME ⊥BB 1,ME ⊥BC .又BB 1∩BC =B ,故ME ⊥平面BCC 1B 1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何垂直证明题常见模型及方法
证明空间线面垂直需注意以下几点:
①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
垂直转化:线线垂直 线面垂直 面面垂直;
基础篇
类型一:线线垂直证明(共面垂直、异面垂直)
(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)
○1 等腰(等边)三角形中的中线
○
2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○
4 1:1:2 的直角梯形中 ○
5 利用相似或全等证明直角。
例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥
(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥
变式 1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知
ο60,22,2,2,3=∠====PAB PD PA AD AB .
证明:AD PB ⊥;
变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'
A . 求证:'A D EF ⊥;
变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º证明:AB ⊥PC
类型二:线面垂直证明
方法○1 利用线面垂直的判断定理
例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:
1A O BDE ⊥平面
变式1:在正方体1111ABCD A B C D -中,,求证:1
1AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1
的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;
B
E
'A
D
F
G
P
B
A
D
E
变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,
2, 2.CA CB CD BD AB AD ======
求证:AO ⊥平面BCD ;
变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,
AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,23AB =6BC =
()1求证:BD ⊥平面PAC
○
2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
方法点拨:此种情形,条件中含有面面垂直。
变式1, 在四棱锥P ABCD -,底面ABCD 是正方形,侧面PAB 是等腰三角形,且
PAB ABCD ⊥面底面,求证:BC PAB ⊥面
变式2:
D
A
C
O
B
E
类型3:面面垂直的证明。
(本质上是证明线面垂直)
2AD DE AB ==,F 为CD 的中点.
(1) 求证://AF 平面BCE ; (2) 求证:平面BCE ⊥平面CDE ; 例
2 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,
60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点.
(1)证明CD AE ⊥; (2)证明PD ⊥平面ABE ;
变式1已知直四棱柱ABCD —A ′B ′C ′D ′的底面是菱形,︒=∠60ABC ,E 、F 分别是棱CC ′与BB ′上的点,且EC=BC =2FB =2. (1)求证:平面AEF ⊥平面AA ′C ′C ;
A
B C
D
E
F
A
B
C
D
P
E。