高一数学《函数的基本性质》单元测试题
第三章 函数的概念与性质 单元检测卷(含解析)—2024-2025学年高一上学期数学必修第一册
第三章 函数的概念与性质(单元检测卷)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =-x 2+2x +3的定义域为( )A.[-3,1] B.[-1,3]C.(-∞,-3]∪[1,+∞)D.(-∞,-1]∪[3,+∞)2.已知函数y =f(x +1)定义域是[-2,3],则函数y =f(x -1)的定义域是( )A.[0,5] B.[-1,4]C.[-3,2]D.[-2,3]3.已知函数f(x)=Error!若f(-a)+f(a)≤0,则实数a 的取值范围是( )A.[-1,1] B.[-2,0]C.[0,2]D.[-2,2]4.设f(x)是定义域为R 的奇函数,且f(1+x)=f(-x).若f =13,则f =( )A.-53B.-13C.13D.535.二次函数的图象的顶点为(0,-1),对称轴为y 轴,则二次函数的解析式可以为( )A .y =-14x 2+1B.y =14x 2-1C .y =4x 2-16 D.y =-4x 2+166.拟定从甲地到乙地通话m min的话费(单位:元)符合f(m)={3.71,0<m ≤4,1.06×(0.5×[m]+2),m >4,其中[m]表示不超过m 的最大整数,从甲地到乙地通话5.2min 的话费是A.3.71元 B.4.24元C.4.77元D.7.95元7.若函数f(x)在R 上是减函数,则下列关系式一定成立的是( )A.f(a)>f(2a) B.f(a 2)<f(a)C.f(a 2+a)<f(a)D.f(a 2+1)<f(a 2)8.若函数f (x)是奇函数,且当x>0时,f (x)=x 3+x +1,则当x<0时,f (x)的解析式为( )A .f (x)=x 3+x -1B .f (x)=-x 3-x -11()3 5()3C .f (x)=x 3-x +1D .f (x)=-x 3-x +1二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.已知f (2x -1)=4x 2,则下列结论正确的是( )A .f (3)=9 B.f (-3)=4C .f (x)=x 2D.f (x)=(x +1)210.函数f(x)的图象是折线段ABC ,如图所示,其中点A ,B ,C 的坐标分别为(-1,2),(1,0),(3,2),以下说法正确的是( )A.f(x)=Error!B.f(x -1)的定义域为[-1,3]C.f(x +1)为偶函数D.若f(x)在[m ,3]上单调递增,则m 的最小值为111.下列说法正确的是( )A.若幂函数的图象经过点,则该幂函数的解析式为y =x -3B.若函数f(x)=,则f(x)在区间(-∞,0)上单调递减C.幂函数y =x α(α>0)始终经过点(0,0)和(1,1)D.若函数f(x)=x ,则对于任意的x 1,x 2∈[0,+∞)有f(x 1)+f(x 2)2≤f 三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.设f(x)=11-x,则f(f(x))=__________13.已知二次函数f(x)=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 的值为________14.若函数f(x)=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a],则a =________,b =________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.1(,2)845x-12x x ()2+15.(13分)已知幂函数f(x)=(m2-5m+7)x-m-1(m∈R)为偶函数.(1)求f的值;(2)若f(2a+1)=f(a),求实数a的值.16.(14分)已知函数f(x)=Error!(1)求f(f(f(5)))的值;(2)画出函数的图象.17.(16分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)={400x-12x2,0≤x≤400,80 000,x>400,其中x是仪器的月产量.(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)18.(16分)已知函数f(x)=x21+x2+1,x∈R.1 () 2(1)判断并证明函数的奇偶性;(2)求f(x)+f 的值;(3)计算f(1)+f(2)+f(3)+f(4)+f +f +f .19.(18分)已知二次函数f(x)=x 2-2(a -1)x +4.(1)若a =2,求f(x)在[-2,3]上的最值;(2)若f(x)在区间(-∞,2]上单调单减,求实数a 的取值范围;(3)若x ∈[1,2],求函数f(x)的最小值.参考答案及解析:一、单选题1()x 1()21()31()41.B 解析:由题意,令-x 2+2x +3≥0,即x 2-2x -3≤0,解得-1≤x ≤3,所以函数的定义域为[-1,3].故选B .2.A 解析:由题意知-2≤x ≤3,所以-1≤x +1≤4,所以-1≤x -1≤4,得0≤x ≤5,即y =f(x -1)的定义域为[0,5].3.D 解析:依题意,可得Error!或Error!或Error!解得-2≤a ≤2.4.C 解析:由题意,f =f =f =-f =-f =-f =f =13.5.B 解析:把点(0,-1)代入四个选项可知,只有B 正确.故选B .6.C 解析:f(5.2)=1.06×(0.5×[5.2]+2)=1.06×(0.5×5+2)=4.77.7.D 解析:因为f(x)是R 上的减函数,且a 2+1>a 2,所以f(a 2+1)<f(a 2).故选D .8.A 解析:∵函数f (x)是奇函数,∴f (-x)=-f (x),当x<0时,-x>0,∵x>0时,f (x)=x 3+x +1,∴f (-x)=(-x)3-x +1=-x 3-x +1,∴-f (x)=-x 3-x +1,∴f (x)=x 3+x -1.即x<0时,f (x)=x 3+x -1.故选A .二、多选题9.BD 解析:令t =2x -1,则x =t +12,∴f (t)=4=(t +1)2.∴f (3)=16,f (-3)=4,f (x)=(x +1)2.故选BD .10.ACD 解析:由图可得当-1≤x <1时,图象过(1,0),(-1,2)两点,设f(x)=kx +b ,∴Error!解得Error!=-x +1,当1≤x ≤3时,根据图象过点(1,0),(3,2),同理可得f(x)=x -1,∴f(x)=Error!A 正确;由图可得f(x)的定义域为[-1,3],关于x =1对称,∴f(x -1)的定义域为[0,4],f(x +1)为偶函数,即B 错误,C 正确;当f(x)在[m ,3]上单调递增,则1≤m <3,故m 的最小值为1,D 正确.故选ACD .11.CD 解析:若幂函数的图象经过点,则该幂函数的解析式为y =,故A 错误;函数f(x)=是偶函数且在(0,+∞)上单调递减,故在(-∞,0)上单调递增,故B 错误;幂函数y =x α(α>0)始终经过点(0,0)和(1,1),故C 正确;对任意的x 1,x 2∈[0,+∞),要证f(x 1)+f(x 2)2≤f ,即x 1+x 22≤x 1+x 22,即x 1+x 2+2x 1x 24≤x 1+x 22,即(x 1-x 2)2≥0,易知成立,故D 正确.三、填空题5()32(1)3+2()3-2(31[1(3+-1()31()3-2t 1()2+1(,2)813x -45x -12x x ()2+12.答案:x -1x (x ≠0且x ≠1)解析:f(f(x))=11-11-x =11-x -11-x=x -1x .13.答案:-3或38解析:f(x)的对称轴为直线x =-1.当a >0时,f(x)max =f(2)=4,解得a =38;当a <0时,f(x)max =f(-1)=4,解得a =-3.综上所述,a =38或a =-3.14.答案:13,0解析:因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13.又函数f(x)=13x 2+bx+b +1为二次函数,结合偶函数图象的特点,则-b2×73=0,易得b =0.四、解答题15.解:(1)由m 2-5m +7=1,得m =2或m =3.当m =2时,f(x)=x -3是奇函数,所以不满足题意,所以m =2舍去;当m =3时,f(x)=x -4,满足题意,所以f(x)=x -4.所以f ==16.(2)由f(x)=x -4为偶函数且f(2a +1)=f(a),得|2a +1|=|a|,即2a +1=a 或2a +1=-a ,解得a =-1或a =-13.16.解:(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1,即f(f(f(5)))=-1.(2)图象如图所示.1()241()217.解:(1)设月产量为x 台,则总成本为(20 000+100x)元,从而f(x)={-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时,f(x)=-12(x -300)2+25 000,所以当x =300时,f(x)max =25 000.当x >400时,f(x)=60 000-100x 单调递减,f(x)<60 000-100×400=20 000<25 000.所以当x =300时 ,f(x)max =25 000,即每月生产300台仪器时利润最大,最大利润为25 000元.18.解:(1)f(x)是偶函数,理由如下.f(x)的定义域为R ,关于y 轴对称.因为f(-x)=(-x)21+(-x)2+1=x 21+x 2+1=f(x),所以f(x)=x 21+x 2+1是偶函数.(2)因为f(x)=x 21+x 2+1,所以f =+1=1x 2+1+1,所以f(x)+f =3.(3)由(2)可知f(x)+f =3,又因为f(1)=32,所以f(1)+f(2)+f(3)+f(4)+ff +f +f =f(1)+=32+3×3=21219.解:(1)当a =2时,f(x)=x 2-2x +4,x ∈[-2,3],因为f(x)的对称轴为x =1,所以f(x)在[-2,1]上单调递减,在[1,3]上单调递增,所以当x =1时,f(x)取得最小值为f(1)=1-2+4=3,当x =-2时,f(x)取得最大值为f(-2)=22+4+4=12.1()x 221()x 11()x +1(x 1()x 1()21()31()4111[f (2)f ()][f (3)f ()][f (4)f ()]234+++++(2)二次函数f(x)=x 2-2(a -1)x +4的对称轴为x =a -1,f(x)在区间(-∞,2]单调递减,则a -1≥2,解得a≥3.所以实数a 的取值范围为[3,+∞).(3)二次函数f(x)=x 2-2(a -1)x +4的对称轴为x =a -1,当a -1≤1,则a≤2,此时f(x)在[1,2]上单调递增,所以f(x)min =f(1)=1-2(a -1)+4=7-2a .当1<a -1<2,则2<a <3,此时f(x)在[1,a -1]上单调递减,在[a -1,2]上单调递增,所以f(x)min =f(a -1)=(a -1)2-2(a -1)2+4=-a 2+2a +3.当a -1≥2,则a ≥3,此时f(x)在[1,2]上单调递减,所以f(x)min =f(2)=22-4(a -1)+4=12-4a .综上,f(x)min ={7-2a ,a ≤2,-a 2+2a +3,2<a <3,12-4a ,a ≥3.。
高一数学《函数的基本性质》单元测试题
高一数学《函数的基本性质》单元测试题 班次 学号 姓名一、选择题:1.下列函数中,在区间),0(+∞上是增函数的是 ( )A.42+-=x yB.x y -=3C.x y 1=D.x y = 2.若函数)()(3R x x x f ∈=,则函数)(x f y -=在其定义域上是 ( )A.单调递减的偶函数B.单调递减的奇函数C.单调递增的偶函数D.单调递增的奇函数3.函数x x x f +=2)(的奇偶性为 ( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数有不是偶函数4.若)(x f y =在[)+∞∈,0x 上的表达式为)1()(x x x f -=,且)(x f 为奇函数,则(]0,∞-∈x 时)(x f 等于 ( )A.)1(x x --B. )1(x x +C. )1(x x +-D. )1(-x x5.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)6(f 的值为 ( )A.1-B.0C.1D.26.已知函数()()0f x x a x a a =+--≠,()()()2200x x x h x x x x ⎧-+>⎪=⎨+≤⎪⎩, 则()(),f x h x 的奇偶性依次为 ( ) A .偶函数,奇函数 B .奇函数,偶函数 C .偶函数,偶函数D .奇函数,奇函数7.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于 ( )A .2-B .4-C .6-D .10-8.下列判断正确的是 ( ) A .函数22)(2--=x x x x f 是奇函数 B.函数()(1f x x =- C.函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数9.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是 ( )A .(],40-∞B .[40,64]C .(][),4064,-∞+∞D .[)64,+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥11.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是 ( ) A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f 12.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或二、填空题: 13.设函数)(x f y =是奇函数,若3)2()1(3)1()2(++=--+-f f f f ,则=+)2()1(f f ____________________;14.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = ; 15.若函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________;16.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 .三、解答题:17.判断并证明下列函数的奇偶性:(1)21)(x x x f +=;(2)x x x f 2)(2+=;(3)x x x f 1)(+=;(4)()22f x x =+-. 18.已知3)1()2()(2+-+-=x k x k x f 是偶函数,求)(x f 的递减区间。
高一数学必修一函数各章节测试题4套
函数的性质测试题一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根 6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若 函 数()()2212f x x a x =+-+在区间 (]4,∞-上是减 函 数,则 实 数a 的 取值范 围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( ) A .(10)(13)(15)f f f << B .(13)(10)(15)f f f << C .(15)(10)(13)f f f << D .(15)(13)(10)f f f <<二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高一数学函数的基本性质试题答案及解析
高一数学函数的基本性质试题答案及解析1.下列幂函数中过点(0,0),(1,1)的偶函数是()A.B.C.D.【答案】B【解析】A中函数的定义域是,不关于原点对称,不具有奇偶性;B中函数经验证过这两个点,又定义域为,且;C中函数不过(0,0);D中函数,∵,∴是奇函数,故选B.【考点】幂函数的性质与函数的奇偶性.2.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.3.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.4.函数的单调增区间是_______.【答案】【解析】由,所以此函数的定义域为,根据复合函数的单调性,所以此函数的单调增区间为.5.(本小题满分12分)已知函数 (为常数)在上的最小值为,试将用表示出来,并求出的最大值.【答案】【解析】(1)因为抛物线y=x2-2ax+1的对称轴方程是,本题属于轴动区间定的问题,然后分轴在区间左侧,在区间内,在区间右侧三种情况分别得到其最小值,得到最小值h(a),然后再求出h(a)的最大值.∵y=(x-a)2+1-a2,∴抛物线y=x2-2ax+1的对称轴方程是.(1)当时,,当时,该函数取最小值;(2) 当时, , 当时,该函数取最小值;(3) 当a>1时, , 当时,该函数取最小值综上,函数的最小值为6.证明:函数是偶函数,且在上是减少的。
(本小题满分12分)【答案】见解析。
【解析】本试题主要是考查了函数的奇偶性的定义以及单调性的性质。
高一数学必修一函数的基本性练习题
函数的基本性质综合练习一.选择题:(本大题共10题,每小题5分,共50分)1.若函数ax y =与x b y -=在(0,+∞)上都是减函数,则bx ax y +=2在),0(∞上是( ) A .增函数 B .减函数 C .先增后减 D .先减后增2.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是 ( )A .1B .2C .3D .43.设)(x f 是(-∞,+∞)上的增函数a 为实数,则有 ( )A .)2()(a f a f <B .)()(2a f a f <C .)()(2a f a a f <+D .)()1(2a f a f >+ 4.如果奇函数)(x f 在区间[3,7]上是增函数且最大值为5,那么)(x f 在区间[-7,-3]上是( )A .增函数且最小值是-5B .增函数且最大值是-5C .减函数且最大值是-5D .减函数且最小值是-55.已知定义域为}0|{≠x x 的函数)(x f 为偶函数,且)(x f 在区间(-∞,0)上是增函数,若0)3(=-f ,则0)(<xx f 的解集为( ) A .(-3,0)∪(0,3) B .(-∞,-3)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-3,0)∪(3,+∞) 6.当]5,0[∈x 时,函数c x x x f +-=43)(2的值域为( )A .[c,55+c ]B .[-43+c ,c ]C .[-43+c,55+c ] D .[c,20+c ] 7.设)(x f 为定义在R 上的奇函数.当0≥x 时,b x x f x ++=22)((b 为常数),则)1(-f 等于( )A .3B .1C .-1D .-38.下列函数在(0,1)上是增函数的是( )A .x y 21-=B .1-=x yC .x x y 22+-=D .5=y9.下列四个集合:①}1|{2+=∈=x y R x A ;②},1|{2R x x y y B ∈+==;③},1|),{(2R x x y y x C ∈+==;④}1{的实数不小于=D .其中相同的集合是( )A .①与②B .①与④C .②与③D .②与④ 10.给出下列命题:①xy 1=在定义域内为减函数;②2)1(-=x y 在),0(∞ 上是增函数;③x y 1-=在)0,(-∞上为增函数;④kx y =不是增函数就是减函数。
人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(52)
人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 下列所给的 4 个图象为小明离开家的距离 y 与所用时间 t 的函数关系,给出下列 3 个事件: (1)小明离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学; (2)小明骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)小明出发后,心情轻松,缓缓行进,后来为了赶时间开始加速. 其中事件(1)(2)(3)与所给图象吻合最好是 ( )A .④①②B .③①②C .②①④D .③②①2. 已知函数 f (x ) 是奇函数,若 f (2)=1,则 f (−2)= ( ) A . 8 B . 1 C . −1 D . −23. 某人在超市一次性购买 20 千克大米和 10 升食用油,大米的价格是 3.8 元/千克,食用油的价格是 15 元/升,则下列式子中可以计算得到购买这两种商品总花费的是 ( ) A . ∣∣∣201510 3.8∣∣∣ B . ∣∣∣20 3.81015∣∣∣ C . (2010)(3.815)D . (3.815)(2010)4. 已知定义域在 R 上的函数 f (x ) 满足 f (x +y )=f (x )+f (y )+4xy (x,y ∈R ),若 f (1)=2,则 f (−2) 等于 ( )A . 2B . 4C . 8D . 165. 设函数 f (x ) 满足当 x 1,x 2∈(−∞,2) 时,都有 (x 1−x 2)⋅[f (x 1)−f (x 2)]>0,且 f (x +2) 是偶函数,则 f (−1) 与 f (3) 的大小关系是 ( ) A . f (−1)>f (3) B . f (−1)<f (3) C . f (−1)=f (3)D .不确定6. 已知 f (x )={(2a −1)x +4a,(x ≤1)log a x,(x >1) 是 R 上的单调递减函数,则实数 a 的取值范围为( ) A . (0,1)B . (0,13)C . [16,12)D . [16,1)7. 已知函数 f (x ) 由下表给出,则 f (3) 等于 ( )x 1≤x <222<x ≤4f (x )123A . 1B . 2C . 3D .不存在8. f (x ) 为 (−∞,+∞) 上的减函数,a ∈R ,则 ( ) A . f (a )<f (2a ) B . f (a 2)<f (a ) C . f (a 2+1)<f (a )D . f (a 2+a )<f (a )9. 一某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用 ( ) A .一次函数模型 B .二次函数模型 C .指数型函数模型D .对数型函数模型10. 函数 f (x )=3√x−2 的定义域为 ( ) A . (−∞,0) B . [0,+∞) C . [2,+∞) D . (−∞,2)二、填空题(共6题)11. 已知 y =f (x )+x 2 是奇函数,且 f (1)=1,若 g (x )=f (x )+2,则 g (−1)= .12. 函数 y =2−4cos 2x 的值域为 .13. 如果正方体的边长为 x ,体积为 y ,那么 y = .14. 若 f (x )=m(m 为常数,x ∈R),则 f (m 2)= .15. 幂函数 f (x )=(a −1)x m2−2m−3(a,m ∈N ) 为偶函数,且在 (0,+∞) 上是减函数,则 a +m=.16.函数y=∣x∣(1−x)的单调递增区间为.三、解答题(共6题)17.已知幂函数y=x m−2(m∈N)的图象与x轴、y轴都无交点,且关于y轴对称,求m的值,并画出函数的图象.18.某环线地铁按内、外线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异),新调整的方案要求内环线列车平均速度为20千米/小时,外环线列车平均速度为30千米/小时,现内、外环线共有18列列车全部投入运行,其中内环投入x列列车.(1) 写出内、外环线乘客的最长候车时间(分钟)分别关于x的函数解析式;(2) 要使内、外环线乘客的最长候车时问之差距不超过1分钟,问内、外环线应各投入几列列车运行?(3) 要使内、外环线乘客的最长候车时间之和最小,问内、外环线应各投入几列列车运行?19.判断函数f(x)=x2+xx+1的奇偶性.20.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率v(单位:cm3/s)与管道半径r(单位:cm)的四次方成正比.(1) 写出气体流量速率v关于管道半径r的函数解析式;(2) 若气体在半径为3cm的管道中,流量速率为400cm3/s,求该气体通过半径为r的管道时,其流量速率v的表达式;(3) 已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率(精确到1cm3/s).21.某厂生产某种产品x(百台),总成本为C(x)(万元),其中固定成本为2万元,每生产1百台成本增加1万元,销售收入为R(x)(万元).且R(x)与x之间的函数关系式为:R(x)={4x−12x2−12,0≤x≤4 7.5,x>4.假定该产品产销平衡.(1) 该厂若要不亏本,产量x应控制在什么范围内?(2) 生产多少台时,可使利润最大?(3) 求利润最大时产品的售价(保留三位有效数字).22.设奇函数y=f(x)的定义域为[−4,4],且当x∈[0,4]时,y=f(x)的图象如图所示.解不等<0.式f(x)x答案一、选择题(共10题)1. 【答案】A【解析】事件(1)可知先是随着时间t的增长离开家的距离y是在增加,但又由于返回家故应减小到零,然后又增大,只有④正确,事件(2)中由于在途中遇到一次交通堵塞,耽搁了一些时间故在一段时间离开家的距离y是一个定值,故选①,事件(3)符合条件的图象应是增加的,且增加的越来越快即图象变得越来越“陡峭”.【知识点】函数的表示方法2. 【答案】C【解析】因为f(x)是奇函数,所以f(−2)=−f(2)=−1.【知识点】函数的奇偶性3. 【答案】C【知识点】函数模型的综合应用、矩阵的运算4. 【答案】C【知识点】抽象函数5. 【答案】B【解析】当x1<x2<2时,f(x1)<f(x2),所以函数f(x)在(−∞,2)上单调递增.又根据y=f(x+2)是偶函数,其图象关于y轴对称,向右平移2个单位长度得到y=f(x)的图象,所以y=f(x)的图象关于直线x=2对称,y=f(x)在(2,+∞)上单调递减.根据对称性得f(−1)=f(5)<f(3).故选B.【知识点】函数的奇偶性、函数的单调性6. 【答案】C【解析】由题意{2a−1<0,0<a<1,2a−1+4a≥log a1,解得16≤a<12.【知识点】函数的单调性7. 【答案】C【解析】因为2<3≤4,所以由题中表格可知f(3)=3.【知识点】函数的表示方法8. 【答案】C【解析】因为 a ∈R ,所以 a −2a =−a 与 0 的大小关系不定,无法比较 f (a ) 与 f (2a ) 的大小,故A 错;而 a 2−a =a (a −1) 与 0 的大小关系也不定,也无法比较 f (a 2) 与 f (a ) 的大小,故B 错; 又因为 a 2+1−a =(a −12)2+34>0,所以 a 2+1>a .又 f (x ) 为 (−∞,+∞) 上的减函数,故有 f (a 2+1)<f (a ),故C 对;易知D 错. 【知识点】函数的单调性9. 【答案】D【解析】一次函数匀速增长;二次函数和指数型函数增长时,都是开始增长慢,后来越来越快;对数型函数增长时,先快后慢,满足题意. 【知识点】建立函数表达式模型10. 【答案】C【知识点】函数的定义域的概念与求法二、填空题(共6题) 11. 【答案】−1【解析】由题意,y =f (x )+x 2 是奇函数,且 f (1)=1, 所以 f (1)+1+f (−1)+(−1)2=0 解得 f (−1)=−3, 所以 g (−1)=f (−1)+2=−3+2=−1. 【知识点】抽象函数、函数的奇偶性12. 【答案】 [−2,2]【解析】由余弦函数的性质可知 −1≤cosx ≤1, 所以 0≤cos 2x ≤1, 故:−4≤−4cos 2x ≤0, 所以 −2≤2−4cos 2x ≤2,所以函数 y =2−4cos 2x 的值域为:y ∈[−2,2]. 【知识点】余弦函数的性质、函数的值域的概念与求法13. 【答案】 x 3【知识点】函数模型的综合应用14. 【答案】 m【知识点】函数的相关概念15. 【答案】 3【解析】因为幂函数 f (x )=(a −1)x m 2−2m−3(a,m ∈N ) 为偶函数,且在 (0,+∞) 上是减函数, 所以 m 2−2m −3<0,且 m 2−2m −3 为偶数,m ∈N ,且 a −1=1. 解得 −1<m <3,m =0,1,2,且 a =2.只有 m =1 时满足 m 2−2m −3=−4 为偶数,所以 m =1,a +m =3. 【知识点】幂函数及其性质16. 【答案】 [0,12]【解析】 y =∣x∣(1−x )={−x 2+x,x >0x 2−x,x ≤0,作出其图象如图,观察图象知单调递增区间为 [0,12].【知识点】函数的单调性三、解答题(共6题)17. 【答案】因为幂函数 y =x m−2 的图象与 x 轴、 y 轴都无交点,所以 m −2≤0,即 m ≤2. 又 m ∈N , 所以 m =0,1,2.因为幂函数 y =x m−2 的图象关于 y 轴对称, 所以 m =0 或 m =2.当 m =0 时,幂函数为 y =x −2,图象如图①所示;当 m =2 时,幂函数为 y =x 0=1(x ≠0),图象如图②所示. 【知识点】幂函数及其性质18. 【答案】(1) 根据题意可知,内环投入 x 辆列车,则外环投入 (18−x ) 辆列车, 从而可得内环线乘客的最长候车时间为 t 内=3020x ×60=90x分钟,外环线乘客的最长候车时间为 t 外=3030(18−x )×60=6018−x 分钟,根据实际意义,可知 1≤x ≤17,x ∈N ∗, 所以 t 内=90x,t 外=6018−x (1≤x ≤17,x ∈N ∗). (2) 由题意可得 ∣∣t 内−t 外∣∣=∣∣90x−6018−x ∣∣≤1,整理得 {x 2+132x −1620≤0,x 2−168x +1620≤0,所以168−√217442≤x ≤−132+√239042.因为 x ∈N ∗,所以 x =11,所以当内环线投入 11 列列车运行,外环线投入 7 列列车时, 内外环线乘客的最长候车时间之差不超过 1 分钟. (3) 令u (x )=t 内+t 外=90x +6018−x =1620−30x 18x−x 2=30(54−x )18x−x 2=30(x−54)(x−54)2+90(x−54)+36×54=30(x−54)+36×54x−54+90=3090−[(54−x )+36×5454−x ].可以确定函数在 [1,54−18√6] 上单调递减,在 [54−18√6,17] 上单调递增, 结合 x ∈N ∗ 的条件,可知当 x =10 时取得最小值,所以内环线 10 列列车,外环线 8 列列车时,内、外环线乘客的最长候车时间之和最小. 【知识点】建立函数表达式模型、函数模型的综合应用19. 【答案】 f (x )=x 2+x x+1=x ,定义域为 {x∣ x ≠−1},不关于原点对称,故 f (x ) 为非奇非偶函数. 【知识点】函数的奇偶性20. 【答案】(1) v =kr 4. (2) v =40081r 4. (3) 3086 cm 3/s .【知识点】建立函数表达式模型21. 【答案】(1) 由题意,成本函数为 C (x )=2+x ,设利润为 L (x )(万元),则利润函数为 L (x )=R (x )−C (x )={3x −0.5x 2−2.5,0≤x ≤45.5−x.x >4要不亏本,即要 L (x )≥0,分段解不等式 L (x )≥0,得 1≤x ≤5.5. 故要不亏本,产量 x 应控制在 1≤x ≤5.5 的范围内. (2) 当 0≤x ≤4 时,从二次函数 L (x ) 的性质可知: 当 x =−b2a =3 时,函数取得最大值 L max =2; 当 x >4 时,L (x )=5.5−x <5.5−4=1.5. 所以取 x =3,即生产 300 台时,可使利润最大. (3) 由(2)知当 x =3 时,利润最大,设售价为 P . 此时的售价 P =R (3)3=L (3)+C (3)3=2+53≈2.33(万元/百台),即利润最大时售价为 233 元/台. 【知识点】函数模型的综合应用22. 【答案】由f (x )x<0,得 {x <0,f (x )>0 或 {x >0,f (x )<0.由图象可知:当 {x >0,f (x )<0时,x ∈(2,4).又由奇函数的图象特征可知:当 {x <0,f (x )>0 时,x ∈(−4,−2).所以,不等式的解集为 (−4,−2)∪(2,4).【知识点】函数的奇偶性。
人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(60)
人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 已知不等式 ax 2−x +c >0 的解集为 {x∣ −2<x <1},则函数 y =ax 2+x +c 的图象大致为 ( )A .B .C .D .2. 已知函数 f (x ) 为定义在 R 上的奇函数,当 x <0 时,f (x )=x (x −1),则 f (2)= ( ) A . −6 B . 6 C . −2 D . 23. 十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若 a,b,c ∈R ,则下列命题正确的是 ( ) A .若 ab ≠0 且 a <b ,则 1a >1b B .若 a >b >0,则b+1a+1>baC .若 a +b =2,则 ab <1D .若 c <b <a 且 ac <0,则 cb 2<ab 24. 定义全集 U 的子集 A 的特征函数 f A (x )={1,x ∈A0,x ∉A ,对于任意的集合 A,B ⊆U ,下列说法错误的是 ( )A .若 A ⊆B ,则 f A (x )≤f B (x ),对于任意的 x ∈U 成立B . f A∩B (x )=f A (x )f B (x ),对于任意的 x ∈U 成立C . f A∪B (x )=f A (x )+f B (x ),对于任意的 x ∈U 成立D .若 A =∁U B ,则 f A (x )+f B (x )=1,对于任意的 x ∈U 成立5. 已知 −π2<α<0,sinα+cosα=15,则 1cos 2α−sin 2α= ( )A . 75B .257C .725D .24256. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]7. 设 a ,b ,c 是实数,下列条件中可以推出“a =b ”的是 ( ) A .1a=1bB . a 2=b 2C . ac =bcD . a −c =c −b8. 定义在 R 上的函数 f (x ) 满足:f (x −2) 的对称轴为 x =2,f (x +1)=4f (x )(f (x )≠0),且 f (x ) 在区间 (1,2) 上单调递增,已知 α,β 是钝角三角形中的两锐角,则 f (sinα) 和 f (cosβ) 的大小关系是 ( ) A . f (sinα)>f (cosβ) B . f (sinα)<f (cosβ) C . f (sinα)=f (cosβ)D .以上情况均有可能9. 若函数 f (x ) 为定义在 D 上的单调函数,且存在区间 [a,b ]⊆D ,使得当 x ∈[a,b ] 时,f (x ) 的取值范围恰为 [a,b ],则称函数 f (x ) 是 D 上的正函数.若函数 g (x )=x 2+m 是定义在 (−∞,0) 上的正函数,则实数 m 的取值范围为 ( ) A . (−54,−1) B . (−54,−34) C . (−1,−34)D . (−34,0)10. 定义函数 [x ] 为不大于 x 的最大整数,对于函数 f (x )=x −[x ] 有以下四个结论:① f (2019.67)=0.67;②在每一个区间 [k,k +1),k ∈Z 上,f (x ) 都是增函数; ③ f (−15)<f (15);④ y =f (x ) 的定义域是 R ,值域是 [0,1).其中正确的个数是 ( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6题)11. 关于函数 f (x )=∣x∣∣∣x∣−1∣,给出以下四个命题:(1)当 x >0 时,y =f (x ) 单调递减且没有最值;(2)方程 f (x )=kx +b (k ≠0) 一定有实数解;(3)如果方程 f (x )=m ,(m 为常数)有解,则解的个数一定是偶数;(4)y =f (x ) 是偶函数且有最小值.其中假命题的序号是 .12. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .13. 给出下列四个命题:① f (x )=sin (2x −π4) 的对称轴为 x =kπ2+3π8,k ∈Z ;②函数 f (x )=sinx +√3cosx 的最大值为 2; ③ ∀x ∈(0,π),sinx >cosx ;④函数 f (x )=sin (π3−2x) 在区间 [0,π3] 上单调递增. 其中正确命题的序号为 .14. 设函数 f (x )=sin2x +2cos 2x ,则函数 f (x ) 的最小正周期为 ;若对于任意 x ∈R ,都有f (x )≤m 成立,则实数 m 的最小值为 .15. 若对任意 x >3,x >a 恒成立,则 a 的取值范围是 .16. 若 log a (a +1)<log a (2√a)<0(a >0 且 a ≠1),则实数 a 的取值范围是 .三、解答题(共6题)17. 求下列函数的定义域与值域.(1) y =21x−1;(2) y =3√5x−1; (3) y =(12)x−1.18. 已知函数 f (x )=2x +2−x .(1) 求证:函数f(x)是偶函数;(2) 设a∈R,求关于x的函数y=22x+2−2x−2af(x)在x∈[0,+∞)时的值域g(a)的表达式;(3) 若关于x的不等式mf(x)≤2−x+m−1在x∈(0,+∞)时恒成立,求实数m的取值范围.19.定义:若函数f(x)的定义域为R,且存在实数a和非零实数k(a,k都是常数),使得f(2a−x)=k⋅f(x)对x∈R都成立,则称函数f(x)是具有“理想数对(a,k)”的函数.比如,函数f(x)有理想数对(2,−1),即f(4−x)=−f(x),f(4−x)+f(x)=0,可知函数图象关于点(2,0)成中心对称图形.设集合M是具有理想数对(a,k)的函数的全体.(1) 已知函数f(x)=2x−1,x∈R,试判断函数f(x)是否为集合M的元素,并说明理由;(2) 已知函数g(x)=2x,x∈R,证明:g(x)∉M;(3) 数对(2,1)和(1,−1)都是函数ℎ(x)的理想数对,且当−1≤x≤1时,ℎ(x)=1−x2.若正比例函数y=mx(m>0)的图象与函数ℎ(x)的图象在区间[0,12]上有且仅有5个交点,求实数m的取值范围.20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,∣φ∣<π2)的部分图象如图所示.(1) 求函数f(x)的解析式;(2) 设π12<x<11π12,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.21.某广告公司要为客户设计一幅周长为l(单位:m)的矩形广告牌,如何设计这个广告牌可以使广告牌的面积最大?22.化简1−cos4α−sin4α.1−cos6α−sin6α答案一、选择题(共10题) 1. 【答案】C【解析】因为 不等式 ax 2−x +c >0 的解集为 {x∣ −2<x <1}, 所以 a <0,故 x 2−1ax +ca<0 的解集为 {x∣ −2<x <1},所以 −2 和 1 是方程 x 2−1ax +c a=0 的两个根,故 −2+1=1a,−2×1=ca,解得 a =−1,c =2.故函数 y =ax 2+x +c =−x 2+x +2=−(x +1)(x −2),其图象大致为 C . 【知识点】二次函数的性质与图像2. 【答案】A【知识点】函数的奇偶性3. 【答案】B【解析】对于A ,取 a =−2,b =1,可知1a>1b不成立,因此选项A 不正确;对于B ,因为 a >b >0,所以 b+1a+1−ba =a−ba (a+1)>0,所以 b+1a+1>ba ,因此选项B 正确; 对于C ,取 a =b =1 时,ab =1,因此选项C 不正确; 对于D ,取 b =0 时,cb 2<ab 2 不正确,因此选项D 不正确. 【知识点】不等式的性质4. 【答案】C【知识点】函数的表示方法5. 【答案】B【解析】因为 sinα+cosα=15, 所以 1+2sinαcosα=125,所以 2sinαcosα=−2425,(cosα−sinα)2=1+2425=4925,又因为 −π2<α<0, 所以 cosα>0>sinα, 所以 cosα−sinα=75, 所以1cos 2α−sin 2α=1(cosα+sinα)(cosα−sinα)=115×75=257.故选B .【知识点】同角三角函数的基本关系6. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x 2+mx +1>0的解集为R ,∴△=m 2−4<0,解得−2<m <2. ∴m 的取值范围是(−2,2). 故选:B .【点评】熟练掌握一元二次不等式的解法是解题的关键.7. 【答案】A【知识点】充分条件与必要条件8. 【答案】A【知识点】抽象函数、函数的单调性9. 【答案】C【解析】因为函数 g (x )=x 2+m 是定义在 (−∞,0) 上的正函数,所以存在 a <b <0,使得当 x ∈[a,b ] 时,g (x )∈[a,b ],且函数单调递减, 则 g (a )=b ,g (b )=a , 即 a 2+m =b ,b 2+m =a , 两式左右分别相减得 a 2−b 2=b −a , 即 b =−(a +1),代入 a 2+m =b 得 a 2+a +m +1=0, 因为 a <b <0,且 b =−(a +1), 所以 a <−(a +1)<0, 解得 −1<a <−12.故关于 a 的方程 a 2+a +m +1=0 在区间 (−1,−12) 内有实数根,把新定义的正函数问题转化为方程有解问题,采用了转化与化归思想.记 ℎ(a )=a 2+a +m +1,则 ℎ(−1)=1−1+m +1>0 且 ℎ(−12)=14−12+m +1<0,解得 m >−1 且 m <−34,即 −1<m <−34. 【知识点】函数的单调性、抽象函数10. 【答案】C【解析】 f (2019.67)=2019.67−2019=0.67,故①正确;设 k ≤x 1≤x 2<k +1,则 f (x 1)−f (x 2)=x 1−k −x 2+k =x 1−x 2<0, 所以 f (x 1)<f (x 2),所以 f (x ) 在 [k,k +1),k ∈Z 上是增函数,故②正确; 因为 f (−15)=−15−(−1)=45,f (15)=15−0=15,所以 f (−15)>f (15),故③错误; 因为 x −[x ]∈[0,1), 所以④正确. 故选C .【知识点】函数的值域的概念与求法、函数的单调性二、填空题(共6题) 11. 【答案】(1)、(3)【解析】(1)当 x >1 时,y =f (x )=xx−1=1+1x−1 在区间 (1,+∞) 上是单调递减函数,当 0<x <1 时,y =f (x )=−xx−1=−1−1x−1 在区间 (0,1) 上是单调增函数.所以(1)是假命题. (2)函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,当 x >0 时,y =f (x ) 在区间 (0,1) 上单调递增,在 (1,+∞) 上单调递减.当 k >0 时,函数 y =f (x ) 与 y =kx 的图象在第一象限内有交点,由对称性可知,当 x <0 且 k <0 时,函数 y =f (x ) 与 y =kx 的图象在第二象限内有交点.所以,方程 f (x )=kx +b (k ≠0) 一定有解.所以(2)是真命题.(3)因为函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,且最小值 f (0)=0,举例:当 m =0 时,函数 y =f (x ) 与 y =m 的图象只有一个交点.此时方程 f (x )=m 的解是奇数.所以(3)是假命题. (4)函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,y =f (x )=∣x∣∣∣x∣−1∣ 在区间 (0,1) 上单调递增,(1,+∞) 上单调递减.且 f (0)=0,x >0 时,f (x )>0 恒成立,由对称性可知,函数 f (x ) 有最小值 f (0)=0.所以( 4 )是真命题.【知识点】函数的零点分布、函数的最大(小)值、函数的单调性12. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞)上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点; ② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布13. 【答案】①②【解析】① y =sinx 的对称轴为 x =kπ+π2(k ∈Z ),故 f (x )=sin (2x −π4) 的对称轴由 2x −π4=kπ+π2(k ∈Z ),解得 x =kπ2+3π8(k ∈Z ),故①正确;②函数f(x)=sinx+√3cosx=2sin(x+π3),故该函数的最大值为2,故②正确;③ ∀x∈(0,π),sinx>cosx;当x=π4时,sinx=cosx,故③错误;④函数f(x)=sin(π3−2x)在区间[0,π3]上单调递减,故④错误.故答案为:①②.【知识点】Asin(ωx+ψ)形式函数的性质14. 【答案】π;√2+1【知识点】Asin(ωx+ψ)形式函数的性质15. 【答案】a≤3【知识点】恒成立问题16. 【答案】(14,1)【解析】当0<a<1时,函数y=log a x单调递减,由题意得{a+1>2√a,2√a>1,解得a>14,所以14<a<1;当a>1时,函数y=log a x单调递增,由题意得{a+1<2√a,2√a<1,无解.综上可知,实数a的取值范围是(14,1).【知识点】对数函数及其性质三、解答题(共6题)17. 【答案】(1) 由x−1≠0,得x≠1.所以函数的定义域为{x∣ x∈R且x≠1}.又1x−1≠0,所以21x−1>0,且21x−1≠1.所以函数的值域为{y∣ y>0且,y≠1}.(2) 由5x−1≥0,得x≥15.所以函数的定义域为{x∣ x≥15}.因为 5x −1≥0,所以 3√5x−1≥1.所以函数的值域为 {y∣ y ≥1}.(3) y =(12)x−1 的定义域是 R ,值域是 {y∣ y >−1}.【知识点】函数的定义域的概念与求法、函数的值域的概念与求法18. 【答案】(1) 函数 f (x ) 的定义域为 R ,对任意 x ∈R ,f (−x )=2−x +2x =f (x ), 所以函数 f (x ) 是偶函数.(2) y =22x +2−2x −2a (2x +2−x )=(2x +2−x )2−2a (2x +2−x )−2, 令 2x +2−x =t ,因为 x ≥0,所以 2x ≥1,故 t ≥2, 原函数可化为 y =t 2−2at −2,t ∈[2,+∞),y =t 2−2at −2=(t −a )2−a 2−2 图象的对称轴为直线 t =a ,当 a ≤2 时,函数 y =t 2−2at −2 在 t ∈[2,+∞) 时是增函数,值域为 [2−4a,+∞);当 a >2 时,函数 y =t 2−2at −2 在 t ∈[2,a ] 时是减函数,在 t ∈[a,+∞) 时是增函数,值域为 [−a 2−2,+∞).综上,g (a )={[2−4a,+∞),a ≤2[−a 2−2,+∞),a >2.(3) 由 mf (x )≤2−x +m −1 得 m [f (x )−1]≤2−x −1,当 x >0 时,2x >1,所以 f (x )=2x +2−x >2,所以 f (x )−1>1>0, 所以 m ≤2−x −1f (x )−1=2−x −12x +2−x −1=1−2x 22x +1−2x恒成立.令 t =1−2x ,则 t <0,1−2x 22x +1−2x=t (1−t )2+t=t t 2−t+1=1t+1t−1,由 t <0 得 t +1t≤−2,所以 t +1t−1≤−3,−13≤1t+1t−1<0.所以 m ≤−13,即 m 的取值范围为 (−∞,−13].【知识点】函数的奇偶性、指数函数及其性质、函数的值域的概念与求法19. 【答案】(1) 依据题意,知 f (x )=2x −1,若 f (2a −x )=k ⋅f (x ),即 2(2a −x )−1=k (2x −1). 化简得 −2x +4a −1=2kx −k ,此等式对 x ∈R 都成立,则 {2k =−2,4a −1=−k,解得 {k =−1,a =12.于是,函数 f (x )=2x −1 有理想数对 (12,−1).所以,函数 f (x )∈M . (2) 用反证法证明 g (x )∉M . 假设 g (x )∈M ,则存在实数对 (a,k )(k ≠0) 使得 g (2a −x )=k ⋅g (x ) 成立. 又 g (x )=2x ,于是,22a−x =k ⋅2x , 即 22a =k ⋅22x .一方面,此等式对 x ∈R 都成立;另一方面,该等式左边是正的常数,右边是随 x 变化而变化的实数.两方面互相矛盾,故假设不成立.因此,函数 g (x ) 不存在理想数对 (a,k )(k ≠0) 使 g (x )∈M , 即 g (x )∉M .(3) 因为数对 (2,1) 和 (1,−1) 都是函数 ℎ(x ) 的理想数对, 所以 ℎ(4−x )=ℎ(x ),ℎ(2−x )=−ℎ(x ),x ∈R , 所以ℎ(4+x )=ℎ(4−(4+x ))=ℎ(2−(2+x ))=−ℎ(2+x )=−ℎ(4−(2−x ))=−ℎ(2−x )=ℎ(x ).所以函数 ℎ(x ) 是以 4 为周期的周期函数.由 ℎ(2−x )=−ℎ(x ),ℎ(2−x )+ℎ(x )=0,x ∈R ,可知函数 ℎ(x ) 的图象关于点 (1,0) 成中心对称图形.又 −1≤x ≤1 时,ℎ(x )=1−x 2,所以 1<x ≤3 时,−1≤2−x <1,则 ℎ(x )=−ℎ(2−x )=(2−x )2−1.先画出函数 ℎ(x ) 在 [−1,3] 上的图象,再根据周期性,可得到函数 ℎ(x ) 的图象如图: 所以 ℎ(x )={1−(x −2k )2,k 为偶数,2k −1≤x <2k +1(x −2k )2−1,k 为奇数,2k −1≤x <2k +1,所以 ℎ(x )=1−(x −8)2,7≤x ≤9;ℎ(x )=1−(x −12)2,11≤x ≤13.由 {ℎ(x )=1−(x −8)2,y =mx (7≤x ≤9) 有且仅有一个交点,解得 m =16−6√7(m =16+6√7,舍去).由 {ℎ(x )=1−(x −12)2,y =mx (11≤x ≤13) 有且仅有一个交点,解得 m =24−2√143(m =24+2√143,舍去).所以函数 y =mx (m >0) 的图象与函数 ℎ(x ) 的图象在区间 [0,12] 上有且仅有 5 个交点时,实数 m 的取值范围是 24−2√143<m <16−6√7.【知识点】恒成立问题、函数的零点分布、反证法、函数的周期性20. 【答案】(1) 由函数图象知,A =2.因为图象过点 (0,1),所以 f (0)=1,所以 sinφ=12. 又因为 ∣φ∣<π2,所以 φ=π6. 由函数图象知T 2=2π3−π6=π2,所以 T =π,得 ω=2.所以函数 f (x ) 的解析式为 f (x )=2sin (2x +π6).(2) 由(1)知,函数 y =2sin (2x +π6),若 π12<x <11π12,在原图中标出 (π12,√3) 和 (11π12,0),如图所示: 当 −2<m <0 或 √3<m <2 时,直线 y =m 与曲线 y =2sin (2x +π6) 有两个不同的交点,即原方程有两个不同的实数根. 所以 m 的取值范围为 (−2,0)∪(√3,2). 由对称性可知,当 −2<m <0 时,两根和为 4π3;当 √3<m <2 时,两根和为 π3.【知识点】Asin(ωx+ψ)形式函数的性质21. 【答案】设矩形的一边长为 x ,广告牌面积为 S ,则 S =−(x −l 4)2+l 216,x ∈(0,l 2). 当 x =l4 时,S 取得最大值,且 S max =l 216,所以当广告牌是边长为 l4 的正方形时,广告牌的面积最大.【知识点】函数模型的综合应用22. 【答案】 1−cos 4α−sin 4α1−cos 6α−sin 6α=(sin 2α+cos 2α)2−cos 4α−sin 4α(sin 2α+cos 2α)3−cos 6α−sin 6α=2sin 2αcos 2α3sin 4αcos 2α+3sin 2αcos 4α=2sin 2αcos 2α3sin 2αcos 2α=23.【知识点】同角三角函数的基本关系。
高一数学函数的基本性质试题答案及解析
高一数学函数的基本性质试题答案及解析1.(本小题12分)已知函数,(1)判断函数在区间上的单调性;(2)求函数在区间是区间[2,6]上的最大值和最小值.【答案】(1)函数是区间上的减函数;(2),【解析】(1)设是区间上的任意两个实数,且,则-==.由得,,于是,即.所以函数是区间上的减函数. ……6分(2)由(1)知函数函数在区间的两个端点上分别取得最大值与最小值,即当时,;当时,. ……12分【考点】本小题主要考查利用定义判断函数的单调性和利用函数的单调性求函数的最值,考查学生对定义的掌握和利用能力以及数形结合思想的应用.点评:利用单调性的定义判断或证明函数的单调性时,要把结果划到最简,尽量不要用已知函数的单调性判断未知函数的单调性.2.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.3.函数,则的取值范围是()A.B.C.D.【答案】A【解析】因为f(x)的对称轴为,所以,所以.4.若奇函数在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上( )A.是减函数,有最小值-7B.是增函数,有最小值-7C.是减函数,有最大值-7D.是增函数,有最大值-7【答案】D【解析】解:由奇函数的性质,∵奇函数f(x)在[1,3]上为增函数∴奇函数f(x)在[-3,-1]上为增函数,又奇函数f(x)在[1,3]上有最小值7,∴奇函数f(x)在[-3,-1]上有最大值-7,故选D5.(12分)求证:函数在R上为奇函数且为增函数.【答案】见解析【解析】解:显然,奇函数;令,则,其中,显然,=,由于,,且不能同时为0,否则,故.从而. 所以该函数为增函数.6.下列f(x)=(1+a x)2是()A.奇函数B.偶函数C.非奇非偶函数D.既奇且偶函数【答案】B【解析】函数定义域为R.故选B7.设a是实数,试证明对于任意a,为增函数【答案】见解析【解析】证明:设∈R,且则由于指数函数 y=在R上是增函数,且,所以即<0,又由>0得+1>0, +1>0所以<0即因为此结论与a取值无关,所以对于a取任意实数,为增函数8.函数y=x+ ()A.有最小值,无最大值B.有最大值,无最小值C.有最小值,最大值2D.无最大值,也无最小值【答案】A【解析】∵y=x+在定义域[,+∞)上是增函数,∴y≥f()=,即函数最小值为,无最大值,选A.9.(05福建卷)是定义在R上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2【答案】B【解析】因为是定义在R上以3为周期的偶函数,且,所以故选B10.定义在上的函数是减函数,且是奇函数,若,求实数的范围。
高一数学:函数章节测试题(含解析)
函数章节测试卷(时间120,满分150)一.选择题1. 函数f (x )=)12(log 13-12++x x的定义域为( )A .(-21,0) B .(-21,+∞) C .(-21,0)∪(0,+∞) D .(-21,2) 2. 已知函数f (x )= ⎪⎩⎪⎨⎧≤>0,30,log 21x x x x ,则f (f (4))=( )A .-91B .-9C .91 D .93. 设a =log 54-log 52,b=3ln 32ln +,c=5lg 2110,则a ,b,c 的大小关系为( )A .a<b<cB .b <c<aC .c<a<bD .b <a <c4. 函数y=21x -1的图像关于x 轴对称的图像大致为( )5. 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A .(2,+∞)B .(0,21)∪ (2,+∞) C .(0,22)∪ (2,+∞)D . (2,+∞)6. 设函数f (x )满足f (x+π)=f (x )+sin x ,当0≤x <π时,f (x )=0,则f (623π)=( ) A .21B .23C .0D .-217. 函数y=)106(log 231+-x x 在区间[1,2]上的最大值为( )A .0B .5log 31 C .2log 31D .18. 设函数f (x )=))((22b ax x x x +++,若对任意的x ,都有f (x )=f (2-x ),则f (x )的零点个数为( )A .5B .4C .3D .29. 已知函数f (x )= ⎩⎨⎧<≥+-0,0,3x a x a x x,是R 上的减函数,则实数a 的取值范围为( ) A .(0,1) B .(0,31] C .[31,1) D .[31,+∞) 10. 函数f (x )的图像与函数g (x )=x)21(的图像关于直线y=x 对称,则f (2x -x 2)的单调递减区间为( )A .(-∞,1)B .[1,+∞)C .(0,1)D .[1,2]11. 在如图所示的锐角三角形空地(底边长为40m ,高为40m )中,欲建一个面积不小于300m 2的内接矩形花园,则其边长x 的取值范围为( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]12. 已知函数f (x )= ⎪⎩⎪⎨⎧≥+--<-1,2)2(1,)1(log 25x x x x ,则方程f (x+x 1-2)=a 的实根的个数不可能为( )A .5B .6C .7D .8二. 填空题13. 已知函数f (x )= ⎩⎨⎧<≥+0),(0,22x x g x x x 为奇函数,则f (g (-1))= . 14. 已知函数f (x )=x 2+mx -1,若对于任意的x ∈[m ,m+1]都有f (x )<0,则m 取值范围为 .15. 已知函数f (x )= ⎪⎩⎪⎨⎧∈-∈]3,1(,2329]1,0[,3x x x x ,当t ∈[0,1]时,f (f (t))∈[0,1],则t 取值范围为 . 16. 函数f (x )= ⎩⎨⎧≤+>+-0,140,2ln 2x x x x x x 的零点个数为 . 三.解答题17. 函数f (x )=ax)21(,a 为常数,且函数图像过点(-1,2). (1)求a 的值(2)若g (x )=x-4-2, 且g (x )=f (x ),求满足条件的x 的值。
人教版高中数学必修第一册第三单元《函数概念与性质》检测题(包含答案解析)
一、选择题1.已知函数()1f x +是偶函数,当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=-⎪⎝⎭,()2b f =,()3c f =,则a 、b 、c 的大小关系为( ) A .b a c << B .c b a << C .b c a << D .a b c <<2.已知0.31()2a =,12log 0.3b =,0.30.3c =,则a b c ,,的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<3.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( ) A .(0,1)B .(1,2)C .(,1)-∞D .(1,)+∞4.已知奇函数()f x 在区间[]2,3上单调递增,则()f x 在区间[]3,2--上( ) A .单调递增,且最大值为()2f - B .单调递增,且最大值为()3f - C .单调递减,且最大值为()2f -D .单调递减,且最大值为()3f -5.意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线.直到1690年,雅各布·伯努利正式提出该问题为“悬链线”问题并向数学界征求答案.1691年他的弟弟约翰·伯努利和菜布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式——双曲余弦函数:()cosh x f x c a c a =+=2xxa ae e a -++⋅(e 为自然对数的底数).当0c ,1a =时,记(1)p f =-,12m f ⎛⎫= ⎪⎝⎭,(2)n f =,则p ,m ,n 的大小关系为( ).A .p m n <<B .n m p <<C .m p n <<D .m n p <<6.已知32()2f x x ax ax =++,对任意两个不等实数12,[1,)x x ∈+∞,都有()()2112120x f x x f x x x ->-,则a 的取值范围( )A .2a ≥-B .2a ≤-C .4a ≥-D .4a ≤-7.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当(]2,4x ∈时,224,23,()2,34,x x x f x x x x ⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对(]12,0x ∀∈-,2[2,1]x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ C .(0,8]D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭8.已知定义在R 上的连续奇函数()f x 的导函数为()f x ',当0x >时,()()0f x f x x'+>,则使得()()()2213310xf x x f x +-->成立的x 的取值范围是( )A .()1,+∞B .()11,1,5⎛⎫-+∞ ⎪⎝⎭C .1,15⎛⎫⎪⎝⎭D .(),1-∞9.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( ) A .12B .1-C .±1D .12±10.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( )A .⎛ ⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞11.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .2a <-或2a > B .2a > C .22a -<< D .2a <12.已知定义在R 上的函数()f x 满足()(2)f x f x =-,()()0f x f x +-=,且在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,则(2020.5)f =( ) A .116-B .116C .14D .1213.函数1()lg f x x=+ )A .(0,2]B .(0,2)C .(0,1)(1,2]⋃D .(,2]-∞14.设函数()()212131log 1313x xe e xf x x --=++++,则做得()()31f x f x ≤-成立的x 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .11,,42⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ D .11,42⎡⎤⎢⎥⎣⎦15.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C.(-∞D.)+∞二、填空题16.已知定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,如果(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,则实数a 的取值范围是________17.设2,0()1,0x x f x x -⎧≤=⎨>⎩,则满足()()1 2f x f x +<的实数x 的取值范围是__________.18.已知等差数列{}n a 满足:20a >,40a <,数列的前n 项和为n S ,则42S S 的取值范围是__________.19.研究函数())f x a b c =<<<,得到如下命题:①此函数图象关于y 轴对称;②此函数存在反函数;③此函数在()0,a 上为增函数;④此函数有最大值ab c+和最小值0; 你认为其中正确的是_______(写出所有正确的编号).20.已知函数12()log f x x a =+,g (x )=x 2-2x ,若11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f(x 1)=g (x 2),则实数a 的取值范围是________.21.若函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上是单调增函数.如果实数t 满足1(ln )ln 2(1)f t f f t ⎛⎫+< ⎪⎝⎭时,那么t 的取值范围是__________.22.设函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦)的值域依次是1232019,,,,A A A A ,则1232019A A A A ⋂⋂⋂⋂=__________.23.已知甲、乙两地相距150 km ,某人开汽车以60 km/h 的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h 的速度返回甲地,把汽车距甲地的距离s 表示为时间t 的函数,则此函数的表达式为__________.24.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 25.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:(1)()0f 是函数的最大值;(2)()f x 的图像关于点()1,0P 对称;(3)()f x 在[]2,3上是减函数;(4)()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上)26.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】推导出函数()f x 为()1,+∞上的增函数,且有()()11f x f x +=-,可得出52a f ⎛⎫= ⎪⎝⎭,进而可得出a 、b 、c 的大小关系. 【详解】当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦,则()()21f x f x >, 所以,函数()f x 为()1,+∞上的增函数, 由于函数()1f x +是偶函数,可得()()11f x f x +=-,1335112222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴=-=-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,53212>>>,因此,b a c <<. 故选:A. 【点睛】 思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.2.B解析:B 【分析】由指数函数的性质可得112a <<,由对数函数的性质可得1b >,由幂函数的性质可得0.30.310.32⎛⎫< ⎪⎝⎭,从而可得结果.【详解】∵0.31()2a =,12log 0.3b = 0.30.3c =∴10.3111112222a ⎛⎫⎛⎫⎛⎫=<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 11221log 0.3log 12b =>=, 0.30.310.32c ⎛⎫=< ⎪⎝⎭,∴c a b << 故选:B 【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.3.C解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8),所以1128n a -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =,由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.解析:A 【分析】利用函数单调性的定义结合奇函数的基本性质可判断函数()f x 在区间[]3,2--上的单调性,进而可得出函数()f x 在区间[]3,2--上的最值. 【详解】任取1x 、[]23,2x ∈--且12x x <,即1232x x -≤<≤-,所以,2123x x ≤-<-≤, 因为函数()f x 在区间[]2,3上单调递增,则()()21f x f x -<-, 因为函数()f x 为奇函数,则()()21f x f x -<-,()()12f x f x ∴<, 因此,函数()f x 在区间[]3,2--上为增函数,最大值为()2f -,最小值为()3f -.故选:A. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.5.C解析:C 【分析】先利用导数证明函数()f x 在区间0,上单调递增,再结合单调性比较大小即可.【详解】由题意知,()2x x e e f x -+=,21()22x x x xe e ef x e--+-'== 当0x >时,()0f x '>,即函数()f x 在区间0,上单调递增1(1)(1)2e ef f -+-==10122<<<,1(1)(2)2ff f ⎛⎫∴<< ⎪⎝⎭,即m p n << 故选:C 【点睛】关键点睛:解决本题的关键是利用导数证明函数()f x 的单调性,再结合单调性比较大小.解析:C 【分析】首先变形条件,得到函数()()f xg x x=在[)1,+∞单调递增,利用二次函数的单调性,求a 的取值范围.【详解】[)12,1,x x ∈+∞,不等式两边同时除以12x x ()()()()12211212121200f x f x x f x x f x x x x x x x --∴>⇔>--, 即函数()()f x g x x=在[)1,+∞单调递增,()22g x x ax a =++, 函数的对称轴是4a x =-,则14a-≤,解得:4a ≥-.故选:C 【点睛】关键点点睛:本题的关键是原式等价为()()121212f x f x x x x x ->-,从而通过构造函数,确定函数的单调性,转化为二次函数的单调性解决问题.7.D解析:D 【分析】问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集,先求出()f x 在(]2,4上的值域,再根据(2)2()f x f x +=求出()f x 在(]2,0-的值域;分类讨论求出()g x 的值域,根据子集关系即可求出a 的范围. 【详解】由题知问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集.当(]2,4x ∈时,2(2)4,23()2,34x x f x x x x ⎧--+≤≤⎪=⎨+<≤⎪⎩, 由二次函数及对勾函数的图象及性质,得此时9()3,2f x ⎡⎤∈⎢⎥⎣⎦,由(2)2()f x f x +=,可得11()(2)(4)24f x f x f x =+=+当(]2,0x ∈-时,(]42,4x +∈.则()f x 在(]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时,()[21,1]g x a a ∈-++,则有3214918a a ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得18a ≥,当0a =时,()1g x =,不符合题意;当0a <时,()[1,21]g x a a ∈+-+,则有3149218a a ⎧+≤⎪⎪⎨⎪-+≥⎪⎩,解得14a -.综上所述,可得a 的取值范围为11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故选:D . 【点睛】本题考查双变元利用值域求参数的问题,属于中档题.结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .8.C解析:C 【分析】根据0x >时()()0f x f x x'+>可得:()()0xf x f x '+>;令()()g x xf x =可得函数在()0,∞+上单调递增;利用奇偶性的定义可证得()g x 为偶函数,则()g x 在(),0-∞上单调递减;将已知不等式变为()()231g x g x >-,根据单调性可得自变量的大小关系,解不等式求得结果. 【详解】当0x >时,()()0f x f x x'+> ()()0xf x f x '∴+>令()()g x xf x =,则()g x 在()0,∞+上单调递增()f x 为奇函数 ()()()()g x xf x xf x g x ∴-=--== ()g x ∴为偶函数则()g x 在(),0-∞上单调递减()()()2213310xf x x f x ∴+-->等价于()()231g x g x >-可得:231x x >-,解得:115x << 本题正确选项:C 【点睛】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.9.C解析:C 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.10.C解析:C 【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10tt ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10tt ++-<, 所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++,所以90t >,所以'()0g t >, 所以()g t 在3[,)4+∞单调递增, 所以由()(1)g t g <,得314t ≤<, 所以23114x x ≤-+<,解得01x <<, 故选:C 【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)tg t t =++,利用函数的单调性解不等式.11.D解析:D 【分析】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,分0a =,0a <和0a >三种情况讨论求解. 【详解】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,当0a =时,2,1()1,1x x f x x ⎧-≤=⎨->⎩,图象如图,满足题意;当0a <时,函数2y x ax =-+的对称轴02ax =<,其图象如图,满足题意;当0a >时,函数2y x ax =-+的对称轴02ax =>,其图象如图,要使()f x 在R 上不单调,则只要满足12a<,解得2a <,即02a <<.综上,2a <. 故选:D. 【点睛】本题考查分段函数的单调性的应用及二次函数的性质的应用,得出()f x 在R 上不单调是12.D解析:D 【分析】由已知条件可知()f x 为奇函数且周期为4,利用函数的周期,结合其区间解析式即可求(2020.5)f 的值.【详解】由()()0f x f x +-=知:()()f x f x -=-,即()f x 为奇函数, ∵()(2)f x f x =-,有(2)()()f x f x f x +=-=-, ∴(4)(2)()f x f x f x +=-+=,故()f x 为周期为4的函数,在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,所以121111(2020.5)(4505)()()2242f f f =⨯+===, 故选:D 【点睛】本题考查了函数的性质,根据函数的奇偶性、周期性以及区间解析式求函数值,属于基础题.13.C解析:C 【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解. 【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃ 故选:C . 【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意: (1)对数要求真数大于0; (2)分式要求分母不等于0; (3)偶次根式要求被开方式大于等于0.14.D解析:D 【分析】先判断()f x 是偶函数且在0,上递减,原不等式转化为31x x ≥-,再解绝对值不【详解】()()()211221133111log 13log 131313x x xxe e e e xxf x x x ---⎛⎫=+++=+++ ⎪++⎝⎭,()121311log 1,,313x xe e xy x y y -⎛⎫=+== ⎪+⎝⎭在0,上都递减所以()f x 在0,上递减,又因为()()()()121311log 1313x xe e xf x x f x ----⎛⎫-=+-++= ⎪+⎝⎭,且()f x 的定义域为R ,定义域关于原点对称, 所以()f x 是偶函数, 所以()()()()313131f x f x f x f x x x ≤-⇔≤-⇔≥-,可得113142x x x x -≤-≤⇒≤≤,x 的取值范围是11,42⎡⎤⎢⎥⎣⎦, 故选:D. 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.15.C解析:C 【分析】先解()3f t ≤,再由t 的范围求x 的范围. 【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤, 0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C 【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.二、填空题16.【分析】根据偶函数在对称区间上单调性相反结合已知可得在R 上是增函数进而可将对于任意恒成立转化为对任意都成立进而可得最后结合函数的单调性可得实数a 的取值范围【详解】因为定义在R 上的偶函数在上是严格增函解析:31,22⎡⎤-⎢⎥⎣⎦【分析】根据偶函数在对称区间上单调性相反结合已知可得()y f x =在R 上是增函数,进而可将(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,转化为12ax +≤对任意[]1,2x ∈都成立,进而可得31a x x-≤≤,最后结合函数的单调性可得实数a 的取值范围 【详解】因为定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数, 因为(1)(2)f ax f +≤对任意[]1,2x ∈都成立,所以12ax +≤对任意[]1,2x ∈都成立, 即212ax -≤+≤对任意[]1,2x ∈都成立,变形可得31a x x-≤≤, 由函数3y x=-在[]1,2为增函数,1y x =在[]1,2上为减函数,故31max min a x x ⎛⎫⎛⎫-≤≤ ⎪⎪⎝⎭⎝⎭,所以31,22a ⎡⎤∈-⎢⎥⎣⎦.故答案为:31,22⎡⎤-⎢⎥⎣⎦. 【点睛】关键点睛:本题的解题关键是由函数为偶函数得出12ax +≤,进而结合单调性求出a 的取值范围.17.【分析】画出图像结合图像判断题出函数的单调性即可求解【详解】作出函数的图像如图满足解得故答案为:【点睛】方法点睛:该不等式的求解利用的是函数的单调性用数形结合法解决更为直观 解析:(),0-∞【分析】画出2,0()1,0x x f x x -⎧≤=⎨>⎩图像,结合图像判断题出函数的单调性,即可求解(1)(2)f x f x +<.【详解】作出函数2,0()1,0x x f x x -⎧≤=⎨>⎩的图像如图,满足(1)(2)f x f x +<2021x x x <⎧∴⎨<+⎩,解得0x <. 故答案为:(),0-∞. 【点睛】方法点睛:该不等式的求解利用的是函数的单调性,用数形结合法解决更为直观.18.【分析】根据题意可得到把转化为关于的函数即可求出范围【详解】由题意可得:据此可得:则令结合等差数列前n 项和公式有:令则据此可知函数在上单调递减即的取值范围是故答案为:【点睛】关键点点睛:本题根据等差解析:6(2,)5-【分析】根据题意可得到131a d -<<-,把42S S 转化为关于()13,1at d=∈--的函数,即可求出范围.【详解】由题意可得:121410,0030a d a a d a a d ><⎧⎪=+>⎨⎪=+<⎩,据此可得:13d a d -<<-,则131ad -<<-,令()13,1a t d=∈--,结合等差数列前n 项和公式有: 111142434464622122122a dS a d t S a d t a d ⨯+++===⨯+++,令()()463121t f t t t +=-<<-+, 则()2(21)4422121t f t t t ++==+++,据此可知函数()f t 在()3,1--上单调递减,()1242f -=-=-,()4632615f -=+=-+, 即42S S 的取值范围是62,5⎛⎫- ⎪⎝⎭. 故答案为:6(2,)5- 【点睛】关键点点睛:本题根据等差数列的条件,求出首项与公差的关系,看作一个整体t ,将问题转化为关于t 的函数,利用函数的单调性求解,体现了转化思想,考查了运算能力,属于中档题.19.①④【分析】直接利用函数的定义域和函数的奇偶性判断①②进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④【详解】解:函数由于整理得则:由于函数为偶函数函数的图象关于y 轴对解析:①④ 【分析】直接利用函数的定义域和函数的奇偶性判断①②,进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④. 【详解】解:函数()(0)||||f x a b c x b x c =<<<++-,由于220a x -≥,整理得a x a -≤≤.则:()||||f x x b x c b c==++-+. 由于函数为偶函数,函数的图象关于y 轴对称,所以函数不存在反函数,存在反函数的函数的前提该函数具有单调性.故①正确②错误.因为22y a x =-在()0,a 上为减函数,所以()f x 在()0,a 上为减函数,故故③错误;可知()f x 在[],0a -单调递增,()0,a 单调递减,且为偶函数,则()f x 在0x =出取得最大值ab c+,在x a =±处取得最小值0,故④正确. 故答案为:①④. 【点睛】本题考查函数性质的应用,属于基础题.20.01【分析】当时当时由使得f (x1)=g (x2)等价于解不等式即可得解【详解】当时当时由使得f (x1)=g (x2)则可得:解得故答案为:【点睛】本题考查了求函数值域考查了恒成立和存在性问题以及转化思解析:[0,1] 【分析】当11[,2]4x ∈时,[]1()1+,2f x a a ∈-+,当2[1,2]x ∈-时,[]2()1,3g x ∈-,由11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2),等价于[][]1,21,3a a -++⊆-,解不等式即可得解. 【详解】当11[,2]4x ∈时,[]1()1+,2f x a a ∈-+, 当2[1,2]x ∈-时,[]2()1,3g x ∈-,由11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2),则[][]1,21,3a a -++⊆-,可得:1123a a -≤-+⎧⎨+≤⎩,解得01a ≤≤,故答案为:01a ≤≤. 【点睛】本题考查了求函数值域,考查了恒成立和存在性问题以及转化思想,有一定的计算量,属于中档题.21.【解析】试题分析:因为函数是定义在上的偶函数所以由考点:奇偶性与单调性的综合应用解析:1.t e e<<【解析】试题分析:因为函数()f x 是定义在R 上的偶函数,所以(ln1)(ln )(ln )(ln ),f t f t f t f t =-==由(ln )(ln1)2(1)2(ln )2(1)(ln )(1)ln 11ln 11.f t f tf f t f f t f t t et e +<⇒<⇒<⇒<⇒-<<⇒<<考点:奇偶性与单调性的综合应用22.【分析】求出二次函数的对称轴判断函数的最小值与最大值然后求解值域的交集即可【详解】函数的对称轴为开口向上所以函数的最小值为函数()的值域依次是它们的最小值都是函数值域中的最大值为:当即时此时所以值域解析:2220190,1010⎡⎤⎢⎥⎣⎦【分析】求出二次函数的对称轴,判断函数的最小值与最大值,然后求解值域的交集即可. 【详解】函数()221k f x x x =-+的对称轴为1x =,开口向上,所以函数的最小值为()10f =,函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦)的值域依次是1232019,,,,A A A A ,它们的最小值都是0,函数值域中的最大值为:当12019111k k k +⎛⎫--=-⎪⎝⎭,即1010k =时,此时111010x =-, 所以,值域中的最大值中的最小值为22112019111101010101010f ⎛⎫⎛⎫⎛⎫-=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,212320192010220190,1010A A A A A ⎡⎤==⎢⎥⎣⎦. 故答案为:2220190,1010⎡⎤⎢⎥⎣⎦. 【点睛】本题考查二次函数的性质,函数的最值,考查分析问题解决问题的能力,涉及集合的交集计算,属于基础题.23.【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间即可得到本题函数的定义域将其分为三段再结合各个时间段上该人的运动状态可得汽车离甲地的距离距离(千米)与时间(小时)的函数表达式【详解】根解析:60,0 2.5,150,2.5 3.5,32550,3.5 6.5t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间,即可得到本题函数的定义域,将其分为三段,再结合各个时间段上该人的运动状态,可得汽车离甲地的距离距离s (千米)与时间t (小时)的函数表达式. 【详解】根据题意此人运动的过程分为三个时段, 当0 2.5t ≤≤时,60s t =;当2.5 3.5t <<时,150s =;当3.5 6.5t ≤≤时,()15050 3.532550t t t =--=-.综上所述,60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩故答案为60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【点睛】本题考查分段函数应用题,求函数表达式,着重考查基本初等函数的应用和分段函数的理解等知识,属于基础题.24.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题. 【详解】解:由题意可设()xf x e x t -+=,则()xf x e x t =-+,∵()xf f x e x e ⎡⎤-+=⎣⎦,∴()ttf t e t t e e =-+==,∴1t =,∴()1xf x e x =-+,∴()1xf x e '=-,由()()f x f x ax '+≥得11x x e x e ax -++-≥,∴21x e a x≤-对()0,x ∈+∞恒成立,令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x-=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增, ∴()()121g x g e ≥=-, ∴21a e ≤-,故答案为:(],21e -∞-. 【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.25.(2)(3)(4)【分析】(1)利用定义在R 上的偶函数在上是减函数即可判断;(2)根据偶函数的定义和条件即可判断;(3)利用函数的周期为4在-20上是减函数即可判断;(4)利用可得的图象关于直线对称解析:(2)(3)(4) 【分析】(1)利用定义在R 上的偶函数()f x 在[]2,0-上是减函数,即可判断; (2)根据偶函数的定义和条件()()2f x f x +=-,即可判断; (3)利用函数的周期为4,()f x 在[-2,0]上是减函数,即可判断;(4)利用()()()22f x f x f x -+=--=+,可得()f x 的图象关于直线2x =对称,即可判断. 【详解】(1)∵定义在R 上的偶函数()f x 在[]2,0-上是减函数, 故()()20f f ->,()0f 不可能是函数的最大值,故错; (2)由定义在R 上的偶函数()f x 得()()f x f x -=, 又()()2f x f x +=-,故()()20f x f x ++-=,即图象关于()10,对称,故正确; (3)由于()()2f x f x +=-,则()()()42f x f x f x +=-+=, 故()f x 为周期函数,且4为它的一个周期,由在[20]-,上是减函数,可得()f x 在[2]4,上是减函数,故正确; (4)由于()()2f x f x +=-,则()()()42f x f x f x +=-+=, 又()()f x f x -=,故()()4f x f x +=-, 即图象关于直线2x =对称,故正确. 故答案为:(2)(3)(4). 【点睛】本题主要考查了抽象函数的函数的奇偶性、周期性和对称性,考查了转化思想,属于中档题.26.(-22)【详解】∵函数f(x)是定义在R 上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x <2时f(x)<0即f(x)<0的解为解析:(-2,2)【详解】∵函数f(x)是定义在R上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x<2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).。
人教A版高中数学必修一《函数的基本性质》试题
人教A版高中数学必修一《函数的基本性质》试题【夯实基础】一、单选题1.(2022·全国·高一课时练习)函数的单调递增区间是()A. B.C. D.【答案】B【分析】直接由二次函数的单调性求解即可.【详解】由知,函数为开口向上,对称轴为的二次函数,则单调递增区间是.故选:B.2.(2022·全国·高一课时练习)定义在区间上的函数的图象如图所示,则的单调递减区间为()A. B. C. D.【答案】B【分析】根据函数图象直接确定单调递减区间即可.【详解】由题图知:在上的单调递减,在上的单调递增,所以的单调递减区间为.故选:B3.(2022·全国·高一课时练习)已知函数在上是增函数,则实数的取值范围为()A. B. C. D.【答案】D【分析】利用二次函数单调性,列式求解作答.【详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D4.(2022·全国·高一)已知在为单调函数,则a的取值范围为()A. B. C. D.【答案】D【分析】求出的单调性,从而得到.【详解】在上单调递减,在上单调递增,故要想在为单调函数,需满足,故选:D5.(2022·湖北武汉·高一期末)已知二次函数在区间内是单调函数,则实数a的取值范围是()A. B.C. D.【答案】A【分析】结合图像讨论对称轴位置可得.【详解】由题知,当或,即或时,满足题意.故选:A6.(2022·甘肃庆阳·高一期末)若函数在上单调递增,且,则实数的取值范围是()A. B. C. D.【答案】C【分析】由单调性可直接得到,解不等式即可求得结果.【详解】在上单调递增,,,解得:,实数的取值范围为.故选:C.7.(2022·全国·高一课时练习)下列四个函数在是增函数的为()A. B.C. D.【答案】D【分析】根据各个函数的性质逐个判断即可【详解】对A,二次函数开口向上,对称轴为轴,在是减函数,故A不对.对B,为一次函数,,在是减函数,故B不对.对C,,二次函数,开口向下,对称轴为,在是增函数,故C不对.对D,为反比例类型,,在是增函数,故D对.故选:D8.(2021·河南南阳·高一阶段练习)已知函数,对于任意的恒成立,则实数的最小值是()A.0B.1C.2D.3【答案】D【分析】利用换元法将函数的最值转化为二次函数的最值,即可求得实数的最小值.【详解】对于任意的使恒成立,令(),则,即,设,则,故,即实数m的最小值是.故选:.二、多选题9.(2022·全国·高一课时练习)下列函数中,在上单调递增的是()A. B. C. D.【答案】AD【分析】画出各选项的函数图像,利用函数的图象来研究函数的单调性判断即可.【详解】画出函数图象如图所示,由图可得A,D中的函数在上单调递增,B,C中的函数在上不单调.故选:AD.10.(2021·江西·高一期中)如图是函数的图象,则函数在下列区间单调递增的是( )A. B. C. D.【答案】BC【分析】根据单调性的定义即可由图知道f(x)的增区间﹒【详解】图像从左往右上升的区间有:(-6,-4),(-1,2),(5,8),∴f(x)在(-6,-4),(-1,2),(5,8)上单调递增﹒故选:BC﹒三、填空题11.(2022·全国·高一课时练习)写出一个同时具有性质①对任意,都有;②的函数___________.【答案】(答案不唯一)【分析】根据题意可得函数在为减函数,且再写出即可.【详解】因为对任意,都有,所以函数在上减函数.又,故函数可以为.(注:满足题目条件的函数表达式均可.)故答案为:(答案不唯一)12.(2022·浙江丽水·高一开学考试)设函数,其中,.若在上不单调,则实数的一个可能的值为______.【答案】内的任意一个数.【分析】由对勾函数的性质判断出函数的单调区间,假设在上单调,即可求出的取值范围,其补集即为在上不单调时实数的取值范围.【详解】函数的定义域为,由对勾函数的性质可得函数在和上是单调递增,在和上是单调递减,若在上单调,则或,解得或,则在上不单调,实数的范围是,故答案为:内的任意一个数.13.(2022·全国·高一课时练习)函数的单调减区间为__________.【答案】##【分析】优先考虑定义域,在研究复合函数的单调性时,要弄清楚它由什么函数复合而成的,再根据“同增异减”可求解.【详解】函数是由函数和组成的复合函数,,解得或,函数的定义域是或,因为函数在单调递减,在单调递增,而在上单调递增,由复合函数单调性的“同增异减”,可得函数的单调减区间.故答案为:.四、解答题14.(2022·全国·高一)已知,函数.(1)指出在上的单调性(不需说明理由);(2)若在上的值域是,求的值.【答案】(1)在上是增函数(2)2【分析】(1)由于,利用反比例函数的性质,即可得到结果;(2)根据(1)的函数单调性,可知,,解方程即可求出结果.(1)解:因为,所以在上是增函数.(2)解:易知,由(1)可知在上为增函数.,解得,由得,解得.15.(2022·湖南·高一课时练习)设函数的定义域为,如果在上是减函数,在上也是减函数,能不能断定它在上是减函数?如果在上是增函数,在上也是增函数,能不能断定它在上是增函数?【分析】根据反例可判断两个结论的正误.【详解】取,则在上是减函数,在上也是减函数,但,,因此不能断定在上是减函数.若取,则在上是增函数,在上也是增函数,但,,因此不能断定在上是增函数.16.(2022·全国·高一专题练习)已知函数的定义域为.(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围.【答案】(1)(2)【分析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.(1)∵的定义域为,∴.∴,则.(2)令,,使得成立,即大于在上的最小值.∵,∴在上的最小值为,∴实数的取值范围是.【能力提升】一、单选题1.(2022·全国·高一课时练习)已知函数的定义域为R,满足,且当时,恒成立,设,,(其中),则a,b,c的大小关系为()A. B.C. D.【答案】B【分析】根据函数单调性的定义判断出在上单调递减,再利用把转化为,最后利用的单调性判断即可.【详解】因为,所以,因此,即,所以在上单调递减,又因为,所以,又因为,所以,所以.故选:B.2.(2021·江苏·盐城市大丰区新丰中学高一期中)函数的大致图象是()A. B.C. D.【答案】A【分析】探讨函数的定义域、单调性,再逐一分析各选项判断作答.【详解】函数的定义域为,选项C,D不满足,因,则函数在,上都单调递增,B不满足,则A满足.故选:A【点睛】方法点睛:函数图象的识别途径:(1)由函数的定义域,判断图象的左右位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性.3.(2022·全国·高一课时练习)设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B. C. D.【答案】B【分析】根据函数关系式可知,由此可确定在上的解析式,并确定每段区间上的最小值;由时,可确定在此区间内的两根,结合函数图象可确定的范围.【详解】由知:,;当时,,则;当时,,,则;当时,,,则;令,解得:或;作出函数的大致图象如图所示.对任意恒成立,,则,即实数的取值范围为.故选:B.二、多选题4.(2021·安徽·高一期中)下列命题正确的是()A.的定义城为,则的定义域为B.函数的值域为C.函数的值域为D.函数的单调增区间为【答案】AB【分析】根据抽象函数的定义域求法,可判断A;利用换元法求得函数值域,可判断B;利用基本不等式可判断C;单调区间之间不能用并集符号,可判断D.【详解】对于A选项,由于函数的定义域为,对于函数,,解得,所以函数的定义域为,A选项正确;对于B选项,令,则,,且时,取得等号,所以函数的值域为,B选项正确;对于C选项,,当且仅当时,即等号取得,但等号取不到,所以C选项错误;对于D选项,,所以函数的单调增区间为和,单调区间之间不能用并集符号,D选项错误,故选:AB.5.(2021·辽宁实验中学高一期中)下列命题,其中正确的命题是()A.函数在上是增函数B.函数在上是减函数C.函数的单调区间是D.已知在上是增函数,若,则有【答案】AD【分析】根据函数单调性的定义和复合函数单调性法则依次讨论各选项即可得答案.【详解】对于A选项,函数的对称轴为,开口向上,所以函数在上单调递增,故A正确;对于B选项,因为当时,,当时,,所以函数在上不是减函数,故B错误;对于C选项,解不等式得,函数的定义域为,故C错误;对于D选项,由得,由于在上是增函数,故,所以,故D正确.故选:AD6.(2022·全国·高一课时练习)已知函数的定义域是,且,当时,,,则下列说法正确的是()A.B.函数在上是减函数C.D.不等式的解集为【答案】ABD【分析】利用赋值法求得,判断A;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用,可求得C中式子的值,判断C;求出,将转化为,即可解不等式组求出其解集,判断D.【详解】对于A,令,得,所以,故A正确;对于B,令,得,所以,任取,且,则,因为,所以,所以,所以在上是减函数,故B正确;对于C,,故C错误;对于D,因为,且,所以,所以,所以等价于,又在上是减函数,且,所以,解得,故D正确,故选:ABD.7.(2022·广东深圳·高一期末)(多选)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数,表示不超过x的最大整数,例如.已知,,则函数的值可能为()A.0B.1C.2D.3【答案】BCD【分析】利用常数分离法知,根据x的取值范围结合不等式的性质求出的取值范围,进而得到函数的值.【详解】,当时,,,,此时的取值为1;当时,,,,此时的取值为2,3.综上,函数的值可能为.故选:BCD.三、填空题8.(2022·全国·高一专题练习)点、均在抛物线(,a、b为常数)上,若,则t的取值范围为________.【答案】【分析】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,当P、Q 两点关于抛物线对称轴对称时,可求出,根据根据,,即可求出t的取值范围.【详解】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,则有时,y随x的增大而增大;当P、Q两点关于抛物线对称轴对称时,则有,解得,∵,,又∵时,y随x的增大而增大;∴可知当P、Q在对称轴的左侧是肯定满足要求,P、Q均在对称轴的右侧时肯定不满足要求,当P、Q分别在对称轴x=1的两侧时,随着P、Q向x轴正向移动,P的纵坐标在逐渐增大,Q的纵坐标逐渐减小,当P、Q两点关于抛物线对称轴对称时有,继续正方向移动,则有,∴满足的t的取值范围:,故答案为:.四、解答题9.(2022·全国·高一课时练习)已知函数,判断并证明在区间上的单调性.【答案】单调递增,证明见解析【分析】利用单调性的定义证明,先任取,,且,然后作差,变形,判断符号,即可得结论. 【详解】在区间上单调递增,理由如下:任取,,且,.因为,所以,,,所以所以,所以,即,所以函数在区间上单调递增.10.(2022·全国·高一课时练习)已知函数的定义域为,对任意正实数、都有,且当时,.求证:函数是上的增函数.【分析】任取、,且,可得出,结合已知条件可出、的大小关系,即可证得结论成立.【详解】证明:任取、,且,则.因为,所以,所以,即,所以函数是上的增函数.11.(2022·全国·高一课时练习)画出下列函数的图象,并写出单调区间:(1);(2).【答案】(1)图象见解析;单调递增区间为和,无单调递减区间(2)图象见解析;单调递增区间为,单调递减区间为和【分析】(1)根据函数的解析式可作出其图象,即可得单调区间;(2)化简函数的解析式为,结合二次函数性质可作出其图象,即可得单调区间.(1)画出的图象如图所示,可得其单调递增区间为和,无单调递减区间.(2),作出该函数的图象如图所示,观察图象,知该函数的单调递增区间为,单调递减区间为和.12.(2020·陕西·榆林市第十中学高一阶段练习)已知函数.(1)求证:在上是增函数;(2)当时,求不等式的解集.【答案】(1)证明见解析;(2)【分析】(1)利用函数单调性的定义与作差法即可证明;(2)将代入,然后求解不等式即可(1)任取,且,则,所以,所以,所以在区间上单调递增;(2)当时,,由可得,解得,故不等式的解集为13.(2021·广东广雅中学花都校区高一期中)设函数.(1)当时,求函数的单调递减区间;(2)若函数在R上单调递增,求a的取值范围;(3)若对,不等式恒成立,求a的取值范围.【答案】(1);(2);(3).【解析】(1)去掉绝对值符号后根据一次函数、二次函数的单调性可得所求的单调减区间. (2)去掉绝对值符号可得,根据函数在R上单调递增可得关于的不等式组,从而可得其取值范围.(3)等价于且恒成立,前者可分类讨论,后者可结合一次函数的图象和性质,两者结合可得a的取值范围.【详解】(1)时,,故在上为增函数,在上为减函数,在为增函数,故函数的单调递减区间为.(2)因为函数在R上单调递增,故,解得.(3)等价于且恒成立,先考虑恒成立,则,故.再考虑恒成立,又,故,故,解得,综上,的取值范围为.【点睛】方法点睛:对于含绝对值符号的函数,可先去掉绝对值符号,从而把问题题转化为常见的一次函数、二次函数在给定范围上的恒成立问题,注意先讨论简单的一次函数的性质,从而参数的初步范围后再讨论二次函数的性质.14.(2021·重庆市清华中学校高一阶段练习)对于定义域为的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调的;②当定义域是时,的值域也是.则称是函数的一个“黄金区间”.(1)请证明:函数不存在“黄金区间”.(2)已知函数在上存在“黄金区间”,请求出它的“黄金区间”.(3)如果是函数的一个“黄金区间”,请求出的最大值.【答案】(1)证明见解析;(2);(3).【分析】(1)由为上的增函数和方程的解的情况可得证;(2)由可得出,再由二次函数的对称轴和方程,可求出函数的“黄金区间”;(3)化简得函数的单调性,由已知是方程的两个同号的实数根,再由根的判别式和根与系数的关系可表示,由或,可得的最大值.【详解】解:(1)证明:由为上的增函数,则有,∴,无解,∴不存在“黄金区间”;(2)记是函数的一个“黄金区间”,由及此时函数值域为,可知而其对称轴为,∴在上必为增函数,令,∴,∴故该函数有唯一一个“黄金区间”;(3)由在和上均为增函数,已知在“黄金区间”上单调,所以或,且在上为单调递增,则同理可得,,即是方程的两个同号的实数根,等价于方程有两个同号的实数根,又,则只要,∴或,而由韦达定理知,,所以,其中或,所以当时,取得最大值.【点睛】关键点点睛:本题考查函数的新定义,对于解决此类问题的关键在于紧扣函数的新定义,注意将值域问题转化为方程的根的情况得以解决.15.(2022·广东·普宁市第二中学高一期中)已知函数,,. 若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论.(3)已知且,若.试证:.【答案】(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【分析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大(1),即,因为不等式解集为,所以,解得:,所以(2)函数在区间上的单调递增,证明如下:假设,则因为,所以,所以,即当时,,所以函数在区间上的单调递增(3)由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明,代入解析式得:,即,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证:【点睛】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点:(1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程(2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数16.(2021·江苏·高一单元测试)已知函数,(1)对任意的,函数在区间上的最大值为,试求实数的取值范围;(2)对任意的,若不等式任意()恒成立,求实数的取值范围.【答案】(1)(2)【分析】(1)由已知可得,结合对勾函数的单调性与最值情况求参数范围;(2)由题意不等式可转化为函数在上单调递增,结合分段函数的单调性,分情况讨论. (1)由,由对勾函数的性质得函数在上单调递减,在上单调递增,所以,又,所以,又函数在区间上的最大值为,所以,即,解得,所以;(2)不等式任意()恒成立,即,设,在上单调递增,即在上单调递增,当时,,①当时,单调递增,成立;②当时,单调递增,成立,③当时,只需,即,当时,,①当时,在上递减,所以不成立;②当时,在上递减,所以不成立;③当时,只需,即,综上所述,.17.(2021·全国·高一专题练习)已知函数对一切实数都有成立,且(1)求的解析式;(2),若存在,使得,有成立,求的取值范围.【答案】(1)(2)【分析】(1)赋值法,令y=1,求出,进而求出;(2)根据题干中的条件,只需,先求出函数的最大值,然后利用二次函数的性质求最值,进而求出a的取值范围.(1)∵函数对一切实数都有成立,且,令y=1,则,(2)由题意,有,则,对于g(x),当x=0时,g(0)=0,当时,,设,则在(0,1)单调递减,在单调递增,在x=1处取到最小值,所以,所以,综上,,当且仅当x=1时取到,所以;设,则h(x)为开口向上的二次函数,其对称轴为x=a,下面通过对称轴的位置对h(x)的最值情况进行分类讨论:当时,对称轴距离区间右侧x=2更远,故,∴,即;2)当时,对称轴距离区间左侧x=-1更远,故,∴,即;综上,.。
高一数学函数的基本性质知识点及练习题(含答案)
函数的基本性质1.奇偶性(1)定义:如果对于函数 f(x)定义域内的任意x 都有 f(- x)=- f(x),则称 f(x)为奇函数;如果对于函数 f(x) 定义域内的任意 x 都有 f(- x)=f(x),则称 f(x)为偶函数。
如果函数 f(x) 不具有上述性质,则 f(x)不具有奇偶性 .如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。
注意:1○ 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;2x,则- x 也○ 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定 f(- x)与 f( x)的关系;○3作出相应结论:若f(- x) = f(x) 或 f(- x)-f(x) = 0 ,则 f(x)是偶函数;若f(- x) =- f(x) 或 f(- x)+ f(x) = 0 ,则 f(x)是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于 y 轴对称;②设 f (x) , g( x) 的定义域分别是D1, D2,那么在它们的公共定义域上:奇 +奇 =奇,奇奇=偶,偶+偶=偶,偶偶=偶2.单调性( 1)定义:一般地,设函数 y=f(x) 的定义域为 I,如果对于定义域 I 内的某个区间 D 内的任意两个自变量x1,x2,当 x1<x2时,都有 f(x1 )<f(x2)( f(x1)> f(x2)),那么就说 f(x)在区间 D 上是增函数(减函数);注意:○ 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;1○ 必须是对于区间 D 内的任意两个自变量x1, x2;当 x1<x2时,总有 f(x1)< f(x2)2( 2)如果函数 y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间 D 叫做 y=f(x)的单调区间。
高一函数性质单元测试题及答案
高一函数性质单元测试题及答案一、选择题(每题3分,共15分)1. 函数f(x) = x^2 - 3x + 2的图像关于哪条直线对称?A. x = 3/2B. x = 0C. x = 1D. x = 22. 已知函数f(x) = 2x - 1,求f(-1)的值。
A. -3B. -1C. 1D. 33. 函数y = |x|的图像在x轴下方的部分是什么?A. y = xB. y = -xC. y = 0D. y = -|x|4. 函数f(x) = 3x^2 + 2x - 5的最小值是多少?A. -7B. -5C. -3D. 05. 函数y = 2x + 3与y = -x + 1的交点的x坐标是多少?A. -2B. 1C. 2D. 4二、填空题(每题2分,共10分)6. 函数f(x) = x^3 - x的导数是______。
7. 如果函数f(x) = 4x - 5在x = 2处的切线斜率为8,则该切线的方程是______。
8. 函数y = x^2 - 4x + 4的顶点坐标是______。
9. 如果函数f(x) = x^2 + bx + c的图像经过点(1, 2),则b的值是______。
10. 函数y = 1/x的图像关于______对称。
三、解答题(每题5分,共20分)11. 求函数f(x) = x^3 - 6x^2 + 9x + 2的极值点。
12. 已知函数f(x) = x^2 - 4x + 4,求其在区间[0, 6]上的最大值和最小值。
13. 求函数y = 3x - 2与x轴的交点坐标。
14. 已知函数f(x) = x^2 + 2x + 1,求其图像与直线y = 4的交点坐标。
四、综合题(每题10分,共10分)15. 已知函数f(x) = x^2 - 2ax + 1,其中a > 0,求证:对于任意的x,都有f(x) ≥ 1 - a^2。
答案:一、选择题1. A2. A3. B4. A5. C二、填空题6. 3x^2 - 17. y = 8x - 168. (2, 0)9. -310. y轴三、解答题11. 极值点为x = 3。
高一数学函数单元测试题及答案
高一数学函数单元测试题及答案单元测试题一、填空题1、设全集U=Z,集合A={-1,1,2},B={-1,1,2},从A到B的一个映射为x→y=f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},则B∩(C∪P)={-1,1}。
2、已知x1是方程x+lgx=3的根,x2是方程x+10=3的根,则x1+x2值为2.3、已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)=x/1,则当x<-2时f(x)=-x/1.4、函数y=f(x)的反函数y=f^-1(x)的图像与y轴交于点P(0,2),则方程f(x)=0在[1,4]上的根是x=2.5、设f(x)=2log(x-1),x≥2;f(x)=3x-1,x<2,则f(f(2))的值为1.6、从甲城市到乙城市m分钟的电话费由函数f(m)=1.06×([m]+44)给出,其中[m]表示不大于m的最大整数(如[3]=3,[3.9]=3,[3.1]=3),则从甲城市到乙城市5.8分钟的电话费为7.7、函数f(x)=2-2/(x-1),x≤2;f(x)=1-x/2,x>2,则f(0)=-1.8、函数y=(1-x)/(1+x),x≠-1,的值域为(-1,1)。
9、若f(5/2x-1)=x-2,则f(125)=48.10、已知映射f:A→B,其中A=B=R,对应法则为f:x→y=x+2x+3.若对实数k∈B,在集合A中不存在原象,则k 的取值范围是(-3/2,-3)∪(-3,-2)∪(-2,-3/2)。
11、偶函数f(x)在(-∞,0)上是减函数,若f(-1)<f(lgx),则实数x的取值范围是(1,e)。
12、关于x的方程|x-4x+3|-a=0有三个不相等的实数根,则实数a的值是1/2.13、关于x的方程(2x-1)/(x+2)+a=1有正根,则实数a的取值范围是(-∞,1/2)。
二、改写后的答案1、已知集合A={-1,1,2},B={-1,1,2},全集U=Z,映射f:A→B,f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},求B∩(C∪P)的值。
高一数学新教材人教版必修一第三章函数的概念与性质测试卷含答案
(Ⅲ)若 f (x) 在区间[2, ) 上单调递增,求实数 a 的取值范围.
19.(本小题满分 12 分)
已知函数
f
(x)
ax x2
b 1
是定义在
(1,1)
上奇函数,
且 f (1) 3 .
3 10
(Ⅰ)判断函数 f (x) 在 (1,1) 上的单调性,并用
定义证明;
(Ⅱ)若实数 t 满足 f (2t 1) f (t 1) 0 ,求实
4
5.令 t 1 x 0, 则 y 2 2t2 t 2(t 1)2 17 17
4 88
6.
y
x(x 2),(x x(x 2),(
2) x 2)
,作出图象即可.
7.函数 f (x) ax 2a 1,(a 0) 在 (0, ) 上单 x
调递增,又 m2 1 0,m2 m 3 0
x3 数,则实数 a 的取值范围是
15.已知函数 f (x) x5 3x3 5x 3 ,若 f (a) f (a 2) 6 ,则实数 a 的取值范围是
16.已知 m R ,函数 f (x) x 3 m m 在[2, x 1
5] 上的最大值是 5 ,则 m 的取值范围是
三、解答题:(写出必要的文字说明,推理过程或 演算步骤) 17.(本小题满分 10 分) 设函数 f (x) ax2 (b 2)x 3 . (Ⅰ)若 f (1) 3 ,且 a 0,b 0 ,求 b 1 的最
9.已知奇函数 y f (x) 的图象关于直线 x 2 对称,
且 f (m) 3,且 f (m 4) 的值为( )
A. 3
B. 0
C. 3
D. 1
3
10.已知函数 f (x 1) 是偶函数,且 x 1 时, f (x) 单调递减,设 a f ( 1),b f (3),c f (0) ,则 a,
高一数学函数的基本性质知识点及练习题(含答案)
函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
高一数学集合函数概念、函数的基本性质测试题(含答案与解析)
高一数学集合函数概念、函数的基本性质测试题一、选择题(本大题共12小题,共60.0分)1.已知集合M满足,则集合M的个数是()A. 4B. 3C. 2D. 12.设A={x|-1<x<1},B={x|x-a>0},若A⊆B,则a的取值范围是()A. (−∞,−1)B. (−∞,−1]C. [1,+∞)D. (1,+∞)3.设全集U=R,集合A={x∈N|x2<6x},B={x∈N|3<x<8},则如图阴影部分表示的集合是()A. {1,2,3,4,5}B. {1,2,3}C. {3,4}D. {4,5,6,7}4.设集合A={x|x(x+1)≤0},集合B={x|2x>1},则集合A∪B等于()A. {x|x≥0}B. {x|x≥−1}C. {x|x>0}D. {x|x>−1}5.设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=()A. (−3,0)B. (−3,−1)C. (−3,−1]D. (−3,3)6.下列各组函数表示同一函数的是()A. f(x)=x,g(x)=(√x)2B. f(x)=x2+1,g(t)=t2+1C. f(x)=1,g(x)=xxD. f(x)=x,g(x)=|x|7.给出函数f(x),g(x)如表,则f[g(x)]的值域为()x 1 2 3 4f(x) 4 3 2 1x 1 2 3 4g(x) 1 1 3 3A. {4,2}B. {1,3}C. {1,2,3,4}D. 以上情况都有可能8.已知f(2x+3)=3x+2,则f(9)的值为()A. 1B. 5C. 9D. 119.函数f(x)={x2+1,x≤12x,x>1,则f(f(3))的值为()A. 15B. 3 C. 23D. 13910.根据图表分析不恰当的一项是()A. 王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀;B. 张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大;C. 赵磊同学的数学学习成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.D. 第一次考试均分最高,说明第一次考试试题难度低于其它次考试试题的难度. 二、多项选择题(本大题共2小题,共10.0分)11. 设函数f (x ),g (x )分别是R 上的奇函数和偶函数,则以下结论不正确的是( )A. f (x )g(x)是偶函数B. f (x )|g(x)|是奇函数C. |f (x )|g(x)是奇函数D. f (x )−g(x)偶函数 12. 已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x-x 2,则下列说法正确的是()A. f(x)的最大值为B. f(x)在(−1,0)上是增函数C. f(x)>0的解集为(−1,1)D. f(x)+2x ≥0的解集为[0,3]三、填空题(本大题共4小题,共20.0分) 13. 函数)1(21)(-++=x xx f 的定义域是______ . 14. 已知f (x )=ax 3+bx -2,若f (2015)=7,则f (-2015)的值为______ . 15. 已知函数f (x )满足)5()(+=x f x f ,当x ∈[-1,4)时,f (x )=2x +1-5, 则f (17)=______.16. (1)函数f(x)=−x 2+2x +2,x ∈[−1,2]的值域是______ .(2)函数))(1()(a x x x f ++=为偶函数,则实数a 的值为______.四、解答题(本大题共6小题,共70.0分)17. (12分)已知函数f(x)=√x +1√4−2x 的定义域为A ,g(x)=−x 2+1的值域为B.设全集U =R .(I)求A ,B ; (II)求A ∩(∁U B).18. (6+6=12分)(1)84)(2--=kx x x f 在]20,5[不具单调性,求k 取值范围(2 )化简:(2a 14b−13)(−3a −12b 23)÷(−14a −14b −23).19. (12分) 已知函数f(x)={−x +2(x >1)x 2(−1≤x ≤1)x +2(x <−1).(1)求f(f(52))的值;(2)画出函数的图象,并根据图象写出函数的值域和单调区间;20. (12分)已知函数f(x)=x +1x .(1)用定义证明f (x )在[1,+∞)上是增函数; (2)求f (x )在[1,4]上的最大值及最小值.21. (12分)已知函数f(x)=x2−2|x|.(1)写出f(x)的分段解析式,(2)画出函数f(x)的图象.22. (10分) 2018年1月8日,中共中央、国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值y与这种新)x−t.材料的含量x(单位:克)的关系为:当0≤x<6时,y是x的二次函数;当x≥6时,y=(13测得数据如表(部分)(I)求y关于x的函数关系式y=f(x);(II)求函数f(x)的最大值.答案和解析1.【答案】B【解析】【分析】本题考查真子集和子集的概念,属于基础题.由真子集、子集的概念即可确定集合M,从而可得结果.【解答】解:∵集合M满足,∴集合M={1,2},{1,2,3},{1,2,4},∴满足要求的集合M的个数是3.故选B.2.【答案】B【解析】解:集合B=(a,+∞),A⊆B,则只要a≤-1即可,即a的取值范围是(-∞,-1].故选B.求出集合B,由A⊆B即可找到a所满足的不等式,解出它的取值范围.考本题考查集合的关系的参数取值的问题,解题的关键是正确理解包含的含义,根据其关系转化出关于参数的不等式,求解本题可以借助数轴的直观帮助判断.3.【答案】B【解析】【分析】根据题意,图中阴影部分表示的区域为只属于A的部分,即A∩(∁R B),计算可得集合A与∁R B,对其求交集可得答案.本题考查集合的Venn表示法,关键是分析出阴影部分表示的集合.【解答】∵A={x∈N|x2<6x}={x∈N|0<x<6}={1,2,3,4,5},B={x∈N|3<x<8}={4,5,6,7}∴∁R B={x|x≠4,5,6,7|},∴A∩(∁R B)={1,2,3}.故选B.4.【答案】B【解析】解:A={x|x(x+1)≤0}=[-1,0],B={x|2x>1}=(0,+∞),∴A∪B=[-1,+∞)故选:B.先求出集合A,B的对应元素,根据集合关系和运算即可得到结论.本题主要考查集合的基本运算,利用不等式的解法求出集合A,B是解决本题的关键,比较基础.5.【答案】C【解析】【分析】根据补集的定义求得∁R B,再根据两个集合的交集的定义,求得A∩(∁R B).本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.【解答】解:∵集合A={x|x2-9<0}={x|-3<x<3},B={x|-1<x≤5},∴∁R B={x|x≤-1,或x >5},则A∩(∁R B)={x|-3<x≤-1},故选C.6.【答案】B【解析】【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是相同函数.本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.【解答】解:对于A,f(x)=x(x∈R),与g(x)==x(x≥0)的定义域不同,所以不是同一函数;对于B,f(x)=x2+1(x∈R),与g(t)=t2+1(t∈R)的定义域相同,对应关系也相同,是同一函数;对于C,f(x)=1(x∈R),与g(x)==1(x≠0)的定义域不同,所以不是同一函数;对于D,f(x)=x(x∈R),与g(x)=|x|(x∈R)的对应关系不同,所以不是同一函数.故选B.7.【答案】A【解析】【分析】本题考查函数的表示方法,关键在于理解图表中表达的函数,属于基础题.当x=1或x=2时,;当x=3或x=4时,,可得答案.【解答】解:∵当x=1或x=2时,,∴;当x=3或x=4时,,∴.故的值域为.故选A.8.【答案】D【解析】【分析】题x.解:由题意得,.故选D.9.【答案】D【解析】【分析】本题主要考查了求函数值,先求的值,再求.【解答】解:函数,则,所以.故选D.10.【答案】D【解析】【分析】本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.【解答】解:由图象可知,王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.11.【答案】ACD【解析】【分析】根据奇函数和偶函数的定义进行判断即可;【解答】解:由奇函数和偶函数的定义可知是奇函数,故不正确的是A,C,D;故选ACD.12.【答案】ACD【解析】【分析】本题考查函数的奇偶性,考查学生的计算能力,比较基础.对四个命题分别进行判断,即可得出结论.【解答】解:x≥0时,f(x)=x﹣x2=﹣(x﹣)2+,∴f(x)的最大值为,故A正确;f(x)在(﹣,0)上是增函数,故B不正确;当x≥0时,f(x)=x﹣x2,f(x)>0的解集为(0,1),函数f(x)是定义在R上的偶函数,∴f(x)>0的解集为(﹣1,1),故C正确;x≥0时,f(x)+2x=3x﹣x2≥0的解集为[0,3],x<0时,f(x)+2x=x﹣x2≥0无解,故D正确.故选:ACD.13.【答案】{x|x>-2且x≠1}【解析】解:由题意得:,解得:x>-2且x≠1,故答案为:{x|x>-2且x≠1}.根据二次根式的性质以及幂函数的性质得到关于x的不等式组,解出即可.本题考查了求函数的定义域问题,考查二次根式以及幂函数的性质,是一道基础题.14.【答案】-11【解析】解:∵f(x)=ax3+bx-2,∴f(x)+2=ax3+bx是奇函数,设g(x)=f(x)+2,则g(-x)=-g(x),即f(-x)+2=-(f(x)+2)=-2-f(x),即f(-x)=-4-f(x),f(2015)=7,f(-2015)=-4-f(2015)=-4-7=-11,故答案为:-11.根据条件构造函数g(x)=f(x)+2,判断函数的奇偶性,进行求解即可.本题主要考查函数值的计算,根据条件构造函数,判断函数的奇偶性是解决本题的关键.15.【答案】3【解析】解:根据题意,)5xff,则f(17)=f(12)=f(7)= f(2)()(+=x又由当x∈[-1,4)时,f(x)=2x+1-5,则f(2)=23-5=3,故f(17)=3;故答案为:3.根据题意,由函数的周期可得f(17)=f(2),结合函数的解析式求出f(2)的值,即可得答案.本题考查函数的周期性的应用,涉及函数值的计算,属于基础题.16.【答案】(1)[−1,3] 方法:画图!!!!(2)1-17.【答案】【答案】解:(I)由题意得:{x+1≥04−2x>0,解得−1≤x<2,所以函数g(x)的值域B ={y|y ≤1};(II)由(I)知B ={x|x ≤1},所以C U B ={x|x >1},所以A ∩(C U B)={x|1<x <2}.【解析】本题考查集合的混合运算,同时考查函数的定义域和值域的求法,考查运算能力,属于基础题.(I)运用偶次根式被开方数非负和分式分母不为0,可得集合A ;由二次函数的值域可得集合B ;(II)运用补集和交集的定义,即可得到所求集合.18. 【答案】解:(1)(40,160)19. (2)(2a 14b −13)(−3a −12b 23)÷(−14a −14b −23) = 24a14−12+14b −13+23+23 = 24b .19.【答案】解:(1)f(f(52))=f(−12)=14.(2)由图象可知,函数的值域是(−∞,1],单调增区间(−∞,−1]和[0,1],减区间[−1,0]和[1,+∞).【解析】(1)利用分段函数,直接代入求值即可.(2)根据分段函数,作出函数的图象,结合图象确定函数的值域和单调区间.20.【答案】解:(1)设1≤x 1<x 2,f (x 2)-f (x 1)=x 2+1x 2-x 1-1x 1=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学《函数的基本性质》单元测试题
班次 学号 姓名 一、选择题:
1.下列函数中,在区间),0(+∞上是增函数的是 ( )
A.42
+-=x y B.x y -=3 C.x
y 1
=
D.x y = 2.若函数)()(3
R x x x f ∈=,则函数)(x f y -=在其定义域上是 ( )
A.单调递减的偶函数
B.单调递减的奇函数
C.单调递增的偶函数
D.单调递增的奇函数 3.函数x x x f +
=2)(的奇偶性为 ( )
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.既不是奇函数有不是偶函数 4.若)(x f y =在[)+∞∈,0x 上的表达式为)1()(x x x f -=,且)(x f 为奇函数,则
(]0,∞-∈x 时)(x f 等于 ( )
A.)1(x x --
B. )1(x x +
C. )1(x x +-
D. )1(-x x
5.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)6(f 的值为 ( ) A.1- B.0 C.1 D.2
6.已知函数()()0f x x a x a a =+--≠,()()()
2200x x x h x x x x ⎧-+>⎪=⎨+≤⎪⎩, 则()(),f x h x 的奇偶性依次为 ( )
A .偶函数,奇函数
B .奇函数,偶函数
C .偶函数,偶函数
D .奇函数,奇函数 7.已知3
()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于 ( ) A .2- B .4- C .6- D .10-
8.下列判断正确的是 ( )
A .函数2
2)(2--=x x
x x f 是奇函数 B
.函数()(1f x x =-
C
.函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数
9.若函数2
()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是 ( ) A .(],40-∞ B .[40,64] C .(]
[),4064,-∞+∞ D .[)64,+∞
10.已知函数()()2
212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是
( )
A .3a ≤-
B .3a ≥-
C .5a ≤
D .3a ≥
11.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则
)2
5
2()23(2++-a a f f 与的大小关系是 ( )
A .)23(-f >)252(2++a a f
B .)23(-f <)252(2
++a a f
C .)23(-f ≥)252(2++a a f
D .)23(-f ≤)2
52(2
++a a f
12.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是
( )
A .{}|303x x x -<<>或
B .{}|303x x x <-<<或
C .{}|33x x x <->或
D .{}|3003x x x -<<<<或
二、填空题:
13.设函数)(x f y =是奇函数,若3)2()1(3)1()2(++=--+-f f f f ,则
=+)2()1(f f ____________________;
14.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2
-+=x x x f ,那么0x <时,
()f x = ;
15.若函数2
()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________; 16.若函数2
()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 .
三、解答题:
17.判断并证明下列函数的奇偶性:
(1)21
)(x
x x f +=;(2)x x x f 2)(2
+=;(3)x x x f 1
)(+=;(4)()f x =.
18.已知3)1()2()(2
+-+-=x k x k x f 是偶函数,求)(x f 的递减区间。
19.已知函数c bx ax x f ++=2)(.
(1)若函数为奇函数,求实数a ,b ,c 满足的条件; (2)若函数为偶函数,求实数a ,b ,c 满足的条件.
20.已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当
0x >时,()0f x <恒成立,证明:
(1)函数()y f x =是R 上的减函数; (2)函数()y f x =是奇函数。
21.已知函数()f x 的定义域为()1,1-,且同时满足下列条件:(1)()f x 是奇函数; (2)()f x 在定义域上单调递减;(3)2
(1)(1)0,f a f a -+-< 求a 的取值范围。
22.已知函数()f x 的定义域是),0(+∞,且满足()()()f xy f x f y =+,1()12
f =,如果对于
0x y <<,都有()()f x f y >,
(1)求(1)f ;
(2)解不等式2)3()(-≥-+-x f x f 。
参考答案:
一、 选择题:
DBDBB DDCCA CD
二、 填空题:
13、-3 14、2()1f x x x =--+ 15、21<<k 16、[)0,+∞
三、解答题: 17、分析:(1)偶函数,提示:)()(x f x f =-;(2)非奇非偶;(3)奇函数,提示:)()(x f x f -=-;
(4)定义域为[)
(]1,00,1-,则22x x +-=
,(),f x x =
∵()()f x f x -=-
∴()f x =
18、分析:因为)(x f 为偶函数,所以2≠k ,且对称轴为直线0)
2(21
=---
=k k x ,即1=k ,
所以3)(2
+-=x x f ,则)(x f 的递减区间是),0[+∞
19、分析:(1)若函数为奇函数,R b c a ∈==,0; (2)若函数为偶函数,R c R a b ∈∈=,,0;
20、证明:(1)设12x x >,则120x x ->,而()()()f a b f a f b +=+ ∴11221222()()()()()f x f x x x f x x f x f x =-+=-+< ∴函数()y f x =是R 上的减函数;
(2)由()()()f a b f a f b +=+得()()()f x x f x f x -=+- 即()()(0)f x f x f +-=,而(0)0f =
∴()()f x f x -=-,即函数()y f x =是奇函数。
21、分析:22
(1)(1)(1)f a f a f a -<--=-,则2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩,
∴01a <<
22、分析:(1)令1x y ==,则(1)(1)(1),(1)0f f f f =+= (2)1()(3)2()2
f x f x f -+-≥-
11
()()(3)()0(1)22f x f f x f f -++-+≥=
3()()(1)22x x f f f --+≥,3()(1)22
x x f f --⋅≥
则0230,1023122x x x x x ⎧->⎪⎪-⎪>-≤<⎨⎪
-⎪-⋅≤⎪⎩。