翅片管换热器传热性能及强化分析

翅片管换热器传热性能及强化分析
翅片管换热器传热性能及强化分析

换热器的研究发展现状

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2009年第28卷增刊·338· 化工进展 换热器的研究发展现状 支浩,汤慧萍,朱纪磊 (西北有色金属研究院,陕西西安 710055) 摘要:随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。 换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。随着经济的发展,各种不同结构和种类的换热器发展很快,新结构、新材料的换热器不断涌现。换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。本文主要介绍了现有换热器的分类,各种换热器的特点工作原理及应用情况,对目前换热器的存在问题和发展趋势进行分析。 关键词:换热器;强化换热;研究现状 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现[1-4]。 1 换热器的分类方式 随着科学和生产技术的发展,各种换热器层出不穷,难以对其进行具体、统一的划分。虽然如此,所有的换热器仍可按照它们的一些共同特征来加以区分[5-6],具体如下。 按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。 按照制造热交换器的材料来分:金属的、陶瓷的、塑料的、石墨的、玻璃的等。 按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。 按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。 按照传送热量的方法来分:间壁式、混合式、蓄热式等三大类。其中间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。 间壁式换热器根据传热面的结构不同可分为管式和板面式。管式换热器以管子表面作为传热面,包括套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等。 2 管式换热器 管式换热器主要有套管式换热器和管壳式换热器两种。 2.1套管式换热器 套管式换热器是将不同直径的两根管子套成的同心套管作为元件、然后把多个元件加以连接而成的一种换热器,工作时两种流体以纯顺流或纯逆流方式流动。套管式换热器的优点是:结构简单,适用于高温、高压流体,特别是小容量流体的传热。另外,只要做成内管可以抽出的套管,就可清除污垢,所以它也使用于易生污垢的流体。他的主要缺点是流动阻力大;金属消耗量多;管间接头较多,易发生泄露;而且体积大,占地面积大,故多用于传热面积不大的换热器[5,7]。 2.2管壳式换热器 管壳式换热器又称为列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。目前,国内外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面,

流程布置对翅片管换热器换热性能影响的研究现状与展望

流程布置对翅片管换热器换热 性能影响的研究现状与展望Ξ 姜盈霓1),2) 虎小红1)  1)(武警工程学院) 2)(西安交通大学) 摘 要 综述国内外在流程布置对翅片管换热器换热性能影响方面的研究进展,并针对存在的问题指出今后的研究方向。 关键词 流程布置 翅片管换热器 冷凝器 蒸发器 Prospect and research status of the effect of circuit arrangement on the heat exchanger performance of f inned tube exchanger Jiang Y ingni1),2) Hu Xiaohong2)  1)(Engineering College of Armed Police Force) 2)(Xi’an Jiaotong University) ABSTRACT Introduces the research of of circuit arrangement on the heat exchange performance of finned tube exchanger some advices for the future research in this field. KE Y WOR DS circuit arrangement;finned tube heat exchanger;condenser;evaporator 纵观强化传热的研究文献,可以看到强化传热可以通过提高传热系数、增加传热面积和增大空气侧和制冷剂侧传热温差3种途径来实现。制冷空调中制冷剂以及冷却介质大都呈强制对流换热,因此强化的重点在于单相流体对流换热的强化、凝结与沸腾换热的强化。以往的研究多集中在管内和管外的结构以及寻找更高效、环保的替代制冷剂上,这些研究取得了很好的强化换热效果。在换热强化的第3个措施上(即增大传热温差),研究人员投入的精力并不多。因为通常认为当高、低温介质一定时,传热平均温差就随之而定了。这种观点是片面的,事实上,流程布置对换热性能的影响是不可忽略的。 1 研究流程布置对翅片管换热器换热性能影响的意义 人们早就注意到当高温、低温介质的进口温度一定时,逆流传热比顺流传热有着更大的传热平均温差,因而也具有更大的换热量,叉流的换热量处于这两者之间。这说明换热器流程布置会改变传热温差的分布,会对换热量产生影响。 研究翅片管式换热器流程布置是一项复杂的工作,因为对其造成影响的因素很多,主要有两方面的原因:一是在实际设计中,流程布置的方法几乎有无限多种,很难找到一个可行的方法来描述所有的可能布置形式;二是很难找到一个耗时少且精度高的方法来求解控制方程。通常都希望换热器有一个均匀和高效的换热和流动性能,这就需要采用复杂的流程布置形式,然而复杂的流程布置又会造成传热的不均匀性,这是进行流程布置研究尤其是复杂流程布置研究中应尽量避免的。换热器流程布置不仅仅指换热管的排列方式,还包括换热管组的分叉流动等情况。当制冷剂流量一定时,通路数和分叉与否直接影响制冷剂的流速,从而也会影响换热系数。因此,这里不但涉及到平均温差,而

(完整word版)强化传热技术

1、强化传热的目的是什么? (1)减小初设计的传热面积,以减小换热器的体积和重量;(2)提高现有换热器的能力;(3)使换热器能在较低温差下工作;(4)减少换热器的阻力,以减少换热器的动力消耗。 2、采用什么方法解决传热技术的选用问题? (1)在给定工质温度、热负荷以及总流动阻力的条件下,先用简明方法对拟采用的强化传热技术从使换热器尺寸大小、质轻的角度进行比较。这一方法虽不全面,但分析表明,按此法进行比较得出的最佳强化传热技术一般在改变固定换热器三个主要性能参数(换热器尺寸、总阻力和热负荷)中的其他两个,再从第三个性能参数最佳角度进行比较时也是最好的。(2)分析需要强化传热处的工质流动结构、热负荷分布特点以及温度场分布工况,以定出有效的强化传热技术,使流动阻力最小而传热系数最大。(3)比较采用强化传热技术后的换热器制造工艺、安全运行工况以及经济性问题。 3、表面式换热器的强化传热途径有哪些? (1)增大平均传热温差以强化传热;(2)增加换热面积以强化传热;(3)提高传热系数以强化传热。 4、何为有功和无功强化传热技术?包括哪些方法? 从提高传热系数的各种强化传热技术分,则可分为有功强化传热技术和无功强化传热技术两类。前者也称主动强化传热技术、有源强化技术、后者也称为被动强化技术、无源强化技术。有功强化传热技术需要应用外部能量来达到强化传热的目的;无功传热强化技术则无需应用外部能量即能达到强化传热的目的。有功强化传热技术包括机械强化法、震动强化、静电场法和抽压法等;无功强化传热技术包括表面特殊处理法、粗糙表面法、扩展表面法、装设强化元件法、加入扰动流体法等。 5、单项流体管内强制对流换热时,层流和紊流的强化有何不同? 当流体做层流运动时,流体沿相互平行的流线分层流动,各层流体间互不掺混,垂直于流动方向上的热量传递只能依靠流体内部的导热进行,因而换热强度较低。因此,对于强化层流流动的换热,应以改变流体的流动状态为主要手段。当流体做湍流运动时,流体的传热方式有两种:在层流底层区的热量传递主要依靠导热;而在底层以外的湍流区,除热传导以外,主要依靠流体微团的混合运动。除液态金属以外,一般流体导热率都很小,湍流换热时的主要热阻在层流地层区。因此对于强化湍流流动的换热,主要原则应是减薄层流底层的厚度。 6、管式换热器一般采用圆管还是矩形通道?为什么? 在管子数目、工质流量及管道横截面周界均给定的情况下,圆形管道的流通截面积最大,矩形的最小,而流速恰好相反。在个管道中温度条件相同时,矩形管道能增加换热系数,但同时阻力也剧增,这就是管式换热器一般采用圆管而不用换热效果横好的矩形管道的原因。 7、采用扩张-收缩管式如何强化传热的? 流体在扩张段中产生的强烈漩涡被流体带入收缩段时得到了有效利用,从而增强了传热。此外,在收缩段中由于流体流过收缩截面时流速增高,使流体边界层中流速也相应增高,从而也增进了传热效应。

管壳式换热器强化传热综述

管壳式换热器强化传热综述 摘要根据国内外强化侍热技术的研究现状,着重介绍了管壳式换热嚣在壳程强化待热方面开展的工作及取得的成果。 关键词管壳式换热器壳程强化传热 Abstract In the light of the present statns of study of the technology for intensification of heat transfer both at home and abroad.The work on the intensification of heat transfer in the shell side of the shell and tube heat exchanger is mainly presented as well as the result obtained.Keywords shell and tube heat exchanger shell side intensification of heat transfer 中图分类号:TE965文献标识码:A 随着现代工业的快速发展,对能源的需求越来越大.而利用高效换热器可以吸收化工、石油生产过程中存在的大量余热,既节约了能源,又减少了污染。与板式、板翅式换热器相比,管壳式换热器由于其适用性广、坚固耐用、密封性较好以及其结构简单、清洗方便是石油、化工等领域应用最普遍的一种换热器(占整个换热器设备的70%以上)[1]。因此.如何最大限度地利用热能和回收热能,强化管壳式换热器成为人们所研究的重点之一。 (一)强化传热的途径 单位时间内的换热量Q与冷热流体的温差△t及传热面积F成正比,即:Q=k·F·△t.可见强化传热可以通过增加传热面积F、加大传热温差△t,提高传热系数K3个途径来实现。 1.1增加传热面积F 增加传热面积不应理解为单一扩大设备体积或台数,而应是采用改变传热表面结构或材料性能合理提高设备单位体积的传热面积.使设备高效、紧凑、轻巧。如采用螺旋螺纹管、翅片管、波纹管、粗糙表面管、异形管等方法都能使传热面积增加。 1.2加大传热温差△t 在考虑到实际工艺或设备是否允许的情况下,改变冷热流体温度或改变换热流体同的流动方式如逆流、错流等,就可改变传热温差血,但这种方法受生产工艺、设备条件、环境条件及经济性等方面限制,实际操作时有一定局限性。 1.3提高传热系数k 提高传热系数小的一侧传热面之传热系数.就可使设备总传热系数大幅度提高。当今世界上强化传热研究的重点就是提高传热系数,有一种趋势是改善流体自身流动状态,加强湍

新型换热技术

换热器最新换热技术 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可缺少的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化传热元件诞生。随着研究的深入,工业应用取得了令人瞩目的成果,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T形翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张状况。 换热器的种类繁多,有多种分类方法。 一、按原理分类: 1、直接接触式换热器 这类换热器的主要工作原理是两种介质经接触而相互传递热量,实现传热,接触面积直接影响到传热量,这类换热器的介质通常一种是气体,另一种为液体,主要是以塔设备为主体的传热设备,但通常又涉及传质,故很难区分与塔器的关系,通常归口为塔式设备,电厂用凉水塔为最典型的直接接触式换热器。 2、蓄能式换热器(简称蓄能器),这类换热器用量极少,原理是热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之到达传热量的目的。 3、间壁式换热器 这类换热器用量非常大,占总量的99%以上,原理是热介质通过金属或非金属将热量传递给冷介质,这类换热器我们通常称为管壳式、板式、板翅式或板壳式换热器。 二、按传热种类分类 1、无相变传热 一般分为加热器和冷却器。 2、有相变传热 一般分为冷凝器和重沸器。重沸器又分为釜式重沸器、虹吸式重沸器、再沸器、蒸发器、蒸汽发生器、废热锅炉。 三、按传热元件分类 1、管式传热元件: (1)浮头式换热器 (2)固定管板式换热器 (3)填料函式换热器 (4)U型管式换热器 (5)蛇管式换热器 (6)双壳程换热器 (7)单套管换热器 (8)多套管换热器 (9)外导流筒换热器 (10)折流杆式换热器

浅谈管壳式换热器强化传热

浅谈管壳式换热器强化传热 热能1303梁皓天20132586 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。 管壳式换热器又称谓列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由管箱、壳体、管束、管板、折流板等部件组成。目前,国内外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面,不如其他新型换热设备,但它具有结构坚固,操作弹性大,适应性强,可靠程度高,选材范围广,处理能力大,能承受高温高压等特点,所以在工程中仍得到广泛应用。管壳式热器固然有其优点,并为产业节能方面做出了巨大的贡献,但在新的节能减排形势下,其缺点(压降大、流动死区、易结垢、震动、传热效果差)严重的限制了其发展和生存的空间,为了节能降耗,提高换热器的传热效率,需要研发能够满足多种工业生产过程要求的高效节能换热器。因此,近年来,高效节能换热器的研发一直受到人们的普遍关注,国内外先后推出了一系列新型高效换热器。 目前传统强化换热的方法大体上可以分为三类,管程强化传热,壳程强化传热,整体强化传热。 管程强化换热主要有两种方式,一是改变管子形状或者提高换热面积,如:螺旋槽管、旋流管、波纹管、缩放管、螺纹管等;二是增强管内的湍流程度,例如,管内设置各种形状的插入物。其中,改变换热管设计的方式,如改变换热管形状,或加大管程流体的湍流程度、传热面积,具体的设计对象包括波纹管、伸缩管、翅片管等。而另一种类型包括管内插物的设计,及通过管内绕丝花环、纽带等,实现管程的湍流程度;相比较来说,在管内插物的形式执行简单、效果较好、投资较少,是目前主要应用的管程强化传热形式。 下面详细介绍一下主要管程强化传热的换热器特点。 (1)螺旋槽管是通过专用轧管设备将圆管在其表面滚压出螺旋线形的凹槽,管子内部形成螺旋线形凸起,如图1所示,管内介质流动时受螺旋线型槽纹的导向使靠近管壁的部分介质沿槽纹方向螺旋流动,这就使得边界层的厚度较大程度的减薄,提高换热的效果;部分介质沿着壁面纵向运动,经过槽纹凸起处产生纵向漩涡,促使边界层分层,加速边界层中介质质点的运动,进而加快了管壁处介质与主体介质的热量传递。 (2)波纹管是将管子加工成内外均呈连续波纹曲线的一种强化管,如图2所示,使管子的纵向截面呈波形,由相切的大小圆弧构成,管内流体的流动状态不断变化,使流体的湍流程度增加从而强化传热。主要适用于管内外介质有加热、冷却热交换的场合,其特点为传热效率高,这一特点是依靠独特的传热元件—波纹管来实现的。波纹管特殊的波峰与波谷设计,使流体在关内外形成强烈扰动,大大提高了换热管的传热系数,其传热系数比传统管式换热器高2~3倍。波纹管在工作过程中,一方面管内外介质始终处于高

翅片式换热器的设计及计算

制冷剂系统翅片式换热器设计及计算 制冷剂系统的换热器的传热系数可以通过一系列实验关联式计算而得,这是因为在这类换热器中存在气液两相共存的换热过程,所以比较复杂,现在多用实验关联式进行计算。之前的传热研究多对于之前常用的制冷剂,如R12,R22,R717,R134a等,而对于R404A和R410A的,现在还比较少。按照传热过程,换热器传热量的计算公式为: Q=KoFΔtm (W) Q—单位传热量,W Ko—传热系数,W/(m2.C) F—传热面积,m2 Δtm—对数平均温差,C Δtmax—冷热流体间温差最大值,对于蒸发器,是入口空气温度—蒸发温度,对于冷凝器,是冷凝温度—入口空气温度。 Δtmin—冷热流体间温差最小值,对于蒸发器,是出口空气温度—蒸发温度,对于冷凝器,是冷凝温度—出口空气温度。 传热系数K值的计算公式为: K=1/(1/α1+δ/λ+1/α2) 但换热器中用的都是圆管,而且现在都会带有肋片(无论是翅片式还是壳管式),换热器表面会有污垢,引入污垢系数,对于蒸发器还有析湿系数,在设计计算时,一般以换热器外表面为基准计算传热,所以对于翅片式蒸发器表述为: Kof--以外表面为计算基准的传热系数,W/(m2.C) αi—管内侧换热系数,W/(m2.C) γi—管内侧污垢系数,m2.C/kW δ,δu—管壁厚度,霜层或水膜厚度,m λ,λu—铜管,霜或水导热率,W/m.C ξ,ξτ—析湿系数,考虑霜或水膜使空气阻力增加系数,0.8-0.9(空调用亲水铝泊时可取1)αof—管外侧换热系数,W/(m2.C) Fof—外表面积,m2 Fi—内表面积,m2 Fr—铜管外表面积,m2 Ff—肋片表面积,m2 ηf—肋片效率, 公式分析: 从收集的数据(见后表)及计算的结果来看,空调工况的光滑铜管内侧换热系数在2000-4000 W/(m2.C)(R22取前段,R134a取后段,实验结果表明,R134a的换热性能比R22高)之间。因为现在蒸发器多使用内螺纹管,因此还需乘以一个增强因子1.6-1.9。 下面这个计算公式来自《制冷原理及设备》(第二版,1996,吴业正主编):

换热器的强化传热三因素

换热器的强化传热 所谓换热器传热强化或增强传热是指通过对影响传热的各种因素的分析与计算,采取某些技术措施以提高换热设备的传热量或者在满足原有传热量条件下,使它的体积缩小。换热器传热强化通常使用的手段包括三类:扩展传热面积(F );加大传热温差;提高传热系数(K )。 1 换热器强化传热的方式 1.1 扩展传热面积F 扩展传热面积是增加传热效果使用最多、最简单的一种方法。在扩展换热器传热面积的过程中,如果简单的通过单一地扩大设备体积来增加传热面积或增加设备台数来增强传热量,不光需要增加设备投资,设备占地面积大、同时,对传热效果的增强作用也不明显,这种方法现在已经淘汰。现在使用最多的是通过合理地提高设备单位体积的传热面积来达到增强传热效果的目的,如在换热器上大量使用单位体积传热面积比较大的翅片管、波纹管、板翅传热面等材料,通过这些材料的使用,单台设备的单位体积的传热面积会明显提高,充分达到换热设备高效、紧凑的目的。 1.2 加大传热温差Δt 加大换热器传热温差Δt是加强换热器换热效果常用的措施之一。 在换热器使用过程中,提高辐射采暖板管内蒸汽的压力,提高热水采暖的热水温度,冷凝器冷却水用温度较低的深井水代替自来水,空气冷却器中降低冷却水的温度等,都可以直接增加换热器传热温差Δt。 但是,增加换热器传热温差Δt是有一定限度的,我们不能把它作为增强换热器传热效果最主要的手段,使用过程中我们应该考虑到实际工艺或设备条件上是否允许。例如,我们在提高辐射采暖板的蒸汽温度过程中,不能超过辐射采暖允许的辐射强度,辐射采暖板蒸汽温度的增加实际上是一种受限制的增加,依靠增加换热器传热温差Δt只能有限度的提高换热器换热效果;同时,我们应该认识到,传热温差的增大将使整个热力系统的不可逆性增加,降低了热力系统的可用性。所以,不能一味追求传热温差的增加,而应兼顾整个热力系统的能量合理使用。 1.3 增强传热系数(K)

板翅式换热器

板翅式换热器 同组人:张弘达18、张来超14 薛业成06、张太平02

引言: 板翅式换热器:通常由隔板、翅片、封条、导流片组成。在相邻两隔板间放置翅片、导流片以及封条组成一夹层,称为通道,将这样的夹层根据流体的不同方式叠置起来,钎焊成一整体便组成板束,板束是板翅式换热器的核心。 --------张弘达 一、板翅式换热器的发展 二十世纪三十年代,板翅式换热器首先在航空工业上被采用,它结构紧凑、轻巧、传热效率高等特点引起了研究人员和设计工作者的兴趣。随后在制冷、石油化工、空气分离、航空航天、动力机械、超导等工业部门得到广泛应用,被公认是高效新型换热器之一。 1942年,美国的诺利斯首先进行了平直翅片、锯齿翅片、波纹翅片、钉状翅片的传热机理研究,找出几种主要翅片的摩擦因子(f),传热因子(j)与雷诺数(Re)的关系,为以后的研究与设计奠定了基础。1947年美国海军研究署、船舶局、航空局合作在斯坦福大学拟定了系统的研究计划并扩大了研究范围。 板翅式换热器发展中另一方面是制造工艺,对于结构复杂、隔板和翅片又很薄的铝合金钎焊工艺掌握是在经历了一段相当漫长又曲折过程,在突破许多关键技术后才达到今天的水平。 现在国外板翅式换热器最高设计压力可达10MPa以上,最大

芯体尺寸(L×W×H)6000~7000×1200×1200mm,重达10吨以上,可以有十多种流体同时换热。我国是从20世纪60年代中期开始板翅式换热器试验研究,70年代初期自行开发成功,并首先在空分设备上得到应用。90年代初,杭氧厂引进美国S.W公司大型真空钎焊炉和板翅式换热器制造技术,板翅式换热器生产在我国得到飞速发展。现在已在空气分离、石油化工(乙烯、合成氨、天然气分离与液化)、动力机械及航天(神舟号飞船)等工业部门得到广泛应用。并有部分出口国外(美国、加拿大等国)。 我国板翅式换热器目前的生产水平相当于国际上20世纪90年代中期水平。杭氧现已开发有近50种不同型式和尺寸规格的翅片,可满足各种换热要求。 二、板翅式换热器特点 (1)传热效率高。 (2)结构紧凑,单位体积换热面积为管壳式换热器5倍以上,最大可达几十倍。管壳式换热器一般为150~200m2/m3,而板翅式换热器因翅片具有扩展二次表面,使传热面积可达到1500~2500 m2/m3。 (3)轻巧、牢固。铝材密度ρ为2.7g/cm3,而钢材为7.8g/cm3,铜材为8.9g/cm3。 (4)适应性大,可适用多种介质热交换。在同一设备内可允许多达十多种介质之间热交换,可作气—气、气—液、液—液之间换热,亦可作冷凝和蒸发。 (5)经济性好。由于结构紧凑、铝材又轻,降低了设备投资费。

翅片管换热器基础知识

翅片管换热器基础知识 在换热器中,很多时候传热两侧流体的换热系数大小不平衡,通常我们会在换热系数小的一侧加装翅片。 什么是翅片管?

翅片管,又叫鳍片管或肋片管。顾名思义,翅片管就是在原有的管子表面上(不论外表面还是内表面)加工上了很多翅片,使原有的表面得到扩展,而形成一种独特的传热元件。 为什么要采用翅片管? 在原有表面上加工上翅片能起到什么作用呢?

翅片管换热器的结构与一般管壳式换热器基本相同,只是用翅片管代替了光管作为传热面。这使得其结构更加紧凑,换热面积增加,可以加强换热。 什么情况时,选用翅片管呢? 有几个原则: (1)管子两侧的换热系数如果相差很大,则应该在换热系数小的一侧加装翅片。 ?例1:锅炉省煤器,管内走水,管外流烟气,烟气侧应采用翅片。 ?例2:空气冷却器,管内走液体,管外流空气,翅片应加在空气侧。 ?例3:蒸汽发生器,管内是水的沸腾,管外走烟气,翅片应加在烟气侧。 应注意,在设计时,应尽量将换热系数小的一侧放在管外,以便于加装翅片。 (2)如管子两侧的换热系数都很小,为了强化传热,应在两侧同时加装翅片,若结构上有困难,则两侧可都不加翅片。 在这种情况下,若只在一边加翅片,对传热量的增加是不会有明显效果的。

?例1:传统的管式空气预热器,管内走空气,管外走烟气。 因为是气体对气体的换热,两侧的换热系数都很低,管内加翅片又很困难,只好用光管了。 ?例2:热管式空气预热器,虽然仍是烟气加热空气,但因烟气和空气都是在管外流动,故烟气侧和空气侧都可方便地采用翅片管,使传热量大大增加。 (3)如果管子两侧的换热系数都很大,则没有必要采用翅片管。 ?例1:水/水换热器,用热水加热冷水时,两侧换热系数都足够高,就没有必要采用翅片管了。但为了进一步增强传热,可采用螺纹管或波纹管代替光管。 ?例2:发电厂冷凝器,管外是水蒸汽的凝结,管内走水。两侧的换热系数都很高,一般情况下,无需采用翅片管。 翅片管束 1什么是翅片管束? 由多支翅片管按一定规律排列起来而组成的换热单元叫翅 片管束。一个翅片管换热器可以由一个或多个翅片管束组成。 2翅片管束的结构组成包括? ?翅片管(多支):传热的基本元件。 ?管箱(集箱)或管板:连接翅片管两端的箱体,弯管或钢板。 当翅片管与箱体或管板连接以后,翅片管之间的间距也就固定了,同时,管箱使管内的流体形成了连续的流道。

换热器的强化传热

换热器的强化传热 0前言 换热器是工业生产领域中应用十分广泛的热量交换设备。如在化工厂用于换热设备的费用约占设备总费用的10%~20%;在炼油厂中换热设 备约占全部工艺设备的35%~40%;其它如动力、原子能、冶金、食品、交通、家电等工业部门也有着广泛的应用。对一个传热过程而言,初投资与传热面积大小相关,因此,如何节约传热面积,研究换热器的强化传热技术 十分重要。所谓强化传热技术就是当高温流体与低温流体在某一传热面两侧流动时,使单位时间内2种流体间交换的热量Q尽可能增大。由传热速率方程Q=KAmΔtm可知:增加传热面积Am、增大传热温差Δtm、提高总传热系数K均可以提高传热速率。 1增大传热温差Δtm 增大传热的平均温差Δtm是强化传热的一种有效手段。由Δtm =(Δt1-Δt2)/ln(Δt1/Δt2)可知:要提高Δtm就要增加Δt1,减小Δt2。由于流体的进、出口温度主要由生产工艺条件决定,要增加Δt1减小Δt2,其主要措施是:对无相变的流体,使冷、热流体逆流或接近逆流。这样不但可以增大传热温差,还有助于减少结构中的温差应力。 2增加传热面积Am 增加传热面积不应靠加大设备外部尺寸来实现,应从设备内部结构考虑,提高换热器的紧凑性。一般通过下述途径来增加单位体积设备的有效传热面积:(1)采用最合适的内外导流筒结构,最大限度地消除管壳式换热器

挡板处的传热不活跃区。(2)热传递面采用扩展表面,尽可能增加它的有效传热面积,如在对流传热系数较少一侧的传热壁面上装翅片、筋片、销钉等。 (3)改良热传递表面性能,将管子内、外表面扎制成各种不同的表面形状, 增加管内、外表面传热面积,如螺纹管、横纹管、周向波纹管、表面多孔管。 (4)采用螺旋式、板式等结构紧凑的新型换热器。 3提高总传热系数K (1/K)=A2/(α1×A1)+Rs1×(A2/A1)+(b/λ)×(A2/Am)+Rs2+1/α2 式中:A1———管内壁传热面积;A2———管外壁传热面积;α1———管内侧对流传热系数;α2———管外侧对流传热系数;RS1———管内侧污垢热阻;RS2———管外侧污垢热阻;λ———管壁材料的导热系数;b———管壁厚度。从上式中可知:要提高传热系数,就必须减少各项热阻。如尽可能减少管子壁厚b,管子选用导热系数λ大、抗腐蚀性的材料,增大对流传热系数α,减小污垢热阻Rs。 (1)选用高强度限和屈服限、抗腐蚀性能高、导热性能好的材料,如渗铝管换热器、镀锌管换热器。热管是一种新型传热元件,具有效率高、压降小、结构简单、紧凑性好等优点,发展较为迅速。 (2)增大对流传热系数α。通过有源强化(即利用外部能量的机械和流体 振动,电场、磁场冲击的办法改善流动状态而强化传热)和非源强化(即 改变传热元件本身的表面形状和表面处理方法获得粗糙表面的扩展表面,

翅片管换热器实验指导书

*********************************************************** 空气 水热交换器实验 ************************************************************ 指导说明书 同济大学热能实验室 陈德珍

2000年1月 第一部分空冷器实验台系统说明 本实验台是上海交通大学开发、针对换热器课程的教学要求而设计的科教产品。所用的换热器为一较小的间壁式换热器,空气—水作为介质,实验台由独立的风源,热水源,温度控制器等组合而成,有较大的灵活性,以后还可发展冷却塔性能试验。 一、实验台组成、系统、设备及仪表 实验台系统的简图见图1,主要由风源、热水源、可控硅温度控制器组成。且各自独立,有较大的灵活性。 主要性能: 1.风源:风机:电机:400w,三相380v 风量:800m3/h 风压:60mmH2O 出风口尺寸:200×135mm 吸风口配二只可叠套的橡胶收缩风口,测速段处直径分别为 D1=120mm及D2=60mm, 2.热水源:水箱尺寸:445×245×575mm 水泵:电机:120W 单相220v 流量:h 压头:12mH2O 加热器:3KW 220V 3只 转子流量计:LZB-25 60-600L/h 3.可控硅温度控制器:TA-092 PID调节仪 ZK-03 三相可控硅电压调整器 最大输出功率10KW 铂电阻温度传感器 BA2 0~100℃ 可控硅 3CT 20A/1000V 电源:三相380V 4.试验用换热器 实验所用的间壁式换热器为一较紧凑的翅片管式散热器,由铜管束套带皱折的铝整 体翅片构成,见图2。 主要参数: 管束:紫铜管管径:d0=10mm

翅片管换热器实验指导书

空气水热交换器实验指导说明书 同济大学热能实验室 陈德珍

2000年1 月 第一部分空冷器实验台系统说明 本实验台是上海交通大学开发、针对换热器课程的教学要求而设计的科教产品。所用的换热器为一较小的间壁式换热器,空气—水作为介质,实验台由独立的风源,热水源,温度控制器等组合而成,有较大的灵活性,以后还可发展冷却塔性能试验。 一、实验台组成、系统、设备及仪表 实验台系统的简图见图1,主要由风源、热水源、可控硅温度控制器组成。且各自独立,有较大的灵活性。主要性能: 1. 风源:风机:电机:400w,三相380v 风量:800m3/h 风压:60mmH2O 出风口尺寸:200× 135mm 吸风口配二只可叠套的橡胶收缩风口,测速段处直径分别为 D 1=120mm及D2=60mm, 2. 热水源:水箱尺寸:445× 245×575mm 水泵:电机:120W 单相220v 流量:h 压头:12mH2O 加热器:3KW 220V 3 只转子流量计:LZB-25 60-600L/h 3. 可控硅温度控制器:TA-092 PID 调节仪ZK-03 三相可控硅电压调整器最大输出功率10KW 铂电阻温度传感器BA 2 0~100 ℃ 可控硅3CT 20A/1000V 电源:三相380V 4. 试验用换热器 实验所用的间壁式换热器为一较紧凑的翅片管式散热器,由铜管束套带皱折的铝整体翅片构成,见图2。 主要参数: 管束:紫铜管管径:d0=10mm d 1=8mm 节距横向:s1=45mm 纵向:s2=13mm 翅片:铝制、皱折、整片片厚:δ= 片节距:t= 试件总体尺寸:水侧:横向管数:n=3 纵 向管排数:n=8 总管数:n=n× n=24 水通道并联管子 数:即n=3 管子总长度:L=a× n=× 24= 通道面积: F w=n×π×d1× d1/4 -4 =×10-4 ㎡气侧:通道尺寸: a=200mm b=130mm h=116mm 翅片数:m=76 通风面积:Fa=a× b= 传热总面积:

强化换热

强化传热技术综述 理工学院装控L081 康世雄08L0503121 1 绪论 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧,节能是非常重要的,也是当务之急,世界各国都在寻找新能源和节能新途径。换热器作为换热设备,广泛应用于冶金、化工等各个工业领域中,强化传热技术的应用不但节能环保,而且节约了投资和运营成本,所以,换热器的强化传热技术一直以来都 是一个重要课题,受到研究人员的重视,各种研究成果不断涌现。 当今世界,由于工业,经济的巨大发展,世界各国普遍面临着能量短缺问题,开发新能源以及如何高效利用现有能源得到了世界各国的普遍关注。由于换热设备在工业生产中的广泛应用,提高换热器效率,研究强化换热的新技术成为人们日益关注的传热学新课题。(强化换热的方法及新进展) 换热器是种类繁多,广泛应用于石油化工、冶金、电力、造纸、船舶、机电、分区供热、暖通空调、余热利用、核工业、食品饮料、医药纺织等工业领域。据资料统计,在现代石油化工企业中,换热器的投资约占装置建设总投资的 30%~40%,在合成氨生产中,换热器约占全部设备总台数的40%,世界各国不断地从事着对新型高校换热设备的研究,以期提高热能利用率,不断降低对天然能源的消耗,因此换热器在减少企业的建设投资和提高企业的经济效益方面具有不可忽视的重要影响。要达到此目的,就迫切需要研究各种高效能紧凑节能型的换热器。(强化传热节能技术的研究) 随着现代新工艺、新技术、新材料的不断发展和能源问题的日益严重, 必然带来更多的高性能、高参数换热设备的需求。换热器的性能对产品质量、能量利用率以及系统的经济性和可靠性起着重要的作用, 有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%, 换热设备在石油炼厂中约占全部工艺 设备投资的35% ~ 40% 。其中管壳式换热器仍然占绝对的优势, 约70% 。其余30%为各类高效紧凑式换热器、新型热管和蓄热器等设备, 其中板式、板翅式、热管及各类高效传热元件的发展十分迅速。随着工业装置的大型化和高效率化, 换热器也趋于大型化, 并向低温差设计和低压力损失设计的方向发展。当今换热

不同翅片形式管翅式换热器流动换热性能比较

不同翅片形式管翅式换热器流动换热性能比较 摘要:随着制冷空调行业的发展,人们已经把注意力集中在高效、节能节材的紧凑式换热器的开发上,而翅片管式换热器正是制冷、空调领域中所广泛采用的一种换热器形式。对于它的研究不仅有利于提高换热器的换热效率及其整体性能,而且对改进翅片换热器的设计型式,推出更加节能、节材的紧凑式换热器有着重要的指导意义。 由于翅片管式换热器在翅片结构形式和几何尺寸的不同,造成其换热性能和阻力性能上的极大差异。本文概述目前国内外空调制冷行业中的普遍采用的几种不同翅片类型(平直翅片、波纹翅片、开缝翅片、百叶窗形翅片)的换热及压降实验关联式及其影响因素,对不同翅片形式的管翅式换热器的换热及压降特性的实验关联式进行总结,并对不同翅片的流动换热性能进行了比较。正确地选用实验关联式及性能指标,将对翅片管式换热器的优化设计及其制造提供可靠的依据。 关键词:翅片形式;管翅式;换热器;关联式;流动换热性能

Study on heat transfer and flow characteristics of fin-and-tube heat exchangers with various fin types Abstract:With the development of refrigeration and air conditioning, high efficiency, energy saving and material saving compact type of heat exchanger is development, as one kind of compact heat exchanger, fin-and-tube heat exchanger has a wide application in future. It is necessary to develop compact heat exchanger which is more energy saving and material saving to improve the heat exchanger thermal efficiency and the overall performance of heat transfer. This paper summaries the heat transfer and pressure drop correlations of different fin surfaces, and the corresponding influencing factors. The heat transfer and friction characteristic of these kinds of fin types are compared, and the results show the difference of these fin types. The appropriate correlation and evaluation criterion will provide reliable foundation to the design and optimization of compact heat exchangers. Key words:Fin-and-tube heat exchanger; Heat transfer and flow characteristics; Experimental correlations; Comparison

蒸汽换热器换热效果与翅片管因素有关

蒸汽换热器换热效果与翅片管因素有关 蒸汽换热器是由散热翅片管和多孔板外框组成的联合机组,换热效果主要取决于翅片管的材质、片距、片高、片厚等因素,要想提高换热器的换热效率,翅片结构的优化是主要方向。以下我们就从这四个方面详细了解。 一、材质。选取原则:换热管内介质对换热管的影响主要体现这几个方面:腐蚀,压力,温度,结垢,导热性能,性价比。以满足工艺要求、不会产生不良后果、传热性能好、取材方便等为选取原则。 二、片距、片厚和片高这3个数据是相辅相成的,总体影响直接翅化比的大小。翅化比并不是越大越好,需计算管内外对流系数的差异,差异大的可以采用高翅化比的翅片,差异小的应采用低翅化比的翅片,无差异的不需做翅片,如无相变状态的水-水热交换,气-气热交换。 三、片厚。片厚对翅片管的强度有非常大的关系,主要考虑的是腐蚀,摩擦损失,抗清洗冲刷能力,对换热效果的影响不大。所以在满足一定强度的情况下,片厚应尽量薄,减少有色金属的消耗,以设计制造出更经济的蒸汽换热器。 四、片高。热量的传递是由翅片根部向顶端,越接近根部的地方温度越高,随着热量被逐步置换,传递温度也随之下降,考虑翅片顶端的地方温度是最低的。由此可见,温度的传递是呈现一定的梯度的,也就是说,有一个翅片效率的问题,并不是翅片越高越好。当翅片效率太低

时,金属消耗增加,性价比不合理,一般不采用。目前国内外最常用的高翅片通常用于空气冷却器上的钢铝复合翅片管,其规格为 25*2.5-57/2.3/0.3,单位换热面积1.785平方/米,翅化比22.74 。 蒸汽换热器,就是用蒸汽做换热介质加热空气,结构由多孔板外框和散热排管组成的联合机组,也是我们常见的翅片管蒸汽换热器,采用基管绕翅片的换热器为换热装置,基管内通蒸汽,以热传导、热辐射和强制对流的方式加热周围空气,多用于车间、厂房、工矿企业、烘干房等的采暖烘干。 蒸汽换执器,通常方式是高温蒸汽通过汽水混合器与水进行高速混合加热,加热设备有浸没式和管道式的两种,可根据使用现成进行选择。其结构主要由壳体、芯体、法兰和接管组成,芯体上布满细小斜孔,蒸汽从斜孔内高速喷入壳体内,对周围的冷水产生强烈的引射作用,冷水通过蒸汽加热器外壁上的斜向小孔进入与蒸汽高速混合换热,进行全热交换,从而加热整个水箱中的水。 通常情况下,翅片管蒸汽换热器的间距与片高主要是影响着翅化比,翅化比和管内外介质的膜传热系数有很大的关系。如果管内外膜传热系数差异较大,应选择翅化比比较大的翅片管,如蒸汽加热空气。当一侧介质存在相变的情况下,传热系数的差异会较大,如冷热空气的交换,当热空气降低到露点以下,可以采用翅片管蒸汽换热器。在无相变的空气与空气的换热情况下,或者水与水的热交换,通常以裸管比较适

管壳式换热器强化传热技术概述

管壳式换热器强化传热技术概述 马越 中国矿业大学化工学院,江苏徐州,221116 摘要:总结了近年来国内外新型管壳式换热器的研究进展,从管程、壳程、管束三方面介绍了管壳式换热器的发展历程、结构改进及强化传热机理,并与普通弓形折流板换热器进行对比,概括了各式换热器的强化传热特点。最后指出了换热器的研究方向。 关键词:管壳式换热器;强化传热;研究方向 Overview of the Shell and Tube Heat Exchangers about Heat Transfer Enhancement Technology MA Yue CUMT,Xuzhou,jiangsu,221116 Abstract:Abstract : The research progress of shell and tube heat exchanger were summarized. The developmentstructural improvement and heat transfer enhancement of the heat exchangers were introduced throughthree aspects e. g. tube pass shell pass and the whole tub bundle etc. Compared with the traditional segmental bame heat exchanger various types of heat exchangers’characteristics about heat transfer enhancement were epitomized. At last,the studying directions of heat exchangers were pointed out. Key words:shell and tube heat exchanger;heat transfer enhancement;studying direction 1引言 《“十二五”节能减排综合性工作方案》明确提出,到2015年,全国万元国内生产总值能耗下降到0. 869吨标准煤;“十二五”期间,实现节约能源6. 7亿吨标准煤。主要实施的措施是调整优化产业结构,加快淘汰落后产能,推动传统产业改造升级,加快节能减排技术开发和推广应用,重点推广高效换热器等节能减排技术。我国石化行业的换热设备以管壳式换热器为主,而且传统弓形折流板换热器占到总量的70%-80%。弓形折流板换热器固然有其优点,并在产业节能方面做出了巨大贡献,但在新的节能减排形势下,其缺点(压降大、存在大量流动死区、振动大、传热效率低等)严重限制了自身的生存和发展空间,同时也推进了强化传热理论和换热器的发展。 2 强化传热理论的工程应用 根据强化传热理论,在管的两侧范围内,需要增大传热系数较小的一侧才能有效改进总传热系数。由于无法确定所有工况下,需要增大管内或管外的传热系数以得到最高的总传热系数,因此,强化传热理论在工程中的应用不是单一的模式,而是呈现出3种趋势,即对管内、管外、管束整体的强化传热。无论是那种类型的强化传热结构,都已经细化出许多更新类型,且其适用的工作环境和强化效果各异。2.1管程强化传热 高效强化传热管的研究一直是传热领域最活跃和最有生命力的重要研究课题。管程强化传热技术可归结为两个方面,其一是改变换热管形状以加大管程流体湍流程度或传热面积,如螺纹管、伸缩管、

相关文档
最新文档