2011年山东枣庄中考数学试题(word版含答案)
2011年中考数学试题分类12 反比例函数(含答案)
第12章反比例函数一、选择题1. (2011广东汕头,6,4分)已知反比例函数kyx=的图象经过(1,-2).则k=.【答案】-22.(2011湖南邵阳,5,3分)已知点(1,1)在反比例函数kyx=(k为常数,k≠0)的图像上,则这个反比例函数的大致图像是()【答案】C提示:反比例函数过第一象限(也可由点(1,1)求得k=1),故选C。
3.(2011江苏连云港,4,3分)关于反比例函数4yx=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称【答案】D4. (2011甘肃兰州,15,4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k kyx++=的图象上。
若点A的坐标为(-2,-2),则k的值为A.1 B.-3 C.4 D.1或-3xyOABCD【答案】D5. (2011湖南怀化,5,3分)函数2y x =与函数1y x-=在同一坐标系中的大致图像是【答案】D6. (2011江苏淮安,8,3分)如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2【答案】D7. (2011四川乐山10,3分)如图(6),直线 6y x =- 交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。
则A F B E ⋅= A .8 B .6 C .4 D .62 【答案】A8. (2011湖北黄石,3,3分)若双曲线y=x k 12-的图象经过第二、四象限,则k 的取值范围是 A.k >21 B. k <21 C. k =21D. 不存在 【答案】B9. (2011湖南邵阳,5,3分)已知点(1,1)在反比例函数ky x=(k 为常数,k ≠0)的图像上,则这个反比例函数的大致图像是( )【答案】C10. (2011贵州贵阳,10,3分)如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是(第10题图)(A )-1<x <0 (B )-1<x <1(C )x <-1或0<x <1 (D )-1<x <0或x >1 【答案】C11. (2011广东茂名,6,3分)若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 A .2->mB .2-<mC .2>mD .2<m【答案】B12.(2011江苏盐城,6,3分)对于反比例函数y = 1x ,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C13. (2011山东东营,10,3分)如图,直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( )A . S 1<S 2<S 3B . S 1>S 2>S 3C . S 1=S 2>S 3D . S 1=S 2<S 3 【答案】D14. (2011福建福州,4,4分)图1是我们学过的反比例函数图象,它的函数解析式可能是 ( ) A .2y x =B .4y x =C .3y x =-D .12y x =【答案】 B15. (2011江苏扬州,6,3分)某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A. (-3,2)B. (3,2)C. (2,3)D. (6,1) 【答案】AO xy图1y xOy x OyxOy xO 16. (2011山东威海,5,3分)下列各点中,在函数6y x=-图象上的是( ) A .(-2,-4)B .(2,3)C .(-1,6)D .1(,3)2-【答案】C17. (2011四川南充市,7,3分) 小明乘车从南充到成都,行车的平均速度y (km/h)和行车时间x (h)之间的函数图像是( )A B C D 【答案】B.18. (2011浙江杭州,6,3)如图,函数11y x =-和函数22y x=的图象相交于点M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是( ) A .102x x <-<<或 B .12x x <->或 C .1002x x -<<<<或 D .102x x -<<>或【答案】D19. (2011浙江台州,9,4分)如图,反比例函数xmy =的图象与一次函数b kx y -=的图象交于点M ,N ,已点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程xm=b kx -的解为( ) A . -3,1 B . -3,3 C . -1,1 D .3,-1【答案】A20. (2011浙江温州,4,4分)已知点P (-l ,4)在反比例函数(0)ky k x=≠的图象上,则k 的值是( )A .14-B .14C .4D .-4【答案】D21. (2011甘肃兰州,2,4分)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为 A .2y x=B .2y x=-C .12y x= D .12y x=-【答案】B22. (2011广东湛江12,3分)在同一直角坐标系中,正比例函数y x =与反比例函数2y x= 的图像大致是A B C D 【答案】Bxy-21O23. (2011河北,12,3分)根据图5—1所示的程序,得到了y 与x 的函数图象,过点M 作P Q ∥x 轴交图象于点P,Q ,连接OP,OQ.则以下结论 ①x <0时,x2y =;②△OPQ 的面积为定值;③x >0时,y 随x 的增大而增大;④MQ=2PM ;⑤∠POQ 可以等于90°。
山东省17市2011年中考数学试题分类解析汇编 专题7 统计与概率
山东17市2011年中考数学试题分类解析汇编专题7:统计与概率一、选择题1. (日照3分)两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为A 、14B 、316 C 、34D 、382.(滨州3分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为A 、14B 、12 C 、34D 、13.(德州3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是A 、甲运动员得分的极差大于乙运动员得分的极差B 、甲运动员得分的的中位数大于乙运动员得分的的中位数C 、甲运动员的得分平均数大于乙运动员的得分平均数D 、甲运动员的成绩比乙运动员的成绩稳定4.(烟台4分)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,,则这组数据的中位数和极差分别是A.2.1,0.6B. 1.6,1.2C.1.8,1.2D.1.7,1.25.(东营3分)某中学为迎接建党九十周年.举行了“童心向党.从我做起”为主题的演讲比赛。
经预赛.七、八年级各有一名同学进入决赛.九年级有两名同学进入决赛.那么九年级同学获得前两名的概率是A .12B .13 C .14 D .166.(济南3分)某校九年级一班体育委员在一次体育课上记录了六位同学托排球的个数分别为:37、25、30、35、28、25.这组数据的中位数是A .25B .28C .29D .32.57.(济南3分)某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出.据此估计该校希望举办文艺演出的学生人数为 A .1120 B .400 C .280 D .808.(潍坊3分)某市2011年5月1日—10日对空气污染指数的检测数据如下(主要污染物为可吸入颗 粒物):61,75,70,56,81,91,92,91,75,81.那么该组数据的极差和中位数分别是.A .36,78B .36,86C .20,78D .20,77.39.(济宁3分)在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是A. 1B.43 C. 21 D. 4110.(泰安3分)某校篮球班21名同学的身高如下表则该校蓝球班21名同学身高的众数和中位数分别是(单位:cm )A 、186,186B 、186,187C 、186,188D 、208,18811.(泰安3分)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的的编号相同的概率为A 、19B 、16 C 、13D 、1212.(莱芜3分)某校全唱团共有40名学生,他们的年龄如下表所示:则全唱团成员年龄的众数和中位数分别是A 、13,12.5B 、13,12C 、12,13D 、12,12.513.(莱芜3分)如图是两个可以自由转动的均匀圆盘A 和B ,A 、B分别被均匀的分成三等份和四等份,同时自由转动圆盘A 和B ,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是A 、34B 、23C 、12D 、1314.(聊城3分)下列事件属于必然事件的是A .在1个标准大气压下,水加热到100ºC 沸腾B .明天我市最高气温为56ºCC .中秋节晚上能看到月亮D .下雨后有彩虹 15.(聊城3分)某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4 5 6 7 8 10 户数136541这20户家庭日用电量的众数、中位数分别是A .6,6.5B .6,7C .6,7.5D .7,7.516.(临沂3分)在一次九年级学生视力检查中.随机检查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8.则下列说法中正确的是 A 、这组数据的中位数是4.4 B 、这组数据的众数是4.5C 、这组数据的平均数是4.3D 、这组数据的极差是0.517.(临沂3分)如图,A 、B 是数轴上两点.在线段AB 上任取一点C ,则点C 到表示﹣1的点的距离不大于2的概率是A 、12B 、23 C 、34D 、4518.(威海3分)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学 的测试成绩(单位:个/分钟)。
山东省枣庄市中考数学试卷及答案(Word解析版)
绝密☆启用前 试卷类型:A二○一三年枣庄市初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.下列计算,正确的是A.33--=-B.030=C.133-=-D.93=± 答案:A解析:因为30=1,3-1=13,9=3,所以,B 、C 、D 都错,选A 。
2.如图,AB //CD ,∠CDE =140︒,则∠A 的度数为 A.140︒ B.60︒ C.50︒ D.40︒ 答案:D解析:∠CDA =180°-140°=40°,由两直线平行,内错角相等,得:∠A =∠CDA =40°,选D 。
3.估计61+的值在A. 2到3之间B.3到4之间C.4到5之间D.5到6之间 答案:B第2题图解析469<<26<3,所以,36+1<4,选B 。
4.化简xxx x -+-112的结果是 A.x +1 B.1x - C.x - D.x 答案:D解析:原式=2(1)111x x x x x x x x --==---,故选D 。
5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A.240元B.250元C.280元D.300元 答案:A解析:设进价为x 元,则3300.810%xx⨯-=,解得:x =240,故选A >6.如图,ABC △中,AB =AC =10,BC =8,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE △的周长为A.20B.18C.14D.13 答案:C解析:因为AB =AC ,AD 平分∠BAC ,所以,D 为BC 中点,又E 为AC 中点,所以,DE =12AB =5,DC =4,EC =5,故所求周长为5+5+4=14。
2011枣庄中考数学试题
2011 年初中毕业生学业考试数学试题卷考生须知:1.全卷共 4 页,有 3 大题, 24 小题 . 满分为 120 分 . 考试时间 120 分钟 .2.本卷答案一定做在答题纸的对应地点上,做在试题卷上无效.3.请考生将姓名、准考据号填写在答题纸的对应地点上,并认真批准条形码的姓名、准考据号 .4.作图时,可先使用2B 铅笔,确立后一定使用0.5 毫米及以上的黑色署名笔涂黑.5.本次考试不可以使用计算器 .温馨提示:请认真审题,仔细答题,相信你必定会有优秀的表现!参照公式:二次函数b 4ac b2y=ax2+bx+c(a≠ 0)图象的极点坐标是( ,) .2a4a卷Ⅰ说明:本卷共有 1 大题, 10 小题,每题 3 分,共 30 分.请用2B 铅笔在“答题纸”大将你以为正确的选项对应的小方框涂黑、涂满.一、选择题 ( 请选出各题中一个切合题意的正确选项,不选、多项选择、错选,均不给分)1.-2的相反数是A . 2 B.- 2 C.1 1D.2.以下四个立体图形中, 主视图为圆的是2 2A .B .C.D.3.以下计算正确的选项是A . a3· a2=a6B . a2+ a4=2a2 C. ( a3) 2=a6 D . ( 3a) 2=a6 4.一个正方形的面积是15, 预计它的边长大小在A.2与3之间 B . 3与4之间C. 4与 5之间D. 5与 6之间5.在 x=- 4, - 1, 0, 3中 , 知足不等式组x 2,2( x 的 x值是1)2A.- 4和0 B.- 4和- 1 C. 0和3 D.- 1和 0 6.假如三角形的两边长分别为3 和 5, 第三边长是偶数 , 则第三边长能够是A . 2 B. 3 C. 4 D. 87.如图 , 将周长为8 的△ ABC 沿 BC 方向平移 1 个单位A D获得△ DEF , 则四边形 ABFD 的周长为A . 6 B. 8B E CF8.以下计算错误的是..0.2a b 2a b x 3 y 2 x0.7 a b 7a b x 2 y 3 ya b1 12 3A .B .C.b a D.c c c9.义乌国际小商品展览会某志愿小组有五名翻译, 此中一名只会翻译阿拉伯语, 三名只会翻译英语 , 还有一名两种语言都会翻译 . 若从中随机精选两名构成一组,则该组能够翻译上述两种语言的概率是3 7 3D. 16A .B . C.255 10 1010.如图 , 已知抛物线 y1=- 2x2+ 2, 直线 y2=2x+2, 当 x 任取一值时 , x 对yy2 应的函数值分别为y1、 y2. 若 y1≠ y2,取 y1、 y2中的较小值记为 M;若 y1=y2,记 M= y1=y2. 比如:当 x=1 时, y1=0, y2=4, y1< y2,此时M=0. 以下判断:①当 x>0 时, y1> y ;②当 x<0 时, x 值越大, M 值越小;2O③使得 M 大于 2 的 x 值不存在;④使得 M=1 的 x 值是 1 或y1x2 .此中正确的选项是2 2A. ①②B. ①④C. ②③D. ③④卷Ⅱ说明:本卷共有 2 大题, 14 小题,共90 分 . 答题请用0.5 毫米及以上的黑色署名笔书写在“答题纸”的对应地点上 .二、填空题(此题有 6 小题,每题 4 分,共24 分)11.因式分解 : x2- 9= ▲ .12.如图 , 已知 a∥ b,小亮把三角板的直角极点放在直 2 a 线 b 上. 若∠ 1=40° , 则∠ 2 的度数为▲ . 1 b 13.在义乌市中小学生“人人会乐器”演奏竞赛中, 某(第 12题图) 班 10 名学生成绩统计以下图, 则这 10 名学生成人数绩的中位数是▲分, 众数是▲分 . 5 414.正 n 边形的一个外角的度数为60° , 则 n 的值为▲ . 315.最近几年来 , 义乌市民用汽车拥有量连续增加, 2007 年至2 12011 年我市民用汽车拥有量挨次约为:11, 13, 15, 19, 80 85 90 95分数x(单位:万辆) , 这五个数的均匀数为16, 则 x 的值(第 13题图)为▲ .y Q16.如图 , 已知点 A( 0, 2)、 B(3 , 2)、 C( 0, 4), 过点2C 向右作平行于 x 轴的射线 , 点 P 是射线上的动点 , 连接 AP , 以 AP 为边在其左边作等边△ APQ , 连接PB、 BA. 若四边形ABPQ 为梯形 , 则( 1)当 AB 为梯形的底时, 点 P 的横坐标是▲;( 2)当 AB 为梯形的腰时, 点 P 的横坐标是▲ . CPA BO x (第 16 题图)三、解答题(此题有8 小题,第17~ 19 题每题 6 分,第 20、 21 题每题 8 分,第 22、23 题每题 10 分,第 24 题 12 分,共 66 分)AEBDCF17.计算: 2 (1) 2012(4)0.18.如图 , 在△ ABC 中, 点 D 是 BC 的中点 , 作射线 AD , 在线段 AD及其延伸线上分别取点 E 、 F, 连接 CE 、 BF. 增添一个条件 ,使得△ BDF ≌△ CDE, 并加以证明 .你增添的条件是▲(不增添协助线) .19.学习成为商城人的时髦 , 义乌市新图书室的启用, 吸引了大量读者 . 相关部门统计了 2011 年 10 月至 2012 年 3 月时期到市图书室的读者的职业散布状况 , 统计图以下:读者职业散布扇形统计图读者职业散布条形统计图人数(万人)学生6 25% 员工4其余2商人学生 员工 商人 其余 职业( 1)在统计的这段时间内 , 共有 ▲ 万人到市图书室阅读 , 此中商人所占百分比是 ▲ ,并将条形统计图增补完好(温馨提示:作图时别忘了用 0.5 毫米及以上的黑色署名....笔涂黑); ( 2)若今年 4 月到市图书室的读者共 28000 名 , 预计此中约有多少名员工 .20. 如图,已知 AB 是⊙O 的直径 ,点 C 、D 在⊙O 上,B点 E 在⊙ O 外 , ∠EAC=∠D=60°.C( 1)求∠ ABC 的度数;DO( 2)求证: AE 是⊙ O 的切线;( 3)当 BC=4 时,求劣弧 AC 的长 .21.如图 , 矩形 OABC 的极点 A 、C 分别在 x 、 y 轴的正半轴上 , 点 D 为对角线 OB 的中点,点 E(4, n)在边 AB 上 , 反比率函数 y k0) 在第一象限内的图象经过点D 、 E, ( k 1 x 且 tan BOA.y2( 1)求边 AB 的长;( 2)求反比率函数的分析式和n 的值;C FB( 3)若反比率函数的图象与矩形的边 BC 交于点 F, 将矩GDE形折叠,使点 O 与点 F 重合 , 折痕分别与 x 、y 轴正半轴交于点 H 、G, 求线段 OG 的长 .O H A x22.周末 , 小明骑自行车从家里出发到野外郊游.从家出发小y(km)时后抵达甲地 , 游乐一段时间后按原速前去乙地 . 小明离家 1 小时 20 分钟后 , 妈妈驾车沿同样路线前去乙地 , 如图是他们离家的行程 y ( km )与小明离家时间 x ( h )的函数图象.已知妈妈驾车的速度是小明骑车速度的 3 倍.10( 1)求小明骑车的速度和在甲地游乐的时间;( 2)小明从家出发多少小时后被妈妈追上?此时离家多远?O0.5 1 4x(h)( 3)若妈妈比小明早 10 分钟抵达乙地 , 求从家到乙地的行程 .323.在锐角△ ABC 中 , AB =4, BC=5, ∠ ACB=45° , 将△ ABC 绕点 B 按逆时针方向旋转 , 获得△ A 1BC 1.(1)如图 1, 当点 C1在线段 CA 的延伸线上时 , 求∠ CC1A1的度数;(2)如图 2, 连接 AA 1, CC1. 若△ ABA1的面积为 4, 求△ CBC 1的面积;(3)如图 3, 点 E 为线段 AB 中点 , 点 P 是线段 AC 上的动点 , 在△ ABC 绕点 B 按逆时针方向旋转过程中, 点 P 的对应点是点P1, 求线段 EP 1长度的最大值与最小值.C1C1C1 P1 AAAA1 EPA1B C B CB C A1图 3图 1 图 224.如图 1, 已知直线 y=kx 与抛物线y4 x2 22 交于点 A( 3,6) .27 3(1)求直线 y=kx 的分析式和线段 OA 的长度;(2)点 P 为抛物线第一象限内的动点 , 过点 P 作直线 PM , 交 x 轴于点 M(点 M、 O 不重合) , 交直线 OA 于点 Q, 再过点 Q 作直线 PM 的垂线 , 交 y 轴于点 N. 尝试究:线段 QM 与线段QN 的长度之比能否为定值?假如是, 求出这个定值 , 假如不是 , 说明原因;( 3)如图 2, 若点 B 为抛物线上对称轴右边的点合) , 点 D (m,0)是 x 轴正半轴上的动点, 点 E 在线段 OA 上(与点O、A 不重, 且知足∠ BAE=∠ BED=∠ AOD . 连续探究: m 在什么范围时, 切合条件的 E 点的个数分别是1个、2个?yPyA AEQNBO M x O D x 图 1 图 2。
山东省枣庄市中考数学试题(word版及答案)
m nnn图2图130°45°αA 1A .B .C .D .数 学 试 题一、选择题(本大题共12小题,每小题3分,共36分)1.下列运算中,错误的是( )A .a 3+a 3=2a 3B .a 2·a 3=a 5C .(-a 3)2=a 9D .2a 3÷a 2=2a 2.下列运算,正确的是( )A .3+2= 5B .3×2= 6C .(3-1)2=3-1D .353522-=-3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )4.已知⊙O 1的半径是4cm ,⊙O 2的半径是2cm ,O 1O 2=5cm ,则两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内含 5.将一副三角板按如图方式叠放,则∠α等于( ) A .30° B .45° C .60° D .75° 6.如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .―2― 3 B .―1― 3C .―2+ 3D .1+ 37.如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆 相切于点C ,则AB =( ) A .4cm B .5cmC .6cmD .8cm8.在△ABC 中,∠C =90º,BC =4cm ,AC =3cm .把△ABC 绕点A 到△AB 1C 1(如图所示),则点B 所走过的路径长为( )A .52cmB . 5π 4cmC . 5π 2cmD .5πcm 9.如图1,把一个长为m 、宽为n 的长方形(m >n )沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .m -n2B .m -nC . m 2D . n210.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二A O BC楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( )A .833m B .4mC .43mD .8m11.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )A . 1 2B . 1 3C . 1 6D . 1812.如图,正△AOB的顶点A在反比例函数y=3x(x >0)的图象上, 则点B 的坐标为( )A .(2,0)B .(3,0)C .(23,0)D .(32,0) 二、填空题(本大题共6小题,每小题4分,共24分)13.化简22422b a a b b a+--的结果是 .14.如图,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片2= . 15.若2||323x x x ---的值为零,则x 16.如图,边长为2的正方形O的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是 . 17.下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2010个梅花图案中,共有__________个“ ”图案.18.已知抛物线y =ax 2+bx +c (a ≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a <0;②a +b +c >0;③- b2a>0.把正确结论的序号填在横线上 .三、解答题(本大题共7小题,共60分)19.(8分)在3×3的正方形格点图中,有格点△ABC 和△DEF ,且△ABC 和△DEF 关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF .……20.(8分)解不等式组⎩⎪⎨⎪⎧4x -3<5x ,x -4 2+ x +2 6≤ 1 3,并把解集在数轴上表示出来.21.(8分)利民种子培育基地用A 、B 、C 三种型号的玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广.通过试验知道,C 型号种子的发芽率为80%,根据试验数据绘制了下面两个不完整的统计图(图1、图2):ACB图1ACB图2ACB图3ACB图4D A B CEF(1)C 型号种子的发芽数是_________粒;(2)通过计算说明,应选哪种型号的种子进行推广?(精确到1%)(3)如果将所有已发芽的种子放到一起,从中随机取出一粒,求取到C 型号发芽种子的概率.22.(8分)如图,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE .(1)求证:△ABE ≌△DF A ;(2)如果AD =10,AB =6,求sin ∠EDF 的值.各种型号种子图2图1三种型号种子数百分比AE O FB DC23.(8分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,过点D 作DF ⊥AB 于点E ,交⊙O 于点F ,已知OE =1cm ,DF =4cm . (1)求⊙O 的半径;(2)求切线CD 的长.24.(10分)如图,一次函数y =a x +b 的图象与反比例函数y = kx的图象交于A 、B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =10,点B 的坐标为(m ,-2),t a n ∠AOC = 13.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)在y 轴上存在一点P ,使△PDC 与△CDO 相似,求P 点的坐标.25.(10分)已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n,.(1)求抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH参考答案一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)--14.90°15.3-16.1 17.503 18.①②③13.2a b三、解答题:(本大题共7小题,共60分)19.(本题满分8分)下列图形供参考,每画对一个得2分.20.(本题满分8分) 解:解不等式①,得 3x >-; ……………………………………………………2分 解不等式②,得 3x ≤. ………………………………………………………………5分不等式①、②的解集在数轴上表示如下:………………………………7分 ∴不等式组的解集为33x -<≤. ………………………………………………8分 21.(本题满分8分)(1)480.……………………………………………………………………………2分 (2)A 型号种子数为:1500×30%=450,发芽率=450420×100%≈93%. …3分 B 型号种子数为:1500×30%=450,发芽率=450370×100%≈82%. ……4分C 型号种子发芽率是80%.∴选A 型号种子进行推广.………………………………………………5分 (3)取到C 型号发芽种子的概率=480370420480++=12748.…………………8分22.(本题满分8分)(1)在矩形ABCD 中,90BC AD AD BC B =∠=,∥,°, D A F A E B ∴∠=∠. …………………………………………………………2分 DF AE AE BC ⊥=,,90AFD B ∴∠=∠°=,AE AD =. ABE DFA ∴△≌△. …………………………………………………4分 (2)由(1),知 ABE DFA △≌△.A CB E F DA CB (E ) FA CB ED(F ) A C B EF D A C B (D ) (F ) E A C B(E ) FD。
山东省17市2011年中考数学试题分类解析汇编 专题5 数量和位置变化
山东17市2011年中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1. (日照3分)以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是A 、(3,3)B 、(5,3)C 、(3,5)D 、(5,5)【答案】D 。
【考点】坐标与图形变化(平移),平行四边形的性质。
【分析】根据题意画出图形,由已知即可求出点C 的坐标为(5,3),从而根据坐标平移变化的规律,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,下减上加。
平行四边形向上平移2个单位,那么平行四边形上的点都相应向上平移2个单位,因此C 点平移后得到对应点的坐标是(5,5)。
故选D 。
2. (日照4分)在平面直角坐标系中,已知直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是A 、(0,34) B 、(0,43) C 、(0,3) D 、(0,4)【答案】B 。
【考点】一次函数综合题,翻折变换(折叠问题)的性质,直线上点的坐标与方程的关系,勾股定理,角平分线的性质。
【分析】过C 作CD⊥AB 于D ,交AO 于B′,根据点在直线上点的坐标满足方程的关系,在334y x =-+中分别令x =0和y =0求出A ,B 的坐标,分别为(4,0),(0,3)。
从而得OA =4,OB =3,根据勾股定理得AB =5。
再根据折叠对称的性质得到AC 平分∠OAB,得到CD =CO =n ,DA =OA =4,则DB =5-4=1,BC =3-n 。
从而在Rt△BCD 中,DC 2+BD 2=BC 2,即n 2+12=(3-n )2,解得n =43,因此点C 的坐标为(0,43)。
故选B 。
山东省枣庄市中考数学试题(版,含解析)
山东省枣庄市中考数学试题(版,含解析)山东省枣庄市中考数学试题(版,含解析)一、选择题1. 某数学竞赛中,有10道选择题和5道填空题。
小明选择并回答了其中的6道题目。
他的回答情况是:做对了1道选择题,对于另外5道题目没有回答正确的人总数大于对于1道选择题以及对于5道填空题都没有回答正确的人总数。
求小明对于填空题的回答情况。
【解析】设对于5道填空题,小明做对的题数为a,对于剩下的未作答的题目,做对的题数为b。
根据题意可得到以下两个不等式:a +b > 1b > 0解得 a > 1因此,小明所回答正确的填空题的数量至少为2。
2. 某等差数列的前6项为1,3,5,7,9,11,如果它的第100项是奇数,则这个等差数列的公差是多少?【解析】首先,可以计算出这个等差数列的公差为2。
由已知条件可得:$ a_{100} = a_1 + 99d = 1 + 99 \cdot 2 = 199$因此,这个等差数列的公差为2。
二、填空题1. 某种动物生长迅速。
刚出生时体重为1.5千克,到了5天时增长到2千克,然后每天增重量都是前一天增重量的1.2倍。
求出这种动物在第30天的体重。
【解析】设第n天的体重为$w_n$千克,第n-1天的体重为$w_{n-1}$千克。
由题意可得:$w_n = w_{n-1} + 1.2w_{n-1} = 2.2w_{n-1}$初始条件为:$w_1 = 2$代入递推式可得:$w_2 = 2.2w_1 = 2.2 \cdot 2 = 4.4$$w_3 = 2.2w_2 = 2.2 \cdot 4.4 = 9.68$依此类推可得,第30天的体重为:$w_{30} = 2.2^{29} \cdot 2 = 6618.44$千克。
三、解答题1. 已知函数f(x)的定义域为实数集R,f(x)满足$f(x) + f(2-x) = 2x^2 - 1$。
求f(x)的表达式。
【解析】将x替换为2-x,得:f(2-x) + f(x) = 2(2-x)^2 - 1。
山东省17市2011年中考数学试题分类解析汇编 专题2 代数式和因式分解
山东17市2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1. (日照3分)下列等式一定成立的是()A、a2+a3=a5B、(a+b)2=a2+b2C、(2a b2)3=6a3b6D、(x﹣a)(x﹣b)=x2﹣(a+b)x+a b【答案】D。
【考点】合并同类项,完全平方公式,幂的乘方与积的乘方,多项式乘多项式。
【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方法则,多项式乘以多项式的法则得:A、不是同类项,不能合并,故本选项错误;B、(a+b)2=a2+2a b+b2,故本选项错误;C、(2a b2)3=8a3b6,故本选项错误;D、(x﹣a)(x﹣b)=x2﹣(a+b)x+a b,故本选项正确。
故选D。
2.(烟台4分)下列计算正确的是A.a2+a3=a5B. a6÷a3=a2C. 4x2-3x2=1D.(-2x2y)3=-8 x6y3【答案】D【考点】合并同类项,同底幂除法,积和幂的乘方。
【分析】根据合并同类项,同底幂除法,积和幂的乘方运算法则,逐一分析:A a2和a3不是同类项,不能合并,选项错误;B a6÷a3=a3,选项错误;C 4x2-3x2=x2,选项错误;D(-2x2y)3=-8 x6y3,选项正确. 故选D 。
3.(烟台4分)12a-,则A.a<12B. a≤12C. a>12D. a≥12【答案】B。
【考点】二次根式的性质及其应用,解一元一次不等式。
【分析】根据二次根式的性质:当a≥0=a;当a<0=-a.12a-在实数范围内有成立,即要120a-≥,即a≤12。
故选B。
4.(东营3分)下列运算正确的是A .336x x x +=B .824x x x ÷=C .m n mn x x x ⋅=D .5420()x x -= 【答案】D 。
【考点】合并同类项,同底幂除法和乘法,幂的乘方。
【分析】根据合并同类项,同底幂除法和乘法,幂的乘方运算法则,直接得出结论:A .3332x x x +=,选项错误; B .82826==x x x x -÷,选项错误; C .m n m n x x x +⋅= ,选项错误;D .5420()x x -=,选项正确。
山东省17市2011年中考数学试题分类解析汇编 专题9 三角形
山东17市2011年中考数学试题分类解析汇编专题9:三角形一、选择题1. (日照4分)在Rt△ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA =b a.则下列关系式中不成立的是A 、tanA·cotA=1B 、sinA =tanA·cosAC 、cosA =cotA·sinAD 、tan 2A +cot 2A =1【答案】D 。
【考点】三角函数的定义,代数式变换。
【分析】根据三角函数的定义和已知cotA =b a ,逐一计算进行判断;A 、tanA·cotA=a bb a⋅=1,关系式成立;B 、∵左边=sinA =a c ,右边=tanA·cosA=a b b c ⋅=ac,∴左边=右边,关系式成立;C 、∵左边=cosA =b c ,右边=cotA·sinA=b a a c⋅=b c ,∴左边=右边,关系式成立; D 、tan 2A +cot 2A =22a b b a ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≠1,关系式不成立。
故选D 。
2.(滨州3分)在△ABC 中,∠C=90°,∠A=72°,AB =10,则边AC 的长约为(精确到0.1)A 、9.1B 、9.5C 、3.1D 、3.5【答案】C 。
【考点】解直角三角形。
【分析】在Rt△ABC 中,根据三角函数的定义有cosA =ACAB,∴ AC=AB•cosA=10·cos72°≈3.1。
故选C 。
3.(烟台4分)如果△ABC 中,,则下列最确切的结论是 A. △ABC 是直角三角形 B. △ABC 是等腰三角形 C. △ABC 是等腰直角三角形 D. △ABC 是锐角三角形 【答案】C【考点】特殊角的三角函数值,三角形分类。
【分析】∵,∴∠A=∠B=45°,∴△ABC 是等腰直角三角形。
故选C 。
枣庄市中考数学真题试题(含解析)
枣庄市中考数学真题试题一、选择题(本大题共12小题,每小题3分,共36分) 1.下列计算,正确的是( )A =B .13|2|22-=-C =D .11()22-=【答案】D . 【解析】考点:立方根;有理数的减法;算术平方根;负整数指数幂.2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是( )A .96B .69C .66D .99 【答案】B . 【解析】试题分析:现将数字“69”旋转180°,得到的数字是:69.故选B . 考点:生活中的旋转现象.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45° 【答案】A .【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.4.实数a,b在数轴上对应点的位置如图所示,化简||a的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【答案】A.【解析】考点:二次根式的性质与化简;实数与数轴.5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:由表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【答案】A.【解析】试题分析:∵ =>=,∴从甲和丙中选择一人参加比赛,∵ =<<,∴选择甲参赛,故选A.考点:方差;算术平均数.6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【答案】C.【解析】考点:相似三角形的判定.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A 落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B C D.1【答案】B.【解析】试题分析:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM B.考点:翻折变换(折叠问题).8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60 【答案】B.【解析】考点:角平分线的性质.9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数kyx=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36 【答案】C.【解析】试题分析:∵A (﹣3,4),∴OA ,∵四边形OABC 是菱形,∴AO =CB =OC =AB =5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x =得,4=8k-,解得:k =﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征.10.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( )A .r <<B r <<C 5r <<D .5r <<【答案】B . 【解析】考点:点与圆的位置关系;勾股定理;推理填空题. 11.如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)【答案】C.【解析】试题分析:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴232k bb=-+⎧⎨-=⎩,解得:432kb⎧=-⎪⎨⎪=-⎩,∴直线CD′的解析式为423y x=--.令423y x=--中y=0,则0=423x--,解得:x=32-,∴点P的坐标为(32-,0).故选C.考点:一次函数图象上点的坐标特征;轴对称﹣最短路线问题;最值问题.12.已知函数221y ax ax =--(a 是常数,a ≠0),下列结论正确的是( ) A .当a =1时,函数图象经过点(﹣1,1) B .当a =﹣2时,函数图象与x 轴没有交点 C .若a <0,函数图象的顶点始终在x 轴的下方 D .若a >0,则当x ≥1时,y 随x 的增大而增大 【答案】D . 【解析】故选D .考点:抛物线与x 轴的交点;二次函数图象与系数的关系. 二、填空题(本大题共6小题,每小题4分,共24分)13.化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x. 【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x.考点:分式的乘除法.14.已知关于x 的一元二次方程2210ax x --=有两个不相等的实数根,则a 的取值范围是 .【答案】a>﹣1且a≠0.【解析】试题分析:由题意得a≠0且△=(﹣2)2﹣4a(﹣1)>0,解得a>﹣1且a≠0.故答案为:a>﹣1且a≠0.考点:根的判别式.15.已知23xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=⎩的解,则22a b-= .【答案】1.【解析】考点:二元一次方程组的解;整体思想.16.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.【解析】试题分析:如图连接OE、OF.∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,FE的长=306180π⋅=π.故答案为:π.考点:切线的性质;平行四边形的性质;弧长的计算.17.如图,反比例函数2yx=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.【答案】4.【解析】考点:反比例函数系数k的几何意义.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【答案】3.【解析】试题分析:延长EF和BC,交于点G.∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF.∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=.由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC,∴122 CG CF CFDE DF CF===.设CG=x,DE=2x,则AD=9+2x=BC.∵BG=BC+CG,∴=9+2x+x,解得x=3,∴BC=9+2(3)=3.故答案为:3.考点:矩形的性质;等腰三角形的判定;相似三角形的判定与性质.三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与13222x x≤-都成立?【答案】﹣2、﹣1、0、1.【解析】考点:一元一次不等式的整数解.20.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【答案】(1)50,30%;(2)作图见解析;(3)35.【解析】(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)=1220=35.考点:列表法与树状图法;扇形统计图;条形统计图;应用题;数据的收集与整理.21.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4). (1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; (2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.【答案】(1)作图见解析;(2)作图见解析,sin ∠A 2C 2B 2=10. 【解析】(2)如图所示:△A 2B 2C 2,即为所求,由图形可知,∠A 2C 2B 2=∠ACB ,过点A 作AD ⊥BC 交BC 的延长线于点D ,由A (2,2),C (4,﹣4),B (4,0),易得D (4,2),故AD =2,CD =6,AC ,∴sin ∠ACB =ADAC ,即sin ∠A 2C 2B 2.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.22.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=BF=2,求阴影部分的面积(结果保留π).【答案】(1)BC与⊙O相切;(2)23π.【解析】(2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=12OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB=604360π⨯=23π,则阴影部分的面积为S△ODB﹣S扇形DOF=12×2×23π=23π.故阴影部分的面积为23π.考点:直线与圆的位置关系;扇形面积的计算;探究型.23.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)34.【解析】试题解析:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)=nn=1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=35,F(26)=213,F(37)=137,F(48)=68=34,F(59)=159,∵34>35>213>137>159,∴所有“吉祥数”中,F(t)的最大值为34.考点:因式分解的应用;新定义;因式分解;阅读型.24.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.【答案】(1)证明见解析;(2)△ACE是直角三角形;(31,45°.【解析】试题解析:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵AP=CF,∠P=∠F,PE=EF,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB的中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PA E=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;考点:四边形综合题;探究型;变式探究. 25.如图,抛物线212y x bx c =-++ 与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA =∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.【答案】(1)21262y x x =-++,D (2,8);(2)(﹣1,72)或(﹣3,﹣92);(3)(2,2-+或(2,2--. 【解析】试题分析:(1)由B 、C 的坐标,利用待定系数法可求得抛物线解析式,再求其顶点D 即可;(2)过F 作FG ⊥x 轴于点G ,可设出F 点坐标,利用△FBG ∽△BDE ,由相似三角形的性质可得到关于F 点坐标的方程,可求得F 点的坐标;(3)由于M 、N 两点关于对称轴对称,可知点P 为对称轴与x 轴的交点,点Q 在对称轴上,可设出Q 点的坐标,则可表示出M 的坐标,代入抛物线解析式可求得Q 点的坐标.当点F 在x 轴下方时,有21261262x x x -++=--,解得x =﹣3或x =6(舍去),此时F 点的坐标为(﹣3,﹣92); 综上可知F 点的坐标为(﹣1,72)或(﹣3,﹣92);(3)如图2,设对称轴MN 、PQ 交于点O ′,∵点M 、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上,设Q (2,2n ),则M 坐标为(2﹣n ,n ),∵点M 在抛物线21262y x x =-++的图象上,∴n =﹣12(2﹣n )2+2(2﹣n )+6,解得n=1-+n =1-Q 有两个,其坐标分别为(2,2-+2,2--.考点:二次函数综合题;分类讨论;动点型;压轴题.。
山东省17市2011年中考数学试题分类解析汇编 专题11 圆
山东17市2011年中考数学试题分类解析汇编专题11:圆一. 选择题1.(日照4分)已知AC⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为aba b+的是【答案】D 。
【考点】三角形的内切圆与内心,切线的性质,正方形的判定和性质,解一元一次方程,相似三角形的判定和性质。
【分析】设圆的半径是r 。
A 、设圆切BC 于D ,切AC 于E ,切AB 于F ,连接OD ,OE ,OF ,如图,根据切线的性质可得到正方形OECD ,AE =AF ,BD =BF ,则a -r +b -r =c ,∴r=2a b c+-,故本选项错误;B 、设圆切AB 于F ,连接OF ,如图,则OF =r ,AO =b -r ,△BCA∽△OFA,∴OF AOCB AB =,即r rb a c-=,∴r=aba c+,故本选项错误;C 、连接OE 、OD ,根据AC 、BC 分别切圆O 于E 、D ,如图,根据切线的性质可得到正方形OECD ,则OE =r ,AE =b -r ,△BCA∽△OEA,∴OE AEBC AC=,即r rb a b-=,∴r=ab a b +,故本选项正确;D 、设圆切BC 于D ,连接OD ,OA ,则BD =a +r ,由BA =BD 得c =a +r ,即r =c -a ,故本选项错误。
故选C 。
2.(滨州3分)如图,在平面直角坐标系中,正方形ABCO 的顶点A 、C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为A 、(﹣4,5)B 、(﹣5,4)C 、(5,﹣4)D 、(4,﹣5)【答案】D 。
【考点】垂径定理,勾股定理,正方形的性质。
【分析】过点M 作MD⊥AB 于D ,交OC 于点E ,连接AM 。
设⊙M 的半径为r .∵以边AB 为弦的⊙M 与x 轴相切,AB∥OC,∴DE⊥CO。
∴DE 是⊙M 直径的一部分。
山东省十三地市2011年中考数学试卷汇编(共8份有详解)-1
2011年山东省菏泽市中考数学试卷—解析版一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题4分,共32分)1、﹣的倒数是()A、B、C、﹣D、﹣考点:倒数。
分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣×()=1,,∴﹣的倒数是.故选D.点评:此题主要考查了倒数的定义,需要掌握并熟练运用.2、(2011•菏泽)为了加快3G网络建设,我市电信运营企业将根据各自发展规划,今年预计完成3G投资2800万元左右,将2800万元用科学记数法表示为多少元时,下列记法正确的是()A、2.8×103B、2.8×106C、2.8×107D、2.8×108考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2800万元用科学记数法表示为2.8×107元.故选C.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2010•枣庄)将一副三角板按图中方式叠放,则角α等于()A、30°B、45°C、60°D、75°考点:三角形的外角性质;平行线的性质。
专题:计算题。
分析:利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.解答:解:如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.点评:本题利用了两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和.4、(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A、7B、﹣7C、2a﹣15D、无法确定考点:二次根式的性质与化简;实数与数轴。
2011年中考数学试题分类汇总--直角三角形与勾股定理
第24章直角三角形与勾股定理一、选择题1.(2011山东滨州,9,3分)在△ABC中,∠C=90°, ∠C=72°,AB=10,则边AC的长约为(精确到0.1)()A.9.1B.9.5C.3.1D.3.5【答案】C2. (2011山东烟台,7,4分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A2m B.3m(第7题图)【答案】C3. (2011台湾全区,29)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?A.100 B.180 C.220 D.260【答案】C4. (2011湖北黄石,7,3分)将一个有45度角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图(3),则三角板的最大边的长为A. 3cmB. 6cmC. 32cmD. 62cm【答案】D5. (2011贵州贵阳,7,3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是(第7题图)(A )3.5 (B )4.2 (C )5.8 (D )7【答案】D6. (2011河北,9,3分)如图3,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB,AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( )A .21B .2C .3D .4图3A '【答案】B二、填空题1. (2011山东德州13,4分)下列命题中,其逆.命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形.【答案】① ④2. (2011浙江温州,16,5分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1,S 2,S 3=10,则S 2的值是.【答案】1033. (2011重庆綦江,16,4分) 一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A =30°,∠B =90°,BC =6米. 当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.【答案】:3144. (2011四川凉山州,15,4分)把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式:。
2011年山东省枣庄市中考数学试题(word版含答案)
绝密☆启用前试卷类型:A二○一一年枣庄市2008级初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均记零分.1.下列计算正确的是A .a 6÷a 2=a 3B .a 2+a 3=a 5C .(a 2)3=a 6D .(a +b )2=a 2+b 2 2.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒, 则∠E 等于A .30° B.40° C .60° D.70°3.下列图形中,既是轴对称图形,又是中心对称图形的是4.在平面直角坐标系中,点P (-2,2x +1)所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、 反面为白的拼木,现欲拼满拼木盘使其颜色一致.那么应该选择的拼木是 ACB DE第2题图 A B CD6.已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为A .-1B .1C .2D .3 7.如图,P A 是O ⊙的切线,切点为A ,P A =23, ∠APO =30°,则O ⊙的半径为 A .1B .3C .2D .4 8.已知反比例函数xy 1=,下列结论中不正确的是A .图象经过点(-1,-1)B .图象在第一、三象限C .当1>x 时,10<<yD .当0<x 时,y 随着x 的增大而增大 9.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分 可剪拼成一个矩形(不重叠无 缝隙),若拼成的矩形一边长 为3,则另一边长是 A .m +3 B .m +6 C .2m +3D .2m +610.如图所示,函数x y =1和34312+=x y 的图象 相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是A .x <-1B .—1<x <2C .x >2D . x <-1或x >211.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子 A .8颗 B .6颗 C .4颗 D .2颗12.如图,点A 的坐标是(22),,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能...是 A .(2,0) B .(4,0) C .(-22,0) D .(3,0)OPA第7题图第9题图m +3m31 23 4-1 1 2 xy A第12题图(-1,1)1y (2,2)2yxyO第10题图第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分. 13.若622=-n m ,且2m n -=,则=+n m . 14.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .15.将一副三角尺如图所示叠放在一起,若AB =14cm ,则阴影部分的面积是________cm 2.16.对于任意不相等的两个实数a 、b ,定义运算※如下:a ※b =ba b a -+,如3※2=32532+=-.那么8※12= .17.如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a ,0),半径为5.如果两圆内含,那么a 的取值范围是________.18.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中正确的是 .(填写序号)①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分)先化简,再求值:⎝⎛⎭⎫1+1 x -2÷ x 2-2x +1 x 2-4,其中x =-5. (a ,0)xy O · 3 5第17题图第15题图AC EDBF 30°45°第14题图20.(本题满分8分)某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出).(1)实验所用的2号果树幼苗的数量是_______株;(2)求出3号果树幼苗的成活数,并把图2的统计图补充完整; (3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由.21.(本题满分8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD ∥BC 且使AD =BC ,连接CD ; (2)线段AC 的长为 ,CD 的长为 ,AD 的长为 ;(3)△ACD 为 三角形,四边形ABCD 的面积为 ;(4)若E 为BC 中点,则tan ∠CAE 的值是 .22.(本题满分8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?4号 25%30%1号 3号 25%2号(图1) 500株幼苗中各品种幼苗所占百分比统计图成活数(株) 品种O1号 2号 3号 4号1358511750100150 (图2)各品种幼苗成活数统计图ABCE第21题图23.(本题满分8分)如图,点D 在O ⊙的直径A B 的延长线上,点C 在O ⊙上,且AC =CD , ∠ACD =120°.(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.24. (本题满分10分)如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,6A B A D ==,D E D C ⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . (1)证明:E F C F =; (2)当tan A D E ∠=31时,求EF 的长.25.(本题满分10分)如图,在平面直角坐标系xo y 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)写出h k 、的值;(2)判断A C D △的形状,并说明理由;(3)在线段AC 上是否存在点M ,使A O M △∽A B C △?若存在,求出点M 的坐标;若不存在,说明理由.FDBA EC第24题图第23题图AB O xy绝密☆启用前二○一一年枣庄市2008级初中学业考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分. 3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分) 二、填空题:(本大题共6小题,每小题4分,共24分) 13.3 14.左视图 15.49216.-5217.-2<a <2 18.①③④三、解答题:(本大题共7小题,共60分) 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案CABBBACDCDCD19.(本题满分8分)解:412)211(22-+-÷-+x x x x =)2)(2()1(2122-+-÷-+-x x x x x ……………………2分 =2)1()2)(2(21--+⋅--x x x x x =12-+x x , ………………………………………………5分当5-=x 时,原式=12-+x x =211525=--+-. ………………………………………8分20.(本题满分8分)解:(1)100; …………………………………………………………2分 (2)11%6.89%25500=⨯⨯,如图所示; ……………………4分(3)1号果树幼苗成活率为%90%100150135=⨯ 2号果树幼苗成活率为%85%10010085=⨯ 4号果树幼苗成活率为%6.93%100125117=⨯ ∵93.6%90%89.6%85%>>>, ∴应选择4号苹果幼苗进行推广.………8分 21.(本题满分8分)(1)如图; ……………………………1分 (2)25,5,5; ………………4分(3)直角,10; ……………………6分 (4)12. ……………………………8分22.(本题满分8分)解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得 ⎩⎨⎧≤-+≤-+16203060501900303080)()(x x x x ………………………2分 解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书 角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个. …5分 成活数(株) 品种O1号 2号 3号 4号1358511750100 150 第20题图各品种幼苗成活数统计图ABCE第21题图D(2)方案一的费用是:860×18+570×12=22320(元); 方案二的费用是:860×19+570×11=22610(元);方案三的费用是:860×20+570×10=22900(元).故方案一费用最低,最低费用是22320元. …………8分 23.(本题满分8分) (1)证明:连结O C .∵ CDAC =,120A C D ︒∠=, ∴ 30A D ︒∠=∠=.…………………………2分 ∵ OCOA =,∴ 230A ︒∠=∠=. ∴ 290O C D A C D ︒∠=∠-∠=. ∴ C D 是O ⊙的切线. ………………………………4分(2)解:∵∠A=30o , ∴ 1260A ︒∠=∠=. ∴ 2602360O B CS π⨯==扇形23π. ……………………6分 在Rt △OCD 中, tan 6023C D O C =⋅︒=. ∴R t 112232322O C D S O C C D ∆=⨯=⨯⨯=.∴ 图中阴影部分的面积为-3223π. ………………8分24.(本题满分10分)解:(1)过D 作DG ⊥BC 于G .由已知可得,四边形ABGD 为正方形. …………1分∵DE ⊥DC ,∴∠ADE +∠EDG =90°=∠GDC +∠EDG ,∴∠ADE =∠GDC . ………………………3分 又∵∠A=∠DGC ,且AD =GD ,∴△ADE ≌△GDC .∴DE =DC ,且AE =GC . ……………………4分 在△EDF 和△CDF 中,∠EDF =∠CDF ,DE =DC ,DF 为公共边, ∴△EDF ≌△CDF .∴EF =CF . ……………………………………………6分 (2)∵tan ∠ADE =AD AE=31, ∴2A EG C ==. ………………………………………7分设E F x =,则88B F C F x =-=-,BE =6-2=4.由勾股定理,得 222(8)4x x =-+. FDBA EC第24题G解之,得 5x =, 即5E F =. ……………………………10分 25.(本题满分10分)解:(1)2()y x h k =-+的顶点坐标为D(-1,-4), ∴ 1h k =-,=-4. …………………………………………2分(2)由(1)得2(1)4y x =+-. 当0y =时,2(1)40x +-=. 解之,得 1231x x =-=,. ∴ (30)10A B -,,(,).又当0x =时,22(1)4(01)43y x =+-=+-=-, ∴C 点坐标为()03,-.………………………………4分又抛物线顶点坐标()14D --,,作抛物线的对称轴1x =-交x 轴于点E ,DF y ⊥轴于点F .易知在R t A E D△中,2222420A D =+=; 在R t A O C △中,2223318A C =+=; 在R t C F D △中,222112C D =+=; ∴ 222AC CD A D +=. ∴ △ACD 是直角三角形.…………………………6分 (3)存在.作OM ∥BC 交AC 于M ,M点即为所求点.由(2)知,A O C △为等腰直角三角形,45B A C ∠=︒,1832A C ==.由A O M A B C △∽△,得AO AM ABAC=.即33329244432A M A M ⨯===,. …………………………8分 过M 点作M G A B ⊥于点G ,则29248192164A G M G ⎛⎫⎪⎝⎭∴====,93344O G A OA G =-=-=.又点M 在第三象限,所以39--44M (,). …………………………10分ADCB O xyM FE G。
2011年全国各地中考数学试卷试题分类汇编——第17章《事件与概率》
1 9
B.
1 3
C.
2 3
D.
2 9
【答案】A 8. (2011 浙江绍兴,7,4 分)在一个不透明的盒子中装有 8 个白球,若干个黄球,它们除 颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为 ( ) A.2 【答案】B 9. (2011 浙江义乌,9,3 分)某校安排三辆车,组织九年级学生团员去敬老院参加学雷 锋活动, 其中小王与小菲都可以从这三辆车中任选一辆搭乘, 则小王与小菲同车的概率为 ( ) 1 A. 3 【答案】A 10. (2011 浙江省嘉兴,12,5 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 . 1 B. 9 1 C. 2 2 D. 3 B.4 C.12 D.16
【答案】C 21. (2011 山东临沂,10,3 分)如图,A、B 是数轴上的亮点,在线段 AB 上任取一点 C, 则点 C 到表示-1 的点的距离不大于 ...2 的概率是( A. ) D.
1 2
B.
2 3
C.
3 4
4 5
【答案】D 22. (2011 四川凉山州,4,4 分)下列说法正确的是( A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。 B.从 1,2,3,4,5 中随机取一个数,取得奇数的可能性较大。 C.某彩票中奖率为 36 0 0 ,说明买 100 张彩票,有 36 张中奖。 D.打开电视,中央一套正在播放新闻联播。 【答案】B 23. (2011 四川绵阳 3,3)掷一个质地均匀且六个面上分别刻有 1 到 6 的点数的正方体骰 子,如图.观察向上的ー面的点数,下列属必然事件的是 )
1 【答案】 3 2. (2011 浙江省舟山,12,4 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 .
2011年枣庄市中考数学试题及答案
绝密☆启用前二O ——年枣庄市2008级初中学业考试数学试题注意事项:1. 本试题分第I卷和第n 卷两部分.第I卷为选择题,36分;第n卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2. 答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3•第I卷每小题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4.第n卷必须用黑色(或蓝色)笔填写在答题纸的指定位置,否则不计分.第I卷(选择题共36分)、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1•下列计算正确的是6 2 3 2,3 5A. a 十a = a B . a + a = aC. ( a2) 3= a6 D . (a+ b) 2= a2+ b22.如图,直线AB// CD,/ A = 70,/ C = 40 ,则/ E等于A. 30 °B. 40 °C. 60°D. 70°3. 下列图形中,既是轴对称图形,又是中心对称图形的是试卷类型:A4. 在平面直角坐标系中,点P( —2, X2+ 1)所在的象限是A.第一象限B. 第二象限C. 第三象限D. 第四象限C ABC5•如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘使其颜色一致•那么应该选择的拼木是11 •在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是 4 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率51是二元次方程组ax + bv = 7{ '的解,贝U a —b的值为C. 2 D• 37 .如图,PA是O O的切线,切点为A, PA=2'、3,/ APO=30。
2011年山东省圆中考专题(答案)
2011山东中考数学分类------圆一、选择题1.(淄博 11,4分)如图,矩形ABCD 中,AB=4,以点B 为圆心,BA 为半径画弧交BC 于点E ,以点O 为圆心的⊙O 与弧AE ,边AD ,DC 都相切.把扇形BAE 作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O ,则AD 的长为( )A .4B .92C .112D .5 【答案】D 。
2.(临沂 6,3分)如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,OM :OD=3:5 .则AB 的长是( )A 、2cm B 、3cm C 、4cm D 、2cm 故选C .3,(•滨州3,3分)如图,在平面直角坐标系中,正方形ABCO 的顶点A 、C 分别在 y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( ) A 、(﹣4,5) B 、(﹣5,4)C 、(5,﹣4) D 、(4,﹣5) 故选D .4(济宁 5,3分).已知⊙O 1与⊙O 2相切,⊙O 1的半径为9 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 A .1 cm B .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm5(济宁 9.3分)如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 ( ) A .6cm B .35cm C .8cm D .53cm6,(泰安 10,3分).如图,⊙O 的弦AB 垂直平分半径OC ,若AB=,6⊙O 的半径为 (A )2 (B )22 (C )22 (D )267(泰安 14,3分)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是(A )5π (B )4π (C )3π (D )2π 8 (日照 11.4分)已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ba ab的是(第9题)剪去9(莱芜 11,3分)将一个圆心角是90º的扇形围成一个圆锥的侧面,则该圆锥的侧面积S 侧和底面积S 底的关系是【 D 】A .S 侧=S 底B .S 侧=2S 底C .S 侧=3S 底D .S 侧=4S 底 10(青岛 3,3分)已知⊙O 1与⊙O 2的直径分别是4cm 和6cm ,O 1O 2=5cm ,则两圆的位置关系是【 】 A .外离 B .外切 C .相交 D .内切11(青岛 7,3分)7.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为【 】 A .17cm B .4cm C .15cm D .3cm12、(2011•潍坊9,3分)如图,半径为1的小圆在半径为9的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为( ) A 、17π B 、32π C 、49π D 、80π 故选B .13(枣庄 7,3分)7.如图,PA 是O ⊙的切线,切点为A ,P A =23,∠APO =30°, 则O ⊙的半径为( ) A .1B .3C .2D .4二、填空 1、(济宁 13,3分)如图,在Rt △ABC 中,∠C=90°,BC=4cm ,以点C 为圆心,以3cm 长为半径作圆,则⊙C 与AB 的位置关系是 。
2011年中考数学考试试题答案
1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。
最新初中中考数学题库 2011年枣庄市中考数学试题及答案
绝密☆启用前试卷类型:A二○一一年枣庄市2008级初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均记零分.1.下列计算正确的是A .a 6÷a 2=a 3B .a 2+a 3=a 5C .(a 2)3=a 6D .(a +b )2=a 2+b 2 2.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒, 则∠E 等于A .30° B.40° C .60° D.70° 3.下列图形中,既是轴对称图形,又是中心对称图形的是4.在平面直角坐标系中,点P (-2,2x +1)所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、 反面为白的拼木,现欲拼满拼木盘使其颜色一致.那么应该选择的拼木是AC BD E第2题图A B CD6.已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为A .-1B .1C .2D .3 7.如图,PA 是O ⊙的切线,切点为A ,P A =23, ∠APO =30°,则O ⊙的半径为 A .1B .3C .2D .48.已知反比例函数xy 1=,下列结论中不正确的是A .图象经过点(-1,-1)B .图象在第一、三象限C .当1>x 时,10<<yD .当0<x 时,y 随着x 的增大而增大 9.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分 可剪拼成一个矩形(不重叠无 缝隙),若拼成的矩形一边长 为3,则另一边长是 A .m +3 B .m +6 C .2m +3D .2m +610.如图所示,函数x y =1和34312+=x y 的图象 相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是A .x <-1B .—1<x <2C .x >2D . x <-1或x >211.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率 是14,则原来盒中有白色棋子 A .8颗 B .6颗 C .4颗 D .2颗12.如图,点A 的坐标是(22),,若点P 在x 轴上,且APO △是等腰三角形,则 点P 的坐标不可能...是 OPA第7题图第9题图m +3m32 y AA B C D第5题图(-1,1)1y (2,2)2yx yO第10题图A .(2,0)B .(4,0)C .(-22,0)D .(3,0)第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分. 13.若622=-n m ,且2m n -=,则=+n m . 14.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .15.将一副三角尺如图所示叠放在一起,若AB =14cm ,则阴影部分的面积是________cm 2.下:a ※b =ba ba -+, 16.对于任意不相等的两个实数a 、b ,定义运算※如如3※2=32532+=-.那么8※12= .17.如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a ,0),半径为5.如果两圆内含,那么a 的取值范围是________.18.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中正确的是 .(填写序号)①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.(a ,0)xy O · 3 5 第17题图第15题图A CEDBF 30°45°第14题图19.(本题满分8分)先化简,再求值:⎝⎛⎭⎫1+ 1x -2÷ x 2-2x +1 x 2-4,其中x =-5.20.(本题满分8分)某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出).(1)实验所用的2号果树幼苗的数量是_______株;(2)求出3号果树幼苗的成活数,并把图2的统计图补充完整; (3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由.21.(本题满分8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,请按要求完成下列各题: (1)画线段AD ∥BC 且使AD =BC ,连接CD ;(2)线段AC 的长为 ,CD 的长为 ,AD 的长为 ;(3)△ACD 为 三角形,四边形ABCD 的面积为 ;(4)若E 为BC 中点,则tan ∠CAE 的值是 .22.(本题满分8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;∙4号25% 30%1号3号 25%2号 (图1) 500株幼苗中各品种幼苗所占百分比统计图成活数(株) 品种O1号 2号 3号 4号1358511750100 150 (图2)各品种幼苗成活数统计图AB CE 第21题图(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?23.(本题满分8分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且AC =CD , ∠ACD =120°.(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.24. (本题满分10分)如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,6AB AD ==,DE DC ⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . (1)证明:EF CF =;(2)当tan ADE ∠=31时,求EF 的长.25.(本题满分10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)写出h k 、的值;(2)判断ACD △的形状,并说明理由;(3)在线段AC 上是否存在点M ,使AOM △∽ABC △?若存在,求出点M 的坐标;若不存在,说明理由.FDBA EC第24题图第23题图y绝密☆启用前二○一一年枣庄市2008级初中学业考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分. 一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案CABBBACDCDCD小题,每小题4分,共24分) 13.3 14.左视图 15.49216.-52 17.-2<a <2 18.①③④三、解答题:(本大题共7小题,共60分) 19.(本题满分8分)解:412)211(22-+-÷-+x x x x =)2)(2()1(2122-+-÷-+-x x x x x ……………………2分 =2)1()2)(2(21--+⋅--x x x x x =12-+x x , ………………………………………………5分 当5-=x 时,原式=12-+x x =211525=--+-. ………………………………………8分20.(本题满分8分)解:(1)100; …………………………………………………………2分 (2)11%6.89%25500=⨯⨯,如图所示; ……………………4分(3)1号果树幼苗成活率为%90%100150135=⨯ 2号果树幼苗成活率为%85%10010085=⨯ 4号果树幼苗成活率为%6.93%100125117=⨯ ∵93.6%90%89.6%85%>>>, ∴应选择4号苹果幼苗进行推广.………8分 21.(本题满分8分)(1)如图; ……………………………1分 (2)25,5,5; ………………4分(3)直角,10; ……………………6分(4)12. ……………………………8分22.(本题满分8分)解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得成活数(株)品种O1号 2号 3号 4号135 8511750100 150 第20题图各品种幼苗成活数统计图 ABCE第21题图D⎩⎨⎧≤-+≤-+16203060501900303080)()(x x x x ………………………2分 解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书 角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个. …5分(2)方案一的费用是:860×18+570×12=22320(元);方案二的费用是:860×19+570×11=22610(元); 方案三的费用是:860×20+570×10=22900(元).故方案一费用最低,最低费用是22320元. …………8分 23.(本题满分8分) (1)证明:连结O C .∵ CDAC =,120A C D ︒∠=, ∴ 30A D ︒∠=∠=.…………………………2分 ∵ OC OA =,∴ 230A ︒∠=∠=. ∴ 290O C D A C D ︒∠=∠-∠=. ∴ C D 是O ⊙的切线. ………………………………4分 (2)解:∵∠A=30o, ∴ 1260A ︒∠=∠=. ∴ 2602360O B CS π⨯==扇形23π. ……………………6分 在Rt △OCD 中, tan 6023CD OC =⋅︒=.∴Rt 112232322OCD S OC CD ∆=⨯=⨯⨯=. ∴ 图中阴影部分的面积为-3223π. ………………8分24.(本题满分10分)解:(1)过D 作DG ⊥BC 于G .由已知可得,四边形ABGD 为正方形. …………1分 ∵DE ⊥DC ,∴∠ADE +∠EDG =90°=∠GDC +∠EDG ,∴∠ADE =∠GDC . ………………………3分DA E又∵∠A=∠DGC ,且AD =GD , ∴△ADE ≌△GDC .∴DE =DC ,且AE =GC . ……………………4分 在△EDF 和△CDF 中,∠EDF =∠CDF ,DE =DC ,DF 为公共边, ∴△EDF ≌△CDF .∴EF =CF . ……………………………………………6分 (2)∵tan ∠ADE =AD AE =31, ∴2A E G C ==. ………………………………………7分 设E F x =,则88B F C F x=-=-,BE =6-2=4. 由勾股定理,得 222(8)4x x =-+. 解之,得 5x =, 即5E F =. ……………………………10分 25.(本题满分10分)解:(1)2()y x h k=-+的顶点坐标为D(-1,-4), ∴ 1h k =-,=-4. …………………………………………2分 (2)由(1)得2(1)4y x =+-. 当0y =时,2(1)40x +-=. 解之,得 1231x x =-=,. ∴ (30)10A B -,,(,). 又当0x =时,22(1)4(01)43y x =+-=+-=-, ∴C 点坐标为()03,-.………………………………4分 又抛物线顶点坐标()14D --,,作抛物线的对称轴1x =-交x 轴于点E , D F y ⊥轴于点F .易知在R t A E D △中,2222420A D =+=; 在R t A O C △中,2223318A C =+=;在R t C F D △中,222112C D =+=; ∴ 222AC C DAD +=. ∴ △ACD 是直角三角形.…………………………6分 (3)存在.作OM ∥BC 交AC 于M ,M点即为所求点.ADCB O x yMFE G由(2)知,A O C △为等腰直角三角形,45B A C ∠=︒,1832A C ==. 由A O M A B C△∽△,得AO AMAB AC=. 即33329244432A M A M ⨯===,. …………………………8分 过M 点作M G A B⊥于点G ,则 29248192164A G M G ⎛⎫⎪⎝⎭∴====,93344O G A O A G =-=-=. 又点M 在第三象限,所以39--44M (,). …………………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密☆启用前试卷类型:A二○一一年枣庄市2008级初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均记零分.1.下列计算正确的是A .a 6÷a 2=a 3B .a 2+a 3=a 5C .(a 2)3=a 6D .(a +b )2=a 2+b 2 2.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒, 则∠E 等于A .30° B.40° C .60° D.70° 3.下列图形中,既是轴对称图形,又是中心对称图形的是4.在平面直角坐标系中,点P (-2,2x +1)所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、 反面为白的拼木,现欲拼满拼木盘使其颜色一致.那么应该选择的拼木是AC BD E第2题图A B CDA B C D 第5题图6.已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为A .-1B .1C .2D .3 7.如图,PA 是O ⊙的切线,切点为A ,P A =23, ∠APO =30°,则O ⊙的半径为 A .1B .3C .2D .48.已知反比例函数xy 1=,下列结论中不正确的是A .图象经过点(-1,-1)B .图象在第一、三象限C .当1>x 时,10<<yD .当0<x 时,y 随着x 的增大而增大 9.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分 可剪拼成一个矩形(不重叠无 缝隙),若拼成的矩形一边长 为3,则另一边长是 A .m +3 B .m +6 C .2m +3D .2m +610.如图所示,函数x y =1和34312+=x y 的图象 相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是A .x <-1B .—1<x <2C .x >2D . x <-1或x >211.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率 是14,则原来盒中有白色棋子 A .8颗 B .6颗 C .4颗 D .2颗12.如图,点A 的坐标是(22),,若点P 在x 轴上,且APO △是等腰三角形,则 点P 的坐标不可能...是 A .(2,0) B .(4,0) C .(-22,0) D .(3,0)OPA第7题图第9题图m +3m31 23 4-1 12 xy A第12题图(-1,1)1y (2,2)2yx yO第10题图第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分. 13.若622=-n m ,且2m n -=,则=+n m . 14.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .15.将一副三角尺如图所示叠放在一起,若AB =14cm ,则阴影部分的面积是________cm 2.16.对于任意不相等的两个实数a 、b ,定义运算※如下:a ※b =ba ba -+,如3※2=32532+=-.那么8※12= .17.如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a ,0),半径为5.如果两圆内含,那么a 的取值范围是________.18.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中正确的是 .(填写序号)①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分)先化简,再求值:⎝⎛⎭⎫1+ 1x -2÷ x 2-2x +1 x 2-4,其中x =-5.(a ,0)xy O · 3 5 第17题图第15题图A C EDBF 30°45°第14题图20.(本题满分8分)某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出).(1)实验所用的2号果树幼苗的数量是_______株;(2)求出3号果树幼苗的成活数,并把图2的统计图补充完整; (3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由.21.(本题满分8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD ∥BC 且使AD =BC ,连接CD ;(2)线段AC 的长为 ,CD 的长为 ,AD 的长为 ;(3)△ACD 为 三角形,四边形ABCD 的面积为 ;(4)若E 为BC 中点,则tan ∠CAE 的值是 .22.(本题满分8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?4号25% 30%1号 3号 25%2号 (图1) 500株幼苗中各品种幼苗所占百分比统计图成活数(株) 品种O1号 2号 3号 4号1358511750100 150 (图2)各品种幼苗成活数统计图AB CE 第21题图23.(本题满分8分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且AC =CD , ∠ACD =120°.(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.24. (本题满分10分)如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,6AB AD ==,DE DC ⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . (1)证明:EF CF =;(2)当tan ADE ∠=31时,求EF 的长.25.(本题满分10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)写出h k 、的值;(2)判断ACD △的形状,并说明理由;(3)在线段AC 上是否存在点M ,使AOM △∽ABC △?若存在,求出点M 的坐标;若不存在,说明理由.FDBA EC第24题图第23题图AC B O xy绝密☆启用前二○一一年枣庄市2008级初中学业考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分. 3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.3 14.左视图 15.49216.-52 17.-2<a <2 18.①③④三、解答题:(本大题共7小题,共60分) 19.(本题满分8分)解:412)211(22-+-÷-+x x x x =)2)(2()1(2122-+-÷-+-x x x x x ……………………2分 =2)1()2)(2(21--+⋅--x x x x x =12-+x x , ………………………………………………………………………5分 当5-=x 时,原式=12-+x x =211525=--+-. ………………………………………8分20.(本题满分8分)解:(1)100; …………………………………………………………………………2分 (2)11%6.89%25500=⨯⨯,如图所示; …………………………………4分题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案CABBBACDCDCD(3)1号果树幼苗成活率为%90%100150135=⨯ 2号果树幼苗成活率为%85%10010085=⨯ 4号果树幼苗成活率为%6.93%100125117=⨯ ∵93.6%90%89.6%85%>>>, ∴应选择4号苹果幼苗进行推广.………8分 21.(本题满分8分)(1)如图; ……………………………1分 (2)25,5,5; ………………4分(3)直角,10; ……………………6分(4)12. ……………………………8分22.(本题满分8分)解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得⎩⎨⎧≤-+≤-+16203060501900303080)()(x x x x ……………………………………2分解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书 角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个. …5分 (2)方案一的费用是:860×18+570×12=22320(元);方案二的费用是:860×19+570×11=22610(元); 方案三的费用是:860×20+570×10=22900(元).故方案一费用最低,最低费用是22320元. ……………………………………8分 23.(本题满分8分) (1)证明:连结O C .∵ CDAC =,120A C D ︒∠=, ∴ 30A D ︒∠=∠=.…………………………2分 ∵ OC OA =,∴ 230A ︒∠=∠=. ∴ 290O C D A C D ︒∠=∠-∠=.∴ C D 是O ⊙的切线. ………………………………………………………………4分(2)解:∵∠A=30o, ∴ 1260A ︒∠=∠=.成活数(株)品种O1号 2号 3号 4号135 8511750100 150 第20题图各品种幼苗成活数统计图 ABCE第21题图D∴ 2602360O B CS π⨯==扇形23π. ……………………………………………………6分 在Rt △OCD 中, tan 6023CD OC =⋅︒=.∴Rt 112232322OCD S OC CD ∆=⨯=⨯⨯=. ∴ 图中阴影部分的面积为-3223π. …………………………………………8分24.(本题满分10分)解:(1)过D 作DG ⊥BC 于G .由已知可得,四边形ABGD 为正方形. …………1分 ∵DE ⊥DC ,∴∠ADE +∠EDG =90°=∠GDC +∠EDG , ∴∠ADE =∠GDC . ………………………3分 又∵∠A=∠DGC ,且AD =GD , ∴△ADE ≌△GDC . ∴DE =DC ,且AE =GC . ……………………4分 在△EDF 和△CDF 中,∠EDF =∠CDF ,DE =DC ,DF 为公共边, ∴△EDF ≌△CDF . ∴EF =CF . ………………………………………………………………………………6分 (2)∵tan ∠ADE =AD AE =31, ∴2A E G C ==. ………………………………………7分 设E F x =,则88B F C F x=-=-,BE =6-2=4. 由勾股定理,得 222(8)4x x =-+. 解之,得 5x =, 即5E F =. …………………………………………………10分 25.(本题满分10分)解:(1)2()y x h k=-+的顶点坐标为D(-1,-4), ∴ 1h k =-,=-4. ……………………………………………………………………2分 (2)由(1)得2(1)4y x =+-. 当0y =时,2(1)40x +-=. 解之,得 1231x x =-=,. ∴ (30)10A B -,,(,).又当0x =时,22(1)4(01)43y x =+-=+-=-,∴C 点坐标为()03,-.……………………………………………………………………4分 F D B A E C 第24题G又抛物线顶点坐标()14D --,,作抛物线的对称轴1x =-交x 轴于点E , D F y ⊥轴于点F .易知在R t A E D △中,2222420A D =+=; 在R t A O C △中,2223318A C =+=; 在R t C F D △中,222112C D =+=; ∴ 222AC C DAD +=. ∴ △ACD 是直角三角形. ……………………………………………………………6分 (3)存在.作OM ∥BC 交AC 于M ,M点即为所求点.由(2)知,A O C △为等腰直角三角形,45B A C ∠=︒,1832A C ==.由A O M A B C△∽△,得AO AMAB AC=. 即33329244432A M A M ⨯===,. ……………………………………………………8分 过M 点作M G A B⊥于点G ,则 29248192164A G M G ⎛⎫⎪⎝⎭∴====,93344O G A O A G =-=-=.又点M 在第三象限,所以39--44M (,). …………………………………………………10分ADCB O x yM FE G。